Institute for Language, Logic and Information

INTUITIONISTIC
CATEGORIAL GRAMMAR

Aarmne Ranta

ITLI Prepublication Series
for Logic, Semantics and Philosophy of Language LP-90-04

%
&l
%

University of Amsterdam

The ITLI Prepublication Series

1986

86-01 The Institute of Language, Logic and Information

86-02 Peter van Emde Boas A Scmantical Model for Integration and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A, Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,

36- Johan van Benthem Logical Syntax) . Forward looking Operators
987 87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Scmantics of Interrogatives

87-02 Renate Bartsch Frame Representations and Discourse Representations]

87-03 Jan Willem Klop, Rocl de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing

87-04 Johan van Beathem Polyadic quantifiers :

87-0S5 Victor Sdnchez Valencia Traditional Logicians and de Morgan's Example

87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time

Categorial Grammar and Type .Theory

87-07 Johan van Benthem s
The Construction of Properties under Pm&:livu

87-08 Renate Bartsch

87-09 Herman Heandriks Type Change in Semantics: The Scope of Quantification and Coordination
1988 | p_83.01 Michicl van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic
LP-88-03 Year Report 1987
LP-88-04 Reinhard Muskens Going partial in Montague Grammar
LP-88-05 Johan van Benthem Logical Constants across Vu{ing Types
LP-88-06 Johan van Benthem Semantic Parallels in Natural Language and Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof ~ Context and Information in Dynamic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra
LP-88-10 Anncke Kleppe) . A Blissymbolics Translation Program
ML-88-01 Jaap van Oosten Mathematical Logic and Foundations: | jfschitz' Realizabiility
ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin Lf's Type Theories with weak Z-elimination
ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability
ML-88-04 A.S. Troelstra On the Early History of Intuitionistic Logic
ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics
CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of Ag,gi‘ed Kolmogorov Complexity
CT-88-02 Michiel H.M. Smid General Lower Bounds for the Partitioning of Range Trees
CT-88-03 Michiel H.M. Smid, Mark H. Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures
CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. Renardel de Lavalette
CT-88-05 Peter van Emde Boas Machine Modcls and Simulations (revised version)
CT-88-06 Michiel HM. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity
CT-88-07 Johan van Benthem Time, Logic and Computation

CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures
Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sicger van Denncheuvel, Peter van Emde Boas Towards implementing RL

X-88-01 Marc Jumelet Other prepublications: On Solovay's Completeness Theorem

1989 1 p.g9.01 Johan van Benthemlogic, Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof = Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem Lan uaEe in Action

LP-89-05 Johan van Benthem Mocfal ic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LP-89-07 Heinrich Wansin The Adequacy Problem for Sequential Propositional Logic

LP-89-08 Victor Sénchez Valencia Peimc'searopositional Logic: From Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna On the Proof of Solovay's Theorem

ML-89-05 Rineke Verbrugge Z-completeness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provabfe_Fixed points in 1Ag+£4

CT-89-01 Michicl HM. Smid Computation and Complexity Theory: Dynamic. Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Modcls and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas ~ On Space Efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Pieter H. Hartel, Michiel HM. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvliet, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Ficlds .
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learnin Sjmgle Concepts under Simple Distributions and
Average Casc Complexity for the Universal Distribution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet On Adaptive Resource Bounded Computations
CT-89-10 Sicger van Denncheuvel The Rule Language RL/1

CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas o
X-89-01 Marianne Kalsbeek Other Prepublications: An Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troelstra Index of the lleyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Theory of Inequality

-89-06 Peter van Emde Boas Een Relationcle Semantiek voor Conceptueel Modelleren: Het RL-project
1950° s INSIDE BACK COVER P et RL-projec

| Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam
INTUITIONISTIC
CATEGORIAL GRAMMAR
Aame Ranta
Department of Mathematics and Computer Science

University of Amsterdam

Academy of Finland, and

Department of Philosophy

University of Helsinki

Received April 1990

Unionkatu 40 B, 00170 Helsinki, Finland

Contents
1. Introduction 1
2. A review of logical grammars 4
2.1. Artificial and formal languages 4
2.2. Predicate calculus as a representation formalism 6
2.3. Montague's formalisms 7
2.4. Compositionality 8
2.5. Dynamic representation formalisms 10
3. Grammatical representations in intuitionistic
type theory 13
3.1. The gquantifiers Y and][] 13
3.2. The propositions as types principle 16
3.3. The meanings of Y and [I 17
3.4. More English readins for Y and [] 18
4. Categorial grammar for intuitionistic type theory 22
4.1. Pure categorial grammar for predicate calculus 22
4.2, Martin-L6f's type hierarchy 25
4.3, Types and sets 28
4.4. The higher level definitions of Y and II 29
5. An intuitionistic grammar for English 31
5.1. The structure of the grammar 31
5.2. Three methodological principles 33
5.3. The lexicon 35
5.4. The sugaring procedure 36
5.5. The system of sugaring rules 36
5.6. The sugaring of X and][I 39
5.7. Anaphoric expressions 41
5.8. An example of proposition formation and sugaring 42
5.9. The dynamicity of texts 43
5.10.Extension of the fragment to complex predicates 44
References 45
Acknowledgments. I am grateful to Per Martin-Lof for
discussions, to Petri M&denpdd for cooperation in computer
implementation, and to Johan van Benthem for comments and for

INTUITIONISTIC CATEGORIAL GRAMMAR

his hospitality during a stay in Amsterdam in the spring of
which provided me excellent conditions for finishing
this paper.

1990,

1. INTRODUCTION

In a categorial grammar, expressions of a language are
assigned categories, to account for their modes of
combination. The category assignments also have a semantic
significance: expressions of any category denote objects of a
definite type. Thus the categorial grammar does not merely
give the syntax of the language, but its meaning structure as
well.

In the study of natural languages, the categorial
grammars most widely employed are based on the simple type
theory with two basic types, the type e of individuals and
the type t of truth values. Proper names are, most
straightforwardly, assigned the category e, i.e. they are
explained as names of individuals. Sentences are assigned the
category t. Common nouns, adjectives, and intransitive verbs
are all assigned the category (e,t) of expressions denoting
functions from individuals to truth values.

A grammar of this kind assigns to expressions of English
the same categories as to certain expressions of classical
predicate calculus. For predicate calculus, such assignments
are mathematically well-established, because predicate
calculus is an artificial language that can be defined by the
categorial grammar. For English, categorial grammar is a
research program: to the degree to which a categorial grammar
can be imposed on English, the logical structure of English
becomes understood.

The adequacy of the simple type theory in the study of
English has been challenged for various reasons. Richer type
theories have been suggested accordingly, e.g. Montague's
theory with one more basic type, the type s of possible
worlds. There are also approaches stepping out of categorial
grammars, e.g. Kamp's discourse representation theory. It
might be claimed that in the explanation of the dynamicity of
natural languages, exemplified by pronominal reference, one
must give up the ideal of parallelism between syntax and
semantics. This doubt has recently been challenged by
Groenendijk and Stokhof (1989, 1990), in attempts to see
categorial structure even in dynamic phenomena.

What has been employed in the categorial grammar of

natural languages is, essentially, the simple type theory and
a series of additions to it, additions made in the purpose of
coping with problems that have arisen. These additions have
also resulted in new formalisms in which meanings of English
sentences can be expressed better than in predicate calculus.
But the basic ontology of entities and truth values has
always been retained.

In mathematics, classical logic and its explanations of
meaning have been challenged by intuitionists. One of the
crucial criticisms runs as follows. We have introduced the
basic type of truth values, which has exactly the two objects
True and False. We have explained logical formulae as names
of truth values, and this is unquestionable as long as we can
tell which truth value each formula denotes. But there are
formulae for which we cannot tell this, such as many of those
formed by universal quantification over an infinite domain.
In what sense does such an expression denote a truth value?

Intuitionistic logic does not give up universal
quantification or any other mode of expression, but it

explains them in a new way. We do not know how to determine

the truth value of (Vx)A, but we do know what is required to
establish it as true: we ought to introduce a function which
to each individual d establishes the truth of A(d/x). In
other words, we can prescribe what the proofs of the
proposition are like, even if we do not know any such proof.

Intuitionistic explanations often stop at this point,
without assigning any denotations to formulae, in the way
classical logic assigns truth values to them. But proof
prescriptions can be understood as definitions of sets, in
the usual intuitionistic sense in which sets are defined by
prescriptions of elements. A formula denoting such a set is
true if the set has an element.

This interpretation, called the propositions as types
principle, was developed by Curry (Curry and Feys 1958),
Howard (1980), de Bruijn (1970), and Martin-L&6f (1973). A
categorial grammar implementing this principle was devised by
Martin-L6f as the "higher level notation”™ mentioned in the
preface of Martin-L&f 1984, but it was only published in
detail by Nordstrdém & al. (1990). The grammar, as well as

related systems by Harper & al. (1987), and by Coquand and
Huet (1988) are currently employed in computer
implementations of logical formalisms.

The intuitionistic type theory yields the simple type
theory as a special case. As a whole, it has an expressive
power exceeding the power of the simple type theory. In this
paper, the theory will be used for studying the functioning
of natural language. Due to the interpretation of formulae as
sets of proofs rather than as truth values, the theory can
make intensional distinctions. But we shall concentrate on
the treatment of logical constants as set-theoretical
operators, which are dynamical in a sense corresponding
operators of predicate calculus are not. Taking this general
view on the logical constants from the start, we need not add
anything to the formalizations of single sentences to be able
to capture pronominal references by them.

What is more, the English quantifier words "every",
"any", "some", and the indefinite article will be
unambiguously interpreted as universal or existential, which
is not possible in predicate calculus, nor in Montague's
intensional logic.

Intuitionistic logic has been used very little in the
grammar of natural languages. An observation about Geach's
donkey sentences was made by Sundholm (1986, pp. 502-503).
Ahn and Kolb (1989) have interpreted Kamp's discourse
representations in the type theory of Coquand and Huet.
Hintikka's game-theoretical semantics (Hintikka and Kulas
1985) can be interpreted as an intuitionistic theory, by only
taking effective winning strategies into account and by
interpreting games as propositions and strategies as proofs
(see Ranta 1988, 1990). Game-theoretical semantics might have
given the first systematic account of donkey sentences
(Hintikka and Carlson 1979), and since then it has made
advance on various fields of semantics. Thas work has
remained relatively unknown among linguists, partly because
it has not been implemented in any kind of a generative
grammar. But the work at hand does make some use of it in a
grammar that generates English sentences from propositions of
intuitionistic type theory.

One strong reason for formalizing natural language in

intuitionistic logic is the direct computational content of
the latter. The intuitionistic notion of proof resembles the
notion of computer program in a way that has been made
formally precise, so that Martin-L&f's type theory can be
used as a program and specification language. The
formalization of an English sentence as a proposition in
Martin-L&f's theory is as such a program specification. (See
Martin-Lo6f 1982 and Nordstrém & al. 1990.)

This paper presents a grammar of a fragment of English
based on Martin-Lof's type theory. The structure of the
grammar resembles, in a way to be described in detail, the
structure of Montagues's PTQ grammar ("The proper treatment
of quantification in ordinary English", Montaque 1974,
chapter 8). The fragment of English we deal with does not
contain modal operators, but it goes beyond the PTQ fragment
in the direction of quantifier words and anaphoric
expressions. An earlier version of the system of rules
transforming expressions of type theory into expressions of
English has been implemented on a personal computer by

Mdenpdd and Ranta (1989).

2. A review of logical grammars

2.1. Artificial and formal languages. To give a grammar
to a language is to impose a structure on it, a grammatical
structure. There are languages created by grammars, such that
every expression has an intrinsic structure reflecting its
creation. Such languages will be called grtificial. Some
artificial languages are formal in the sense that every
expression has a unique grammatical structure that can be
effectively read from the form of the expression.

Natural languages, such as English, are not created by
grammars. The task of a grammarian of English is to impose a
structure on a language that exists independently of his
grammatical activity. If he is giving a generative grammar,
he is in fact creating an artificial language all of whose
expressions are also recognizable as expressions of English.
This artificial language is called a fragment of English.

Large enough fragments are not, in general, formal languages,

as they contain expressions that can be generated in
different ways. Such expressions are called ambiguous, with
respect to the grammar in question. But to every artificial
language corresponds a formal language, consisting of
expressions of the artificial language endowed with
information about their generation. For instance, to an
artificial language generated by a phrase structure grammar
corresponds the formal language whose expressions are phrase
structure trees.

A procedure reverse to generative grammar is the one in
which English is taken as it stands, with no effort to
delimit a fragment of it. The grammarian gives parsing rules,
which assign grammatical structures to expressions of
English. A given set of parsing rules cannot, in general,
assign a structure to every expression. It functions, after
all, only on a fragment of English, the fragment defined in
the indirect way as consisting of those expressions of
English that can be parsed by means of the set of rules at
hand.

There is a current terminology in which the word
"parsing" is reserved for artificial languages, meaning a
process in which the structures of their expressions are
revealed. For natural languages, structures are not, in this
sense, revealed, as no structure is presupposed to exist
independently of the grammarian's activity. Assignment of
grammatical forms to expressions of a natural language is
formalization rather than parsing: forms are imposed rather
than revealed.

Outputs of formalization rules are grammatical
representations of expressions of English. We will be
concerned with cases where grammatical representations are
expressions of a formal language. The formal language whose
expressions the grammatical representations are will be
called a representation formalism. The grammarian who chooses
to work in the direction of formalization rather than
generative grammar must of course rely on a generative
grammar of the representation formalism. If the formalization
procedure can be reversed, to turn grammatical
representations into expressions of English, the grammar

generating the formalism and the reverse procedure of

formalization together constitute a generative grammar of a
fragment of English.

In logical grammar, logical formalisms are used for
grammatical representation. If we have a representation of an
English sentence in a logical formalism, we have imposed on
it a grammatical structure of a peculiar kind, a logical
form. What is peculiar to a logical form or, correspondingly,
what makes a formalism logical, need not be precisely
defined. We shall just provide a number of examples. But
subsection 4.1 will suggest a characterization of logical
formalisms: they can be defined by pure categorial grammars.
In other words, all of their expressions have definite

type-theoretical meanings.

2.2. Predicate calculus as a representation formalism.
We are now considering a first order language, defined by
introducing a number of predicates and individual constants,

from which expressions can be formed by substitution of terms
for argument places and by the logical constants &, v, =, 3,

Y, 3d. We assume that the language has been interpreted in a
standard way. Sentences of English are now customarily
represented by well-formed formulae of the formalism. Knowing
the interpretation of the formalism, we know the proposition
expressed by each formula, i.e. its truth condition, and,
derivatively, the truth conditions of those English sentences
we manage to represent. Truth conditions open the way to
other logical properties we are interested in, such as the
validity of inferences made by using English sentences.

Thus we know something about the meanings of those
English sentences we manage to give a logical form. We know
something that is not revealed by "purely syntactic”

grammatical representations. For instance, the sentence

(1) A woman loves every man.

is in the formalism of phrase structure trees represented

unambiguously as the tree

(2) S

Mod/\I\IIP \j NP
N Mo{\lilp
N

A woman loves every man.

In predicate calculus, there are two representations,
imposing two different structures on the sentence - two

different propositions:

(3) (3x) (woman (x) & (Vy) (man(y) D love(x,y))),

(4) (VYy) (man(y) D (3x) (woman (x) & love(x,y))).

Assignment of logical formulae to English sentences can
be called semantics of English, in a perfectly good sense,
provided that the formulae themselves have been given

meaning.

2.3. Montague's formalisms. All truth conditions cannot

be expressed by formulae of first order predicate calculus.

The sentence
(5) John seeks a unicorn.

has only one representation,

(6) (Ix) (unicorn(x) & seek (John,x)).

Montague extended predicate calculus to intensional logic, in
which reference can be made to possible worlds and, moreover,

variables of arbitrary types can be bound. In addition to a
formula corresponding to (6), the sentence (5) has the

formalization

(7) seek (*John, P (Ix) (unicornx(x) & P{"x}))

(Montague 1974, p. 266).

Besides intensional logic, Montague had another
formalism with sufficient expressive power, where English
sentences were represented by analysis trees. In the
formalism of analysis trees the sentence (5) is formalized in
the following two ways, corresponding to (6) and (7) in the

same order:

(8) F10,0(F2(unicorn,Fq(John,Fs(seek,heqg))),

(9) Fg(John,Fg(seek,Fp(unicorn))).

Montague's grammar of English is generative. He first
defines analysis trees, and then tells how they are
transformed into English sentences whereby their unambiguous
structures are destroyed. A process of the latter kind, which
is the reverse of parsing, will be called sugaring, in
accordance to current terminology of computer science. The
analysis trees constitute a formal language, and the fragment
of English is an artificial language obtained from analysis
trees by sugaring. The language of analysis trees 1is,
moreover, a logical formalism, in the sense that analysis
trees can be effectively interpreted in a model by reference
to their forms. In "The proper treatment of quantification in
ordinary English", the interpretation is made via a
translation to intensional logic, and in "English as a formal

language” (Montague 1974, chapter 6), directly.

2.4. Compositionality. The importance of Montague's

grammar is not only in the great expressive power of his
formalisms. It is even more in the detailed account he gave
of the relation between his fragment of English and the
formalisms. He almost indicated that he had given

formalization rules from English into intensional logic:

It is understood that each English sentence listed below
translates into some formula logically equivalent to
each of the one or more formulas of intensional logic

listed with it, and that every formula into which the

English sentence translates is logically equivalent to
one of those formulas. It should be emphasized that this
is not a matter of vague intuition, as in elementary
logic courses, but an assertion to which we have
assigned exact significance in preceding sections and
which can be rigorously proved.

(Montague 1974, pp. 265-266.)

But he did not give any formalization rules for plain
English, nor any rules for parsing expressions of the
fragment into analysis trees, but only rules for sugaring
analysis trees into English and rules for translating
analysis trees into intensional logic. Analysis trees
constitute the formal language from whose expressions the
fragment is obtained by sugaring. The following figure shows

the structure of Montague's PTQ grammar.

sugaring

analysis trees >English

translation
intensional logic

The language of analysis trees 1s designed in such a way
that it can be straightforwardly sugared into plain English.
In a sense, one could say that analysis trees are built from
English words by using parentheses - although the word

"every" is replaced by "Fp", etc, and although there are
different signs for concatenation, e.g. Fg, Fg, F7. These

signs are necessary in order to make analysis trees reveal
their logical forms. But each sign has a straightforward
English reading, unlike the signs of intensional logic.

It is often said that Montague's grammar is
compositional, which is explained as meaning something like
that each expression of English has a definite translation in
intensional logic, and that the translation of each complex
expression is determined by the translations of its parts and

the way they are composed into the complex. But this

explanation - "its parts", "the way they are composed" -
refers to analysis trees instead of plain English, and makes
compositionality trivial. It does not hold of composition by
simple concatenation of words, nor of composition formalized
by ordinary phrase structure trees, as shown by the example
sentence (1).

Compositionality in the above sense is not always
trivial if two distinct formalisms are compared, one
"syntactic" and the other "logical". But he crucial invention
of Montague was of course the proper design of the analysis
trees, so that they were both close to plain English and

explicit in logical form.

2.5. Dynamic representation formalisms. Consider the
extension of the PTQ fragment to conditional sentences,
represented by means of the implication of intensional logic.

The sentence
(10) If a man walks he talks.

cannot be treated satisfactorily. For there is no analysis
tree that is both sugared into (10) and translated into a

formula of intensional logic equivalent to

(11) (Vx) (man(x) & walk(x) D talk(x)).

The sentence (10) contains the indefinite article "a", which

is the plain English counterpart of "F". But when analysis

trees are translated into intensional logic, "Fy" is

translated into something that contains "3" but not "Vr.
The formalization of (10) as (1l1) is regarded as a
violation of compositionality for a derivative reason.
Sometimes both the universal quantifier and the existential
quantifier must be used for formalizing occurrences of the

indefinite article in one and the same sentence:

(12) If a man walks he finds a pen.

10

is formalized as

(13) (Vx) (man(x) & walk(x) D (Jy) (pen(y) & find(x,y))),

Thus there is no possibility to define analysis trees in such
a way that the indefinite article is uniquely represented,
and the translation into intensional logic is determined by
taking the constituents of analysis trees one by one.

Kamp (1981) was able to present a system of parsing
rules that assign formulae of predicate calculus to sentences
of a fragment of English, e.g. the formula (13) to the
sentence (12). He used an intermediate level of discourse
representations, which constitute a formalism whose semantics
is given by a translation into predicate calculus. Thus the
indefinite article is, essentially, interpreted now as the
existential quantifier, now as the universal quantifier.
Groenendijk and Stokhof (1989, p. 4) pointed out that Kamp's
theory is not compositional in the sense required by the
Montague grammarian. They went on by developing a formalism
they called dynamic predicate logic, to represent grammatical
structures of English sentences and texts.

The syntax of dynamic predicate logic differs from the
syntax of ordinary predicate calculus only with respect to
what occurrences of variables are regarded as bound. The
interpretation deviates accordingly from the interpretation

of standard predicate calculus, being essentially more

complex. The operators & and D are explained as internally
dynamic, which means that & can "pass on variable bindings
from its left conjunct to the right one" (op. cit., p. 8),

and D "passes on values assigned to variables in its

antecedent to its consequent" (p. 9). & is externally dynamic

as well, "because of its capacity to keep passing on bindings
to conjuncts yet to come" (p. 8); and so is d, which "can

bind variables...outside its scope" (p. 9). Finally, 3 and V
are internally dynamic already in standard predicate
calculus, as they bind variable occurrences inside their

scopes. v and — are neither internally nor externally

dynamic; D and V are not externally dynamic. Without going

11

into the details about the precise mathematical formulation
of all this, we can give as examples the formulae (14) and
(15), which are now available as formalizations of the

sentences (10) and (12), respectively:

(14) (dx) (man(x) & walk(x)) D talk(x),

(15) (Ix) (man(x) & walk(x)) D (Iy) (pen(y) & find(x,y)).

In contrast to these formulae, the last occurrence of x is

not bound in

(16) (Vx) (man(x) D walk(x)) D talk(x),

since D and YV are not externally dynamic. This accounts for

the absence of anaphoric relation in

(17) If every man walks he talks.

The operators & and d are contrasted to D and ¥ in the
purpose of assigning intuitively correct truth conditions to

English sentences. Why & should have the power to pass on

bindings to its right while D should not, is not explained.

What i1s more, there are English sentences such that something
like externally dynamic implication is needed in their

logical representation:

(18) If every man finds a pen, some man will lose it

again.

needs something like

(19) (Vx) (man(x) 2D (ﬂy) (pen(y) & find(x,y)))

D (dz) (man(z) & lose(z,?y).
(Cf. Hintikka and Kulas 1985, p. 101.)

The dynamic interpretation of formulae which, after all,

do not differ from formulae of ordinary predicate calculus,

12

lays a lot of weight on the metalanguage, where the dynamic
meanings of logical constants are spelled out by using static
metalogic. It seems urgent to design a formalism that

reflects the intuitive ideas of dynamicity more directly.

3. Grammatical representations in intuitionistic type theory

In this section we shall take an informal look into
Martin-L&f's type theory and its use in the grammatical
representation of English. Section 4 will provide a formal
presentation of type theory, and in section 5 a grammar of a
fragment of English will be described in more detail.

In this section, type theory will mean the lower-level
type theory to be distinguished from the higher-level type
theory in later sections. "Intuitionistic type theory”™, in
the sense of Martin-Lo6f 1973, 1982, 1984, is precisely this
lower-level theory. Making no reference to types, but only to
sets, 1t is on the same level as predicate calculus, whereas
the higher level type theory is on the same level as the

simple type theory.

3.1. The guantifiers ¥ and [I. Just like predicate

calculus, intuitionistic type theory has expressions for
propositions. We shall consider two forms of complex

propositions,

Xx:A)B and ([Ix:2)B.

They correspond to (dx)B and (Vx)B, respectively, of
predicate calculus interpreted in the domain A. The
difference is that type theory makes the domain explicit.
Type theory is thus more formal than predicate calculus,
where the domain indication cannot be read from the form of a
quantified expression but only from its interpretation.

Type theory is more formal than predicate calculus also
in making explicit Jjudgments (or assertions). Judgments are
wider in scope than propositions. A proposition may occur as

13

a part of a judgment, but not conversely. There are judgments

of the following forms:

Judgment where means that

A:prop - A is a proposition

A=B:prop A:prop, B:prop A and B are equal propositions
a:A A:prop a is a proof of A

a=b:A A:prop, a:A, b:A| a and b are equal proofs of A

Frege also had a notion of judgment, as contrasted to

propositions. He used the sign "F" in front of propositions
judged true (see Begriffsschrift, §2). In contemporary logic,
judgments are often only made in the metalanguage, e.g.
judgments of form "A is a well-formed formula" corresponding

to the form A:prop, and the form "A is true" corresponding to

Frege's FA. In intuitionistic type theory, FA is explained

in terms of a:A.

Judgments of form FA, rather than bare propositions,
correspond to English indicative sentences, whose
propositional contents may occur in sentences of other moods,
such as questions. But as the present fragment will only
comprise indicative sentences, we shall often speak of
propositions as formalizations of English sentences. For the
formalization of sequences of sentences, however, proofs must
be made explicit; see subsection 5.9.

The operators X and]I are used in the formalization of
English sentences much in the same way as the existential and
the universial quantifier, respectively, of predicate
calculus. The explicit indication of domains of
quantification makes it possible to avoid the use of
connectives without any counterparts in plain English, but

only regulated by the choice of the quantifier:

(20) A man runs.

will be formalized

(21) (Xx:man)run(x),

14

which is to be compared to the formula of predicate calculus,

(22) (dx) (man(x) & run(x)).

It is of course possible to start with a big domain, say D,
out of which other domains are separated by predicates.

Instead of (21), we would then have
(23) (Xx:D) (man(x) & run(x)),

but (21) is preferable from the compositional point of view
(cf. ((30) to (32) in subsection 3.4). Such a form is also
needed in the proper formalization of quantification with
"most”; see Sundholm 1989. (24) will be formalized as (25):

(24) Every man runs.
(25) (IIx:man) run(x) .

In subsection 5.5, a simple rule (Q) will be given for
the sugaring of quantified propositions of intuitionistic
type theory into sentences of plain English, by the
substitution of a guantifier phrase for the variable bound by
the quantifier. For instance, in sugaring the proposition
(Xx:man)walk(x), "a man" is substituted for "x" in
"walk (x)". For the substitution, one of the terms in which
the variable occurs must be sorted out as the main argument,
but as long as we only discuss formulae with precisely one
occurrence of the bound variable, we need not worry about the
precise definition of the main argument.

By means of the rule (Q) and rules for sugaring atomic
propositions, we can already derive some sentences of
English, e.g. (20) from (21). Take an example with two
quantifiers. The sign ">" between two expressions is read

"can be sugared into".

(26) ([Ix:man) (Xy:donkey)own (x,y

> Every man owns a donkey.

15

3.2. The propositions as types principle. We have

interpreted English common nouns as expressions for sets. But
the significance of sets is much more general, as
propositions are identified with sets. A proposition is a set
of proofs, and it is defined to be true if it is nonempty,
i.e. if there is a proof.

Thus we have the two forms of judgment "A:set" and
"A:prop" as heuristic variants of each other. So are
"A=B:set" and "A=B:prop". We also have two readings for any
judgment of form "a:A", switching between the pairs of terms

"set"-"element" and "proposition”-"proof":

a 1s an element of the set A;

a is a proof of the proposition A.

The form "a=b:A" analogously has two readings. The form of

judgment

A true,

corresponding to Frege's "FA", is introduced as an
abbreviation, by suppression of the proof, of the form "a:A".
It is usual in logical semantics to look upon common
nouns as expressions for sets and upon sentences as
expressions for propositions; but it is not usual to look
upon common nouns as expressions for propositions or upon
sentences as expressions for sets. However, there is a
systematic way to switch from a common noun to a sentence
that is true if the set that the common noun denotes has an
element, by prefixing "there is" plus the indefinite article
to the noun. From a sentence to a common noun denoting the
set of its proofs, we cannot switch in such a uniform way.
But we often have a verbal noun, such as "jump of Bill's" for
"Bill jumps". In the sugaring procedure to be presented, we
shall need a mechanism for turning nouns into sentences, but

no mechanism in the opposite direction.

16

3.3. The meanings of ¥ and [I. To explain the meaning of

a propositional expression you must tell what set it denotes.
You must be able to prescribe what it is to be an element of
the set. For instance, the meaning of the expression "natural
number" is explained by prescribing the natural numbers to be
0, s(0), s(s(0)), etc.

To explain an operator that forms complex sets and
propositions, you must prescribe the elements or proofs of
the complex under the assumption that its constituents have
been explained. We shall give the explanations following this
pattern for Y and [], which have up to now only been
characterized as the existential and the universal
quantifier, respectively.

We write

J (x:A),

where J can be a judgment of any form and contain free

occurrences of x, for a hypothetical judgment, the judgment J

made under the hypothesis x:A. The substitution of a:A for x
in J yields a Jjudgment not dependent on the hypothesis x:A.
We write (a/x) to indicate the substitution of "a" for
allowable occurrences of "x" in an expression of type theory.
Allowable occurrences must be free, and free occurrences of
variables in "a" must not become bound.

Given A:set and B:prop (x:A), (Xx:A)B is the set of
pairs (a,b) where a:A and b:B(a/x). Given c:(Xx:A)B, we can
form the projections p(c):A and g(c) :B(p(c)/x), which for c

of pair form are computed in an obvious way:

p((a,b))=a:A for a:A, b:B(a/x);
g((a,b))=b:B(a/x) for a:A, b:B(a/x).

Given A:set and B:prop (x:A), ([Ix:A)B is the set of

A-abstracts (Ax)b of functions b:B (x:A). Given c: ([Ix:2)B
and a:A, we have the gpplication instance ap(c,a):B(a/x),

which for ¢ in A-abstract form is computed as follows:

ap((Ax)b,a)=b(a/x) for b:B (x:A), a:A.

17

Heyting's (1956 pp. 102-107) explanations of the logical

constants &, D, 3,V, which have become standard in
intuitionistic mathematics, can be summarized in the

following way:

A proof of A & B consists of a proof of A and a proof
of B;

a proof of A D B consists of a method that assigns a

proof of B to any given proof of A;

a proof of (dx)B consists of an individual and a proof
of the corresponding instance of the propositional

function B;

a proof of (Vx)B consists of a method which to each
individual assigns a proof of the corresponding

instance of the propositional function B.

The identification of propositions and sets makes it

unnecessary to have separate propositional operators & and

d, which can be both regarded as versions of), switching

between the heuristic words "set" and "proposition”. In a

similar way, D and V are both variants of [[. The

conjunction and implication defined in this way are stronger

than & and 3, respectively, as the second constituent may
depend on the proof of the first one. This dependence makes
the intuitionistic type-theoretical conjunction and
implication "internally dynamic" in the same way as
quantifiers are. Since we can consider the proofs of
propositions of any form, all logical constants are

"externally dynamic".

3.4. More English readings for ¥ and [I. In section 5,
we shall define operators for sugaring propositional
expressions of type theory into noun-like and sentence-like
expressions of English. All propositional expressions that
can be sugared into nouns can also be sugared into sentences

by prefixing "there is" and the indefinite article to the

18

noun.

Reading A:set and B:prop (x:A), (Xx:A)B is the set of
pairs consisting of elements of A paired with proofs of
corresponding instances of B, i.e. elements of A such that B
is true of them. Such a set expression can be sugared into a
noun modified by a relative clause, by means of the rule (R)
to be given in subsection 5.5.

Thus we have e.qg.

(27) (Xx:man)run(x) > man who runs;
(28) (Xx:man) (Xy:donkey)own (x,y)

> man who owns a donkey;
(29) (Xy:donkey) (Xx:man)own (x,y)

> donkey that a man owns.

Having the possibility to quantify over Y-sets makes it
possible to represent relative clauses in a uniform way,
which is not possible in predicate calculus. Geach (1972, pp.

494-497) discussed the sentence

(30) Any man who hurts any man who hurts him hurts

himself.

whose relation to its formalization in predicate calculus,
(31) Vx(man(x)D (Vy(man(y) D (hurt (x,y) Dhurt (y, x)) Dhurt (x, x)),

is hard to explain in a compositional way. But its

formalization in type theory,

(32) (Ilx: (Xy:man) (Ilz: (Xu:man)hurt (u,y)) hurt (y,p(z)))hurt (p(x),p(x)),

can be sugared into the English sentence by applying to the
quantifiers, from left to right, the rules (Q), (R), (Q),
(R) .

If we treat X and [] as connectives rather than as
quantifiers, we can sugar (Xx:A)B and ([Ix:A)B into sentences
where both A and B are sugared into sentences. By means of

the rule (C) of subsection 5.6, (Xx:A)B) is sugared into the

19

conijunction of A and B, and ([Ix:A)B) into the conditional
sentence where A is sugared into the antecedent and B into

the succedent. For instance,

(33) (Xx:man)walk(x) > There is a man and he walks.
(34) ([Ix:walk (John))talk (John) > If John walks he talks

We shall have numerous alternative English expressions
corresponding to given propositions of type theory, generated
by the rules (Q), (R), and (C). In the example (26), we
sugared the propositional expression
(IIx:man) (Xy:donkey)own (x,y) into the English sentence "every
man owns a donkey" by applying the rule (Q) twice. The

following variants are also derivable:

(35) If there is a man he owns a donkey. By (C), (Q).

(36) If there is a man there is a donkey that he owns.

By (C), (R).
(37) If there is a man there is a donkey and he owns it.
By (C), (C).

To make these sugarings completely mechanical, we will
have to give rules for sugaring singular terms into pronouns.
At this stage, we only notice that in (35) to (37), the
variable x of type man has been sugared into "he", and in
(37), the variable y of type donkey has been sugared into
"it". We also notice that even in notoriously problematic
cases, we do have obvious terms in the formalism which can be

sugared into pronouns of English. For instance, the sentence
(38) If a man owns a donkey he beats it.

will result from sugaring
(39) (IIx: (Xy:man) (Xz:donkey)own (y, z)) beat (p(x),p (q(x)))

where p(x) is of type man and p(qg(x)) is of type donkey.
More details are also concealed in the sugaring of Y

and J] into quantifier words. In the sugaring of (39) into

(38), Il is turned into "if" and Y is twice turned into "a",

20

in accordance to the rules (C) and (Q), respectively.
Applying (Q) to [I, (R) to the first X, and (Q) to the second
Y in (39), we obtain

(40) Every man who owns a donkey beats it.

The original example of Geach (1962, p. 117) reads "any"
instead of "every", which alternative is also provided by the
rule (Q). But (39) cannot be sugared into the intuitively

equivalent sentence
(41) If any man owns a donkey he beats it.

because) cannot be sugared into "any". By treating "any" as
a universal quantifier word with a wider scope than "if", we
obtain (41) from

(42) (IIx:man) (Ily: (Xz:donkey) own (x,z))beat (x,p(y)),

which is equivalent to (39), but not intensionally equal
(i.e. the same proposition, in the sense of a set of proofs).

Finally, observe that we can form the proposition

(43) (Ilx: (Ily:man) (¥z:pen) find(y, z)) (Xu:man) lose (u,p(ap(x,u))),
which can be sugared, by (C), (Q), (Q), (Q), into
(44) If every man finds a pen some man loses it.

This sentence cannot be treated in dynamic predicate logic
(nor in discourse representation theory), where conditionals
are externally static. Their staticity is inferred from
sentences such as (17), "If every man walks he talks", which
cannot be derived in our theory either, but now for the
reason that a proof of ([Ix:man)walk(x) is of wrong type: it

is not a man, but a function on the set of men.

21

4. Categorial grammar for intuitionistic type theory

4.1. Pure categorial grammar for predicate calculus.
Type theory, in the sense of Russell and Church, is a general
framework in which various lower-level theories can be
presented. In the simple type theory in which classical

predicate calculus can be presented, there is a hierarchy of
types built on the basic types e and t by forming function

types (&,B) where ® and B are types. An object of the

function type (&,B) can be applied to objects of type @& to
yield objects of type B.

Objects of type e are called individuals, objects of
type t truth values. Objects of the function type (e,t) are
also called propositional functions. We write

for the type assignment

a is an object of type Q.

Observe the terminology: "object of type Q" vs. "element of
the set A”".
Logical constants can now be introduced by type

assignments in this hierarchy:

&:(t, (t,t)),

D:(t, (t’t))r

d: ((e,t),t),

V:((e,t),t).
Working in a given hierarchy of types, if new constants are
introduced they must be explained by telling what objects
they denote. For instance, the type t may have been defined

as having exactly two objects,

True:t, False:t.

22

Now that we have introduced &: (t, (t,t)) we must explain what
function it is, i.e. how it yields values for its arguments.

This can be done by enumerating all possible cases. We write
c(a) for the application of c: (Q®,B) to a:®, and c(a,b)

instead of (c(a)) (b) for c: (&, (B,¥)), a:®, b:R.

& (True, True)=True,

& (True,False)=False,
& (False, True)=False,
& (False,False)=False.

To explain V:((e,t),t), we cannot generally go through

all possible cases, as e may be infinite. In classical logic,

¥ is explained as follows:

¥ (P)=True if P(a)=True for every a:e,

¥ (P)=False if P(a)=False for some a:e.

The function V thus differs from the function & by not being
effectively computable: its evaluation may demand that we run
through infinitely many instances.

The definition of a language in a type theory
establishes it as an interpreted formalism. When we introduce

a term, e.g. the term "&" in the type assignment
&:(t, (t,t)),

we not only determine its syntactic behavior in the formation

of complex expressions, but we also use it as a name of an

object. Type assignments of the form "a:Q®" have both the
type-theoretical, or ontological, reading

a is an object of type o

and the grammatical, or linguistic, reading

23

"a" is a name of an object of type Q.

Moreover, the semantics of the term "a" is determined by the

introduction of it in a type assignment:

"a" denotes a.

Certain types have idiomatic ontological and linguistic
names. For instance, the type (t, (t,t)) is called
ontologically the type of two-place truth functions, and
linguistically the category of two-place connectives.

In mathematical logic, the ontological and linguistic
readings are not always treated in the way we did above, as
different viewpoints on one and the same theory, but as
separate theories. There is a syntax yielding what we called

grammatical clauses, such as

(1) & is a two-place connective,
which introduces the expression "&" by only stating its
syntactic properties. On the other hand, in model theory,

there is a conjunction essentially defined as an operation on

truth values,

(ii) *:(t, (t,t)).
Expressions introduced in the syntax are related to the model
theory by interpreting them, by employing an interpretation
operator T which to each expression produced by the syntax
assigns an object of some type. For instance,

(iii) T (A&B)=T (A)*T(B) .
The content of (i)-(iii), as regards a language not

containing "*" but only "&", is expressed in our theory with

the single clause

&:(t, (t,t)).

24

A categorial grammar of this kind, resulting from the
linguistic reading of a type theory, could be called a pure
categorial grammar. It is obvious that on some level in
actual theorizing some expressions are to be looked upon as
meaningful, and if these meanings are clear enough the
expressions can be introduced in a pure categorial grammar.
Type theories and pure categorial grammars are widely
used in computer science as frameworks for defining logics to
be used in computerized reasoning. Frameworks related to the
one of Martin-L&f, which will be described in the next
subsection, are the Edinburgh LCF (Harper & al., 1987) and
the theory of constructions by Coquand and Huet (1988). This
tradition of categorial grammars differs from most of the
current approaches in linguistics, where the grammars uséd
are not pure, but the focus is on the syntactic combination
of expressions, without strictly parallel explanations of
meaning (see e.g. the calculus of Lambek 1958, which has been

given semantics in van Benthem 1988).

4.2. Martin-T1.6f's type hierarchy. The formal language of
intuitionistic type theory used in section 3 cannot be
defined in the simple type theory of the previous subsection.

A richer type theory is needed, in which not only function
types (®&,B) can be formed, but also generalized function

types (x:Q®)B, where B is a type depending on x:Q®. This
theory will yield the simple type theory as a special case,
where all types are independent.

When completely formalized, so as to carry enough
information for computer implementations of logical
formalisms, both in the simple type theory and in the
generalized type theory Jjudgments of four forms must be made.
Judgments of three of these forms have presuppositions, which
means that they make sense only if the presuppositions are
fulfilled:

25

Judgment which presupposes | means that

Q:type - @ is a type

Q=R :type Q:type, B:type ® and B are equal types

a:o o:type a is an object of @

a=b:0 Q:type, a:q, b:Q a and b are equal objects of ®

Judgments of each of these forms can be made under

hypotheses, which are type assignments to variables. A
variable can be any expression whose meaning has not been

explained. Contexts are sequences of hypotheses, of the form
(*) x7:Q®q, ..., Xp:0,.

When a judgment J is made in the context (*), the variables

X1, ..., Xp may occur free in J. (Occurrences of the variable

x are bound in "B" in expressions of form "(x:Q®)B", and in
"b" in expressions of form " (x)b"; elsewhere they are free.)

In simple type theory, all types are constant, which

means that only judgments of forms "a:Q®" and "a=b:Q" are
ever made under hypotheses. As this restriction is given up,

contexts can generally be progressive, in the sense that in
(*) each type Qy depends on x71:Q®7, ..., Xk-1:Q®_q. I.e. we

do not have

Qy 1 type,

but only

Otk:type (Xlzal, e ey Xk_liak_l) .

If a judgment J is made in the context (*), and constants
a;p:®y, ..., apn:® (ay,...,an-1/%x1,...,%n-1) are substituted
for free occurrences of the variables x1, ..., Xp,

respectively, in J, a judgment not depending on the context
(*) results.

26

For details about contexts and substitution, as well as
rules for equality judgments, we refer to Nordstrdém & al.
1990. We shall only present five rules of type theory, in the
natural deduction form where only those parts of contexts are
made explicit which may be discharged when the rules are
applied. The five rules are the formation of function types,
the application of objects of function types to arguments,
the abstraction of objects of function types from
hypothetical judgments, the B-conversion, and the

YW-conversion:

Q:type B:type (x:Q) c:(x:00)B a: o
form. appl.
(x:) B:type c(a):B(a/x)
b:B (x:Q) b:B (x:Q) a: o
abstr. R-conv.
(xX)b:(x:0)B ((x)b) (a)=b(a/x) :B(a/x)
c:(x:)B
n-conv.

c=(x) (c(x):(x:0)B

The rules of the simple type theory are like the ones above,

with the omissions of the hypothesis x:® in the formation
rule, and of the substitutions (a/x) in the application rule

and in "B(a/x)" in the B-conversion rule. One can write

(&¢,B8) or, as we shall do,

()R instead of (x:®)B when B:type does not depend on x:0Q.

We also write

(x:Q) (y:B) ¥ instead of (x:Q) ((y:B)¥) for repeated formation;
(x) (y)b instead of (x) ((y)b) for repeated abstraction;

c(a,b) instead of (c(a)) (b) for repeated application.

27

4.3. Types and sets. The notion of type, as employed in
subsection 4.2, is more general than the notion of set, as

employed in section 3. To introduce a set, a limited number
of canonical forms - also called data forms - must be
described, such that the elements of the set are precisely
those having one of the canonical forms. For instance,
elements of the set N of natural numbers have one of the

forms 0 and s(a); elements of (Xx:A)B have the form (a,b);

elements of ([Ix:A)B have the form (Ax)b. Elements not in
canonical form of a set must be effectively computable into
canonical form; pnoncanonical forms are also called program
forms.

To introduce a type, you only have to explain what it is
to be an object of it (and what it is for its objects to be
equal), but you need not prescribe canonical forms. For

instance, the application rule can be used for explaining
what it is to be an object of function type (x:Q®)B: it is to

be something that can be applied to any object a of ® to
yield an object of B(a/x). But there is no specific form such
an object must have: the abstract form (x)b is just one
possibility.

Now we do know what it is to be a set - a set is
something that is defined by a prescription of canonical
forms - but we do not prescribe canonical forms sets must
have. Y and [] are just two possibilities. Hence we have the

type of sets,

set:type,

but the type set is not a set itself.

On the other hand, every set is a type, whose objects
are the elements of the set, because if we know the canonical
forms of the elements of a set, we know a fortiori what it 1is

to be an element:

A:set

A:type

The converse of this rule is, of course, not wvalid.

28

The four forms of judgment employed on the level of sets

(see subsection 3.1) are now obtained as instances of the
forms "a:Q®" and "a=b:Q" on the level of types. "A:set" and
"a:A" are of form "a:Q", and "A=B:set" and "a=b:A" are of

form "a=b:Q".

In Martin-L&f 1982, only the level of sets was employed,
but sets were called types. Martin-L&f 1984 (pp.21-23)
introduced the present distinction. Instead of "type", he
used the word "category" then. The propositions as types
principle would be more properly called the propositions as

sets principle.

4.4. The higher-level definitions of ¥ and [I. By the
propositions as types principle, the type prop of

propositions can be introduced, as equal to the type of sets:

prop:type,
prop=set:type.

Because of this identification, the different uses made of
"set" and "prop" are only heuristic.

Y is an operator that takes as its arguments a set and
a propositional function defined on that set, and yields a
proposition:

Y: (X:set) ((X)prop)prop.

The higher level syntax of a set expression whose outermost

form is Y is thus
2 (A,B),

where A:set and B: (A)prop. But we shall often follow the

convention of writing
(Xx:A)B(x)
instead.

29

To form an element of X (A,B) by means of pairing, we

need an element a:A and a proof of B(a):

pair: (X:set) (Y: (X)prop) (x:X) (Y (x))X(X,Y).

The form of a pair, according to this, is

pair(A,B,a,b),

where A:set, B:(A)prop, a:A, and b:B(a). It differs from the

form

(a,b)

employed in section 3 by containing type information. The
version of the lower level type theory defined by higher
level type assignments is called monomorphic, as the form of
any closed term determines its type uniquely. The version of
section 3 1is called polvmorphic. We shall continue using
polymorphic terms, obtained from monomorphic ones by
suppression of type information.

The projections p and g, which from proofs c:X(A,B)
produce elements of A and proofs of B(p(c)), respectively,

are introduced as follows:

p: (X:set) (Y: (X)prop) (z:X(X,Y))X;
q: (X:set) (Y: (X)prop) (z:X(X,Y))¥Y(p(X,Y,z)).

As the operator pair is taken as definitory for propositions
of Y form, i.e. it is a canonical form, it need not be
explained further. But as the elements that p and g produce
are not canonical, we must Jjustify these type assignments by
telling how p and g are computed for their arguments, the

third argument assumed to be in canonical form:

p(X,Y,pair(X,¥,x,y))=x:X (X:set, Y:(X)prop, x:X, y:Y(x));
g(X,Y,pair(X,Y,x,y))=y:Y¥(x) (X:set, Y:(X)prop, x:X, y:Y(x)).

Il is of same type as Y. The monomorphic A-abstraction

30

and ap-operator are introduced and explained in an obvious

way.

[1: (X:set) (X)prop)prop;
A: (X:set) (Y: (X)prop) ((x:X)V)II(X,Y);
ap: (X:set) (Y: (X)prop) (II(X,Y)) (x:X) Y (x);

ap (X, Yl>\ (X,Y,y) ,x)=y (%) : Y (x)
(X:set, Y:(X)prop, y:(x:X)B, x:X).

For any operator c:(xlzal)...(xn:an)a, we can by

successive applications derive the rule

ap:® ... ap:® (ai,...,apn-1/%1s--.r%n-1)
c.

c(ai,...,ap) (a1, ...,an/X1,...,%p)

In this way it is possible to derive from category
assignments monomorphic lower level rules, corresponding to
the polymorphic ones by means of which type theory is
presented in Martin-L&f 1982, 1984; for instance, the rules

of Y-formation and Y-introduction:

A:set B: (A)prop A:set B: (A)prop a:A b:B(a)
>(A,B) :set pair(A,B,a,b) : X (A,B)

5. An intuitionistic grammar for English

5.1. The structure of the grammar. The generative

grammar we are going to present consists of a number of
components. First, we have the lexicon consisting of category
assignments to basic expressions; second, the categorial
grammar consisting of the rules of the higher level
intutionistic type theory, by means of which expressions of
the lower-level type-theoretical formalism are built; and
third, a set of aring rules, by means of which expressions
of the formalism are turned into strings of words

recognizable as English expressions. The sugaring rules are

31

intended to be meaning-preserving, in the sense that any
English expression obtained by sugaring from a formal
expression has the same meaning as that formal expression.
The sugaring rules are by no means one-to-one. In
general, a formal expression can be sugared into many
alternative English expressions; and some English expressions
can be obtained by sugaring from more than one formal
expression. In the former case, we have synonymous English
expressions; in the latter case, we have ambiguous English
expressions. Notice that synonymy is not an equivalence
relation among English sentences, since there may arise

instances of the following pattern:

F >E and F > E', but not F > E";
F' > E' and F' > E", but not F' > E.

Then E and E' are synonymous, and so are E' and E", but E and

E" are not. To instantiate the pattern, choose

F = (Xx:woman) ([Iy:man) love (x,y);

F'= ([ly:man) (Xx:woman) love (x,Vy);

E = There is a woman who loves every man.
E'= A woman loves every man.

E"= If there is a man there is a woman who loves him.

Schematically, our grammar has the following structure.

categorial grammar sugaring

lexicon > formalism >English

This can be compared to the structure of Montague's PTQ
grammar discussed in subsection 2.4. Montague's S-rules
(Montague 1974, pp. 251-252) play the double role of (i)
combining basic expressions into analysis trees and (ii)

sugaring analysis trees into plain English.

32

S-rules (i) S-rules (ii)

basic expressions————>analysis trees———————>English

translation

intensional logic

The difference is just that we only have one representation
formalism, which serves as the basis of both sugaring and
meaning explanations.

If a logical representation formalism, rather than a
purely syntactic formalism, is used as the basis of
generation of English sentences, the generation can make
effective use of semantic conditions of well-formedness. An
alternative approach would be to add such conditions in the
purely syntactic formalism. But we shall start with full
semantic representations, and implement purely syntactic

information in the sugaring rules.

5.2. Three methodological principles. The division of

labor between the components of our grammar is regulated by
three principles, which can be conceived as requirements of
parallelism between meaning and form, i.e. of
compositionality.

The first principle requires that as many expressions of
English as possible be assigned direct type-theoretical

meanings, i.e. that they be introduced in the lexicon:
Categorize what you can.

But as categorizations have their ontological readings as

well, we must be able to make full type-theoretical sense of

every expression we categorize. Hence the second principle,
Do not categorize what you cannot.

This principle rules out the categorization of English

quantifier words "any", "every"”, "some", and the indefinite

article, because these words cannot always be used for

33

expressing what "[[" and "X" express. For instance, if we

introduced "every” in the lexicon, by the entries

every: (X:set) ((X)prop)prop,
every=[]: (X:set) ((X)prop)prop,

we could, by substituting "every man" for "x", sugar

(45) (every x:man) (return(x) D I am glad)

into

(46) If every man returns I am glad.

But this sugaring obviously does not preserve meaning. We
must use "any" instead of "every" as the sugaring of "[[" in
cases like this.

More generally, as English does not use bound variables,
its quantifier words do not function in the same way as
quantifiers in logical formalisms. The scopes of English
quantifiers are determined by rules that constrain their
usability in a way formal quantifiers are not constrained (by
ordering principles, see subsection 5.6). Hence they cannot
be identified with formal quantifiers in the lexicon.

But there is a weaker sense in which "every", etc, have
unique meanings. For each of the words, there is a unique
formal expression from which all its occurrences in English
sentences result. For "every" and "any” it is "[]", for the
indefinite article and "some" it is Y. These properties of
the sugaring rules are expressed by guasicategorizations,
e.g.

every < []: (X:set) ((X)prop)prop,
INDEF < X: (X:set) ((X)prop)prop.

Our third methodological principle is, in effect,

Quasicategorize what you can.

34

One of the consequences of having an expression
quasicategorized is that the parsing rules will be able to
treat it in a uniform way, e.g. always yield "X" for the
indefinite article. (This is with the exception of
expressions of forms "there is INDEF" and "a certain”, of
which the indefinite article is not treated as a detachable
part. The meaning of both of these phrases is existential

rather than universal.)

5.3. The lexicon. We categorize a number of common nouns
as expressions for sets, a number of verbs and adjectives as
expressions for propositional functions over those sets, and
a number of nouns as singular terms or as expressions for
functions that yield individuals as values. The lexical
entries also indicate the sugaring patterns NO, V1, etc. For

example,

man:set of NO

walk: (man)prop of V1

own: (man) (donkey)prop of V2
old: (man)prop of Al
John:man of TO

father: (man)man of T1.

Having this lexicon of course requires that we define the
sets man, etc, and the functions walk, etc, in an appropriate
way. As we do not give such definitions here, our
type-theoretic language remains schematic, or uninterpreted,
just like Montagues's intensional logic in the PTQ paper,
where the passage on interpretation only assumes the domains
of entities, of possible worlds, and of moments of time to be
given, without actually giving them (Montague 1974, p. 257).
It is also obvious that no single interpretation can capture
the whole of the usage of those words. For instance, man can

hardly be defined as a set once and for all, but at most as a

type.

The lexicon also contains the operators X, [I, pair, A,

p, 9, and ap, categorized and explained in subsection 4.4.

35

Those English words that occur in the example sentences are
assumed to be categorized in the same way as those we have

explicitly introduced in this subsection.

5.4. The sugaring procedure. We shall define two

operators, S and N, that take propositional expressions of
the lower level type theory as arguments and turn them into
sentences and nouns, respectively, of English. Their
execution starts with the outermost forms of formal
expressions, and proceeds stepwise to smaller subexpressions,
which are either of Y or Il form, or formed by means of
English predicates. Sugaring terminates in a string of
English words and morphological operations.

Certain steps in the sugaring procedure are impossible
to execute for certain expressions. In such a case, one must
step back and choose an alternative path. For instance, there
will be no way to execute N(([[x:A)B). Thus if sugaring
proceeds to something of this form, we must step back and
find a path where S(([Ix:A)B) appears instead. This will be
always possible.

Moreover, there is a guaranteed sugaring path, which
introduces connectives rather than quantifier words. For all
propositional expressions can be sugared into sentences, if
not otherwise then by using the rule (THERE). Some
expressions are sugared into nested conditionals, which are
nearly unacceptable in ordinary English.

Before the sugaring rules proper, auxiliary rules are
applied to singular terms, turning some of them into

reflexive pronouns (REFL), marking them as main arguments
(M), and equipping each of them with a spectrum of

alternative anaphoric expressions (SPECTRUM).

5.5. The system of sugaring rules. The present system

generates a fragment smaller than the one described in
Mdenpdd and Ranta 1989, which also comprised negative
sentences. As for the notation used in the rules, observe the
distinction made between the concatenation marks __and -, of

which the latter is used for tying together expressions

36

belonging to one and the same term. The notation [E/F]
indicates the substitution of the expression E for the
expression F; its scope is the preceding expression delimited
by parentheses. The notation {E,F,G} indicates that E, F, and
G are alternatives.

T ili rul
(REFL) C(a,a) > C(a, REFL(A)) for C:(A) (A)prop atomic

(M) For each atomic C and variable x,
C(d(p*x)) > C(d(Mx))
C(d(p*x),b) > C(d(Mx),Db)
C(a,d(p*x)) > C(a,d(Mx)) if a contains no Mx;
p*x is one of x, p(x), p(p(x)), etc, and
d(c) is ¢, father(c), wife(father(c)), etc. *

The rule (M) yields, for example,

walk (x) > walk (Mx);
admire (father(p(x)),p(x)) > admire (father (Mx),p(x));
beat (p(g(x)),p(x)) > beat(p(g(x)),Mx).

(SPECTRUM) C(a) > C(a{PRON(A),the-N(A)}) for C:(A)X
The operations S and N.

(THERE) S(A) > there_is INDEF-N(A).

(Q) S((Xx:A)B) >

S(B[{INDEF-N(A), some-N(A),a—-certain-N(A) }/Mx])
S((Ilx:a)B) >
S(B[{every-N(A),any-N(A),each-N(A) } /Mx])

provided there is exactly one Mx in B.

(C) S((Xx:A)B) > (S(A))_and_(S(B))
S((IIx:A)B) > if (S(A))_(S(B))

(R) N((Xx:A)B) > (N(A))-REL(x:A)-(S(B))

37

(NO) N(C) > C

(V1) S(C(a)) > a VF(C)

(V2) s(C(a,b)) > a VF(C)_ACC(b)
(Al) S(C(a)) > a VF(be)_ C

(TO0) c > c

(Tl) c(a) > GEN(a,c)

The morphological operations. Sugaring rules introduce
morphological operators VF ("verb form”, in the present
fragment always the third person singular present
indicative), ACC ("accusative", relevant for pronouns), GEN
("genitive", with "'s" or "of", idiomatic for pronouns),
REFL(A) (the reflexive pronoun of type A), INDEF-A ("A"
preceded by "a" or "an"), PRON(A) (the personal pronoun of
type A, either, "he", "she", or "it"), and REL(x:A) (the
relative pronoun). Their execution is straightforward, with
the exception of REL(x:A). It must be executed for

expressions of the form

(A) -REL(x:A) - (B) .

In the following four cases we must sugar

REL(x:A) > such-that

while leaving B unaltered:

(i) if B is if (C)_(D);
(ii) if B is (C)_and (D);
(iii) if B is (there is C);

(iv) if B contains no Mx or more than one.

Otherwise, we can attach to REL(x:A) the term in B that
contains Mx, and substitute the empty morph for its
occurrence in B. As is clear from the definition of Mx, we

then have to sugar an expression of one of the forms
REL (x:A)Mx,

REL (x:A)ACC (Mx),
REL (x:A)GEN (Mx, d),

38

REL (x:A) ACC (GEN (Mx,d)),

etc, iterating the genitive.
These can be sugared in obvious ways, e.g.

REL (x:man)Mx > who,
REL (x:man) ACC (Mx) > whom,
REL (x:man) GEN (GEN (Mx, father) ,wife) > whose father's

wife.

5.6. The sugaring of ¥ and [I. For both X and II,

English has two alternative modes of expression, by a
quantifier and by a connective. The connective is, in
principle, always possible, but the quantifier is heavily
regulated. For the first, it demands that there be a
noun-like expression for the domain of quantification; for
the second, there must be exactly one main argument for which
the quantifier phrase can be substituted. As the choice
between a quantifier and a connective must often be made in
the process of sugaring, the distinction has not been
categorized.

To sugar (Xx:A)B into a sentence, one of the quantifier
phrases "INDEF-N(A)", "some-N(A)", "a-certain-N(A)" is
substituted for Mx in B. If there is no Mx in B, or several
ones, (Xx:A)B must be sugared into the conjunction
(S(A)) _and (S(B)) instead. For ([Ix:A)B, we have analogously
the quantifier phrases "every-N(A)", "any-N(A)", "each-N(a)",
and the conditional if (S(A))_(S(B)).

The choices between the alternative quantifier words
are not completely free. Having neither bound variables nor
parentheses, English indicates the scopes of quantifiers by
reference to an gorder between different quantifier words. The
words themselves are unambiguously either existential or
universal, but they cannot always be used for expressing the
meanings they have. See (41), (42), (45), and (46). For one

more example, if we sugar

(47) (Xx:man) (Ily:walk (x))talk (x)

39

by applying (Q) to X and (C) to II, we cannot choose the

indefinite article for Y, for then we would obtain
(48) If a man walks he talks.

The proper formalization of (48) is rather
(49) (lIy: (Ex:man)walk (x))talk(p(y)),

where J] has wider scope than). To indicate the scope of X
as wider than the scope of [I, we can choose "a certain”

instead of the indefinite article:
(50) If a certain man walks he talks.

This way to look upon English quantifier words has been
developed in game-theoretical semantics (see e.g. Hintikka
and Kulas 1985, pp. 15-21). To each quantifier or connective
word corresponds a game rule, which assigns to the word an
unambiguous existential or universal meaning. The order in
which game rules are applied to English input sentences 1is

not completely free, but regulated by ordering principles,

such as

Apply the rule for "if" before the rule for the

indefinite article.

This approach can be contrasted to the treatment of
English quantifier words as ambiguous, e.g. of the indefinite
article as universal in antecedents of conditionals,
existential elsewhere. As we have noticed in subsection 2.5,
such a treatment is necessary if ordinary predicate calculus
is used as the representation formalism. The treatment
suggested by game-theoretical semantics has the
methodological virtue of making quasicategorizations
possible.

When implemented in a generative grammar, the ordering
principles function as principles regulating the choices of
alternative quantifier words. There are alternative ways of

implementing them in the sugaring procedure; but for the

40

purpose of exposition, it is clearest to regard them as
metarules of the sugaring rules proper. We shall assume the

following principles:

"if" has wider scope than the indefinite article in the
antecedent;

"if" has wider scope than "every" in the antecedent;

"a certain" has wider scope than "if";

"any" has wider scope than "if";

any expression in a relative clause has its scope

inside the relative clause.

Some of the ordering principles suggested by game-theoretical
semantics are not taken along, e.g. the left-to-right
principle according to which the indefinite article has wider
scope than "every" occurring to the right of it. That
principle would block the ambiguity of the sentence (1), "A
woman loves every man". Nor have we assumed the full
any-thesis, which gives "every" and "any" complementary
distribution. It would rule out Geach's original donkey

sentence.

5.7. Anaphoric expressions. After the execution of the

sugaring operations and morphological operation REL(x:3),
there remain singular terms endowed with spectra of anaphoric
expressions. The spectra of all terms are compared, and if
the pronouns PRON(A) and PRON(B) are the same for some
unequal a[A] and b[B], the-N(A) and the-N(B) must be chosen
instead of PRON(A) and PRON(B). If "a" is a constant term,
its leftmost occurrence must remain in the form "a".

This procedure captures something of the principle that

the reference of each anaphoric expression must be
uniquely determined in the context where the expression

occurs.
To capture it better, the procedure must be elaborated. Such
an elaboration has been attempted in Ranta 1990.

Pronouns and the-phrases have similar

41

quasicategorizations, as identity mappings of any set an

element of which has been given in context:

PRON < (X) (x)x:(X:set) (X)X;
the < (X) (x)x:(X:set) (X)X.

The-phrases are acceptable more often than pronouns, as they
are more specific. To guarantee uniqueness of reference in
all cases, even more specific anaphoric expressions are

needed; cf. Ranta 1990, sections 5 to 7.

5.8. An example of proposition formation and sugaring.
The proposition that can be sugared into Geach's donkey
sentence is derived by the rules of the higher-level type
theory as follows. Discharges of hypotheses are indicated by
numerals written both beside the infence lines at which

discharges are made and above those hypotheses that are

discharged.
2. 1. 3.
x:man y:donkey z: (¥x:man)
own (Xy :donkey) own (%, y)
own (x,y) :prop 3. q
abstr. 1. z: (Xx:man) q(z):
donkey:set (y)own(x,y): (donkey)prop (Yy:donkey) own (X, y) (Zy:donkey) own({x,Vy)
2 P r
Y. (donkey, (y)own(x,y)) :prop p(z) :man p(g(z)) :donkey
abstr. 2. -beat
man:set (x)2X(donkey, (y)own(x,y)) : (man)prop beat (p(z) ,p(g(z))) :prop
Y abstr. 3.
(¥x:man) (Yy:donkey) own (X, y) :prop (z)beat (p(z),p(a(z))):

((Xx:man) (Zy:donkey) own(x,yY))prop

II
(ITz: (¥x:man) (Ty:donkey) own (X, y)) beat (p(z) ,p(q(z))) :prop.
This can be sugared in the following ways. Choosing

alternative quantifier words and anaphoric expressions

multiplies the number of sugarings.

If there is a man and there is a donkey and he owns it he beats

it. By (C) 14 (C) 14 (C) .

If there is a man and he owns a donkey he beats it. By (C), (C),
(Q) .

If there is a man and there is a donkey that he owns he beats

it. By (C) r (C) r (R) .

42

If there is a donkey and a man owns it he beats it. By (C), (Q),
().

If a man owns a donkey he beats it. By (C), (Q), (Q).

If there is a man such that there is a donkey and he owns it he
beats it. By (C), (R), (C).

(By (C), (Q), (R) we do not get anything.)

If there is a man who owns a donkey he beats it. By (C), (R),
Q) .

If there is a man such that there is a donkey that he owns he
beats it. By (C), (R), (R).

Every man such that there is a donkey and he owns it beats it.
By (Q), (R), (C).

(Starting by (Q), (C) or by (Q), (Q) does not give result.)
Every man who owns a donkey beats it. By (Q), (R), (Q).

Every man such that there is a donkey that he owns beats it.

By (Q), (R), (R).

5.9. The dynamicity of texts. The derivation of the

donkey proposition illustrates the way anaphoric dependencies
are generated. The proposition beat (p(z),p(g(z))) formed in
the context z:(Xx:man) (Ly:woman)own(x,y) contains free
occurrences of the variable z referring to an "object given
in the context". In virtue of the propositions as types
principle, not only anaphoric dependencies are captured in
this way, but presuppositions as well - not in the technical
sense of type theory, but in the sense in which we can
presuppose the truth of some given propositions to form a

further one. For
B:prop (A true)
means
B:prop (x:A).
To represent texts consisting of sequences of
sentences, we recall that the full representation of an
indicative sentence is not a proposition but a judgment of

form a:A. For a given indicative sentence, the proof cannot

43

generally be restored as a constant, but only as a variable.

Texts are represented as contexts of the form

X1:A1,...,XnAp,

where each proposition Ap depends on the foregoing context.

This way to look upon texts is developed in further detail in

Ranta (forthcoming).

5.10. Extension of the fragment to complex predicates.
The rule (Q) for sugaring (Xx:A)B and ([[x:A)B assumes there

to be in B exactly one main argument containing Mx. Hence we

cannot sugar e.g.

(51) (IIx:man) (Zy:walk(x))talk(x)

> Every man walks and talks.

But we can retain the requirement of a unique main argument
and need not modify the rule (Q) so as to allow for sugarings
like this. For we can reduce the number of argument places

into one, by defining a complex predicate:
(walk_and_talk)=(x)(Zy:walk(x))talk(x):(man)prop.

More generally, we can define variants of Y and [] for the

formation of predicates from predicates on any domain, e.g.

Ta=(Y) (2) (x) X (Y(x),2Z(x)):
(Y: (A)prop) ((x:A) (Y(x))prop) (A)prop.

The higher-level rules of abstraction and application thus
produce an effect resembling the type change calculus of
Lambek (1958) and van Benthem (1988). van Benthem is
unwilling to admit the whole power of the abstraction rule,
because it e.g. makes vacuous binding possible (op. cit., p.
45.) We have assumed the rule of abstraction simply because
it is semantically acceptable. Vacuous binding means that x

does not occur free in B in (Xx:A)B and ([Ix:A)B. We have

44

characterized the English words "and"”, "if" and "such that"
as allowing for vacuous binding, in contrast to "some",

"every", and "which". More accurately, words of the former
group can arise in the sugaring of expressions with no main

argument, whereas words of the latter group cannot.

References

R. Ahn and H-P Kolb, "Discourse representation meets
constructive mathematics", to appear in the proceedings of
the Sgggnd_Smegﬁium_Qn_LQg;g_and_Languags held at
Hajduszoboszld in September 1989.

J. van Benthem, "The semantics of variety in categorial
grammar”", in W. Buszkowski, W. Marciszewski, and J. van
Benthem (eds), Categorial Grammar, John Benjamins
Publishing Co., Amsterdam and Philadelphia, 1988.

N.G. de Bruijn, "The mathematical language AUTOMATH, its
usage and some of its extensions”, in Lecture Notes in
Mathematics 125, 1970, pp. 29-61.

Th. Coquand and G. Huet, "The calculus of constructions", in
Information and Computation 76, 1988, pp. 95-120.

H. B. Curry and R. Feys, Combinatory Logic, Vol. 1,
North-Holland, Amsterdam, 1958.

G. Frege, Begriffsschrift, Verlag von Louis Nebert, Halle,
1879.

P. Geach, Reference and Generality, Cornell University Press,
Ithaca, New York, 1962.

P. Geach, "A program for syntax", in D. Davidson and G.
Harman (eds), Semantics of Natural TLanguage, D. Reidel,
Dordrecht, 1972, pp. 483-497.

J. Groenendijk and M. Stokhof, "Dynamic predicate calculus"”,
ITLI Prepublication series LP-89-02, to appear in
Linguistics and Philosophy.

J. Groenendijk and M. Stokhof, "Dynamic Montague grammar",
ITLI Prepublication Series LP-90-02.

R. Harper, F. Honsell, and G. Plotkin, "A framework for

defining logics", Proceedings of the Symposium on Logic in

Computer Science, Ithaca, New York, 1987, pp. 194-204.

Heyting, Intuitionism, North-Holland, Amsterdam, 1956.
Hintikka and L. Carlson, "Conditionals, generic

quantifiers, and other applications of subgames", E.

Saarinen (ed), Game-Theoretical Semantics, D. Reidel,

Dordrecht, 1979, pp. 179-214.

J. Hintikka and J. Kulas, Anaphora and Definite Descriptions,
D. Reidel, Dordrecht, 1985.

W. Howard, "The formulae-as-types notion of construction”,

J.P. Seldin and J.R. Hindley (eds), To H.B, Curry: Essays
combi Lou] bda Calcul | F 13

4

g P

Academic Press, London, 1980, pp. 479-490.

H. Kamp, "A theory of truth and semantic representation", in
J.A.G. Groenendijk, T.M.V. Janssen, and M.B.J. Stokhof
(eds), Eormal Methods in the Study of Language, Part 1,
Mathematical Centre Tracts 135, Mathematisch Centrum,
Amsterdam, 1981, pp. 277-322.

J. Lambek, "The mathematics of sentence structure”, in

45

American Mathematical Monthly 65, 1958, pp. 154-170.

Martin-L6f, "An intuitionistic theory of types:
predicative part", H.E.Rose and J.C. Shepherdson (eds), in
Logic Colloguium '73, North-Holland, Amsterdam, 1975, pp.
73-118.

Martin-L&6f, "Constructive mathematics and computer
programming"”, in L.J. Cohen, J. Los, H. Pfeiffer, and
K-P Podewski (eds), i
Science VI, North-Holland, Amsterdam, 1982, pp. 153-175.

Martin-L6f, Intuitionistic Type Theory, Blbllop0118,
Napoli, 1984

Montague, Formal Philosophy, Collected papers edited by R.
Thomason, Yale University Press, New Haven, 1974.

Mienpdd and A. Ranta, "An implementation of intuitionistic
categorial grammar", to appear in the proceedings of the
5egQnd_ﬁx_pQ5;um_gn_LQg;g_and_Language held at
Hajduiszoboszld in September 1989.

Nordstrdém, K. Petersson, and J. Smith, Programming in
Martin-LOf's Type Theory., An Introduction, Oxford
University Press, Oxford, 1990.

Ranta, "Propositions as games as types", in Synthese 76,
1988, pp. 377-395.

Ranta, "Anaphora in game-theoretical semantics and in
intuitionistic type theory", to appear in L. Haaparanta, M.
Kusch, and I. Niiniluoto (eds), Language, Knowledge, and
Int 3 lity - p . 4 he Phil] f Jaakl
Hintikka, Acta Philosophica Fennica, North-Holland,
Amsterdam, 1990.

Ranta, "Meaning in text", mimeographed, University of
Stockholm; forthcoming.

Sundholm, "Proof theory and meaning”, in D. Gabbay and

F. Guenthner (eds), Handbook of Philosophical Logic, Vol.
3, D. Reidel, Dordrecht, 1986, pp. 471-516.

G. Sundholm, "Constructive generalized quantifiers”, in

Synthese 79, pp. 1-12.

46

The ITLI Prepublication Series

1990

Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does, .
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch
LP-90-04 Aarne Ranta
Mathematical Logic and Foundations
ML-90-01 Harold Schellinx
ML.-90-02 Jaap van Oosten
ML-90-03 Yde Venema
Computation and Complexity Theory
CT-50-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel

Gerard R. Renardel de Lavalette
Other Prepublications
X-90-01 A.S. Troelstra

X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev
X-90-04

X-90-05 Valentin Shehtman

A Generalized Quantifier Logic for Naked Infinitives
Dynamic Montague Grammar

Concept Formation and Concept Composition
Intuitionistic Categorial Grammar

Isomorphisms and Non-Isomorphisms of Graph Models
A Semantical Proof of De Jongh's Theorem
Relational Games

Associative Storage Modification Machines
A Normal Form for PCSJ Expressions

Remarks on Intuitionism and the Philosophy of Mathematics,
Revised Version

Some Chapters on Interpretability Logic

On the Complexit§ of Arithmetical Interpretations of Modal Formulae
Annual Report 1989

Derived Sets in Euclidean Spaces and Modal Logic

