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Patrick Blackburn
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Edinburgh EH8 9LW
Scotland

This paper presents a simple method of incorporating temporal reference into Priorean
tense logic. A new sort of atomic symbol — nominals — is introduced to languages of tense
logic. These new symbols, distinguishable from the ordinary sort of atom, combine with
other symbols in the usual way to form wifs. All else remains the same; the syntactic change
involved could hardly be simpler. These languages are interpreted on frames as usual, except
that we stipulate that nominals only take the value ‘true’ at precisely one point in any frame.
Nominals can be thought of as instantaneous propositions, and the instant at which a nominal
is true is the instant it names. Alternatively, and probably more usefully, we can think of
nominals as a mechanism that allows Reichenbach’s [21] and Prior’s views on tense to be
incorporated in single framework; nominals pick out Reichenbachian reference times.

While we briefly mention the possible wider relevance of these systems in the concluding
remarks, the main aim of this paper is to discuss the logical properties of these languages
of Nominal Tense Logic. It turns out that this simple sorting mechanism has a considerable
effect on tensed languages: several important classes of frames not standardly definable —
for example, irreflexive frames, discrete frames, and the integers — become definable and give
rise to a new range of tense logics.

The paper is structured as follows. After presenting the basic concepts we turn to model
theory, considering several examples of the increased expressive capability and its effect on
preservation results. Two standard preservation results are lost: nominal validity is not pre-
served under the formation of either disjoint unions or p-morphic images. In the former case
we give a necessary and sufficient condition for validity preservation, and in the latter, a suf-
ficient condition. We then turn to axiomatics, and give two axiomatisations of the minimal
logic. The characteristic axiom schemas needed — NOM or SWEEP — are presented as en-
capsulations of path equations. We observe that either axiomatisation will suffice for minimal
nominal modal logic as well. We then give two rather more abstemious axiomatisations of
the minimal nominal tense logic, using weaker schemas NOMy and SWEEPy, and prove
that neither of the new axiomatisations is strong enough for modal languages; both weakened
schemas usefully exploit tense logic’s bidirectional operators. In general, the temporal setting

*I am grateful to Jaap van der Does, Mike McPartlin and Jerry Seligman for support and discussion
throughout my PhD studies. Thanks to Richard Cooper for his help with the checking and formatting. Some
of this work was done during a stay at the Faculteit der Wiskunde en Informatica, University of Amsterdam,
in early 1989, where I received help and encouragement from Johan van Benthem, Dick de Jongh, Maarten de
Rijke, and Yde Venema. I am particularly grateful to Johan van Benthem for his advice and correspondence
during my PhD studies; they have been invaluable. I also want to thank Inge Bethke, my supervisor, for all her
time and care. The work reported here was supported by an SERC doctoral grant, and the trip to Amsterdam
was funded under the DYANA project. Thanks to Ewan Klein for making it possible.



is the more natural one for nominals, both intuitively and formally. Following this we turn
to extensions of the minimal logic. We sketch how Krister Segerberg’s bulldozing technique
can be applied to yield completeness results for many classes of frames of interest, including
the rationals, the integers, and the natural numbers. We then note that because of the new
expressive powers of our languages, most new logics of interest routinely lack the finite frame
property. However Segerberg’s theorem does not hold in nominal tense logic: it is possible
for a logic to possess the finite model property while lacking the finite frame property. We
sketch how to exploit this using a filtration argument, and thus establish decidability results
for a number of logics.

When I began the work reported here I believed the idea of using nominals to be a novel
one; in fact they had already been discussed on several occasions by Arthur Prior. In [18,
Appendix B] he considers the difficulties of incorporating such entities into tense logic; in
[20, Chapters 2 and 3] he applies ‘egocentric logic’ to the semantics of personal pronouns,
and in [19] he analyses the semantics of ‘now’ with their help. Somewhat later, Robert
Bull axiomatised a tense logic with an additional S5 modality in which nominals appear
as variables over times which can be bound by quantifiers; we briefly mention Bull’s work
later. More recently, I was told of the (ongoing) work of a group of logicians who have been
using nominals in intensional logics for some time.! For example, in [17], Passy and Tinchev
introduce nominals to Propositional Dynamic Logic, and in [7] Gargov, Passy and Tinchev
use them (in several variants) in languages of modal logic.?2 The authors’ concerns are close
to my own and some interesting comparisons can be made. Firstly, the axiomatisation of the
minimal modal logic given in [7] is rather different from mine. My (modal) axiomatisation,
couched in terms of ‘path exploration’ is simpler, and, I think, more intuitively appealing. In
the case of extensions of the minimal logic, Gargov, Passy and Tinchev utilise an ‘infinitary
rule’ COV that could lead to completeness proofs for logics not amenable to the bulldozing
methods I have explored. These matters are discussed below.

1 Preliminaries

By a language of Nominal Tense Logic (NTL) £ is meant a selection of two disjoint, countably
infinite collections of symbols: NOM,; = {1, j, k,...}, the nominals of the language, and
VAR, ={p, ¢, r,...}, the variables of the language. The elements of NOM, UV AR are
called atoms. By L-wffs or sentences are meant the strings formed by combining atoms in
the usual way with A, vV, —, «, =, F, P, H and G. In short, a language of NTL looks just
like an ordinary language of tense logic, save for the atomic level: there we have two sorts of
atom. We talk of purely nominal, purely Priorean, and mixed wiffs; these are wifs containing
only nominals, only variables, or a mixture of the two respectively. For example, 1+ — F1 is
purely nominal; FFp — Fp purely Priorean; and F(i A p) — Fp mixed. We often call a
language of standard tense logic — that is, a language without nominals — a purely Priorean
language. We use n as a metavariable across nominals, and ¢, ¢ and so on, as metavariables
across arbitrary wiffs. We use the usual syntactic machinery of tense logic; most importantly,
by deg(#) is meant the number of logical connectives in ¢. Also useful is temporal depth; by
td(¢) is meant the maximal level of embedding of tense operators in ¢. The mirror tmage of

T am grateful to Johan van Benthem who first drew my attention to this work; to Solomon Passy, who
kindly sent me a copy of [7]; and Kit Fine who gave me several other of the group’s papers. I would like to
emphasize that this group’s work on nominals preceded mine.

2 A still more recent paper by Gargov and Goranko [8] has further extended this work.



a wif ¢ is formed by simultaneously replacing every F by P and G by H; and vice versa.

The semantics of these languages is given in terms of frames and models. As usual, by a
frame T is meant a pair (T, <) consisting of a nonempty carrier set T and a binary relation
< on T.3 The elements of T are called points. By a model M is meant a pair (T,V) where T
is a frame, and V a valuation on T. It is only in the definition of what it is to be a valuation
that the semantics of NTL differs from that of standard tense logic. As usual, a valuation on
T is a mapping from the atoms of our language to Pow(T'), but we place a restriction on
the subsets of T that nominals may be assigned. Nominals must always be assigned singleton
subsets of a frame. A mapping from the atoms to Pow(t) that does not obey this constraint is
not a valuation. As usual, variables can denote arbitrary subsets of T. With this one change
made, everything proceeds as in standard tense logic. In particular, we define the truth of a
wif ¢ at a point t of a model M, M |= ¢[t] in the usual fashion. Derived concepts — such as
validity on a frame or validity simpliciter — are defined standardly, and the usual notation
is used.

Obvious analogs of simple results for purely Priorean languages hold for languages of NTL;
for example, isomorphic frames are equivalent. Another useful result is the following, which
gives each formula a ‘horizon’, a limit past which it cannot see. Let T = (T, <) be a frame and
t € T. By Su(T,t), the n-hull around t, is meant the set of all points of T that are related
in n steps to t. The Horizon Lemma states that for any frame T and any two valuations
V,V' on T such that V(a) N S,(T,t) = V'(a) N Sa(T,t) for all atoms a, (T,V) = $[t] iff
(T, V') = ¢[t], for all ¢ such that td(¢) < n.*

We will frequently talk of paths. By a path through a frame (T, <) is meant any finite
sequence of elements of T' such that for every pair t,,, t,,+1 of the sequence, either t,, < tpm41,
or tm+1 < tm. That is, a path through a frame is a sequence of moves both forward and
backward in time. Sometimes to emphasize the bidirectionality of the concept we refer to
paths as zig-zag paths. By the length of a path is meant the sequence length. A frame is
connected iff there is a path between any two of its point.

Filtration theory [23] adapts straightforwardly to languages of NTL. The usual results
can be proved; in particular, the standard argument yields that the validities of NTL form
a recursive set. In complete contrast, the method of unravelling [22, pages 124-127] fails
totally. Unravelling turns a (Priorean) model based on a frame of arbitrary structure into
an equivalent (Priorean) model based on a tree. Among other things this shows that the
purely Priorean validities on the class of all frames are precisely the same as the purely
Priorean validities on the class of intransitive frames: purely Priorean languages cannot ‘see’
intransitivity. However there is a purely nominal wff valid on precisely the intransitive frames,
namely, FFi — —F4; unravelling destroys structure that nominals can see. Somewhat more
abstractly, as we shall see later, languages with nominals can state ‘path equations’ on frames.
Unravelling systematically destroys path equations.

We later briefly discuss languages of nominal modal logic (NML). The definition of their
syntax and semantics is the expected one; again we have two sorts of atom, and again nominals
denote singleton subsets of frames. By O™ and O™ are meant n length unbroken sequences

3Frames will be denoted by letters in bold font — T, T', T4, S" etc. Their carrier sets will be referred
to by the same symbol in mathematical font — T,T',T¢,S" etc. If a frame, say Ty, has been referred to
in discussion, subsequent uses of T; and <, refers to the carrier set of the frame and the frame’s relation
respectively. Similarly, if reference has been made to a pair (S2, <3}, subsequent uses of Sq refer to this frame.
Four familiar frames are Z = {Z,<), N = (N, <), Q = (@, <), and R = (R, <); the integers, natural numbers,
rationals, and reals respectively, in their usual orderings.

*For a more precise statement of this lemma see [2, page 29)].



of & or O operators respectively. By a modal path through a frame (T, <) is meant a finite
sequence of elements of T such that for all pairs t,, and t,+1 of the sequence, t,, < tpm+1.
Note that modal paths are unidirectional.

To conclude this section I'll mention a natural addition to languages of NTL: adding a
further operator L with the semantics M |= Lé¢|t] iff for all points t' in the model M =
#[t']. That is, L is an S5 operator meaning ‘everywhere’ or ‘everywhen’. Although space
precludes discussing this extension here, a brief remark should make it clear why L is useful in
languages with nominals. Fundamentally this is because no matter what relational structure
a model carries, using L allows us to jump to the point named by a nominal and proceed
with evaluation there. For example, L(# — ¢) shifts to the point named by ¢ and tests the
condition ¢ there. (For this reason in [4] the operator is called ‘the shifter’.)

The addition of L increases the expressive power of languages with nominals, and in
many cases allows very concise axiomatisations to be given. Some results concerning L exist
in the literature as every previous person who has considered nominals has also discussed the
operator: all the papers cited in the introduction do so. Moreover, in a recent manuscript
[9], Goranko and Passy investigate in detail the effect of introducing the shifter into standard
(nominal free) modal languages, and note that:

The prime stimulus for considering the universal modality has come up in the
context of the proper names for the possible worlds |9, page 22]

Finally, in my thesis [4, Chapter 6], tensed languages utilising this operator are considered,
and decidability results which appear to be new are proved.

2 Model Theory

We say an NTL formula ¢ defines a class of frames T iff: T = ¢ iff T € T. For example,
we have just noted that FFi — —F1 defines the intransitive frames. Note that if ¢ defines T
and ¢ defines T', then ¢ Av defines T N T'. For further discussion of definability in standard
tensed and modal languages see [1], or [2].

None of the following classes of frames are definable in a purely Priorean language: the ir-
reflexive, asymmetric, antisymmetric, trichotomous, (right) directed or (right) discrete frames.
Furthermore, neither are the partial orders (POs), strict partial orders (SPOs), total orders
(TOs), or strict total orders (STOs). It is straightforward to verify that each of the first six
classes of frames is defined by the purely nominal wff given:

t — - F{ Vz—(z < z)

it — FF¢ Vzy(z <y — -y <z)

i = G(Fi —1) Vzy((z <y A y<z) - z=y)
PiviVv Fi Vzy(z<y Vz=y V y<z)
FPi Vzydz(z < 2 A y < 2)

it > (FT - FHH~) Vzy(z<y — 32(z<z A ~Fw(z < w < 2)))

(Corresponding to right directedness and discreteness are left directedness and discreteness,
defined in the obvious way by mirror images. We here regard T as shorthand for ¢ vV -1, and
1 as—T))

A quick check then reveals that FFi — Fi defines transitivity, and 1+ — F1 defines
reflexivity,’ and thus by conjoining wffs from the above list we can define the classes of POs,

5Previously we only knew that FFp — Fp defined transitivity, and p — Fp reflexivity. In these cases the



SPOs, TOs and STOs. For example, define ¢~ to be ( = ~Fi) A (Pi ViV Fi) A (FFi — Fi.)
This purely nominal wiff defines the STOs.

With the aid of purely Priorean formulas we can do better; we can define both the integers
and the natural numbers up to isomorphism. Define ¢Z to be:

¢* A (H(Hp — p) = (PHp — Hp)) A(G(Gp — p) — (FGp — Gp))

We then have that T |= ¢Z iff T = Z. To see this note that in [1, page 163] van Benthem
shows that the two purely Priorean conjuncts of ¢Z define Z on the class of connected strict

partial orders. But ¢ restricts us to this class.
Now define ¢V to be:

(H(Hp — p) — Hp) A(G(Gp — p) — (FGp — Gp)) A FT A(PiViV Fy).

Again by appeal to a result of van Benthem’s we have T = ¢V if T= N .

It is important to note that both ¢Z and ¢V are mized sentences. We will shortly see
that only classes of frames expressible in a certain first order language Lo are definable
using purely nominal sentences; thus we know that no purely nominal sentence can uniquely
define these structures. Further, van Benthem’s results concerning the definability of these
structures in Priorean languages are ‘best possible’ results for purely Priorean languages, as
the preservation of purely Priorean validity under the formation of p-morphic images and
disjoint unions prevents the definition of either Z or NN using just variables. The mixture of
nominals and variables is necessary.

All initial segments of N are also definable. (They are not in a purely Priorean language.)
Define ¢ to be

$EAGPLA(FPITV PFPIT),

where n € N such that n > 1. Then T |= ¢L" iff T is a STO of length exactly n. Note that
only nominals are used.

Next, in languages with nominals we can demand that every point has exactly n successors.
This is not something that can be done with purely Priorean languages. In purely Priorean
languages we can insist that every point has at most n successors, as the following encoding
of the Pigeonhole Principle shows:

N\  Fau— V F(aq A ag),

1<a<ln+1 1<a<n; 2<8<n+1; a<p

where the a, are distinct atoms — either variables, nominals or a mixture will work. However
we cannot demand that every point has at least n successors. With nominals, however, we
need merely write down:

FTA( N\ Fia—=F A\ —ia)
1<a<n 1<a<n
where the 1, are distinct nominals.
What can we say of a more general nature? For purely Priorean languages there are four
classic validity preservation results: validity is preserved under the formation of generated
subframes, disjoint unions, and p-morphic images; and anti-preserved under the formation of

uniform substitution of nominals for variables gave rise to a formula defining the same class, but this by no
means always occurs. In general, purely Priorean formulas give rise to second order conditions on the frame
ordering; purely nominal formula always give rise to first order conditions.



ultrafilter extensions.® Given that mixed languages are more expressive than purely Priorean
ones, we might expect that one or more of these preservation results will fail. Indeed, for such
languages only the generated subframe and ultrafilter extension results still hold.

The two unchanged results are rather dull. Anti-preservation of validity under ultrafilter
extensions remains because ue(V')(s) will contain only the principle ultrafilter generated by
V (1), for every nominal ¢ and every valuation V'; thus ue(V') assigns singletons to nominals
and is a valuation. With this noted, the usual proof of the anti-preservation result proceeds
unchanged. In the generated subframe case we need to be a little careful in formulating what
we mean by a generated submodel of (T,V) — not every pair (S,V|s), where S is a generated
subframe of T and V| the restriction of V to S, is a model as V| s may assign 0 to nominals
— but we need merely confine our attention to pairs where this does not happen. The usual
induction then gives a generated submodel theorem for languages with nominals; and as an
immediate corollary we have that validity is transmitted from any frame to its generated
subframes.

The two results that fail are more interesting. For Priorean languages we have that given
an indexed collection of frames {Ty, : m € M}, ifforallm € M T,, |= ¢, then | Tsr = 4. An
immediate consequence of this result is that Priorean languages cannot define the universal
relation Vzy(z < y). Another obvious consequence is that connectedness is not definable in a
Priorean language; indeed something stronger holds — no purely Priorean definable class of
frames consists solely of connected frames.

For languages containing nominals the preservation result no longer holds. An immediate
counterexample is given by the class of trichotomous frames, defined by Pi VvV Fi. Another
is provided by the class of (right or left) directed frames. Yet another is given by the universal
relation; this condition is definable using nominals, by Fi. Note that each member of these
newly definable classes is a connected frame: in languages with nominals some classes of
frames consisting solely of connected frames are definable.

Now, although the disjoint union preservation result fails for languages with nominals, a
little reflection shows that it ‘only just’ fails. Suppose we have two frames T; and T on
each of which ¢ is valid. To keep things simple suppose ¢ contains occurrences of only one
nominal, say 1. We know that we cannot conclude that T;|J T2 = ¢, but why not? The
reason is that in any valuation on T |¢ T3, on one of the components, say T, 1 will be false
everywhere. This is a situation that the validity of ¢ on the component frames simply gives
us no information about: in any valuation on either frame 1 is true somewhere.

But suppose we knew something more: namely that not only was ¢ valid on each frame,
but ¢[L/¢] was also. Then, intuitively, we would have the information needed to guarantee
validity on the disjoint union: the validity of the new formula blocks the possibility that ¢
being false everywhere in a component will cause trouble. This is indeed the case: indeed,
not only is the condition sufficient, it is also necessary as long as the disjoint union is not
trivial — that is, as long as at least two frames are stuck together.

To state the result in full generality we need merely extend the above intuitions to the
case where ¢ contains many different nominals. Essentially all we need to do is account for all
the different ways the nominals can be ‘dealt out’ — like cards from a pack — to the ‘players’
— the components of the disjoint union.” That is, we must take into account all possible
uniform substitutions of L for nominals in ¢. Let S*(#) be the (finite) set of sentences

SWe assume the standard definitions of these concepts for tensed languages in what follows; see [1] for
details.
7 A particular deal, of course, is just a valuation.



consisting of precisely all the possible sentences obtainable by uniformly substituting L for
nominals occurring in @, including the null substitution.® Let ¢* denote the conjunction of
these sentences. Then we have:

Theorem 2.1 Let {T,, : m € M} be a family of frames such that card(M) > 2. Then:

WTn o iff Vme M Trn E¢*
for all wffs ¢.

Proof:
A straightforward argument using the generated submodel result. Use the fact that nom-
inals assigned points outside a generated subframe S behave like 1 on S. O

While p-morphisms preserve validity for Priorean languages, they do not do so for lan-
guages with nominals. There are many obvious counterexamples. Note that the unique
function from Z to the singleton reflexive frame ({0}, {(0,0)}) is a p-morphism; but both
{ — - Fi and 1 - ~FFf are valid on Z and invalid on the singleton reflexive loop. A pretty p-
morphism is constructed in [1, pages 160-161]. The source frame is discrete, the target frame
indiscrete, thus demonstrating that discreteness is not Priorean definable. But we know that
discreteness is definable with nominals, hence van Benthem’s construction provides yet an-
other counterexample. Finally, consider n-branching trees of depth w. All points in such
trees have precisely n successors, and we know that for all n € N we can write an expression
in nominals valid on all frames with branch factor n. But the mapping from n branching
trees of depth w to the natural numbers under the successor relation, N¥, which associates
with each node its depth is a p-morphism and thus for all n > 2 we have an example of the
non-transmission of nominal validity to p-morphic images.

For models however, the p-morphic link is the correct one. That is, if f is a p-morphism
from M, = (S,V,) to M; = (T, V), then we still have that

M, E ¢[s] if M; = ¢[f(s)],

for all s € S and all wifs ¢, as the usual induction on deg(¢) shows.® Note why we cannot
derive from this the usual validity preservation result. Suppose f is a p-morphism from S
to T. Just because a valuation V falsifies some formula ¢ on the target frame T, we cannot
necessarily transfer the falsifying valuation to S; f~![V({)] may not be a singleton subset of
the source frame and thus won’t always yield a valuation. We do however have the following
sufficient condition for a p-morphism to preserve validity. Call a p-morphism n-separating if
it never maps distinct points s and s' of the source frame connected by a path of length n or
less to the same point in the target frame. Then the following lemma is straightforward by
appeal to the Horizon Lemma:

Lemma 2.1 Let ¢ be a wff such that td(¢) =n > 1, and f a (2n + 1)-separating surjective
p-morphism from S to T. Then S |= ¢ implies T |= ¢. O

Let us turn to the correspondence between languages of NTL and classical languages. Fol-
lowing (2] we define Lg to be a first order language with identity that contains precisely one
non-logical symbol, a binary relation symbol ‘<’. Note that any frame is a structure for this

8For example, ST (i AFj) = {iAFj, iAFL, LAFj, LAF1}.
°The usual strengthening also holds: two models linked by a zigzag relation, in the sense of [3, page 12], are
equivalent.



language. Now, only Lo expressible classes of frame are definable by purely nominal sentences.
To see this note that to deal with nominals we need merely augment the standard translation
(1, page 151] of tensed languages into classical languages by adding the clause that the stan-
dard translation of any nominal ¢, ST(s), is to be the Lo-wff z; = t. (Here z; is the Lq variable
designated as corresponding to the nominal 1, and t the Lo variable representing the point of
evaluation.) Now saying that a purely nominal formula ¢ is valid on a frame T is equivalent
to saying that VtVz;, ---z;,ST(¢) is true in any first order model based on the structure
T, where the z;,,...,z;, correspond to all the nominals in ¢. But VitVz; ---z; ST(¢) is a
first order sentence, in fact an Lo sentence. With purely Priorean languages we need second
order quantification when we talk about validity — variables correspond to predicates. With
nominals matters are simpler. This translation immediately yields a number of results: that
nominal validity is r.e., compactness and Lowenheim-Skolem theorems, and so on. It further
shows that frame consequence '° is also an r.e. relation for purely nominal sets of sentences,
as for such sentences ¥ |=; ¢ iff ST(Z) = ST(¢); frame consequence |=; has been reduced
to the r.e. relation of first order consequence, f=.

3 The Minimal Logic

The minimal logic can be axiomatized by the addition of either of two schemas to K, the
usual axiomatisation of the minimal Priorean tense logic. The schemas are called the NOM
and SWEEP schemas, and to present them we need a little notation. For any language L let
an ezistential tense be any unbroken sequence of Ps and F's. The sequence may contain both
Ps and Fs, and we regard the null sequence a as an an existential tense.!! We normally use
E, E', and so on as metavariables across existential tenses. By a universal tense is meant any
unbroken, possibly mixed, sequence of Gs and Hs, including the null sequence; A, A', and
so on are used as metavariables over universal tenses. In the following two schemas, n is a
metavariable across nominals, and ¢ and ¢ are metavariables across arbitrary wifs.

NOM E(nA@)AE'(nAy) —> E(nAdAy)
SWEEP E(nAg¢)— A(n — ¢)

Let’s instantiate the NOM schema in ¢ and consider what it says:
E(GAS)AE(TAY) > E(TASAY).

Think of the points of a model as boxes holding items of information. Suppose we are standing
at a point ¢ in some frame T and we know that both E(i A ¢) and E'(f A ) are true. This
means we know that if we follow a certain zig-zag path from ¢, (the one coded up by E), we
can get to a box marked ¢ and containing the information ¢; and that if we follow another
possibly different path from ¢, (the one coded up by E') we get to another box, also marked
1, and containing the information . But there is only one box marked i. Hence this single
box contains both the information ¢ and the information 4, and the paths coded for by E
and E' lead to the same point. This is precisely what the consequent of NOM gives us. In
a nutshell, the NOM schema consists of all the path equations that must be satisfied in any
model.

10We gay a wif ¢ is a frame consequence of a set of wifs ¥ iff whenever X is valid on a frame T, so is ¢. This
relation is not r.e. for purely Priorean languages; see [26].
"1Thus FPFPPFPP, F and PPPP are existential tenses; PFFGPP isn't because it contains a universal

operator, G.



Let K,; be the axiomatisation obtained by adjoining to K; either of these schemas. We
wish to show that K, captures the minimal logic for languages of NTL.}? The soundness
of either schema is immediate. Perhaps the neatest way to show completeness is to adapt
a method originally due to David Makinson [14], and applied to tense logic in [15]. This is
an elegant method and always yields a countable model; however it requires several prelimi-
nary definitions, and so we sketch instead an argument that uses generated subframes of the
canonical Henkin frame HXn¢ 13 Note, however, that this method may yield an uncountable
model.

But why use generated subframes of HK»t? Why not build the usual ‘canonical model’
using the whole of HX#t and the ‘natural valuation’? In fact we cannot do this: the ‘natural
mapping’ V from the atoms of our language to H defined by V(a) = {h € H : a € h} is not
a valuation as each nominal occurs in more than one point of H. By restricting ourselves to
generated subframes of HX»¢| however, we will be able to build a valuation from the natural
mapping. So, given a consistent set of sentences T, take the subframe of HXn¢ generated by
3. The key lemma is:

Lemma 3.1 (Unique Occurrence Lemma) Let H® = (HT, <) be the subframe of H¥t
generated by £°. Then for all h,h' € HE, and every nominal i, if i € h and i € k' then
h="r.

Proof:

Suppose there are two distinct points h, A’ € H® that contain the same nominal 5. As
they are distinct MCS there is some wif ¢ that distinguishes them, so suppose 1 A ¢ € h and
t A—~¢ € h'. Now as H? is generated from X%, there is a path from £* to h, and a path
from £ to h'. By appeal to tense logical lemmas we can thus show that there are existential
tenses E and E' such that both E(i A $) and E'( A —~¢) € £®°. But by NOM this means that
E(i A A —~¢) € 2, and thus, by tense logic, we have EL € £*°. But this is impossible as
£ is consistent. (A similar argument works for SWEEP.) )

Now it can happen that not all nominals of our language appear in some h € HX — for ex-
ample, for any choice of ¢ the consistent set of sentences ¥ = {—FE1 : E is an existential tense}
‘forces ¢ out’ of the subframe generated by £ — but this is easy to fix. Simply adjoin a
new point h*® to HZ that is unrelated to any other point, and define a new mapping V,}
that is identical to V,, save only that where V, assigns @ to some nominal ¢, V3 assigns
{h*®} to the same nominal. Clearly V| is a valuation. The usual induction then shows that
(HZ,V,}) = 2[=*] and we have our completeness result.

It is also clear that the above proof yields a completeness result for languages of nominal
modal logic. The modal analogs of existential and universal tenses are unbroken (possibly
null) sequences of s, and of Os respectively. With the E and A metavariables read in this
fashion we have that either K + NOM or K + SW EEP axiomatises the minimal nominal
modal logic, where K is the usual axiomatisation of minimal normal modal logic. We refer
to either axiomatisation as K.

2In what follows we assume the usual definitions (such as those of consistency and mazimal consistent sets
of sentences (MCS)), and all the usual tense logical lemmas needed in Henkin proofs; see [6] or [15] for further
details. Note in particular that Lindenbaum’s Lemma holds. We further assume that the wffs of our language
have been standardly ordered; by ¥ we mean the Lindenbaum expansion of a consistent set of sentences ¥
with respect to this standard ordering.

13By the canonical Henkin frame for K, is meant the frame H¥"t = (H,<,), where H consists of all and
only the K, MCSs; and for all k, k' € H, h <, h' iff for all wifs ¢, G¢ € h implies ¢ € h'.



Let us re-examine the proof of the Unique Occurrence Lemma; a little reflection shows
that we can do rather better. In the above proof we made use of three distinct points, h,
h' and £%°; and two different paths. But we could have just used a ‘two point argument’:
given h and h' as described above there must be a path from one to the other — we needn’t
bring the generating point £ explicitly into the proof at all. But once this is observed it
becomes clear that we don’t need all the instances of either NOM or SWEEP to guarantee
completeness; the instances of the following two weakened forms will suffice:

NOM,, nAE(nAg)— ¢
SWEEP, (nA¢)— A(n— ¢)

To see this, we sketch a proof of a Unique Occurrence Lemma from the new axiomatic
bases. We treat the case for SWEEPw. Let our assumptions and notation be as before.
Suppose two point h and k' in H® contain the same nominal 1. As H” is generated from a
single point ¥% it is connected, and thus there is a path between h and A'. Let Alr—=H) be
the universal tense that corresponds to the path as seen from h. (That is, starting at h we
traverse the path until we reach A/, writing down a G for every move forward in time, and H
for every move backwards.) As all instances of SWEEPy occur in h, then in particular we
have that

ing — A=) 5 ¢) eh.

But as ¢ € h, then for all € h we have that A*~*)(i - ¢) € h. But then by the usual
tense logical lemmas we have that 1 — ¢ € h', and as 1 € h' we have that ¢ € h'. As h and
h' are MCS this means that A = h'. Thus we have an improved completeness result.
However note that this improvement does not hold for modal languages. Intuitively, we
have to use a ‘three point argument’ in modal languages as in such languages we can never look
back. The ‘two point argument’ is the perogative of tense logic. It is straightforward to turn
this intuition into a proof that neither K + NOMywy nor K + SWEEPy suffices to axiomatise
the minimal nominal modal logic. We will proceed by finding a semantical property which
distinguishes the derivable from the non-derivable wifs. The first step is to define:

Definition 3.1 Let T be a frame and t and t' be distinct elements of T. We sayt and t' are
a separated pair iff there is no modal path from t to t', and no modal path fromt' tot. A
frame 1s said to separated iff it contains at least one separated pair. a

(Note that we talked of modal paths, not zig-zag paths, in the above definition.) We
now change the interpretation of modal languages with nominals. Let £ be any language
of nominal modal logic. In the separated interpretation for £ we define separated valuations
on separated frames; in each separated valuation every nominal denotes exactly two distinct
points, ¢t and t', where t and t' are a separated pair. Everything else is as usual: variables
denote arbitrary subsets of such frames and the non-atomic sentences are evaluated as usual.
We say that an L-wff ¢ is s-valid iff it is valid in any separated interpretation on any separated
frame. Clearly both K + NOMy and K + SWEEPy are sound with respect to this interpre-
tation; everything provable from either basis is s-valid. However it is easy to falsify instances
of both the NOM and SWEEP schemas. Let T be the frame ({-1,0,1}, {(0,-1),(0,1)}).
Clearly —1 and 1 are a separated pair. Let V be any valuation that assigns {—1,1} to 1,
and {1} to p. Then both an instance of NOM, O(5A p) AO(EA —p) = O(EApA —p), and
an instance of SWEEP, (5 A p) — O(f — p), are false at 0 and thus cannot be derived from
the weakened basis.
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In passing, there’s some simple observations we can make about the impact the addition
of nominals has on the Henkin frame of the minimal normal modal logic.!* Suppose £ is a
standard language of modal logic; that is, £ has a countably infinite set of variables and no
nominals. Let K be the minimal normal logic in £ and HX its canonical frame. The following
facts about HX are well known: HK is left directed, point generated, and indeed strongly
generated. By this last is meant that there exists an h € H¥ such that for all b’ € HK,
h <, h'; from h we can get to any other point in one step. These properties follow from the
the fact that K admits the Law of Disjunction (LOD): L O¢1 V...V O¢y, implies - ¢,,, for
some m such that 1 < m < n.1%

The minimal nominal modal logic, however, does not admit LOD. Note that HX»= cannot
be left directed as no MCS h can precede both {i A $}*° and {f A =¢}*°; hence LOD cannot
hold. This example also shows that HE»m cannot be strongly generated. In fact, it can’t
even be generated: for arbitrary existential modalities O™ and O™, O™ (1 A @) A O™ (1 A —¢)
is inconsistent, and thus no MCS h can precede both {i A $}* and {i A ~¢}*, no matter
how many steps intervene. The only obvious thing we can say about the structure of HEnm
derives from the following observation: one special case of LOD is unaffected by the addition
of nominals: g, ¢ iff Fk,,, O¢, and thus HX»m js left unbounded.

Let us now consider the Gargov, Passy and Tinchev axiomatisation of the minimal modal
logic for languages with nominals. They first define necessity and possibility forms:1¢

Definition 3.2 Let £ be a language of NTL, $ be a new entity distinct from any L wff or
symbol, and 0 be a wff of L. Then the necessity forms of L, are the elements of the smallest
set O-form such that:

$ € O-form
L e O-form timplies # — L € O-form
L € O-form implies OL € O-form,;

and the possibility forms of L, are the elements of the smallest set O-form such that:

$ € O-form
L € O-form tmplies 6 A L € O-form
L € O-form implies OL € O-form.

If ¢ is any wff of L, and L and M are O -forms and O-forms respectively, then by L(y) and
M(v) are meant the L-wffs obtained by replacing the (unique) occurrence of $ in L and M
respectively by . O

They then axiomatise the minimal logic for languages of weak NML by adding to the usual
axioms of the minimal modal logic K all instances of the following schema:

AxN  M(nA¢)— L(n — ¢),

where L and M are metavariables over O-forms and {-forms respectively. They prove
completeness by a three point argument on generated subframes of the H¥nm

14By way of contrast, there’s not much we can say about the structure of the minimal tense logical Henkin
frame beyond the fact that it’s big and disconnected; the bidirectional operators homogenise the frame.

!®For a discussion of why these properties follow from LOD, see [13] or [10]. Minimal tense logic does not
admit LOD; see [3, page 11].

!®In the following definition the use of L as a O-form has nothing to do with the shifter operator L mentioned
in the preliminary section.
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The form of the Azy schema is superficially reminiscent of that of SWEEP, but the M
and the L don’t range over universal and existential modalities but over the more complex
O - and &— forms. Thus for fixed ¢t and ¢ the consequents of Azy include all entries in the
following infinite matrix:

(1 —¢) o@F —¢) oo@ —¢)
$— (1 —¢) o(¢— (G —¢) 0o(¢— (i —¢)
¢ (—(G—¢) O@B—-(6—-(G—9¢) DO—(—(—9)

$4-0(—9¢) 0O@B—0(—¢) 0O@-0G-4¢)

The antecedents of Azy, again for fixed ¢ and ¢, consists of all entries in the matrix obtained
from that above by replacing O by < and — by A. Note that for fixed 1 and ¢ the SWEEP
schema consists merely of conditionals formed from the first row of each of the above matrices.
The simpler SWEEPy schema that suffices for tense logic essentially consists, for fixed 1 and
¢, of only the single wff occurring in the top left entry of the second matrix — i A ¢ — as
antecedent; and as consequents just the wffs in the first row of the above matrix. Thinking
in terms of paths and path equations is a simpler way of adding nominals to modal (and
especially tensed) languages.

We conclude this section by noting some theorems of the minimal tense logic. Firstly,
nominals interact strongly with universal tenses; Hi and Gt can only be true under ‘end
conditions’, hence both the following ‘end effects’ 1+ A Gt A F¢ — ¢ and Gi A Fyp — Gy are
theorems. Note that if we replace 1 by p in the above the resulting wffs are not Priorean
valid. Next, suppose t is a point and that there is a path P that leads away from t but
eventually returns there. Then a ‘reverse journey’ exists: we could traverse P in the reverse
direction and still get back to t. In NTL we can talk about such reverse journeys; we can’t in
standard languages as we cannot uniquely mark the starting point. To display the relevant
theorem we first need to define the transposition ET of an existential tense E. By this is
meant the existential tense formed by reversing the sequence of tenses in E and forming the
mirror image.!” If an existential tense E codes a path between points ¢t and t' as seen by an
observer at t, then ET codes the same path as viewed by an observer at t'.!® The theorem
asserting the existence of reverse journeys can now be given: i A Ef — ET4. Again note that
if we replace 1 by p we do not get a Priorean validity. Finally note that if we can break off
a journey in the middle, pick up a piece of data, and then continue round, we can do the
same thing backwards: § A E;(y A E3i) — ET (¢ A ET{). This schema is called the Stopover
Schema and it is useful in deriving ‘mirror image schema’ in extensions of the minimal logic.

4 Extensions of K,;

We now sketch completeness and decidability results for some more interesting classes of
frames. Adding to K, as axioms all instances of FF¢ — F¢ (4), ¢ — F¢ (T), PTAFT
(D), or the Lin schema, which consists of the conjunction of

FAFY— (F(6AFY)V F(AFG)V F($AY)  (RLin),

"For example, (PPFPF)T = PFPFF.
18Note that tense transpositions are an intrinsically fense logical concept; they have no correlate in modal
languages — as we have seen, real path exploration requires bidirectional operator pairs.
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with its mirror image L Lin, yields Henkin frames that are transitive, reflexive, both right and
left unbounded, and locally linear respectively; hence generating Henkin models and adding
isolated points to complete the valuation gives an immediate crop of completeness results.
But this is all familiar territory; what happens when we add schemas corresponding to newly
definable conditions, such as irreflexivity or antisymmetry?

Adding as axioms all instances of n — —~Fn (I), or n — G(Fn — n) (Anti), does not
yield irreflexive or antisymmetric Henkin frames; some points don’t contain nominals, and we
cannot guarantee that such points have the desired property. However points in these frames
containing nominals are well behaved. In particular, in the Henkin frame of any extension of
K1, all points containing nominals are irreflexive; and in any extension of K,,; Anti, no point
containing a nominal is in a proper cluster — the proofs are immediate.!®* Now suppose we
are working with some such extension of K,; and that by our ‘generate and add an isolated
point’ method we have built a model M¥ verifying our original set of sentences ©. As M¥
is not guaranteed to have the correct structure we must find a ‘rectification’ technique to
transform it into an equivalent model of the desired form. In doing this we must take care
that our rectification method does not destroy the Unique Occurrence property of M¥; we
want ‘local’ methods that only need alter the points not containing nominals. Fortunately,
some standard methods work this way.

The simplest example is provided by I (= K,:I). This is complete with respect to the
irreflexive frames. To prove this we need merely observe that by stretching apart reflexive
points t of M¥ into two points s and &', stipulating that s < 8', 8' < s,s £ sand s' £ &', and
insisting that all points which preceded t now precede both s and s', and so on, we form a
new irreflexive frame S. By our previous remark, no point containing a nominal was reflexive,
hence no such point was stretched apart; thus the obvious mapping V* of atoms to Pow(S)
is a valuation. As M¥ is a p-morphic image of (S,V?), the models are equivalent and we are
through.

For logics of frames that are both transitive and irreflexive we apply heavy bulldozing. For
example, I4 is complete with respect to the SPOs. This is proved by bulldozing all clusters of
MH | embedding them into (say) Z or Q; points containing nominals aren’t in clusters and
hence aren’t bulldozed. For logics of frames that are transitive, reflexive, and antisymmetric
we lightly bulldoze. For example, PO (= K,:4T Antt) is complete with respect to the POs. To
see this, bulldoze all and only the proper clusters of M# | embedding them into (say) (Z, <)
or (@,<). Note that in this axiomatisation we only added the ‘forward looking’ schema
that define antisymmetry; the mirror images are also valid on the POs and hence must be
provable. A formal proof can be displayed by making use of the relevant instance of the
Stopover Schema.

The logics of linear frames have some pleasant properties. Observe that we never need to
add an isolated point after the generation process. For all such logics we add as axioms all
instances of the schema defining trichotomy, PrnvVnV Fn (Tr), and its inclusion prevents nom-
inals being ‘driven out’; the troublesome sets of sentences {—E% : E is an existential tense}
are no longer consistent. We note that I4LinTr is complete with respect to the STOs, and
PO LinT'r is complete with respect to the TOs; this is clear by the relevant forms of bulldozing.

But we can do better; it is possible to give finite axiomatisations for the logics of linear
frames. Define O¢¢ to be HP A p A G@. Then (i A ¢) — O¢(§ — @), which is just SWEEPw

By a cluster C of a frame (T, <) is meant any C C T such that C2N < is an equivalence relation, and
for no proper superset C' of C is this true. A cluster is proper if it contains at least two points, and simple
otherwise. In what follows we assume the reader is familiar with ‘cluster manipulation’ completeness methods
as presented in [23], especially the bulldozing technique.
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with the universal tenses replaced by O, can replace NOMy or SWEEPy or whatever
we’re using in Kn;. With this done we can give a finite axiomatisation of the logics of linear
frames by using axioms together with a rule of substitution instead of axiom schemas. Note
that this rule of substitution must only replace nominals by other nominals. Moreover it is
straightforward to axiomatise Q, Z, N and R. In fact all we need do is take their normal
axiomatisations in K, and add NOMwy — or the new finite schema — plus I and Tr. The
proof methods given in [23] still work.

What about decidability? Note that because of the new expressive powers of our languages
many obvious logics lack the finite frame property. For example consider I4D. Any class of
frames on which all its axioms are valid must consist solely of unbounded SPOs, hence no finite
frame can validate its axioms and 14D does not have the finite frame property. In such cases
there is an apparent impediment to establishing decidability by the familiar ‘search through
finite structures’ argument — but there is an interesting loophole. Although I4D does not
have the finite frame property it does have the finite model property. That is, it is possible
to define a class of finite models M such that Fy4p ¢ if M | ¢, for all M € M. Note that
the loophole we are exploiting does not exist in standard languages: a well known theorem of
Segerberg’s states that any classical modal logic has the finite model property iff it has the
finite frame property [24, page 33|. Thus the analog of Segerberg’s theorem does not hold in
NTL as I4D is a counterexample.

What are these classes of models? Simply the finite members of the most obvious class
of models to which the unrectified Henkin models M# produced in the course of proving
completeness belong. Let’s consider the logic I4. Call T = (T, <) an irreflezivity containing
frame iff there is a t € T such that ¢t £ t. Call a valuation V on such a frame T irreflez-
ivity respecting iff t € V(i) is irreflexive for all nominals i. That is, irreflexivity respecting
valuations are valuations on frames containing irreflexive points that send all nominals to
irreflexive points. We call M = (T,V) an I} modeliff T is an irreflexivity containing frame
and V an irreflexivity respecting valuation on T. The class of all I; models is called M(I;). It
is clear from the Henkin proofs sketched above that I4 is sound and complete with respect to
the class of all transitive I; models. That is, 14 ¢ if M |= ¢, for all M € M(I;) N M(T'ran).
It is now straightforward to use filtrations to show that /4 has the finite model property with
respect to M(I;)N M(Tran). Thatis: b4 ¢ if M | ¢ for all finite M € M(I;)NM(Tran).

Soundness is immediate. For the reverse direction we know that given an I4-consistent
sentence ¢ we can find an M € M(I1) N M(Tran) such that M |= ¢[t], at some point t. (The
usual (unbulldozed) Henkin model M¥ suffices.) Now, if ¢ contains occurrences of nominals,
define £~ to be

{#} U {i — —F1i:1 occurs in ¢};

while if ¢ contains no occurrences of nominals choose any nominal — say 1 — and define £~
to be {¢} U {i » —Fi}. Let  be the smallest set of wifs containing £~ that is closed under
subformulas. Form a transitive filtration M/ of M through ¥ such that for all nominals j ¢ £,
V(5) = V4(5), for some nominal ¢ € . By the Filtration Theorem M7 |= ¢[E(t)]. But M/
is a model in the required class: clearly it is finite, because X is a finite set of sentences; and
it is transitive because we took a transitive filtration. Moreover M/ does contain irreflexive
points, and all nominals are assigned irreflexive points in this filtration. To see this, note that
it follows from the usual definition of transitive filtrations that:

I(FPE€ T & M |= ¢[t] & M |£ Fg|t]) implies E(t) £ E(t).

But for all nominals + € ¥ — and there is always at least one — Fi € ¥. Further, as
our original model was in M(I), M |= i[t] means M [£ Fi[t], and thus for all such points
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t, E(t) £ E(t). This means that all points in the filtration M/ denoted by nominals are
irreflexive, and we have our result. An immediate corollary is that I4 is decidable.

Decidability for other extensions of I4 follow from this basic result.?’ In particular, I4D
is decidable because our usual Henkin completeness proof establishes that 74 ¢ if M |= ¢,
for all unbounded M € M(I;)N M(T'ran). As filtrations inherit unboundedness, the filtration
described above for I4 establishes the finite model property for 4D relative to this class of
models, and decidability follows. Thus we have a tool that works for many of the logics of
interest above I4. Moreover, in similar fashion it is simple to show analogous results for many
logics above PO; the reader is referred to Chapter 5 of my thesis [4] for details. In passing,
these methods can be used to establish the decidability of the nominal tense logic of Q, but
won’t work for the logics of N, Z or R. (The easy soundness direction will not go through for
these logics.) However Rabin-Gabbay techniques [6] can be used to show their decidability.

It should be clear that the classic cluster manipulation techniques of Segerberg — Henkin
frame generation, bulldozing, filtration and related techniques — can be applied in the new
setting to yield answers to many basic questions; nonetheless it is interesting to look for
alternatives. There seem to be two possibilities. One is that explored by Gargov, Passy and
Tinchev [7] who introduce an ‘infinitary rule’ COV to their nominal modal languages.?! With
its aid, in many cases they are able to build models in which every point contains a nominal.
Obviously such a technique is very powerful; to take a simple example of where it could be
useful, consider extending K,; by adding all instances of the schemas defining right and left
discreteness together with the ‘discreteness’ schema of Priorean logic, [6]. Without making
additional assumptions of linearity and transitivity it is hard to make progress by cluster
methods. However if we could drive a nominal into every world, we would have a completeness
result because the discreteness schema is well behaved on points containing nominals. There
are many other areas such a rule could be useful. For example, when considering interval based
logics augmented by nominals, as in done in [4, Chapter 8], cluster manipulation techniques
rapidly become difficult to apply, and the use of such a rule may be invaluable. Even so, once
we have used the COV rule to build a model it is natural to enquire whether its use can be
eliminated. The completeness results sketched above show that in some important cases this
can be done; and combining these elimination results with the decidability results we have
noted above, we have decidability results for certain axiomatisations employing COV.

A second method that seems interesting is to try to obtain a general conservativity result
with respect to Bull’s [5] system. Then one could use the quantifiers and S5 modality to
tailor a theory in a language with new ‘witness’ nominals which would guarantee that the
right sort of frame was produced during the generation process. Gargov, Passy and Tinchev
report such a conservativity result with respect to a different ‘quantified nominal’ language
in [7].

5 Concluding remarks

Does NTL lead anywhere? I believe that it is a prototype for a more general strategy of sorting
in intensional languages.??

2°Indeed the weaker logic I must also be decidable. It has the finite model property with respect to M(I,).

21 A3 the authors point out, although COV is often expressed as an infinitary rule of inference, it can be
reduced to finitary form. The more recent paper by Gargov and Goranko [8] contains a more detailed discussion
of the COV rule and its variants.

22Many of my ideas on sorting emerged in discussions with Jerry Seligman, and owe a lot to his work on
perspectives, constraints and classification in Situation Theory; see [25].
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The basic system of NTL just outlined provides useful logical analyses of temporal ex-
pressions in natural language; with some simple extensions it can be greatly improved. Two
such extensions are relativisation to contezt and interval nominals. Firstly, by adjoining a
set of primitive contexts to frames, each assigned a time, one can introduce special nominals
which behave like such locutions as ‘now’, ‘today’, and ‘tomorrow’. The basic ideas are those
of [11] and [12], except that these items are no longer operators but new sorts of names for
times. It is straightforward to add further typical temporal referring expressions, such as
dates, and these systems provide a clean model of the basic facts about temporal reference
and its interaction with tense. Secondly, one can introduce interval nominals. The term is
self-explanatory; these are atoms whose interpretation is constrained to be an interval, or
time period. Note that unlike the strategy of ordinary interval logics, this gives us a device
in our object language for talking about events that take time; for example we can refer to
an interval and insist that an event took place throughout it. Now for present purposes the
details of these adaptations aren’t particularly important; what should be noted is the basic
device used throughout. In each case we introduced a different sorts of atom into our object
language whose interpretation was constrained in some fashion. Each sort of atom is the
bearer of a different sort of referential information — we can ‘read off’ some information just
by looking at its sort — and yet all this information is combined in a regular fashion by our
usual connectives and operators.

It is tempting to try and carry this sorting over to the variables, the non-referential part
of our languages, as well. Ever since (at least) the work of Vendler [27], such distinctions as
states, processes, culminated processes and punctual events have been routinely invoked to
explicate the semantics of temporal expressions. (This particular classification is due to Moens
[16].) So why not attempt to build these distinctions into tense logic? Again we introduce
different sorts of variable, each of which is constrained in its interpretation to subsets of frames
which can model the type of information under consideration. The picture that emerges is
of a temporal ontology that is neither a naked temporal flow (frames), nor a flow sloppily
dressed (models), but a carefully groomed compromise that reflects our intuitions about event
structure.

The idea of constraining the interpretation of variables in intensional languages is not
new; it’s the idea underlying general frames. What makes the idea interesting here is that
we have differing restrictions, syntactically marked in our object languages. As we have seen
with nominals, this gives rise to sublanguages with differing logical properties; the task of
charting their behaviour seems worthwhile.
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