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HERMAN HENDRIKS

FLEXIBLE MONTAGUE GRAMMAR¥*

0. INTRODUCTION

In this paper we shall argue that adoption of flexible type assignment in Montague
grammar leads to a more adequate division of labour between the syntactic and semantic
component. In syntax, things can be simplified to a great extent: it becomes possible to
account for quantifier scope ambiguities without Montagovian rules of quantification or
Cooper stores. Moreover, flexible type assignment enables us to generate semantic
interpretations that cannot be straightforwardly represented within those approaches. And
finally, the flexible approach is more successful in cases where quantification rules and
stores lead to wrong results.

In section 1, ‘The Semantics of PTQ’, we shall first review several relevant
properties of orthodox Montague grammar. Next, section 2, ‘Arguments for flexibility’,
lists arguments that have been put forward in favour of a less rigid category-to-type
assignment in model-theoretic semantics. The consequences of the apparently needed
flexibility for the design of the grammar are treated in section 3, ‘Flexibility in syntax and
semantics’. We shall first consider the Lambek calculus, an influential theory of
syntactic/semantic flexibility, and then present our flexible Montague grammar. Section
4, ‘Applications’, shows that the flexible grammar defined in section 3 not only has the
wished-for advantages, but allows one to dispense with special syntactic devices for the
representation of quantifier scope ambiguities. In the last section, ‘Discussion:
compositionality and contextuality’, we pay attention to the position of the flexible
grammar relative to the principles of compositionality and contextuality. The semantic
properties of the proposed fragment are treated in an Appendix.

1. PTQ

In his paper ‘The Proper Treatment of Quantification in Ordinary English’ (i.e.,
Montague 1974b, PTQ henceforth), Richard Montague presented a grammar for a
fragment of English which distinguishes itself from its generative predecessors by the
presence of a semantic component where the expressions defined by the syntactic
component are translated into expressions of the logical language IL (= Intensional

* I would like to thank Renate Bartsch, Johan van Benthem, Paul Dekker, Jeroen Groenendijk, Theo
Janssen, Reinhard Muskens and Martin Stokhof for their help, encouragement and/or criticism. The
research for this paper was supported by the Netherlands Organization for Scientific Research (NWO) and
ESPRIT Basic Research Action 3175, Dynamic Interpretation of Natural Language (DYANA).




Logic). These IL-expressions receive a model-theoretic interpretation in the usual way.
Thus the English expressions are indirectly assigned a semantic interpretation, viz., via
the interpretation of the logical expressions they are translated into.! The ‘PTQ fragment’
has since acquired a paradigmatic status within model-theoretic semantics. In this section
we shall go into a number of aspects of the fragment, which will be considered with its
original semantics (plus individual concepts — cf. Dowty, Wall and Peters (1981),
Appendix III).

1.1 Categories

The set of syntactic categories in the PTQ fragment is defined inductively. There are two
basic categories, S and E. S is the category of ‘sentences’, and E is an empty category in
the sense that no expression belongs to it. Furthermore, there are compound categories: if
A and B are categories, then A/B and A//B are also categories. Intuitively, A/B and A//B
represent a category of expressions that take an expression of category B to form an
expression of category A. As a consequence of this definition, we get an infinitely large
set of categories at our disposal. In practice we shall only have to deal with a finite subset
of the defined categories: the eight categories indicated below.

@) CATEGORY DESCRIPTION DEFINITION
S sentence -
E _ _
CN common noun S/E
v intransitive verb phrase S//E
T term (noun) phrase S/IV = S/(S//E)
Det determiner T/CN = (S/(S//E))/(S/E)
TV transitive verb phrase IV/T = (S//E)/(S/(S//E))
PV propositional verb phrase  IV/S = (S//E)/S

With the exception of S and E, all categories contain lexical elements. (The term phrases
[Theol, [The;], [The,], ... are called syntactic variables.)

2) CN: [cnman], [cnwoman], [cNunicorn], [cNtemperature], ...
IV:  [pywalk], [pyrise], ...
T: [TJohn], [TMary], ..., [The,], [The,], [The,], ...
Det:  [perthe], [pereveryl, [Detal, [perone], ...
TV: [tvseek], [Tvfind], ...
PV: [pyclaim that], [pybelieve that], ...

1 Cf. Janssen (1983) for a clear exposition of this framework; less clear, more concise: Montague
(1974a).



1.2 Types

There is a rigid correspondence between syntactic categories and semantic types in PTQ.
ILe., if an expression, o, belongs to a certain category, C, then its IL-translation, o', is
invariably of the unique type assigned to C: TYPE(C). Put differently, the category-to-
type assignment in PTQ, TYPE, is a function. This function is defined as follows:
TYPE(S) =t, TYPE(E) = e, and TYPE(A/B) = TYPE(A//B) = ((s,TYPE(B)),TYPE(A)). For
our eight categories this amounts to:

(3) CATEGORY TYPE(CATEGORY)
S t
E €
CN ((s,e),t)
v ((s,€),1)
T ((s,((s,€)51))51)
Det ((s,((s,€),1),((s,((s,€),1)),1))
vV ((s,((s,((s,€),1)),1)),((s,€),1))
PV ((s,0),((s,€),1)

The above category-to-type assignment is of semantic importance, since it determines for
each expression what kind of object in the model is assigned to that expression as its
denotation: type t represents the set of truth values, e the set of entities, and s (which is
not really a basic type in IL) the set of possible worlds. A type (c,d) stands for the set of
functions from objects of type ¢ to objects of type d. Whenever b equals t, we can
identify such a function of type (c,b) = (c,t) with a set of objects of type c. And when the
type is of form (c,(d,t)), we can identify the objects in its denotation with sets of ordered
pairs <y,0>, where 7Y is an object of type ¢, and d is an object of type d; hence with binary
relations between objects of type a and objects of type b.

By stipulating that TYPE(S) equals t, we establish that the denotation of a sentence is a
truth value. If there were expressions of type E, their denotation would be an entity. The
denotation of common nouns and intransitive verb phrases is a set of individual concepts.
(An individual concept is a function from possible worlds to entities.) Just imagine: an
object of type ((s,e),t) is a function from objects of type (s.e) to objects of type t — a
function that can be identified with a set of objects of type (s,e), i.e., a set of functions
from possible worlds to entities, or a set of individual concepts. The denotation of a noun
phrase is a set of properties of individual concepts. (A property of objects of type c is an
object of type (s,(c,t)); a function from possible worlds to sets of objects of type c.) A
determiner denotes a binary relation between properties of individual concepts, a
transitive verb phrase denotes a binary relation between properties of properties of
individual concepts and individual concepts, and a propositional verb phrase denotes a



binary relation between propositions and individual concepts. (A proposition is a function
from possible worlds to truth values.)

The rigid correspondence between categories and types has some consequences.
Note, for instance, that a straightforward option for the denotation of a proper name like
John, namely the entity John (to be denoted by an individual constant j of type € in IL), is
excluded. For the category John belongs to (the category of noun phrases) is associated
with type ((s,((s,e),t)),t) by the TYPE function, and not with e. Therefore, we are obliged
to translate John into an expression of the former type. Montague chooses AP.VP(%}), an
expression referring to the set of properties of individual concepts such that its extension
contains the intension of the denotation of j as its element, and this solution turns out to
work. Montague’s solution is practically inevitable under the assumptions of the PTQ
framework. One could, e.g., think of a different category assignment to proper names (E
comes to mind), but this fails to do justice to the reality of syntax: proper names and
compound noun phrases like a woman have a very similar distribution; they can be
coordinated (John and a woman); etc. Such an assignment would, moreover, complicate
the grammar to a great extent: every rule which applies to both proper names and
compound noun phrases would have to be doubled.

1.3 Translation rules

The rules of the PTQ grammar consist of a syntactic and a semantic half. The syntactic
rules give a recursive definition of the set of expressions that constitute the fragment of
English. We shall ignore the details of syntactic analysis here.

The semantic translation rules determine (i) what is the interpretation (strictly
speaking: the IL-translation) of the lexical expressions; and (ii) what is the interpretation
of compound expressions, given the interpretations of the immediate constituent
expressions. Let us look at some examples.

1.3.1 Lexical expressions.

PTQ translates common nouns into non-logical constants of type ((s,e),t). The translation
of temperature, for instance, is TEMPERATURE. This IL expression denotes some set of
individual concepts. Translations like these appear to be adequate for common nouns like
temperature, percentage, etc. (cf. Janssen 1984 and Gamut 1982, section 7.4.1, for
arguments), but not for ‘normal’ common nouns like man, woman, unicorn which
denote sets of individuals. That is why Montague supplements his translations of these
common nouns as non-logical constants of type ((s,e),t) with a meaning postulate (MP 2
in PTQ). We opt here for a slightly different approach, and incorporate the meaning
postulates in the lexical translations (ignoring Montague’s *-notation):



4 [cnman] AX.[MAN(VX) A Ju(x="u)]
[cnwoman] AX.[WOMAN(VX) A Ju(x="u)]
[cnunicorn) AX.[UNICORN(VX) A Ju(x="u)]

[cntemperature) TEMPERATURE

In doing so, we account for the fact that these ‘normal’ common nouns denote sets of
constant individual concepts (that is, ‘in fact’ sets of individuals). The remaining lexical
expressions get the following translations:

(5) [rvwalk] AX.WALK(VX)
[rvrise] RISE
[rJohn] AP.VP(~j)
[tMary] AP.VP("m)
[Thei] AP.VP(x{)
[Detd] - APAQ.Ix[VP(x)AVQ(X)]
[Detevery] APAQ.VX[VP(x)—>VQ(x)]
[Detthe] APAQ.3x[Vy[VP(y)>x=y]AVQ(x)]
[Detone] APLQ.3xVY[[VP(y)AVQ(y)]¢>x=y]
[Tvseek] ATAx.SEEK(T)(VX)
[Tvfind] ATAX.VT(*Ay.FIND(Vy)(VX))
[pvclaim thar] ApAx.CLAIM(p)(VX)
[pvbelieve that] ApAx.BELIEVE(p)(Vx)

Montague’s meaning postulate 3 is hidden in the translation of walk. This intransitive
verb holds of the value of the individual concepts that constitute its denotation: the subject
position of verbs like these is extensional. The meaning postulate does not hold for rise;
and so this verb is simply translated as a non-logical constant of type ((s,e),t). In the
translations of seek, find, claim that and believe that we have incorporated the PTQ
meaning postulates 5 and 6, respectively, accounting for the extensionality of the subject
position of TVs and PVs. In the case of find the object position is extensional as well,
which explains why the translation of this verb also shows traces of Montague’s meaning
postulate 4.

1.3.2 Compound expressions

PTQ contains a number of rules for the translation of compound expressions that belong
to the categories mentioned in section 1.1 above. (Because we do not consider relative
clauses, the rule for the formation of compound CNs is omitted here. The CN rule of
quantification is absent for the same reason.) o' and ' denote the translations of o and
B, respectively.



(A) Rules of application

M ar+Prv—oIlsorPv] Translation: o'(*B")
M  ogv+ Br— v orv Brl Translation: o'(*p")
(@I) opet + BeN = [T Apet BeN] Translation: o'(*B'")
IV) oapy+ Bs— [vapv Bs] Translation: o'(*B")

(B)  Rules of conjunction and disjunction.

V) og+PBs—[sasandBs] Translation: [ o' A B']

(V) os+PBs— [sosorBs] Translation: [ o' v B' ]

(VII) oqv + Brv = [1v oqv and Brv] Translation: Ax.[ o'(x) A B'(X) ]

(VII) oy + Brv — [1v oy o7 Prv] Translation: Ax.[ &'(x) v B'(x) ]

(IX) or+Br—[rorandPr] Translation: AP.[ a'(P) A B'(P) ]
X) or+Br—o[rororPr] Translation: AP.[ o'(P) v B'(P) ]
(C)  Rules of quantification (for ne {0,1,2,...}).

(XI),n or+Bs = Bs* Translation: o'(*Axy.p")

(XII),n or + Brv = Brv™ Translation: Ay.o'(*"Axpn.[B'(¥)])

In the rule schemes (XI),n and (XII),n, Bs* and BIV* stand for Bs and Prv, respectively,
with (i) if oty is a syntactic variable, all occurrences of ke, replaced by oT; and (ii) if oy is
not a syntactic variable, the first occurrence of hep replaced by o, and the remaining
occurrences of he, replaced by anaphoric pronouns of appropriate case and gender.

1.3.3 Scope ambiguities

The rules (XI),n and (XII),n are used to represent quantifier scope and de dicto/de re
ambiguities. E.g., in constructing the sentence Every man finds a woman we can only
apply the rules of application (I), (II) and (III), which yields the wide scope-every
translation (6). But we can also construct Every man finds himg first, which translates as
(7), and then apply (XI),8 (an instantiation of the rule scheme (XII),n) to a woman and
Every man finds hims. In this way we get the wide scope-a translation (8).

6) Yu[MAN(u)—3v[WOMAN(V) A FIND(V)(u)]]
@ Axg. Vu[MAN(u)—FIND(Vxg)(u)]
8 Iv[WOMAN(V) A Vu[MAN(u)—FIND(V)(u)]]

Similarly, sentence (9) is assigned three readings by the above semantics.
(9)  [sMaryr [1v walksty and [1v seekstv [T everype unicornen It liv Is

The de dicto reading (10) can be built up without rules of quantification. Apart from
conjunction rule (VII), only rules of applications are used in its construction.



(10) WALK(m) A SEEK(*AQ.VV[UNICORN(V) = VQ(~v)])(m)

Within the PTQ framework, sentence (9) is assigned two more translations, viz., (11)
and (12), in which the quantified noun phrase every unicorn is read de re. In order to get
these translations, we have to make use of the rule schemes of quantification (XII),n and
(XD),n, respectively.

(11) WALK(m) A VV[UNICORN(V)—SEEK(*AP.VP(v))(m)]
(12) Vv[UNICORN(V)—[WALK(m) A SEEK(*"AP.VP(v))(m)]]

Both translations require that we first build up the verb phrase seek him;, with some
syntactic variable occupying the position of the quantified direct object.

To get (11), we first apply (XII),i, quantifying every unicorn into the verb phrase
seek him;, with the result seek every unicorn. Then (VII) is used to form walk and seek
every unicorn, which is finally combined with Mary.

To get (12), we first conjoin seek him; with walk; then we use (I), which gets us the
sentence Mary walks and seeks him;; and finally we apply (XI),i, quantifying-in every
unicorn into this sentence.

Note, however, that whereas (11) is okay, (12) is an incorrect translation of sentence
(9), witness the equivalence of the following formulas:

(13) VV[UNICORN(V)—[WALK(m) A SEEK(*AP.VP(v))(m)]] <
VV[[UNICORN(V)—WALK(m)] A [UNICORN(V)—SEEK(*"AP.VP(v))(m)]] &
Vv[UNICORN(V)—>WALK(m)] A VV[UNICORN(V)—SEEK(“AP.VP(v))(m)] <
[3VUNICORN(V)—>WALK(m)] A VV[UNICORN(V)—SEEK(*"AP.VP(v))(m)]

(12) apparently means: Mary walks if there are unicorns, and for every unicorn it holds
that Mary seeks it. A truth in every possible world without unicorns, whether or not
Mary walks. This is wrong: sentence (9) does not express that Mary’s walking is
dependent on the existence of unicorns.

An analogous problem arises with (14).2 This sentence is assigned two readings. The
correct reading (15) is obtained without rules of quantification. But using (XI),n, we
arrive at the obvious non-reading (16).

(14)  John runs and no unicorn walks

(15) RUN(j) A —3V[UNICORN(V)A WALK(V)]

(16) ©° —3Iv[UNICORN(V) A RUN(j) A WALK(V)] &
—RUN(j) vV =3V[UNICORN(V) A WALK(V)]

2 Paul Dekker (p.c.).



In the sequel we shall see that the flexible Montague grammar defined in section 3 assigns
only the correct readings in these cases.

2. ARGUMENTS FOR FLEXIBILITY

We saw in section 1.1 above that, due to the rigid category-to-type assignment in PTQ, a
proper name like John is not translated as a non-logical constant of type e, but as a
complex IL-expression of type ((s,((s,€),t)),t): AP.VP(%)). This, in its turn, has further
consequences: an extensional transitive verb like find, for example, is translated as
ATAX.VT(~Ay.FIND(Vy)(Vx)), of type TYPE(TV) = ((s,((s,((s,€),1)),1)),((s,€),t)), and not
as AyAx.FIND(Vy)(vx)) of type ((s,e),((s,€),t)), which would be the most direct way to
obtain the translation FIND(m)(j) for Jokn finds Mary under the assumptions that (i)
proper names have denotations of type e, and that (ii) the rules of application (I) and (II)
translate as o'(*pB'). The rigid category-to-type assignment entails a considerable
distortion of the semantics, a distortion which, for that matter, has not yet reached its full
extent with PTQ, as Bach (1980) argues. For instance, there are verbs whose subject
position is intensional, cf. (17) and (18).

(17) A man is missing
(18) A unicorn seems to be approaching

In BE-MISSING(*"AQ.3v[MAN(V)AVQ(V)]), the non-referential reading of sentence (17),
the translation of the intransitive verb phrase, BE-MISSING, is not of TYPE(IV) = ((s,e),t),
but of type ((s,TYPE(NP)),t) = ((s,((s,((s,e),t)),1)),t). Mutatis mutandis, the same holds
for (18). The existence of intransitive verb phrases like be missing entails within the PTQ
framework a raising of the type assignment (plus a change in the definition) of a number
of categories: for all intransitive verbs (hence also for extensional ones like walk)
TYPE(IV) should be changed into ((s,((s,((s,€),t)),t)),t); without exception, all transitive
verbs must be assigned a new TYPE(TV): ((s,((s,((s,e),t)),t)),((s,((s,((s,€),1)),1)),1))
(while no transitive verb with this amount of intensionality is known, cf. Partee and
Rooth: ‘there are [apparently] no basic lexical verbs that are intensional with respect to
both subject and object’ (1983, p. 379)); and the new TYPE(PV) for all PVs becomes
((5,1),((s,((s,((s,€),1)),1)),1)). The resulting category-to-type assignment is the one found
in Montague’s ‘Universal grammar’ (= UG, Montague (1974a)), plus individual
concepts.

In itself, such a complication is not a disaster, provided that it serves the empirical
adequacy of the theory. But there are reasons to assume that Montague’s strategy of
‘generalizing to the worst case’ — uniformly assign al/l members of a certain syntactic
category the ‘highest’ type that is needed for some expression in that category — is not the
one to be pursued. This has been claimed by Van Benthem (1986), Groenendijk and



Stokhof (1984, 1987), Keenan and Faltz (1985), Partee (1986), and Partee and Rooth
(1983), among others. The point is best illustrated with a sentence like (19).

(19) John seeks a fish or a bike
(20)  SEEK(*"AP.[IV[FISH(V)AVP(*V)] v IV[BIKE(V)AVP(*V)11)(j)
(21)  3v[FISH(V)ASEEK(*"AP.VP(~v))(j)] Vv 3V[BIKE(V)ASEEK(*"AP.VP("v))(j)]

This sentence has a de dicto and a de re reading to start with. The de dicto reading, (20),
can be accounted for in PTQ by applying rule (X) to a fish and a bike: a fish or a bike,
with the reduced translation (22):

(22)  AP.[3V[FISH(V)AVP(~V)] v 3V[BIKE(V)AVP("v)]]

If we subsequently combine (22) with the translations of seek (rule (II)) and John (rule
(D), the result reduces to (20). (21) is also among the possibilities of PTQ. For this
reading we first build up seek him; (with rule (II)). Rule (I) combines this intransitive
verb phrase with the term John. The resulting ‘sentence’ is John seeks him;. With rule
(XI),i we then quantify the disjunctive noun phrase a fish or a bike into John seeks him;:

(23)  AP.[3V[FISH(V)AVP(AV)] v IV[BIKE(V)AVP(AV)]](*"Ax{.SEEK(*AP.VP(x1))(j))

(23) & (21). But (20) and (21) do not exhaust the possibilities of (19). As Partee and
Rooth show, there is yet a third reading of the sentence: the so-called de dicto wide
scope-or reading, which is suggested by the continuation ‘... but I don’t know which’,
and which can be formulated in IL as:

(24)  SEEK(*"AP.Av[FISH(V)AVP("V)])(j) vV SEEK(*AP.3v[BIKE(V)AVP(*v)])(j)

PTQ does not account for (24). Partee and Rooth indicate how this reading could be
constructed (we sligthly adapt their types): suppose that every expression Yy with
translation Y' of type c¢ also has a translation of type ((s,((s,c),b)),b):
AQ(s,((s,¢),b))-VQ(*Y), then [with b = ((s,e),t))] a fish and a bike have translations of

type ((s,((s,((s,((s,€),1),1)),((s,€),D))),((s,€),1)):

(25)  AQ(s,((s.((s.((s.€) D)) (s )N ((s,e)0)- Y QAP IV[FISH(V)AVP(2V)]) and
AQ((s,((5.((s.((5,€): D)) () ON(s.),0)- Y QAP IV [BIKE(V)AVP(rV)]);

and suppose, moreover, that the combination of these expressions into a fish or a bike
follows the general syntactic/semantic scheme of generalized disjunction3, then a fish or a
bike is assigned translation (26) of type ((s,((s,((s,((s,€),t)),1)),((s,€),1))),((s,€),t)).

3 Defined in Gazdar (1980), Keenan and Faltz (1985), Partee and Rooth (1983); cf. below, section
3.2.1.2.
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(26) AQAy.[VQ(AAP.IV[FISH(V)AVP(*V)])(y) V YVQ(AP.IV[BIKE(V)AVP("V)])(¥)]

The application of (26) to "ATAx.SEEK(T)(Vx) reduces to (27). And the application of
AP.VP(4)) to the intension of (27) yields (24).

(27)  Ay.[SEEK(*"AP.3V[FISH(V)AVP(*V)])(Vy) Vv SEEK(*AP.3V[BIKE(V)AVP(*v)])(Vy)]

In consideration of such examples, Partee and Rooth conclude that we should give up
Montague’s strategy — uniformly assign all members of a certain syntactic category the
‘highest’ type that is needed for some expression in that category. Apparently, there is
not always a ‘highest’ type available, or a worst case to generalize to: in the case of the de
dicto wide scope-or reading of (19) for example, we need to have the type
((s,((s,((s,((5,€),1)),1)),((s,€),1)))),((s,€),t)) for noun phrases; and for the de dicto wide
scope-or readings of the sentences in (28) that express an uncertainty of the speaker (cf.
the continuation ... but I don’t know exactly what she claims’)4, we need to assign ever
higher types to the quantified noun phrase a fisk or a bike.

(28) Wanda claims that John seeks a fish or a bike
Wanda claims that Jim knows that John seeks a fish or a bike
Wanda claims that Jules knows that Jim knows that John seeks a fish or a bike
Wanda claims that Jim knows that Jules knows that Jim knows that John seeks a
fish or a bike
Wanda claims that Jules knows that Jim knows that Jules knows that Jim knows
that John seeks a fish or a bike

Partee and Rooth propose a ‘reverse’ strategy instead: abandon the uniform and rigid
category-to-type assignment; give every expression in the lexicon a basic translation of
the minimal type available for that expression (extensional transitive verbs like find and
intensional ones like seek thus get different minimal types; the lexical type of the term
John is ‘lower’ than the lexical type of a woman); and derive the translations of higher
types from the lexical translation by general rules. (A different argumentation for this
‘reverse’ strategy is given by Groenendijk and Stokhof (1984, 1987). They show that
certain intuitive entailment relations exist in lower types, but are absent from the level of
the ‘highest type’, which is also needed.) This ‘reverse’ strategy opens up interesting
perspectives: cf. sentence (29) with its two readings (30) and (31).

(29)  John caught and ate a fish
(30) 3Iv[FISH(V) A CATCH(V)(j)] A IV[FISH(V) A EAT(V)(j)]
(31) 3AV[FISH(V) A CATCH(V)(j) A EAT(V)(§)]

4 Ie., the readings in which a disjunction of claims is ascribed to Wanda.
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When PTQ is enriched with a rule of generalized conjunction for transitive verbs,

(32) arv+PBrv— [rvoarvand Brv] AyAx.[o' () )AB'(y)(x)],

we can reach reading (30) by using this rule to make caught and ate, and combining this
further, via rule (II) and (I), with a fish and John, respectively. Reading (31) comes
about by quantifying the noun phrase a fish into the sentence John caught and ate him;,
using rule (XI),i.

However, suppose that the transitive verbs catch and eat have lexical translations

(33) AyAx.CATCH(Vy)(Vx) and AyAx.EAT(Vy)(Vx),

of the minimal type ((s,e),((s,e),t)); and that the translations of the higher type
((s,((s,((s,€),1)),1)),((s,€),t)) which PTQ assigns to these expressions,

(34) ATAx.VT(*Ay.CATCH(Vy)(Vx)) and ATAXx.VT(*Ay.EAT(Vy)(VX)),

are derivable from the lexical translations. In that case we can generate both readings
without using rules of quantification or syntactic variables. (30) is the result of conjoining
the derived translations in (34), (and applying the conjunction to direct object and
subject):

(35) ATAX.[VT(*Ay.CATCH(Vy)(VX) A VT'(*Ay.EAT(Vy)(VX)]
And (31) is reached by conjoining the basic translations in (33):
(36) AyAx.[CATCH(Vy)(Vx) A EAT(Vy)(Vx)],

followed by an application of the same rule that also derives (34) from (33), with the
following result (which is then applied to direct object and subject):

(37) ATAX.VT(*Ay.[CATCH(Vy)(VX) A EAT(VY)(Vx)]),

This suggests that we can put the ‘reverse’ strategy to use in an account of scope
ambiguities without syntactic variables or rules of quantification.

Rules of quantification are syntactic rules which have a primarily semantic
motivation. They also serve a more syntactic function (the representation of anaphoric
pronouns), but the main reason for their introduction is semantic: the representation of
quantifier scope ambiguities. From a syntactic point of view this can be seen as an
exceptional interference in syntax by the semantic principle of compositionalityS. Another

5 Rules of quantification are the only rules in PTQ that disturb the ‘intuitive’ syntactic constituent
structure.
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reason for seeking alternatives is the fact that the syntactic operation of these rules (‘if o
is a syntactic variable, replace all occurrences of ke, by o; and if ot is not a syntactic
variable, replace the first occurrence of ke, by o, and the remaining occurrences of hej,
by anaphoric pronouns of appropriate case and gender’) is somewhat strange, to put it
mildly. In most theories of syntax (including the ones which are attractive from the point
of view of compositional semantics, like GPSGS or flexible categorial grammar’), such
syntactic operations are simply not allowed. But also for those who do not feel bound to
restrictions on possible syntactic operations, there are reasons to look for alternatives: we
saw that they provide a sentence like (9) with reading (12), and Janssen (1983) amply
dicusses the unwanted consequences of using syntactic variables and rules of
quantification (the production of ‘sentences’ like hes; walks is one of the more innocent
among them), and introduces a metagrammatical ‘variable principle’ in order to control
things.

Therefore, in the more or less recent past various attempts have been made to avoid
these syntactic devices, while preserving the results of PTQ as regards the representation
of quantifier scope ambiguities. However, the main alternative of ‘Cooper storage’ (see
Cooper (1983)) met with objections from a semantic viewpoint (Landman and Moerdijk
(1983), Janssen (1983)). The present paper can be considered the umpteenth attempt. It
must be kept in mind that we shall not deal with the second function of rules of
quantification, the representation of anaphoric pronouns. The theory of pronouns in PTQ
is syntactically hardly explicit (for instance, it does not distinguish between reflexive and
personal pronouns). A successful attempt to make it less implicit has been made by
Landman and Moerdijk (1983). But this theory treats anaphoric pronouns without
expection as bound variables in the semantics, just as PTQ does. Reinhart (1983), Kamp
(1981), and many others since, have shown that not every occurrence of an anaphoric
pronoun can be considered as such: the true theory of anaphoric pronouns will at least
have to include a ‘discourse representation theory’. Nonetheless, part of the
intrasentential behaviour of terms (including all occurrences of reflexive pronouns) does
have to be analyzed in terms of bound variables. Here, for instance, Pollard and Sag’s
(1983) theory of reflexives and reciprocals constitutes an alternative which is consistent
with the proposals made in the present paper.

3. FLEXIBILITY IN SYNTAX AND SEMANTICS

In this section we shall present a formal elaboration of the ‘reverse’ strategy sketched
above. The traditional correspondence between categories and types (which uniformly
assigns every expression in a certain category a translation of the ‘highest’ type that is
needed for some expression in that category) is given up. Instead, we give every

6  See Gazdar, Klein, Pullum and Sag (1985); Klein and Sag (1985).
7 See Lambek (1958); Van Benthem (1986, chapter 7); Moortgat (1988).
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expression a translation of its minimal type, and derive the translations of higher (rather:
other) types from this lexical translation by general rules, thus obtaining the flexible
Montague grammar of section 3.2. But before we have reached that point, we shall, in
section 3.1, first explore the Lambek calculus, a flexible theory of syntax which has been
provided with a semantics by Van Benthem (1986, chapter 7). It will turn out that this
theory is either too weak (in its directional version) or too strong (in its non-directional
version) for our purposes. The flexible Montague grammar of section 3.2 is essentially
an intensional version of a subsystem of the non-directional Lambek calculus, together
with a semantics along the lines of Van Benthem.

3.1 Lambek calculus

In its original (directional) version (Lambek (1958)), the Lambek calculus L is a theory of
syntactic categories. In keeping with the lexicalist tradition of categorial grammar, the
combinatorial properties of expressions are determined by the categories they belong to.
Restricting ourselves to the product-free part of L, we distinguish atomic categories and
two kinds of compound categories: left- (y\x) and right-searching (x/y) functors:

(38) Let ATOM be a finite set of atomic categories. Then CAT, the set of categories, is
the smallest set such that (i) ATOM < CAT, and (ii) if xe CAT and ye CAT, then
x/ye CAT and y\xe CAT.

L consists of a set of axioms and five inference rules. It characterizes the derivability of
so-called sequents of categories, cf. (39). In (40) and (41), x,y,z denote categories and
T,U,V finite sequences of categories (T non-empty).

(39) A sequent is a pair <T,x>, where T is a finite non-empty sequence of categories
(T = <x1,...,Xp>, with n21) and x is a category.
T is called the left-hand side, and x the right-hand side of <T,x>.
For the sequent <<xjy,...,Xp>,X> We Write Xi,...,Xp = X.

(40) The axioms of L are all the sequents of the form x = x.

(41) The inference rules of L are /L, \L, /R, \R and Cut:

/L T=y Ux,V=>1z
Ux/y,T,V =z
\L T=y Ux,V=1z
U,T,y\x,V = z
R T,y =x R y,T = x
T = x/y T = yx
Cut T=x Ux,V=y

UTYV >y
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Lambek proved that Cut is a derived inference rule — the set of theorems is not increased
by adding it to the other four inference rules. Note that this entails the decidability of L:
for arbitrary sequents T => x, the proof procedure is guaranteed to terminate after finitely
many steps with an answer to the question whether the sequent is derivable. For in each
of the inference rules /L, \L, /R and \R, the number of occurrences of / and \ in the
premises is strictly smaller than that in the conclusion (the conclusion contains a / or \ that
is absent from the premises). Thus, establishing the derivability of the premise sequents
is a more simple goal than establishing the derivability of the conclusion, and it follows
that every sequent has only finitely many Cut-free derivations. One of the most important
features of L as a syntactic theory is that it defines a flexible notion of constituent
structure which can account for the grammaticality of sentences containing so-called non-
constituent coordination:

(42) John loves and Bill hates Mary

We shall not dwell on this topic (cf., a.0., Moortgat (1988)), but focus on the semantic
interpretation of L instead. That there is a strong link between syntax and semantics in L
has repeatedly been stressed by Van Benthem (e.g., (1986)), who showed that the
semantic interpretation of an L-derivable sequent is directly determined by the proof of its
validity in the syntactic calculus: the rules /L and \L correspond to functional application,
/R and \R to lambda abstraction, and Cut to substitution. The best-known explicit
elaboration of Van Benthem’s ideas can be found in Moortgat (1988). Within this
semantics, every category x is associated with a type: TYPE(x). For atomic categories,
this type is stipulated, and TYPE(x/y) = TYPE(Y\x) = (TYPE(y),TYPE(x)). Moreover, all
categories in the left- and right-hand side of a derivable sequent xj,...,x, = x are
assigned a semantic value, consisting of a lambda term of type TYPE(x;) in a type-
theoretic language: X3 : 01, ... , Xp: Oy => X : O

In (43), w represents a variable of type TYPE(y); o, B and & are arbitrary lambda
terms of type TYPE(y), (TYPE(y),TYPE(x)) and TYPE(X), respectively. Only the terms of
the ‘active’ categories are indicated. The (invisible) terms of other categories are assumed
to be identical in premise and conclusion.?

(43) AX x:0=>x:0
/L T=y:a Ux: B(a),V=1z

Ux/y : B,T,V= z

8  The semantics is kept extensional for expository purposes. But it can be intensionalized easily.
Define TYPE(x/y) = TYPE(y\x) = ((s,(TYPE(y)),TYPE(X)) instead of (TYPE(y),TYPE(x)); the terms assigned
to the axioms and the Cut rule remain the same; and the semantic interpretations of /L and /R are changed
in the following way (\L and \R are completely analogous):

/L:if T= y:oand Ux: B(*a),V=2z:7v,then Uxfy: B,T,.V=z

R:ifTy:Vw= x:qa, then T= x/y : Aw.a
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\L T=y:a Ux: B(a),V=z
UTyx:BV=z
/R Ty:w=x:08 R y:wIT=x:0
T = x/y : Aw.0 T= y\x : Aw.d
Cut T=x:90 Ux:8,V=oy
UTV >y

It can be shown that if the sequent X : Ql,...,Xp : Oy = X : & is derivable in L, then there
is a Cut-free L-derivation of this sequent x1:01,...,Xp:0p = x:B with o & B (cf.
Hendriks (1989)). Hence we only have to consider the (finitely many) Cut-free
derivations to get all semantic interpretations assigned to a sequent.

This immediately entails that under the usual analysis, in which verbs take noun
phrases (being of the atomic category np) as arguments, a sentence like (44) is
unambiguous within L.

(44) Every man finds a woman

For if every man and a woman belong to the (atomic) category np, and finds is of
category (np\s)/np, then there is only one Cut-free derivation of the sequent np,
(np\s)/np, np = s,

45) np = np s=s
np = np np, np\s = s
np, (np\s)/np, np = s

and (hence) only one interpretation for it.
However, in some cases scope ambiguities can be accounted for in L: when the
following (extensional) assignment of categories, types and translations is assumed,

(46) EXPRESSION CATEGORY TYPE  TRANSLATION

every man s/(n\s) ((e,H),t) AP.VX[MAN(®x) — P(x)] =«
finds (n\s)/n (e,(e,t)) AxAy.FIND(x)(y) =P
a woman (s/m)\s ((e,t),t) AP.Jy[WOMAN(y) A P(y)] =

then sentence (44) is assigned two readings:

(47) Every man finds a woman
@  Vx[MAN(x) — Jy[WOMAN(y) A FIND(y)(x)]]
(i)  Jy[WOMAN(y)AVX[MAN(x) — FIND(y)(x)]]

There are six Cut-free derivations of the sequent s/(n\s), (n\s)/n, (s/n)\s = s. The first
one is assigned interpretation (i); the interpretation of all other derivations is equivalent to
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(@i1). (It is obvious that the set of Cut-free derivations still embodies a great deal of
‘spurious ambiguity’.)

(48) n=n s=s
n=n n,n\s = s
n, (n\s)/n,n = s
n, (N\s)/n = s/n_ $S=s
n, (n\s)/n, (s/n)\s = s
(n\s)/n, (s/n)\s = n\s S=S
s/(n\s), (n\s)/n, (s/m)\s = s
(49) n=n n\s = n\s
(n\s)/n, n = .n\s S=sS
s/(n\s), (n\s)/n, n = s
s/(n\s), (n\s)/n = s/n S=Ss
s/(n\s), (n\s)/n, (s/m)\s = s
(50) n=n S=s
n,n\s = s
n=n s = n\s
(n\s)/n, n = n\s X
s/(n\s), (N\s)/n, n = §
s/(n\s), (n\s)/n = s/n S=Ss
s/(n\s), (n\s)/n, (s/n)\s = s
(28 n=n S=S§
n=n n,n\s = s
n, (Ms)/n,n=s
(n\s)/n, n = n\s A
s/(n\s), (n\s)/n, n = s
s/(n\s), (n\s)/n = s/n S=Ss
s/(n\s), (n\s)/n, (s/m\s = s
(52) n\s = n\s s=s
n=n s/(n\s), N\s = s
s/(n\s), (n\s)/n, n = s
s/(n\s), (n\s)/n = s/n N
s/(n\s), (n\s)/n, (s/m)\s = s
(53) n=n s= s
n,ns = s
ns=>nms
ns=>ns S=S
n=n s/(n\s), n\s = s
s/(n\s), (n\s)/n, n = s
s/(n\s), (n\s)/n = s/n =]

s/(n\s), (n\s)/n, (s/m)\s = s

By way of illustration, we show the interpretation of derivations (48) and (49).
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(54) n—-n S=S
VDV B(w)(v) = Bw)V)
n=n n\s
W= W (W) = ﬁ(W)(V)
n\s)/n,
AR ﬁ(w)(v)
én\s)/n ='s/n S=>S
= Aw.B(W)(v) YAW.B(W)(v)) = WAw.B(W)(V))

By Sy )

B S B %:as(?w.v(xw.ﬁ(wxv»):s
\S 1\S)
SRy S S S Bt
(85) n=>n n\s = n\s
= B = BW)
gl\s)/n, = n\s S8
) S(BW) = aB)

s/( k) (n\s) n n : S

S/(‘fi“) 5\“)[%:’ o 0w 0(BV) = YOW.0BW))
SOy SN S S

Note that c(Av.YAw.B(W)(V))) < (i), and that Y(Av.o(B(V))) & (ii).

However, the analysis given in (46) is a bit tricky. It is crucial that the two noun
phrases belong to two different categories, s/(n\s) and (s/n)\s, and that these categories
appear on the left- and the right-handside of the transitive verb, respectively. For none of
the following sequents is L-derivable:®

(56) (s/n)\s, (n\s)/n, s/(n\s) = s
(s/n)\s, (n\s)/n, (s/n)\s = s
s/(n\s), (n\s)/n, s/(n\s) = s

An alternative account of the scope ambiguity of (44) within L assumes that verbs take
noun phrases as arguments, and, moreover, that noun phrases are assigned the complex
categories (s/n)\s and s/(n\s). The number of interpretations now depends on which of
s/(n\s) or (s/n)\s is chosen as the category for the subject noun phrase (np;) and the object
noun phrase (np3). If np; = (s/n)\s and np; = s/(n\s), only one interpretation is predicted.
There are two interpretations when np; = np; (it does not matter whether we take s/(n\s)
or (s/n)\s)). The maximum is reached with np; and np, set equal to s/(n\s) and (s/n)\s,
respectively, since the sequent

(7)  s/(n\s), ((s/(M\s)\s)/((s/n)\s), (s/m)\s = s

9 Precisely this prompted Lambek (1958, § 6) to propose the category s/(n\s) for subject pronouns and
(s/n)\s for direct object pronouns, in view of *him likes he.
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has twenty five (!) Cut-free derivations, and five potentially different interpretations (we
list only the reduced terms assigned to their conclusions):

(58)  a@Av.BYAwW.w(V)))

59) oAv.YAX.BAyY.y(x)(Aw.w(V)))
(60)  (BmM(e)

(61)  YAx.aAV.BAY.y(X))Aw.W(V)))
(62) Y(Ax.BAy.y(x)) (o))

When (58) through (62) are applied to the lexical translations in (63),

(63) EXPRESSION CATEGORY TYPE TRANSLATION
every man np; ((e,0),t) AP.Vx[MAN(x)—=P®x)] = o
finds (mp1\s)/npy  (T(T,H)) B
a woman nps ((e,t),t)  AP.Jy[WOMAN(Y)AP(Y)] =7,

where T = ((e,t),t) and B = ATAU.U(Ay.T(AXx.FIND(x)(y))), interpretation (58), (59) and
(60) collapse into reading (47)(i) (subject wide scope), and the remaining (61) and (62)
represent object wide scope ((47)(ii)). (B, the lexical translation of finds in (63) encodes
wide scope for the subject noun phrase, but this is not essential. With lexical wide scope
for the direct object noun phrase, (47)(i) would have been expressed by (58) and (59),
and (47)(ii) by (60), (61) and (62).) Interestingly, this analysis predicts three readings for
every man seeks a woman, provided that the ‘intensional’ verb seek is assigned the UG-
like lexical translation B = ATAU.U(Ay.SEEK(T)(y))):10

64) @) VX[MAN(x)—3y[WOMAN(y)ASEEK(AP.P(y))(x)]]
(i) Jy[WOMAN(Y)AVX[MAN(x)—SEEK(AP.P(y))(x)]]
(i) VxX[MAN(X)—SEEK(AP.3y[WOMAN(Y)AP(¥Y)])(x)]

(58) and (60) lead to (iii), (59) results in (i), and (61) and (62) arrive at (ii).11

It seems, then, that an adequate treatment of quantifier scope in the Lambek calculus
is within reach. Still, a curious feature of our account is that the ‘internal directionality’ of
noun phrases (s/(n\s) versus (s/n)\s) seems to be a non-negligible factor. Word order has
an essential influence on the semantic possibilities of the calculus. When we have SVO
(or OVS) order, as in (44), things turn out right. But in SOV cases like the embedded

10 Since our semantics is extensional, this is not really an intensional translation. But cf. footnote 8.

11 Note that the difference between (58) and (60) (or (61) and (62)) has no effect, because seek is only
intensional in object position. In the case of doubly intensional transitive verbs the difference would
matter — but in section 2 above we saw that such transitive verbs do not appear to exist. Something like
seem-to-seek would be an example. For these hypothetical verbs, all five theoretical scope possibilities
would be realized.
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clause in the Dutch sentence (65) (assuming that iedere man = np,, een vrouw = np,, and
zoekt = np;\(npy\s), with respective translations o, v, and B),

(65) Hetis waar dat iedere man een vrouw zoekt
It is true that every man a woman seeks
‘It is true that every man seeks a woman’

we get maximally four derivations and two interpretations, (58) and (60). (That is, under
optimal conditions: when iedere man (np;) and een vrouw (np;) have categories s/(n\s)
and (s/n)s!2, respectively.) (59), (61) and (62) are missing.

(66)  oAv.(B(M)Aw.w(V))) =(58) [(68), (69) and (70)], and
67 B = (60) [(7TD].
(68) n=n S=S
nn\s=s
n=s(ns) s=s
n, (s/(n\s))\s = s
(s/m)s = (s/n)\s) G/ms)s =S
(s/n)\s, ((s/n)\s)\((s/(n\s))\s) = n\s S=sS
“s/(n\s), (s/n)\s, ((s/n)S)N(s/(n\s))\s) = s
(69) n=n S=s
n,n\s = s
n=s/ns) sS=s
(s/m)\s = (s/n)\s n, (s/(n\s))\s = s
n, (s/n)\s, ((s/n)\s)\(s/(n\s))\s) = s
(s/m)\s, ((s/m)\s)\((s/(n\s))\s) = n\s s=s
s/(n\s), (s/)\s, ((s/MPs)\((s/(n\s))s) = s
(70) s/(n\s) = s/(n\s) S=s
(s/m)\s = (s/n)\s s/(n\s), (s/(n\s))\s = s
s/(n\s), (/M) ((s/nPS)\(s/(n\s))\s) = s
(71) n=n s=s
n,ns=s
n= s/ns) S=s
n, (s/(n\s))s = s
(s/(n\s))\s = n\s s=>Ss
(s/m)\s = (s/n)\s s/(n\s), (s/(Ms)\s = s

s/(s), (s/m)\s, ((s/n)\s)\(s/(m\s))\s) = s

This entails that with f = ATAU.U(Ay.SEEK(T)(y))) as lexical translation of zoekt, only
(i) and (iii) are represented. Alternatively, we could also assume the lexical (wide scope
object) translation ATAU.T(Ax.U(Ly.SEEK(AP.P(x))(y))), but that would leave (iii)

12 The same holds when both subject and object = s/(n\s). Both possibilities with subject = (s/n)\s give
rise to just one derivation (and reading).
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unaccounted for. The third possibility, to assume the lexical translation B =
ATAU.U(Ay. T(Ax.SEEK(T)(y))), would only give (i). We are hence forced to adopt two
lexical translations and to conclude that ‘it seems then, that the Lambek calculus will only
be able to predict quantifier scope ambiguities in a restricted number of cases’ (Bouma
(1986), p. 9).

Since it is the directionality of L which thwarts us, it is an obvious strategy to take a
closer look at LP (for: Lambek calculus with Permutation, also known as Lambek-Van
Benthem calculus), the non-directional version of the calculus which has been studied by
Van Benthem (cf., e.g., his (1988)). (72) shows a possible formalization of LP (plus
semantics). The two kinds of compound categories in L, the left- and right-searching
functors x/y and y\x, are collapsed into one category (y,x), a non-directional functor from
argument categories y to value categories x. (Note the direct correspondence between
syntactic categories and semantic types here.) In (72), T,U, and V are finite sequences of
categories, where T = T1,T2 is non-empty. LP preserves the axioms and the Cut rule of
L; it contains rules (L and R) for the introduction of the connective (,) in the left- and the
right-hand side of sequents; moreover, a permutation rule, P, is added, which allows one
to interchange adjacent categories (every permutation is a composition of interchanges
between neighbours).

(72) AX X:0=>x:0

L T=y:a Ux: B(a),V =z
U,(y,x) : B,T,V= z
R Ty :w,To=>x:9 P U,y,x,V = z
T = (y,x) : Aw.0 U,x,y,V = z
Cit T=x:v Ux:v,W=y
UTV =y

Conceived of as a syntactic theory, LP is not really interesting, because it has the
following property: whenever a sequent T = x is LP-derivable, then for all permutations
7(T) of T, also (T) = x is LP-derivable. Nevertheless, it might be useful as a theory of
semantic type change. We might, for example, restrict ourselves to sequents of categories
that are derivable in our favourite syntactic theory (L, say), and let LP take care of their
semantic interpretation. More formally:

(73) The compound expression €1,...,eq is of category x and has a translation o of
type tiff (i) for all i, 1 <i <n, e is assigned category x; and translation ¢; of type
tj in the lexicon; (ii) x1,...,Xp =L X; and (iii) t;:01,...,tn:0n =Lp t:0L

But now the permuting effects of LP will turn up in the semantics. Cf. (74) and (75). The
sequent np,(np\s)/np,np = s is L-derivable. In LP there are two non-equivalent
derivations of e,(e,(e,t)),e = t: (76) and (77)— one too many.
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(74)  John loves Paris
(75) EXPRESSION CATEGORY TYPE TRANSLATION
John np € j
loves (np\s)/np (e,(e,t)) LOVE
Paris np e P
(76) exp=>ep t:LOVE()(p) = LLOVE()(p)
ej=ej (e,t):LOVE()), e:p = t:LOVE()(p)
(e,(e.)):LOVE, ¢:j, e:p = t:LOVE()(p)
e:], (e,(e,t)):LOVE, e:p = t:LOVE()(p)
amn ej=ej t:LOVE(p)(j) = tLOVE()(j)
ep=ep (e,t):LOVE(p), e:) = t:LOVE(p)(j))

(e,(e,1)):LOVE, e:p, e:] = tLOVE(D)())

(e.(e,1)):LOVE, e}, e:p = tLOVE(p)(j)

e:J, (e,(e.t)):LOVE, e:p = t:LOVE(p)(j)

Moreover, given the assignments in (79) (o = AQAP.Vx[Q(x)—P(x)]), sentence (78)

gets two readings of type t, cf. (80) and (81).

(78) Every man walks

(79) EXPRESSION CATEGORY TYPE TRANSLATION
every np/cn ((e,1),((e,1),1)) o
man cn (e,b) MAN = 3
walks np\s (e,t) WALK =y

(80) e:y= ey ta(B)(y) = taB)(y)

(e,):p= (e.0):B ((e,0).0):a(B), (e.0):y = t:oUB)(Y)
((e,t),((e,t),t)):a, (C,t):B, (e,t)i’Y = t.a(B)('Y) =0
(81) Een:B=(n:p to(Y)(B) = tay)(P)

(e,):y= (e)y

((e,),0):0(y), (e,£):p = ta(y)(p)

((e..((e.0.0):0, (e,0):7, (e,):p = t:oly)

(e, ((e.0).0):a, (e.L):p, (e,0):y = tio(y)(

)=¢€

d is equivalent to VX[MAN(x)— WALK(X)], but € yields VX[WALK(x)—>MAN(x)].
Similarly, eight readings are predicted for the sentence Every man finds a woman. They
differ as regards the scope of the quantifiers (3V versus V3), but also with respect to the
‘0-roles’ of the verb and the order of the argument places of the determiner every. (In this
particular case the symmetry of the determiner a avoids another multiplication of the

number of readings by two.)
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In the sequel we shall develop a calculus that is not thwarted by directionality (since it is a
theory of semantic — i.e., non-directional — types), but at the same time avoids the
permuting effects of LP.13

3.2 Flexible Montague grammar

We now give a formal definition of our flexible semantics. Each syntactic category C is
not associated with one type, but with a(n infinite) set of types: the type set of C: T(C).
This set consists of a basic type, tg(C), together with types which are derived from that
type by general rules. For the flexible version of the fragment introduced in section 1, we
choose the basic types in (82).

82 C 15:1(0))
S t
T €
CN, IV ((s,e),t)
TV ((s,€),((s,€),1))
PV ((s,),((s,€),1))
Det ((s,((5,€),1)),((s,((s,€),1)),1))

T(C) is the smallest set such that:

(83) (@ w(C)eTO);
@ii) if (2,b)e T(C), then (@,((s,((s,b),1)),t))e T(C)
(cf. value raising = (92));
(iii) if @,((s,b),(C,1)))e T(C), then (@,((s,((s,((s,b),1)),)),(C,1)))e T(C)
(cf. argument raising = (93));
(iv) if @,((5,((s,((3,b),)),1)),(C,)))e T(C), then (@,((s,b),(C,1)))e T(C)
(cf. argument lowering = (94)).

In this definition, s and t are specific IL types; b is an arbitrary type; and 2 and C are
sequences of types: ay, ..., am, C1, ..., cnp With m and n > 0. (a_f ,b) represents the type
(a1,(...,(an,b)...))).

If we apply (ii) to tg(T) = e (2 being empty), we see that TYPE(T) of PTQ,
((s,((s,e),1)),t), is among the (derived) types in the type set of category T, T(T). If we

13" In order to be independent from specific syntactic frameworks, we will not use a sequent format for
this semantic theory. We have, of course, not shown that it is altogether impossible to treat quantifier
scope within flexible categorial grammar — only that current (sub-)systems (of L(P)) are inadequate
(contrary to what has been suggested in Van Benthem (1986), Dowty (1988), a.0.). Thus, Moortgat
(1988) simply incorporates Hendriks (1988) into L; Moortgat (1990) presents a more principled sequent-
approach; and Emms (1989) offers an interesting alternative using polymorphic quantifiers and variable
categories.
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apply (iii) to the first (s,e) argument of tg(TV) = ((s,e),((s,€),t)) (2 again being empty),
then also PTQ's TYPE(TV) = ((s,((s,((s,e),t)),t)),((s,€),t)) appears to be an element
of T(TV). The UG type of IVs (see above), ((s,((s,((s,e),t)).1)),t), is in TIV): apply
(ii) or (iii) to tg(IV) = ((s,e),t).

Similarly, every (lexical or compound) expression o of category C is not assigned
one translation, but a translation set, Tr(o): a set consisting of one or more basic
translations plus derived translations:

3.2.1 Basic translations
3.2.1.1 Basic translations of lexical expressions.

Every lexical expression o is assigned a set of basic translations, Trg(o), in the lexicon.
In general — i.e., for all lexically unambiguous expressions — Trg(a) will only contain
one member: trg(a). The other elements of Tr(a) are derived from trg(c) by general rules
(cf. section 3.2.2, below). It is important to stress that trg(ac) is not necessarily of the
basic type tp(C). The fragment contains the following basic translations (Trg(a) =

{trg(@)}):

(84) a trB()type(irp(a))
[enprice] PRICE (s,e),1)
[enman] Ax.[MAN(VX) A Ju(x="u)]((se).0)

[cnwoman]  Ax. [WOMAN(VX) A Fu(x="u)]((s,e),0)
[cNunicorn]  Ax.[UNICORN(VX) A Fu(x="u)]((s,e),0)
[tvbe missing] BE-MISSING (s, ((s,((s,e),0)).0)).t)

[tvwalk) AX.WALK(VX)((s.).0)

[ryrise] RISE((s,e),0)

[TJohn) Je

[tMary] me

[Ded] APALQ.Ix[VP(X)AVQX)]((s,((5,0).0).((5.((5.).0).1)

[Detthe] APAQ.3x[Vy[VP(y)=>x=y]AYQ(X)]((s,((s.€).0):(5:(5.e).0MD)

[Deievery]l  APAQ.VX[VP(X)—VQ(X)]((s,((s.e).).((s.(s:1D)D)

[Detone] APAQ.IxVY[[VP(Y)AYQ)IX=Y]((s,((s.6).0):((s:((s:e), D)
[Tvseek] ATAX SEEK(T)(VX)((s,((5.((5,0).0)D),((5:0).1))

[Tvfind] AyAx FIND(VY)(VX)((s,e).((s.e).t))

[pvclaim] Xp).x.CLAIM(p)(Vx)((s,t),((s,e),t))

[pvbelieve] ~ ApAX.BELIEVE(P)(VX)((s,0).((s.e)t)

Note that the fragment does not contain syntactic variables Ae;; that the basic translation of
seek is not of the basic type of transitive verb phrases, tg(TV) = ((s,€),((s,€),t)); that the
basic translation of be missing is not of the basic type assigned to intransitive verb
phrases, tg(IV) = ((s,e),t); and that the functional application of the basic translation of a
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to the intension of the basic translation of woman yields a translation of a woman which
is not of the basic type assigned to noun phrases, trg(T) = e, but of the derived type

((s,((s,€),1)),1).
3.2.1.2 Basic translations of compound expressions

Compound expressions 0y are also assigned a set of basic translations: Trg(0t). Trg(0)
is a function of (i) the translation sets of the parts, Q.,...,0p, of 0p: Tr(y),...,Tr(cty)
(the sets consisting of both the basic translations and the derived translations of
o.y,...,0p); and (ii) the semantic operation R associated with the syntactic rule which
constructs 0 from its immediate parts Q.,,...,0ln. The fragment only contains binary
rules: in all cases, 0lp is built up from two parts, o and B. Hence the above can be
simplified.

(85) Trp(op) = {R(c',p"): a'e Tr(a) and B'e Tr(B)}
There are three semantic operations R in the fragment: FA, GC and GD.

(86) FA ((Intensional) Functional Application): for y of type ((s,a),b) and & of type a:
FA(1,8) = Y(*5)

(87) GC (Generalized Conjunction): for y and 8 of type (a,t):
GC(Y,8) = Ax7.[¥(X) A 8R)]

(88) GD (Generalized Disjunction): for y and 8 of type (@,t):
GD(¥,8) = A%7.[YR®) v 8®)]

(86), (87) and (88) play a role in the rules of the fragment:

(A)  Rules of application: Trg(0g) = {FA(a',f'): o'e Tr(cr) and B'e Tr(B)}
@ Br+owv—oap=[sBromv]
(i)  orv+Br— oo =[rvorvPr]
(iii)  otper + BeN — 0o = [T Oper Ben ]
Gv) opy +Bs — o= [rv opv Bs ]

(B)  Rules of conjunction: Trg(cQ) = {GC(c',p"): a'e Tr(ax) and B'e Tr(B)}
(v) og+Bs— op=[sosandPs]
(vi)  oqv + Brv = &g = [1v orv and Brv ]
(vii) o+ P — 0p=[r o and Br]
(vii)) oy + Prv — 0o = [Tv oy and Prv ]
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(C)  Rules of disjunction: Trg(op) = {GD(a',p'): o'e Tr(cr) and B'e Tr(B)}
(ix) oas+Ps—>op=[sasorPs]
x)  oqv+Brv — 0 =[1v oqv or Brv ]
xi) or+PBr—oap=[rororPr]
(xii) ary+Brv = ag=[1v otv or Brv]

Note that there are no rules of quantification in the fragment. Their task will be taken over
by the derived translations (see section 3.2. below). Also note that we have added rules
for the conjunction and disjunction of transitive verb phrases ((viii) and (xii)), cf.
sentence (29) and rule (32) above.

An example: application rule (iii) allows us to construct the noun phrase a fish from
the determiner a and the common noun fish.

(89)  trg(a) = APAQ.3y[VP(Y)AVQ(y)], and trp(fish) = AX.[FISH(VX)ATu(x="u)]

Rule (iii) states that Trg(a fish) = {FA(o',p") : o'e Tr(a) and B'e Tr(fish)}. Because
trg(a)e Tr(a) and trg(fish)e Tr(fish), we know that (90) of type ((s,((s,e),t)),t) is a
member of Trg(a fish).

(90)  FA(trg(a),trg(fish)) = APAQ.y[VP(Y)AVQ(Y)I(“Ax.[FISH(VX)AJu(x="u)]) <
AQ.3V[VFISH(V)AVQ(*V)]

3.2.2 Derived translations

The translation set Tr(a) of a (lexical or compound) expression « is defined
inductively: Tr(o) is the smallest set such that:

(91) For all a'e Trg(ax): a'e Tr(o);

(92) value raising (VR): (@,b)= (@,((s,((s,b),1)),1))
if a'e Tr(c) and o is of type (2,b), then
AXZAW (s (s.b).0)-Y WAL (X)]) € Tr(o);

(93) argument raising (AR): (2,((s,b),(C,1)) = @, ((s,((s,((s,b),1)),)),(C,1)))
if a'e Tr(c) and o is of type (@,((s,b),(C,t))), then
AXZAW (s, (65, (b)Y S YW (A5 )& ()@)€ Tr(er); and

(94) argument lowering (AL): (7,((s,((s,((s,),£)),t)),(C,1)) = (&,((s,b),(C,1)))
if o'e Tr(cr) and o is of type @,((s,((s,((s,b),1)),1),(C,1))), then
AXZAW (s byAY S 0 R)(MAz(s, ((s.1),0))-2(W))(F) € Tr(ev).

In (92), (93) and (94) X7 and yo are sequences of variables, X = X1, 5++Xn,_and y =

Yig »-oXmc_» Of type a = aj,...,ap and ¢ = Cy,...,Cy Trespectively, with m and n > 0.
m . . .

AX3z.T abbreviates Ax; al...lxnan.'l:, and t(X3) abbreviates t(x; al)...(xna“). All variables in
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the above terms are different. Ax; al...lxnanlxnﬂ(b,c)."xnﬂ(A[oc'(xl al)"'(xna,,)]) is, for
example, the term assigned by value raising.

First some lexical examples. When value raising is applied to the basic translation
(trg) of John, j, we get AP.VP(#j) as a derived translation, i.e., the translation PTQ
assigns to this noun phrase; application of argument raising to (the first argument of) the
basic translation of find, AyAx.FIND(Vy)(Vx), leads to ATAx.VT(*Ay.FIND(Vy)(Vx)), the
PTQ translation; application of argument lowering to (the first argument of) the basic
translation of seek, ATAx.SEEK(T)(Vx), gives us a derived translation that can be applied
to the intension of the basic translations of proper names (which are of type e):
AyAz.SEEK("AP.VP(*y))(Vz).

It is worth noting that the semantic operations FA, GC and GD are partial with
respect to Tr(a) and Tr(B). Sometimes, FA/GC/GD(a',f") fails to be defined for
o'e Tr(o) and B'e Tr(B). For instance, Trg(John and Mary) does not contain the GC of
je and me, simply because j and m are not of a conjoinable type (Z,t). Neither does
Trg(seek John) contain the FA of ATAX.SEEK(T)(VX) — an expression of type
((3,((s,((s,8),D),1),((s,€),t)) — and je, for the reason that FA(ATAx.SEEK(T)(Vx),j) is
undefined: ATAx.SEEK(T)(Vx) is not of the required type ((s,TYPE(])),b) = ((s,e),b). But
this is no problem. Since we also have the derived translations AP.VP(%j) and AP.VP(*m)
at our disposal, we can be sure that Trg(John and Mary) and Trg(seek John) are non-

empty:

(95) GC(AP.YP(1j),AP.VP(*m)) =
AQ.[AP.YP(*{)(Q) A AP.YP(*m))(Q)]e Trg(John and Mary), and
(96) FA(ATAX.SEEK(T)(Vx),AP.VP(1))) =
ATAx.SEEK(T)(VX)(*"AP.VP(~j))e Trp(seek John).

Let us now consider a compound example, which shows that we are able to account for
the de dicto wide scope-or reading (24) of sentence (19): rule (iii) enables us to construct
a fish from the determiner a and the common noun fish. We have just seen that

(97)  FA(trg(a),trg(fish)) = APAQ.Iy[VP(NAYQMI("Ax.[FISH(VX)ATu(x="u)]) <>
AQIV[VFISHW)AYQ((*W)] (= (90))

of type ((s,((s,e),t)),t) = T (® is Montague’s TYPE(T)) is a member is of Trg(a fish).
Hence, according to (91), it is also a member Tr(a fish). Due to (92), value raising, we
know that Tr(a fish) furthermore contains the derived translation (98), of type

((5,((s,),00),8) = ((5,((s,((5,((5,€),£)),1)),1)),1) = :
98)  AQs,((5.((5,((5,0),0),0).0)- Y QUAAP.IV[FISH(V)AVP (*V)])
Analogously, we can show that the noun phrase a bike has the translation

(99)  AQ(s,((s.((s,((5,0),)),0).00)- Y QUMAP.IV[BIKE(V)AVP (A V)]).
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Therefore, the rule of disjunction (x) specifies GD((98),(99)) = (100) as one of the basic
translations of a fish or a bike:

(100) AL[AQ.YQ(MAP.AV[FISHW)AYP(AWN(D) v AQ.VQ("AP.IV[BIKE(V)AVP(AV)])(D)]
& AL[VI(AP IV[FISH(V)AVP(*V)]) v VI(*AP.3V[BIKE(V)AYP(*V)])]

(100) is also of type ®. Note that we can use argument raising (applying it to the first
argument) to blow up the basic translation of seek, ATAx.SEEK(T)(Vx), which is of type
((5,((s,((s,€),1)),1)),((s,e),1)), to (101), which is of the higher type ((s,m),((s,e),t)) =
((s,((s,((s,((s,((s,€)5t)),t)),st)),t)),((s,€),1)):

(101)  AJ(s,)Ay VICAT.[AT'Ax.SEEK(T)(VX)I(T)(y)) < AJAy.VJ(*"AT.SEEK(T)(Vy))

Because (100)e Tr(a fish or a bike) and (101)e Tr(seek), we can apply rule (ii), which
gives us FA((101),(100)) = (102) - of type ((s,e),t) — as one of the basic translations of
seek a fish or a bike:

(102) [AJAy.VI(*"AT.SEEK(T)(Vy))]
(MAL[VI(AAP.3V[EISH(V)AVP(*V)]) v VI(*AP.3v[BIKE(V)AVP(*V)]]) <
Ay .[SEEK(*AP.3V[FISH(V)AVP(*V)])(Vy)VSEEK(*AP.3V[BIKE(V)AVP("V)])(Vy)]

Finally, when (102) is applied to ~j (rule (i)), we arrive at reading (24):

(103) [Ay.[SEEK(*AP.3V[FISH(V)AVP(*V)])(Vy) v
SEEK("AP.3V[BIKE(V)AVP("V)D(VY]] (1)) &
SEEK(AAP.3V[FISH(V)AVP(AV)])(§) Vv SEEK(AAP.IV[FISH(V)AVP(*V)])(j)

4. APPLICATIONS

This section shows a number of applications of the flexible Montague grammar defined
above. In section 4.1 we shall see that we can represent ambiguities due to the occurrence
of quantified noun phrases, not only in ‘flat’ structures (where the quantifiers are all
immediate arguments of one relation (4.1.1)), but also in embedded application structures
(4.1.2) of arbitrary complexity. In 4.2 we shall consider ambiguities regarding the scope
of coordination. In 4.3 it will be shown that certain restrictions on possible scopings can
be readily accounted for within the present framework. Let us first settle some notation
conventions.

(104) An application of VR (AR, AL) on a type (@,c) will be called an
m-application of VR (AR, AL) (written as MVR (MAR, MAL)) iff length (2) =
m-1. [me {1,2,3,...}, cf. (92), (93) and (94) for 2]
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Example: (a,b) =2VR (a,((s,((s,b),)),)); (a,b) =1VR ((s,((s,(a,b)),1),1).
(105) For any type a: a0 = a; an*1 = ((s,an),t).
Example: €2 = ((s,((s,e),1)),t).

(106) A reading of an expression « is an interpretation of o of type t.

4.1 The scope of quantification

4.1.1 Flat structures

Sentence (107) consists of an extensional transitive verb and two proper names.
(107) John finds Mary

If we apply rule (ii), and use the basic translations of find and Mary, we obtain
(108) AyAx.FIND(Vy)(Vx)(“m) < AX.FIND(V m)(Vx) < AX.FIND(m)(Vx).

If we then apply (108) to the intension of the basic translation j of John (with the help of
rule (i)), the resulting translation is

(109) Ax.FIND(m)(VX)(%j) & FIND(m)(j).

It can be shown that this is the only reading (in the sense of (106)) that is assigned to
sentence (107) by the flexible grammar. lL.e., if we, instead of using the basic
translations, were to combine arbitrary derived translations, the result would be
equivalent (the proofs of claims about numbers of readings can be found in or deduced
from the Appendix).

If an intensional transitive verb is combined with two proper names, the grammar
also assigns one reading, regardless of the translations used:

(110) John seeks Mary

We shall sketch two possible ways to obtain this reading. One way involves the
application of the basic translation of seek, ATAx.SEEK(T)(Vx), to the intension of the
derived translation AP.VP(*m) of Mary (the result of value-raising m) and the
combination of the result with j, just as we did in the case of (107). But we can also
apply argument lowering to the first argument of ATAx.SEEK(T)(Vx),

(111) Ay.ATAx.SEEK(T)(VX)(*"AP.VP(y)) < AyAx.SEEK(*"AP.VP(y))(Vx),
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and combine the result (via (ii) and (i))with the basic translations of the proper names:
[AyAx.SEEK(*AP.VP(y))(Vx)](*m)(%j) < SEEK(*"AP.VP(*m))(j).

If, however, the noun phrases surrounding the transitive verb are quantified noun
phrases, then the grammar assigns a different number of readings to the sentences with
seek and find:

(112) Every man finds a woman
@) VV[MAN(V)—3u[WOMAN(u)AFIND(u)(v)]]
(ii)) FJu[WOMAN(u)AVV[MAN(V)—-FIND(u)(v)]]

(113) Every man seeks a woman
) VV[MAN(V)—3u[WOMAN(u)ASEEK(*AP.VP(*u))(V)]]
(i) Ju[WOMAN(u)AVV[MAN(V)—=SEEK(*"AP.VP(*u))(V)]]
(iii) VV[MAN(V)—SEEK(*"AP.3u[WOMAN(u)AVP(*u)])(v)]

(112) gets two readings, whereas (113) can be understood in three ways. The basic
translation AyAx.FIND(Vy)(Vx) is of type ((s,e),((s.,e),t)), and there are two non-
equivalent ways, (114) and (115), to argument-raise it in two steps to type

((5,((5,((5,€),0),0)5((5,((5,((5:€),):D),1)) = ((5,€2),((5,€2),1)): 14

(114) ((s,e),((s,€),)) = ((5,€2),((s,€),1)): AT{'Ay' VT (*AX.FIND(VX)(Vy")) = o;
((5,62),((s,€),1)) = ((5,€2),((s,€2),0)): ATIAT2.VT2(*hy.o(T1)(y)) <
AT1AT,.VTa(*Ay.VT1(*"AX.FIND(VX)(Vy)))

(115) ((s,e),((s,e):1)) = ((s,€),((s,€2),1)): Ax'AT2'.VT2'("Ay.FIND(VX')(Vy)) = B;
((5,0),((5,2),)) = ((5,€2),((5,62),1)): AT1AT2.VT1(*MAx B(x)(T2))
ATiAT2.VT1(*Ax.VT2(*Ay.FIND(VX)(Vy)))

The combination of (114) and the basic translations every man and a woman yields (112)
(i); (112) (ii) is the result of combining (115) with these basic translations. Again,
additional type change does not increase the number of readings. In the case of (113) we
can let the argument-lowered translation of seek, AyAx.SEEK(AAP.VP(y))(Vx), undergo
(a) and (b) as well. We then get (113) (i) and (113) (ii), respectively. But there is also a
third possibility here. We can use the basic translation of seek, ATAX.SEEK(T)(Vx), and
raise its second argument to type (s,e2): AT{AT,.VTo(*Ay.SEEK(T;)(Vy)). In this way we
account for the de dicto reading, (113) (iii).

In general, the combination of an n-ary relation of type ((s,e)1,(...((s,€)n,t))) with n
quantified noun phrases — i.e., noun phrases of type ((s,((s,€),t)),t) — yields maximally
n! = n-(n-1)-...-2-1 readings of type t (n! is a maximum here, because quantified noun
phrases that are value-raised terms of type e (proper names), for instance do not help
multipying the number of readings), which is what we need.

14 Different from AL, the order in which VR and AR are applied is important.
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4.1.2 Embedded structures

The flexible grammar of section 3.2 is able to represent scope ambiguities in arbitrarily
complex structures of functional application. Consider the syntactic structure of the
compound sentence Fred claims that every schoolboy believes that a mathematician wrote
Through the Looking Glass.

(116) [sFredr [1v claims thatpy [s [T everype: schoolboycn ] [1v believes thatpy [s[Tapet
mathematiciancy] [v wroteryThrough the looking glasst 111111

With the basic translations indicated below, (116) gets exactly the eight readings which
result from interchanging the mutual scopings of the quantified noun phrases every
schoolboy and a mathematician on the one hand, and interpreting these noun phrases
more or less de dicto or de re within the compound intensional context (...believe
that(...claim that (...))) on the other:

Fred fe,

believe that APAX.BELIEVE(VX,P)((s,t),((s.e)1))s
every schoolboy AP.VV[BOY(V)—>VP("V)]((s,((s.e)).t)r
claim that APAX.CLAIM(YX,D)((s,0),((s.€).0))>

a mathematician AP.Ju[MATH)AVP(*1)]((s,((s.e).0),1)>
write AYAX.WRITE(VX,VY) ((s,e),((s.¢),0))»

Through the looking glass Le.

(117) CLAIM(f,AVV[BOY(V)—BELIEVE(V,A"Ju[MATH(u)AWRITE(u,L)])])
(118) CLAIM(fAVvV[BOY(V)—Ju[MATH(u)ABELIEVE(V,AWRITE(u,L))]])
(119) CLAIM(f,A3u[MATH(u)AVv[BOY(v)—BELIEVE(V,AWRITE(u,L))]])
(120) Ju[MATH(u)ACLAIM(f,AVv[BOY(V)—BELIEVE(V,AWRITE(u,L))])]
(121) Vv[BOY(V)—>CLAIM(f "BELIEVE(v,AJu[MATH(u)AWRITE(u,L)]))]
(122) Vv[BOY(V)—CLAIM(f,AJu[MATH(u)ABELIEVE(V,AWRITE(u,L))])]
(123) Vv[BOY(V)—ZJu[MATH(u) ACLAIM(f,ABELIEVE(V,AWRITE(u,L)))]]
(124) Fu[MATH(u)AVv[BOY(v)—CLAIM(f,ABELIEVE(V,AWRITE(u,L)))]]
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By way of illustration, we show the derivation of (124), semantically the most
‘dislocated’ reading of sentence (116).15

The noun phrase a mathematician must ‘escape from’ its original scope domain, the
one embedded in believe that. This can be effectuated by subsequently applying 3VR
(creating the ‘escape hatch’) and 2AR (letting the subject argument ‘go out’ of it) to the
basic translation of write, the main functor in that domain: ((s,e),((s,e),t)) =

((5,6),((5:):t2)) = ((5,€):((5,€%),12)):

(125) AyAX.WRITE(VX,'y) =3VR AyAxAw.VW(AWRITE(VX,Vy)) =2AR
AYATAW.VT(AAX.YW(AWRITE(VX,Vy)))

The noun phrase every schoolboy is to have wider scope than claim that. The main
functor of the domain embedded in claim that is believe that. We can perform the same
trick here: first apply 3VR, and then 2AR, in this case to believe that. Due to our
application of value raising to write, the compound first argument of believe that (a
mathematician wrote Through the Looking Glass) is too large (being of type t2 instead of
t). This calls for an additional application of AR to believe that, 1 AR this time. Since a
mathematician is going to have wider scope than every schoolboy, 1AR should be applied
after 3VR and 2AR.

(126) ApAx.BELIEVE(VX,p) =3VR ApAxAw.Vw(*BELIEVE(VX,p)) =2AR
ApATAW.VT(*Ax.VW(~ABELIEVE(Vx,p))) =1AR
AQATAW.VQ(*Ap.VT(*Ax.VW(~BELIEVE(VX,p))))

15 The remaining seven readings can be obtained in the following way:

127)  write: ((5,0),((s,0),0) =2AR ((5,6),((5,€2).1))
believe: ((5,0,((5.€).5)) =2AR ((s,0),((s.€2).1))
(128)  write: ((5,0),((3:),1)) =3 VR ((5,6),((5:).t2)) =2AR ((5.,0),((s.¢2).t3))
believe: ((5,0,((5,8),)) =1AR ((5,12),((5,),1)) =2AR ((5,42),((s,62),1))
(129)  write: ((5,0),((5,),)) =3 VR ((5.€),((s.€).t2)) =2AR ((s,6).((5,¢2),t2))
believe: ((5,0,((5,8),5)) =2AR ((5,0),((5.€2).,)) = AR ((5,t2),((s,€2).1))
(130)  write: ((5,0),((3,8),1)) =3VR ((5,€),((s:€).t2)) =2AR ((s,8),((s.¢2).t2))
believe: ((8,9,((s,0),1)) =2AR ((s,0),((s.62),)) =3VR ((s,1),((s.€2).12))
=IAR ((5.2).((s.69).12)
claim: ((s,0),((s.e).t) =1AR ((s,tz),((s,e),t))
131)  write: ((5,0).((5,8),)) =2AR ((5,6).((s,€2).,1))
believe: ((5,0,((5,0),0)) =3VR ((s,0),((s,6).12)) =2AR ((5.8),((s,¢2),t2))
claim: ((5,9((s,6),) =1AR ((5,2),((s,€),1))
(132)  write: ((5.,0),((s,6),0)) =3VR ((s,6).((5,€).t2)) =2AR ((3,€),((s.¢2).12))
believe: ((5,0,((s,e).0)) =1AR ((5,2),((s,€),t)) =3VR ((5,t2),((s.¢).t2))
=2AR ((5,19).((s,62).19)
claim: ((5,0,((s,6).0) =1AR ((5,2),((s,€),1))
(133)  write: ((5,6),((5,6).0)) =3 VR ((5,€),((5,€).12)) =2AR ((s,€),((s,%).12))
believe: ((5,0,((5,6),5)) =3VR ((5,0),((s.).t2)) = AR ((5,12),((s.€).12))

=2AR ((5,9),((s.£2),12))
claim: ((5.0),((s:8),)) 21AR ((5,1)((s.€).1))
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As a consequence of our applying value raising to believe that, the compound first
argument of claim that (every schoolboy believes that a mathematician wrote Through the
Looking Glass) does not “fit’ any more. This necessitates an application of 1AR to claim
that.

(127) ApAx.CLAIM(VX,p) =1AR AQAx.VQ(*Ap.CLAIM(VX,p)])

With this amount of type change, we get the following translation for a mathematician
wrote Through the Looking Glass:

(128) [AYATAW.VT("AX.YW(A"WRITE(VX,Vy)))] (*\L) (*AP.3u[MATH(u)AVP(*u)]) &
Aw.Ju[MATH(u) A YW(AWRITE(u,L))]

Every schoolboy believes that a mathematician wrote Through the Looking Glass is
translated as:

(129) [AQATAW.VQ(*Ap.YT(*Ax.VW(*BELIEVE(VX,p))))]
("Aw' Ju[MATH(u)AVW' ("WRITE(u,L))]) (*"AP.VV[BOY(V)—>VP("V)]) &
Aw.Ju[MATH(u)AVV[BOY(V)—>VW(*BELIEVE(V,AWRITE(u,L)))]]

And we get the following translation for sentence (116) as a whole:

(130) [AQAx.VQ(~Ap.CLAIM(VX,p)D)]
("Aw.Ju[MATH(u)AVV[BOY(V)—=VW(*BELIEVE(V,AWRITE(u,L)))]]) (*f) &
Hu[MATH(u)/\VV[BOY(V)—)CLAIM(f,"BELIEVE(V,’\WRITE(u,L)))]]

4.2 The scope of coordination

We showed in section 3.2.2 that the de dicto wide scope-or reading (iii) of sentence (131)
can be represented.

(131) John seeks a fish or a bike

(i)  SEEK(*AP.[IV[FISH(V)AVP(~V)] v FV[BIKE(V)AVP(*V)I](j)

(i) 3v[FISH(V)ASEEK(*"AP.VP(*v))(j)] v IV[BIKE(V)ASEEK(*AP.VP(*v))(§)]
(iii)) SEEK(*AP.IV[FISH(V)AVP(*V)])(§) Vv SEEK(*"AP.IV[BIKE(V)AVP(*V)])(j)

It is obvious that the ‘standard’ de dicto reading (i) is accounted for too: for this reading,
it is sufficient to combine the basic translations of the expressions. The de re reading (ii)
can be realised by building up (132),

(132) AP.[3V[FISH(V)AVP(~V)] v 3V[BIKE(V)AVP(*V)]],
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the generalized disjunction of the basic translations of a fish and a bike, and applying
(133) to the intension of this expression:

(133) ATAX.VT(*Ay.SEEK(*AP.VP(y))(VX))

(133) is a derived translation of seek which results from applying LAL and 1AR (in that
order) to the basic translation: ((s,e2),((s,e),t)) = ((5,€),((s,€),t)) = ((5,€2),((s,e),1)).

(134) ATAx.SEEK(T)(Vx) =1AL AyAx.SEEK(*"AP.VP(y))(Vx) =1AR
ATAX.YT(*Ay.SEEK(*"AP.VP(y))(¥x))

Also the scope ambiguity in sentence (135) is represented:

(135) John caught and ate a fish
@) IV[FISH(V) A CATCH(V)(j)] A IV[FISH(V) A EAT(V)(j)]
(ii) Iv[FISH(V) A CATCH(V)(j) A EAT(V)(§)]

The extensional transitive verbs caught and ate have basic translations of the minimal
type, tg(TV) = ((s,e),((s,e),t)), and translations of type ((s,e2),((s,e),t)) are derivable
from the basic translations by raising the first argument of tg(TV):

(136) ATAx.VT(*Ay.CATCH(Vy)(Vx)) and ATAx.VT(*"Ay.EAT(Vy)(VX)).
Reading (i) employs the generalized conjunction of these derived translations:
(137) ATAX.[VT(*Ay.CATCH(Vy)(VX))AVT(*Ay.EAT(Vy)(Vx))]

Reading (ii) is achieved via generalized conjunction of the basic translations, (138),
followed by raising the first argument of the conjunction: (139).

(138) AyAx.[CATCH(Vy)(VX) A EAT(Vy)(Vx)]
(139) ATAX.VT(~Ay.[CATCH(Vy)(VX) A EAT(Vy)(VX)])

Partee and Rooth (1983) in fact only accept reading (ii), ‘unless the sentence [is] given a
very marked intonation or the context is heavily loaded’ (p. 365), but this observation is
at least questionable, in consideration of the natural continuation in (140):

(140) John caught and ate a fish. The fish he caught was inedible, and the fish he ate
caught his eye.

Be this as it may, less probable but possible readings should be predicted by the grammar
as well, preferably together with an explanation of their lesser probability. An explanation
of cases like these will be given below.
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The flexible grammar also supplies a desired de dicto wide scope-or reading of sentence
(141), viz., (142), a problematic case for which Partee and Rooth, surprisingly, suggest
‘a rule quantifying in terms of a higher type’ (p. 376):

(141) John believes that a man or a woman walks
(142) BELIEVE(j,"Ju[MAN(u)AWALK(u)]) Vv BELIEVE(j,"Ju[WOMAN(u) AWALK (u)])

To get (142), we value-raise the noun phrases a man and a woman: ((s,((s,€),t)),t)
=1VR ((s,((s,e),1),t)2 = €4, and take the generalized disjunction of the derived
translations (I is of type ((s,((s,€),1)),0) = e3):

(143) AL[VI(*AP.3u[MAN(u)AVP(*u)])VVI(*AP.3u[ WOMAN(u)AVP(*u)])]

Next we apply AR, 2VR, and 1AR to Ax.WALK(Vx), the basic translation of walk.
((5,€):t) =1AR ((5,€2),1) =2VR ((5,e2),t2) =1AR ((5,6*),12):

(144) Ax.WALK(Vx) =1AR AT.VT("Ax.WALK(Vx)) =2VR
ATAW.VW(VT(PAX.WALK(VX))) =1AR AQAW.VQ("AT.VW(VT(*AX.WALK(VX))))

(144) is applied to the intension of (143):

(145) [AQAL.YQ(AAT.Mt(VT(*AX.WALK(Vx))))]
(MAL[VI("AP.Ju[MAN(u)AVP(*u))VVI(*AP.Ju[WOMAN(u)AVP(*u)])]) &
At.[Vt(*Ju[MAN(u)AWALK (u)]) vVt(*Ju[ WOMAN(u)AWALK (u)])]

Finally, the first argument of believe that is raised, and the result (146) is subsequently
applied to the intension of (145) and j:

(146) ApAx.BELIEVE(p)(Vx) =1AR ARAX.VR(*Ap.BELIEVE(p)(Vx))

(147) [ARAX.YR(*Ap.BELIEVE(p)(Vx))]
(MAL[Vt(AFu[MAN(u)AWALK(u)]) vVt(*Ju[ WOMAN(u)AWALK (u)]) ) (1)) <
BELIEVE(*Ju[MAN(u)AWALK(u)])(j) Vv BELIEVE(*Ju[WOMAN(u)AWALK(u)])(j)

The flexible grammar of section 3 assigns all possible coordination scopes.16 For
example, (148) is assigned the readings (i), (ii) and (iii):

(148) John said that every student lost or won

@) SAY(j,AVV[STUDENT(v)—[LOOSE(V) v WIN(W)]])

(ii) SAY (j,A[VV[STUDENT(V)—LOOSE(V)] v VV[STUDENT(V)—>WIN(V)]])

(ii)  SAY(j,AVV[STUDENT(v)—LOOSE(V)]) Vv SAY(j,"VV[STUDENT(V)—>WIN(V)])

16 Except for the readings where quantifiers in conjuncts and disjuncts have wider scope than the
conjunctions and disjunctions coordinating them. Those readings seem to be really impossible, cf. the
discussion on the sentences (9) and (14) below.
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‘While intuitions are far from clear’ (1983, p. 376), only (i) and (iii) are considered okay
by Partee and Rooth, whereas in their fragment, (i) and (ii) are accounted for. A similar
case is (149).

(149) Every student failed or got a D

This sentence does not seem to have the reading ‘every student failed or every student got
a D’, a reading that seems to be predicted by all available theories of type ambiguity,
including the present one: apply VR and generalized disjunction to the intransitive verb
phrases, AT.[VT(*Ax.FAIL(VX)) v VT(*AX.GET-D(Vx)), and combine this with the basic
translation of every student. It is, however, obvious that the data are far from clear.
Consider (150).

(150) Every player of our team is wearing a red shirt or a green shirt

That this sentence does have the reading ‘every player of our team is wearing a red shirt
or every player of our team is wearing a green shirt’, can be supported by the possibility
(if we add a ’heavily loaded’ context: the speaker is colour-blind) of the continuation ...
but I can’t tell you what the exact colour is’.

That the context must be heavily loaded is what we should expect. For, under normal
circumstances the Gricean maxim ‘avoid ambiguity’ requires us not to utter (151), (152)
or (153) to convey the information expressed by the ‘every ... or every ...’ readings;
there are less ambiguous sentences that express them.!7

(151) John said that every student lost or every student won

(152) Every student failed or every student got a D

(153) Every player of our team is wearing a red shirt or every player of our team is
wearing a green shirt

Only a colour-blind person entangled in the cuambersomeness of his disjunctive world-
view or a colour-blind person entangled in the cumbersomeness of her disjunctive world-
view may be expected to let being short prevail over being unambiguous here. Besides,
an explanation in terms of a pragmatic conflict between the Gricean maxims ‘be short’
and ‘avoid ambiguity’ can contribute to an explanation why reading (iii) for sentence

17 The same pragmatic explanation applies to (135) (ii): there is an unambiguous sentence available for
expressing this reading: John caught a fish and ate a fish. With respect to (148), John said that every
student lost or won, Rooth and Partee (1982) note that in a parallel sentence like John said that a student
lost and won, with a and and replacing every and or, the parallel wide scope-and reading is absolutely
excluded: John said that a student lost and won cannot express ‘John said that a student lost and John said
that a student won’. They attribute the difference to discourse properties of indefinite noun phrases.
Something like this might very well be the case, for note that with a different noun phrase, the wide
scope-and reading is not altogether impossible: John said that exactly one student lost and won does have
the reading ‘John said that exactly one student lost and John said that exactly one student won’.
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(148) = (151) is more plausible than reading (ii), whereas the former is semantically more
‘dislocated’ than the latter (i.e., it requires more type change) — a fact that otherwise
would remain mysterious: the gain of time and saving of energy obtained by uttering
John said that every student lost or won as ‘short for’ John said that every student lost or
John said that every student won (reading (iii)), exceeds the profit made by using the
former sentence instead of John said that every student lost or every student won (reading
(ii)).18
In section 1.3.4 we noted that PTQ assigns the following translations to (9) and (14):

(154) Mary walks and seeks every unicorn (= (9))

@) WALK(m) A SEEK(*"AP.VV[UNICORN(V) — YP(*v)])(m)
(ii) WALK(m) A VV[UNICORN(V) — SEEK(*AP.VP(*v))(m)]
(ili)  VV[UNICORN(V) = [WALK(m) A SEEK(*AP.VP(~v))(m)]]
(155) John runs and no unicorn walks (= (14))

@) RUN(j) A =3IV[UNICORN(V) A WALK(V)]

(ii) —RUN(j) v —3v[UNICORN(V) A WALK(V)]

The flexible grammar only generates the readings (154)(i), (ii), and (155)(i). Reading
(154)(i) does not require any noteworthy type change. For (154)(ii) we change the type
of seek via 1AL and 1AR, respectively: ((s,e2),((s,€),t)) =1AL ((s,€),((s.€),t)) =!AR
((s,€2),((s,e),t), which leads to the derived translation

(156) ATAy.NT(*Ax.ASEEK(*"AP.VP(x))(Vy)).
Application to the intension of the basic translation of every unicorn yields
(157) Ay.VV[UNICORN(V) — SEEK(*AP.VP(*v))(Vy)],

Generalized intransitive verb conjunction of (157) and Ay.WALK(Vy) and application to
the intension of m results in (ii). The generation of (154) (i) is straightforward. We shall
not prove here that the non-readings (154) (iii) and (155) (ii) are not assigned within the
flexible grammar (cf. the Appendix), but we shortly sketch why this is the case. We saw
above that, anticipating the semantic structure in which this expression is embedded, a
quantified noun phrase like every unicorn can be given wider scope than its original
scope domain by applying value raising to the main functor of the scope domain (seek
and walk in the cases under consideration), thus creating an ‘escape hatch’, and next
letting it escape by applying argument raising to the relevant argument position. In the
case of (9) ((14) is completely analogous) the semantic structure roughly looks like this:
WALK + SEEK. We see that the left conjunct (WALK) is part of the semantic structure of

18 This might also explain why the reading of the sentences in (28) with or having widest scope are
more plausible than the readings where or has intermediate scope (that is, narrower than claim that, but
wider than seek).
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the sentence, but that the functor of the scope domain of every unicorn, SEEK, is not
embedded in it. Walk ‘c-commands’ seek, but does not dominate this expression. This
entails that there is no escape from walk — and reading (iii) cannot be constructed.1®

4.3 Structural restrictions

The flexible grammar defined here is best seen as creating a ‘logical space’ of possibilities
which is not necessarily exhausted by the facts of natural language. It should therefore
meet the requirement that existing structural restrictions on possible readings can be
implemented. In this section we shall show that this holds for scope islands and scope
sieves.

It is well-known that some syntactic categories function as scope islands: quantified
noun phrases or coordinations occurring inside expressions of island categories cannot
have their scope outside of these environments. Relative clauses constitute a clear and
relatively undisputed example of the phenomenon. Consider, e.g., (158) and (159).

(158) A girl who lives in every Italian city walks

@) Ju[GIRL(u) A VV[[ITALIAN-CITY(V) = LIVE(V)(u)] A WALK(u)]

(ii))  VV[ITALIAN-CITY(v) — Ju[[GIRL(u) A LIVE(V)(u)] A WALK(u)]]

(159) Every girl who lives in Florence or Pisa walks

@) Vu[[GIRL(u) A [LIVE(f)(u) v LIVE(p)(un)]] = WALK(u)]]

(il))  VV[[GIRL(u) A LIVE(f)(u)] >WALK(u)]VvVV[[GIRL(u)ALIVE(p)(u) ]| >WALK(u)]

(158) can only have the (strange) interpretation (i); interpretation (ii) is impossible
(though much more normal). Similarly, (159) can be interpreted as (i), but not as (ii).

Nonetheless, the sentences are each assigned two readings by the flexible grammar if
we assume a (simplified) more or less standard treatment of relative clauses: (a) the
relative pronoun who is assigned the basic translation APAQAX.[VQ(x) A VP(x)] of type
((s,((s,e),1)),((s,((s,€),1)),((s,€),1))); (b) the basic type of relative clauses, tg(REL),
equals ((s,((s,e),1)),((s,e),t)); and (c) two more rules of application are added:

(xiii) oReLPRO + Brv — 0 = [REL CRELPRO Brv]
Tre(a0) = {(FA(',B") : o'e Tr(a) and B'e Tr(B)}

19 Thisisa consequence of our having separate rules of conjunction and disjunction. When or and and
are treated as polymorphic functors (of syntactic category X\(X/X) and semantic type (a,(a,a)), the usual
analysis in flexible categorial grammars, cf. e.g., Moortgat (1988)), which combine with their arguments
via functional application, the situation is different. Under that analysis, (154) (iii) and (155) (ii) are
possible interpretations.

The analysis in terms of generalized conjunction and disjunction has the effect of turning coordinations
into some kind of scope islands (cf. the treatment of relative clauses below), but, having scope
themselves, they are ‘floating’ scope islands.
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(xiv) Ben+ GREL = % = [cN %eN BreL]
Trp(00) = {(FA(a',B") : a'e Tr(ax) and B'e Tr(B)}

We shall restrict ourselves to sentence (158). ((159) can be treated analogously.) Reading
(i) is obtained by doing as little as possible: merely applying 1AR to live in, and
combining the result with the basic translation of every Italian city and the basic
translation of who. This leads to the following translation of the relative clause who lives
in every Italian city.

(160) AQAX.[YQ(X) A VV[ITALIAN-CITY(V) — LIVE(V)(VX)]]

In order to get reading (ii) of (158), we apply 2VR and !AR (in that order) to
AxAy.LIVE(VX)(Vy). The result is of type ((s,e2),e3):

(161) ATAW.YT("Ax.YW("Ay.LIVE(VX)(y)))
This is applied to ~AP.VV[ITALIAN-CITY(v)—VP(*v)], and the result reduces to:
(162) AW.VV[ITALIAN-CITY(V) — YW (*Ay.LIVE(V)(Vy))]

Now we let the basic translation of who undergo 3AR and 1AR, respectively, and apply
the outcome, AUAQAT.VU(AP.VT(*"Ax.[VQ(x) A VP(X)])), first to the intension of (162)
and then to the basic translation of girl, Ax.[GIRL(VX) A Ju(x="u)]) = GIRL*. Note that in
this case the translation of the relative clause is not of the basic type tg(REL) =
((s,((s,€),1)),((s,€),1)), but of the derived type ((s,((s,e),t)),((s,e2),t)). Thus, the
compound common noun girl who lives in every Italian city is translated as:

(163) [AUAQAT.YU(PAP.NT(™"Ax.[VQ(x) A VP(x)]))]
(MAW.VV[ITALIAN-CITY(V) = YW(*Ay.LIVE(V)(Vy))]) ("\GIRL¥*) <
AT.VV[ITALIAN-CITY(V) = YT(*"AX.[GIRL*(X) A LIVE(V)(Vx)D]

Next, !AR is applied to the basic translation of the subject determiner a:
ABAQ.VB(AAP.3x[VP(*x) A VQ(#x)]); this is combined with (163) and WALK* =
AX.WALK(VX).

(164) [ABAQ.VB(*"AP.Ix[VP(x) A VQ(x)D]
(MT.VV[ITALIAN-CITY(v) = VT(*"AX.[GIRL*(x) A LIVE(V)(Vx)])]) ("WALK*) <
VV[ITALIAN-CITY(v) — Ju[[GIRL(u) A LIVE(V)(u)] A WALK(u)]]

How is the fact that relative clauses constitute scope islands to be accounted for? The
solution is very simple: we just add a condition which requires that all basic translations
of relative clauses be of type tg(REL) = ((s,((s,€),1)),((s,e),t)):

(165) For all oggr and o'e Trp(at): TYPE(Q') = ((s,((s,€),1)),((s,€),t))
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This is sufficient for turning relative clauses into barriers for quantification and
coordination scope. Moreover, an interesting by-product of imposing (165) as a general
restriction on the basic translations of relative clauses is that relative clauses are also
predicted to be barriers for unbounded dependencies like topicalization and constituent
question formation, witness (166) and (167).

(166) *Every Italian city a girl who loves walks
(167) *Which Italian city a girl who loves walks?

In all semantically interpreted theories of unbounded dependencies, the semantic type
assigned to gap-containing expressions of category o differs (of course) from the type
assigned to their gapless namesakes and, hence, from the basic type of o, tg(a). In
Gazdar, Klein, Pullum and Sag (1985, p. 230), for instance, an expression of category o
containing a gap of category P is assigned the type (TYPE(B),TYPE(a)). Therefore,
condition (165) will rule out the existence of gap-containing relative clauses.2!

Another kind of structural restriction on the availability of scope readings is the
phenomenon of scope sieves: quantified noun phrases occurring inside expressions of
sieve categories cannot have their scope at the level of the sieve. The existence of scope
sieves has been pointed out by Asher and Bonevac (1985, 1987), Muskens (1989)2! and
Van der Does (1990). A sentence like (168), which contains a neutral perception verb
(i.e., see plus a naked infinitival complement), cannot be interpeted as in (i). The
embedded subject must have scope in the matrix sentence, cf. (ii).

(168) John sees every man swim
@A) SEE(j,AVV[MAN(V) — SWIM(V)])
(ii) VV[MAN(V) — SEE(j,ASWIM(V)])

Note that we cannot characterize the correct readings by claiming that neutral perception
verbs may not take scope over quantified noun phrases. E.g., in a perfectly acceptable de
dicto reading of (169), (i), the verb see has scope over the determiner a. (169) also has a

20 (Sequel to footnote 19.) We saw that an account using separate rules of generalized conjunction and
disjunction has the effect of turning coordinations into ‘floating’ scope islands.

Given the observation about unbounded dependencies made here, we shall also predict the existence of
‘Across-the-Board’ phenomena (cf. Gazdar e.a. (1985), pp.176-178):

The doctor who Kim worked for and Sandy relied on died

*The doctor who Kim worked for and Sandy relied on Lee died

Le., coordinations may contain gaps, but if they do, then both coordinated constituents must contain
them. (The presence of only one gap would lead to different types of o' and B', and hence lead to
inapplicability of generalized conjunction and disjunction.)

21 In Muskens (1989), the bad readings are ruled out with the help of a semantic condition: the
interpretation of the naked infinitival complement must be persistent. This works because syntactic
variables are used in the representation of scope ambiguities, and these do not disturb the persistence of
the interpretation of the complement.
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correct de re reading, (ii). The intermediate reading (iii), however, in which a pen is
interpreted de dicto with respect to see, but de re as regards seek, is out.

(169) John sees Mary seek a pen

@) SEE(j,ASEEK(*"AP.3u[PEN(u) A VP(*u)])(m))
(ii) Ju[PEN(u) A SEE(j,ASEEK(*AP.VP(*u))(m))]
(ili)  SEE(j,AJu[PEN(u) A SEEK(*AP.VP(*u))(m)])

Within our flexible framework, the representation of this phenomenon is straightforward.
The only assumption needed is that the naked infinitival forms of verbs which are
translated as o of type (a’,t), are lexically translated as AXg AW (s (s.0),0)- Y W(~ [ (X)]) of
type(@,t2) = (@,((s,((s,t),)),1)). Le., their basic translation looks like a VR term. (Maybe
this is the right translation for verbal stems in general; the usual type (@,1), then, results
from morphologically filling the last (s,((s,t),t))-argument with tenses and aspects like zo,
-ed or -ing.)

For example, the naked infinitive seek is assigned the basic translation
ATAyAw.Vw(ASEEK(T)(Vy)). If this is applied to the intension of AP.3Ju[PEN(u) A
VP(~u)] and m, respectively, and the result is combined with ARAx.VR(*Ap.SEE(p)(Vx))
(the term obtained by raising the first argument of ApAx.SEE(p)(Vx), the basic translation
of see) and the basic translation j of John, then reading (i) of sentence (169) is generated.
If, in addition, the first argument of the naked infinitive translation is lowered and raised,
we get (ii). It is impossible to obtain (iii). This approach also immediately accounts for
principles like conjunction and disjunction distribution which have been claimed to hold
for naked infinitives (as early as Barwise (1981)). In sentences like John sees Mary walk
and (or) Bill talk, the ‘higher order’ translations of Mary walk and Bill talk will force the
verb sees to distribute over the conjunction (disjunction), and hence John sees Mary walk
and (or) John sees Bill talk will be entailed without further assumptions.

5. DISCUSSION: COMPOSITIONALITY AND CONTEXTUALITY

We have tried to show above that the adoption of flexible type assignment in Montague
grammar leads to an empirically adequate semantic theory of quantification and
coordination that can do without rules of quantification: the rules for flexible type
assignment — value raising, argument raising and argument lowering — are empirically
motivated. But one might also ask oneself whether there is a conceptual motivation for
them: why these rules?

As for Montague’s rules of quantification, the situation is more or less clear. The
principle of compositionality of meaning/reference entails that in all cases where a non-
lexical ambiguity is found that cannot be reduced to different syntactic structures, a
syntactic ambiguity needs to be ‘forced’. Montague implemented this as a derivational
ambiguity: whenever an ambiguity cannot be accounted for in terms of the syntactic
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structure (de dicto/de re and other scope ambiguities constitute clear examples),
apparently different ways of constructing one and the same syntactic structure are at
issue.

The grammar presented here is different in this respect. It is clear that non-lexical
ambiguities do not have syntactic repercussions within this grammar: instead, one
syntactic object is assigned a set of interpretations. However, in representing scope
ambiguities no use is made of ‘artificial’ alternative ways of construction. We can restrict
ourselves to the ‘intuitive’ syntactic structure, which is respected by all the syntactic
operations of the fragment: constituent expressions are real parts, so the flexible grammar
is even ‘more compositional’ than its predecessors (cf. Janssen (1983), pp. 65-66). Just
as in PTQ, the meanings of a compound expression are determined by (i) the meanings of
its constituent parts, and (ii) the semantic operation associated with the compounding
syntactic operation, but with the difference that we can no longer speak about tie
meanings of the constituent parts. These expressions each have a set of interpretations, of
which (and this is what matters) only the ‘mutually fitting’ are allowed to join (cf. the
remark on partiality in section 3.2.2).

This is an important difference. We noted before that value raising can be used to
anticipate, so to speak, the global semantic structure in which expressions are embedded.
The same can be said with respect to argument raising and lowering, and the local
semantic structure. These rules enable expressions to adapt themselves to the format of
the arguments or functor they are combined with. In other words: besides the principle of
compositionality, the principle of contextuality seems to play a role: ‘(...) nach der
Bedeutung der Worter muss in Satzzusammenhéngen, nicht in ihrer Vereinzelung gefragt
werden (...)" (Frege (1884), p. XXII).22

A strong interpretation of the principle of contextuality is involved here. Dummett
discusses the status of the principle in Frege’s work, and arrives at what we might call a
weak interpretation of the principle: ‘In a certain sense, sentences have a primacy within
language over other linguistic expressions: a sentence is determined as true under certain
conditions, which conditions are derivable from the way in which the sentence is
constructed out of its constituent words; and the senses of the words relate solely to this
determination of the truth conditions of the sentences in which the words may occur. Of
course, looked at in one way, the word has a sense independently of any particular
sentence in which it occurs: but its sense is something relating entirely to the occurrence
of the word in a sentence (...).” (Dummett (1976), pp.194-195, italics added). Under this
weak interpretation (which, for that matter, seems to be the interpretation intended by
Frege) the principle of contextuality is best considered a heuristic principle: in order to
find out what the meaning of an expression is (‘independently of any particular sentence
in which it occurs’), we must study the occurrence of that expression in the context of
sentences. The fact that within the grammar of PTQ all expressions are assigned

22 “The meaning of words can only be found in the context of sentences, not when they are studied in
isolation.’
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denotations of a relational type (a,t) illustrates the point: the denotation of expressions is
identified with their contribution to the truth conditions of the sentences in which they
occur.

The strong interpretation of the principle of contextuality explicitly denies the
existence of the meaning of an expression, independent of the sentences in which that
expression occurs. This is the interpretation which (in spite of himself) is expressed by
Frege’s statement ‘Nur im Zusammenhange eines Satzes bedeuten die Worter etwas.’
(Frege (1884), p. 73).23 In different sentences an expression can contribute in different
ways to the truth conditions of the whole in which it occurs, and those contributions do
not share a ‘greatest common divisor’. In the flexible grammar presented above this is the
case: take, for instance, the expression finds. In sentence (180), the contribution of this
expression can be formalized as (181). In sentence (182), however, it contributes in two
ways: (183) and (184).

(180) John finds Mary

(181) AyAx.FIND(Vy)(VX)

(182) Every man finds a woman

(183) AT{AT,.VTa("Ay.VT(*AX.FIND(VX)(Vy)))
(184) AT AT2.VT1(*"Ax.VT2(*Ay.FIND(VX)(Vy)))

The fact that (181), the contribution to (180), is called the ‘basic translation’ in the
grammar, is doubly misleading. First, this basic translation is not more essential or
necessary than the derived translations in that it plays a role in all sentences in which the
expression occurs: in (182), only derived translations are used. And second, in all cases
where basic translations plays a role, this role could just as well be taken over by derived
translations. For example, in the case of (180) we could proceed as in (185) or (186),

(185) ATiAT,2.VT(*Ay.VT1(*AX.FIND(VX)(Vy))) (*AP.VP(*m)) (*"AP.VP(%}))
(186) ATiAT2.VT1(*"Ax.VT2(*Ay.FIND(VX)(Vy))) (*AP.VP(*m)) (*AP.VP(*})),

but also in infinitely many different ways, which would without exception result in
something equivalent to FIND(m)(j).

23 “Itis only in the context of a sentence that words have a meaning.’
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APPENDIX: SEMANTIC PROPERTIES OF THE FRAGMENT

The fragment

(L  (S): t tg(TV): ((s,€),((s,€),1))
ta(T): e tg(PV): ((s,1),((s,€),1))
tg(CN), tg(IV): el tg(Det): ((s,e1),e?)

2) T(C) is the smallest set such that tg(C)e T(C) and (length(a) =i— 1):
[iVR] if (@,b)e T(C), then (a,b2)e T(C);
[AR] if @,((s,b),(C,t)))e T(C), then (a,((s,b2),(c,t))e T(C);
[AL] if @,((s,b2),(C,t))e T(C), then (a,((s,b),(C,t)))e T(C).

3) Tr(cx) is the smallest set such that Trg(ct)Tr(or) and (length(@) =i— 1):
[iVR] if a'e Tr(cr), then AXAw.Vw(r[o'(X)]) € Tr(w);
[AR] if o'e Tr(ar), then AXAWAY .Vw(*Az.o'(X)(2)(¥)) € Tr(ov);
[AL] if o'e Tr(cr), then AXAWAY .0 (X)(*Az.Vz(W))(¥) € Tr(c).

4) For lexical expressions: Tr(at) = {trB(0)type(rg(oy)}: cf. (84).

(5)  vyof type ((s,a),b) and & of type a: FA(Y,8) = Y(~0)
v and 6 of type (@,t): GC(Y,8) = AX.[Y(X) A 8(X)]
v and 8 of type (@,t): GD(Y,8) = AX.[¥(X) v 8(X)]

(6) Trg(op) = {FA(a',B"): o'e Tr(ar) and B'e Tr(B)}:
@ Br+oyv—o0p=[sProgv]
(i)  orv+ Pr— oo =[v orv Br]
@(iii)  Opet + PeN — o = [T Ope: PN ]
(iv) opy+PBs— op=[rvopy Bs]
Trg(ag) = {GC(a',B"): a'e Tr(ax) and B'e Tr(B)}:
v) os+PBs— op=[sasandBs]
(vi) oy + Brv = 0 = [tv oqv and By ]
(vii) or+Br— 0o =[r ot and B ]
(viii) oy + Brv— 0o = [Tv otv and Prv ]
Trg(op) = {GD(a','): o'e Tr(cr) and B'e Tr(B)}:
(ix) os+PBs—o0p=[sasorPs]
x)  ogv+Prv — oo = [rv o or Prv |
i) oar+Pr—ag=[rarorPr]
(xii) Ty + PBrv — o =[1v oV or Prv ]
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Value raising nArgument raising

VR and AR overlap. If (@,b) ={VR (2’,b2) with b = ((s,c),t), then the type transition can
also be achieved using IAR: (@,((s,c),t)) = (@,((5,c2),1)) = (@,((s,c),t)2). The translations
assigned are equivalent: AXAw.Vw(*[o'(X)]) < AXAw.Vw(*Az.0'(X)(z)). Therefore, we
can at will assume that applications of VR are ‘real VR’, i.e., b # ((s,C),t).

Argument lowering
It can be shown that in the derivation of a translation all applications of AL can be ordered
before AR and VR (a corollary of (I)); that AL can be assumed to have applied only to
lexical translations (a corollary of the conjunction of (I) and (II)); and that the relative
order of different AL-applications to a translation is semantically irrelevant (IIT).
(D (2)IAL(VR(®) & 0,

(b) IAL(AR() & 0,

(c) If i # j, then IAL(VR(a)) < IVR(AL()),

(d) If i # j, then IALJAR(c)) < JAR(AL()).
(a) 1AL is applied immediately after iVR: then type(iVR(a)) = (2,((s,c2),1)), with
length(2)) = i-1. So 1VR is not an instance of real VR, and the case reduces to case (b):
(b) 1AL is applied immediately after IAR: type(IAR(ar)) = (a,((s,b2),(C,t))), and type(cr) =
type (AL(AR(ar))) = (@,((s,b),(C,t))), with length(a) = i-1. Prove that (AL(AR()))
& o by A-conversion and VA-elimination:
IAL(AR(0r)) = AXAWAY.[AXAWAY VW' (AAZ. ' (X)Z)FNIR)(PAz.Vz(W) () & .
(c) IAL is applied immediately after JVR, i # j: type(VR(®)) = (X,d2), length(X) = j—1.
Note that i < j, for the type (X,d2) has only length(xX)+1 = j arguments. Hence (X,d2) =
@,((5,6?),(€.42))) and type(0) = type(ALGVR(@))) = @, ((s.0).(C.d%)).
Prove that !AL(JVR(cr)) < JVR(AL(a)) by A-conversion and VA-elimination.
(d) 1AL is applied immediately after JAR, i # j. Distinguish the cases i > j and i < j. Prove
that IAL(JAR () & JAR(IAL(®)) by A-conversion and VA-elimination.
(ID  (a) IAL(FA(a.,B)) = FA(*1AL(a),B)

(b) IAL(GC(0.,8)) = GC(AL(a),/AL(B))

(c) IAL(GD(c,B) = GD(AL(0x),;AL(B))
Proofs by A-conversion and VA-elimination. E.g. (b): IAL(GC(.,B)) =
AXAWAY [AX AW LY. [o(X) (W) (FIABE ) (W) (TR (*Az.vzZ(W))(Y) <
AXAWAY .[0(X)(MAz.V2(W)) (YIABE)(*Az.VZ(w))(¥)], and GC(AL(ar),JAL(B)) =
AXAWAY.[[AX AW'AY".a(X)(*Az.VZ(W")) THIE)W)F) A

AXAw'AY". BNz z(W))FNE)W)(F)] &

l)_(m,w)\,.)_l).[a()_())(AlZ.VZ(\fV))()_[T)AB(; NYAZICHID)
II) 1AL(AL(o)) < JALCAL()).
Prove that IAL(JAL(x)) <> JAL(AL(w)) by A-conversion and VA-elimination.
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Combinability of types

av) If types a', f = ((s,a'),b) have been derived from types a, f, respectively, by
means of VR and AR, then (i) the derivation a = a' does not contain any real I VR, or (ii)
the derivation f = f' does not contain any real 1VR.

Proof: Suppose both derivations contain real 1VR. Consider the last real 1VR applied in
the derivation a = a': aj =1 VR aj,1 = aj2. Since 1'VR is real, ajis not of the form
((s,x),t). After that, only iVR, IAR (i > 1) and !AR (p times, pe IN) have applied, so a' =
((s,2j2P*1),w). Consider the last real IVR applied in f = f': fx =1 VR fi1 = fi2. Since
1VR is real, fx is not of the form ((s,x),t). After that, only iVR, 1AR (i > 1) and !AR (q
times) have applied, so f = ((s,f2d+1),y). Since fx2d+! = ap = ((s,aj2P*1),w), we know
that w = t, and ;24 = a;2P+1. But then it must hold that either fi (if q < p) or a; (if q > p)
is of the form ((s,x),t). Contradiction.

W) If types a', f = ((s,a),c) have been derived from types x, ((s,x),b) [call such
types “fitting’], respectively, by VR and AR, then f = f' does not contain real 1VR.
Proof: If x = a' contains real 1VR, then f = f' does not contain real 1VR (use (IV)). So,
assume that x = a' does not contain real 1 VR, but that f = f' does. Note that the latter
entails that a' = ((s,z),t). Now, if x = a’' contains IVR, IAR (for i > 1) and no 1VR, we
have that a' # ((s,z),t). Hence x = a' does not contain real IVR and iVR, iAR fori > 1,
but only !AR (r times), leading to a type ((s,z),t), so a' = ((s,x21),t). On the other hand,
the first real 1 VR (after q times !AR) in f = ((s,x),b) = f' = ((s,a'),c) entails that a' has
((s,((s,x29),d)),t) (where d # t) as a subtype. Contradiction.

(VI) If expression o of category C translates as o' of type a' ['y], then tg(C) = a'.
Proof by induction on the complexity of o.: (i) the claim is trivial for lexical expressions.
(ii) GC/GD: oc = [cBc andyc] or ac = [cBcoryc] and a'y is derived from
GC/GD(B',Y)a: a = a'. By induction hypothesis (IH): tg(C) = type(p') and tg(C) =
type(Y). Note that type(B') = type(y) = a. So tg(C) = a'. (iii) FA: distinguish four
cases. (a) oes = [syr Brv] and o'y is derived from FA(B',Y)a: a = a'. IH: tg(IV)
= ((s,e),t) = type(B) = ((s,type(Y),a) and tg(T) = € = type(Y); (b) ouv = [rvBrv ¥rl
and o'y is derived from FA(B',Y)a: a = a'. IH: tg(TV) = ((s,€),((s,e),t)) = type(B) =
((s,type(Y),a) and tg(T) = e = type(Y); (c) ot = [TBpet Yon] and o'y is derived from
FA(B',Y)a: a = a'. IH: tg(Det) = ((s,((s,e),1)),((s,((s,€),1)),t)) => type(B’) =
((s,type(Y),a) and tg(CN) = el = type(Y); (d) orv = [rvBpv ¥s] and o'y is derived from
FA(B',Y)a: a = a. TH: tg(PV) = ((s,1),((s,€),t)) = type(B) = ((s,type(¥),a) and ta(S)
=t = type(Y). Note that in (a) thrqugh (d) (V) can be applied: the types tg(Cp) and
tg(Cy) are fitting [and not subject to !AL]: tg(Cp) = ((s,tB(Cy)),d), so tg(Cp) = type(B")
= ((s,type(Y),a) contains no 1VR. But this entails that d = a [since the application of
1AR to a type ((s,x),y) does not affect y], and hence d = a'. Thus: (a) d =t =tg(S) =
a'; (b) d = ((s,e),t) =tg(IV) = a'; (c) €2 = ((5,((s,e),1)),t) =d = a' [and e = tg(T) =1 VR
e2]; and (d) d = ((s.e),t) = tg(IV) = a.
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Corollary: apart from AL, the fact that the fragment is fitting entails that the argument
categories of the fragment [S,T,CN] only undergo ! VR; that unary non-main functor
categories [IV,Det] only undergo 1AR and 2VR; and that binary non-main functor
categories [TV, PV] only undergo 1AR, 2AR, and 3VR. Moreover, observe that ¢ = t iff
¢ =t (all type change leads to compound types), so in sentence readings [interpretations
of type t, cf. (106) above] unary main functor categories [IV,Det] only undergo 1AR, and
binary main functor categories [TV,PV] only undergo 1AR and 2AR.

Value raising and argument raising

Applications of AR and VR within functional application structures can be shifted back to
the functor. It follows that in pure application structures (structures which contain no
generalized conjunction and disjunction) only lexical type change is needed.

(VI) (a) IAR(FA(a,B)) < FA(+1AR(0),B)

(b) iVR(FA(a.,B)) <> FA(+1VR(0),B)
Proof: (a) IAR(FA(a.,B)) = AXAWAY Vw(*Az.a(*B)(X)(Z)(Y)). Note that since o &<
AVAXAWAY.0(V)X)(W)(Y), we have i+1AR(a)) & AVAXAWAY.YW(*"Az.o(V)(X)@)F)),
and FA(H+1AR(w),B) = +1AR(0))(*B) & [AVAXAWAY Vw(*Az.o(v)(X)(2)(Y))](*B) &
AXAWAY VW (*Az.0U(*B)(X)(2)(¥)). (b) is analogous to (a).

When translations @z ((s,b2),d)) and 0 ,b2) of a functor and (the j—1-ary main functor) of
its i-th argument are such that a final iVR-application to (the main functor of) that
argument ‘answers’ an 1AR-application to the functor, both applications can be omitted.

(VII) If ¢ = X;(...(Xa((AR(¢p)))...) [X;=PVR,p>ior9dAR,q#i] and o = iVR(0y),
then for ¢' = X1(...(Xn(90))...): ¢(W)*aX)) & ¢'(W)(*ao®)) [length(y)=i-1,
length(¥) = j—11. ([...] will be used for gaps in contexts, <...> for substitutions.)

Proof: Note that o & AZAV.Vv(*0(Z)), ¢ & AXAWAY . @[VW(*AW'.@0)], and ¢' &
AXAW'AY.D[@g], where Z does not occur in 0o and w' does not occur in ®.

P (*au()) & AXAWAY. @[V W(MAW'.Q0)I(W)(MAZAv. ' v(*ap(Z)(X)) <

AWAY . D[VW(AAW'.@)]<X:=y>("Av.Vv(r (X)) <

AY @AV V(M) (AW .00)]<X:=> & LY DIAW'.Qo(“oto(X)]<X:=y> &

AY . ®[Qo<w':=r0p(X)>]<X:=y> & Ay . P[Qol<w':=r0p(X)><X:=y> <
AXAWAY. D[Pl (W) (*ao (X)) < ¢'(W)(*ao®)).-

When translations @z ((s,b%),d)) and 0y¢ b4) of a functor and (the j—1-ary main functor of)
its i-th argument are such that two consecutive applications of JVR to (the main functor
of) that argument ‘answer’ two — possibly non-consecutive — applications or AR to the
functor, we can omit one JVR and the ‘innermost’ iAR. [Similarly in the case where
translations @z ((s,b#),d)) and 0y p4) of a functor and (the j—1-ary main functor of) its i-th
argument contain two consecutive applications of !AR to the functor which ‘answer’ two
— possibly non-consecutive — applications or JVR to (the main functor of) that argument.
There we can skip one IAR and the ‘outermost’ JVR. Proof omitted.]
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(X) If @ = X3(...(Xk(ARXis 1(... Xn(AR(90)))..)))..) [X1... X = AR or PVR (p
>1)] and a = Y1(...(Ym@VRUVR(aQ))))...) [Y1...Ym = AR or 4VR (q = j)], where
#(IAR in Xgs1...Xn) = 0 and #(AR in X;...Xg) = #(0VR+HAR in Y]...Ym) = 1, then for
@' = X1(...Xi(LAR(Xi+1(...(Xn(90))...))))...) and &' = Y1(...(Ym(VR(ap)))...):
WD) & G0 (X)) [length(§) = i1, length(F) = j-11.

Proof by induction onr.

r=0: Note that ¢ & AXAVAY.®1[VV(AAV'.@2[V'(*Av".00)])], and that ¢' &
AXAV'AY . @ 1[VV' (*Av".D2[@o])], where v" does not occur in ®3. Moreover, o <
AZALA[VE(AAE V(MM .0))] and o & AZALA[VE(AAL".0g)].

P (ra))) &

AVAY . @1 [VV(AAV' . Do [VV' (AAV".9p) D] <K= (AL A [VE(AAE VM (AL 0)) 1< Z:=)>)
& VY. D1 [ALA[VEOAL M (A" .00))]<Z:=x> (AAV . Do [VV' (A" .00) ) 1<K :=y>

& AY. D1 [A[AV. D[V (MAV". Qo) J(AAL VF (AL 00)) ]<Z 1= >] <X i=y>

& Ay D [A[D[ALf V(A" .00)(AAV".Q0)]]<Z :=)>] <X:=y>

& Ay . @[A[Do[po<v":= A" 0g>]1<Z =) >]<X:=y>

& Ay O1[A[Do[@ol<v":=rAM".0p>]<Z :=>] <X :=y>

& Ay D [A[AV". Do [Ppl (CAf".00)]<Z :=>]<X:=y>

& Ay DA A[VE (A" .01)1<Z :=0>(MAV" . D[ o] <X :=y>

& MWAY. D1 [V (A" D[ o)) 1<K :=y> (AL A [VE (AAf".00) ] <Z:=)>)

& PWHCa'(X)).

r>0: Since r > 0, we can assume that ¢ < AXAVAY.®[Vv("AV'.@o(X")(v)(¥"))] and that
o & AZAW.A[Vw(*ag(Z")] [length(X') = i—1, length(Z") = j-1]. Note that g and ol are
derived translations that have undergone r times 1AR and JVR, respectively. Hence the
induction hypothesis is applicable to ¢g and o: there are simpler terms @g' and o' (with
r—1 times IAR and JVR, respectively) such that: gp(X")(*0(Z")) & ¢0o'(X)(*0g'(Z")).
But then for @" = AXAVAY.®[VV(*AV'.@0'(X)(V)FN], a" = AZAw.A[Vw(*ag'(Z"))] it
will hold that (W) (*au(¥)) < @" (W) (rat" (¥)):

P &

AVAY . D[V . 0o (X ) (V)T NI<K:=y>(MAw A [YW(rag(Z)I<Z:=0>) &

AY AW A[YW(r0(Z NIKZ:=H>(CAV'.0o(X ) (vV)(TN]<K:=y> <

AY DALV .9o(X) (V)Y )(rap(ZN]I<Z:=H>]<K:=> <

AY BA[o(X)(Ao(Z))(Y)I<Z:={>]<X:=y> & (IH)

Ay D[A[9'(X)(*ag'(ZN(YNI<Z:ZH>]<K:=p> >

AY @[A[AV'.00'X)(V)(T (00 (Z))]<Z:=x(>]<K:=y> <>

Ay @[Aw.A[Yw(r0 (ZNI<Z:=>("AV'". 90" (X ) (V)T NI<K:=9> &

AVAY . P[VV(AAV'.90' X" (V) I NI<K:=0>("AwW. A [Vw(r00'(Z")]<Z :=)>) &

Q" (W(~at" (})).
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Generalized conjunction and disjunction

(VIII) generalizes to cases where the translation ¢ of the functor consists of (possibly
iterated) coordinations (conjunctions and/or disjunctions) of translations @j,...¢s: when
translations @z ((s,b2),d)) and o p2) of a functor with coordinates {@1,...Qs} and (the j—
1-ary main functor) of its i-th argument are such that a final JVR-application to (the main
functor of) that argument ‘answers’ 1AR-applications to all coordinates of the functor,
these applications can be omitted.

(X)  If @ =X1(...(Xn(AR({@1,...95})))...) [Xj= GD, GC, PVR, p > i or 9AR, q # ]
and o =iVR(0g), then for ¢' = X;(...(Xa({@1,...0s}))...): ¢V a®) &

©'(W)(*0ip())) [length(Y)=i-1, length(¥) = j-11.

Proof: @ & AXAWAY.®[VW(AAW'.Q1),...,"W(AAW".Qs)], & &> AZAv.Vv(*a(Z)), and
9" & AXAW'AY.®[Q1,...,0s], where Z does not occur in o and w' does not occur in .
P (roY)) & AXAWAY . D[VWAW'.Q1),..., Y WAAW'.0s) | (W) (PAZAV.VV(r0(Z)) (X))

S AWAY . O[VWAW' .Q1),...,YWAAW'.Qg) ] <X :=y>("Av.Vv(* (X))

& AV DAV VA0R)) AW .91),. .., AV. V(A0 (D)) (AW .@5) ] <X :=y>

& A7 QAW 91(*00(X)), - - .. AW". Qs(*ato(¥))]I<K:=y>

& AV D[Q1<W' =2 00()>,. ..,Ps<W' =20 () >]<X:=y>

& AY.D[@1,...,Qs]<W": =00 (})><X:=y>

& AXAWAY D[01,....05] (W) (*0ip(X) & ¢'W)(~ao()).-

(IX) generalizes to cases where both translations ¢ and o of a functor and (the j—1-ary
main functor of) its i-th argument are (possibly iterated) coordinations of translations
@1,...Qs and O1,...,0: when translations @z ((s,b4),d)) and 0 b4) with coordinates
{01,...9s} and {ay,...,04}, respectively, of a functor and (the j—1-ary main functor of)
its i-th argument are such that two consecutive applications of JVR to all coordinates of
(the main functor of) that argument ‘answer’ two — possibly non-consecutive —
applications or IAR to all coordinates of the functor, we can omit one JVR and the
‘innermost’ 1AR. [Similarly in the case where translations (2 ((s,b%),d)) and o p4) of a
functor and (the j—1-ary main functor of) its i-th argument contain two consecutive
applications of 1AR to all coordinates of the functor which ‘answer’ two — possibly non-
consecutive — applications or JVR to all coordinates of (the main functor of) that
argument. There we can skip one iAR and the ‘outermost’ JVR.]

XD Ife= Xl(...(Xk(iAR(Xk+1(.-.(Xn(iAR({m_,.-.tps})))--.)))).-.) [X1...Xn = GC,
GD, AR or PVR (p >i)] and a = Y1(...(Ym(VROVR({O1,....0t])))...) [Y1...Yn =
GD, GC, AR or 9VR (q 2 j)], where #(IAR in Xi41...Xp) = 0 and #(IAR in X;...Xy) =
#(JVR+JAR in Yj...Yp) =1, then @(Y)(*a(})) & ¢ '(Y)(*a'())) for ¢' =
X1(...(Xi(ARXis1(...Xn({@1,...0s}))...)))...) and Y1(...(Ym(VR({a1,...,0t})))...)
=o' [length(y) = i-1, length(¥) = j-1].

Proof by induction on r (analogous to (IX)).

r=0: Since @ < AXAVAY . @1 [VV(AAV . D2 [V' (*AV".01)]),..., Y V(AAV . D[ V' ("AV". 0)]],
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Q' & AXAVAY.@1[VV'("AV". D[ 01,...,95])] (Where v" does not occur in @5),
o & AZALA[VEOAL M (AM". 1)), ..., Y EAAL V(A" 0p))], and
o' & AZAMLAVE (A" ap),..., VT ("Af".0p)], we have @(§)(ra())) < & =
AY . D1[A[DP[@1<v":= A" .01 >],.. ., D[ @1 <V":=A A" 0>11<Z:=)>,

oA [D OV =AM A >, ... Do Ps<V" =AM 0 >]1<Z:=>] <K =,
and ¢(P(o'}) & €=
AY @ [A[Do[@1<v":=AA" 01>, ., Do[@1<V": = A" 0> ]1<Z :=>,

e A[D[Qs<V =" 0 >, Do Qs <V =" 0> ] <Z > ] <K=
But because v" does not occur in @5: 8 < €.
r>0: Since r > 0, we can assume that o0 < AZAW.A[YW(*a1(Z")),...,YWw(*ow(Z")] and
¢ & AXAWAY. OV Q1(XNV)T )., VO .Qu(XNV)F )], for v < s, w < t,
length(X") = i—1, and length(z") = j-1. Note that @1,...,¢y and Q,...,0y are translations
that have undergone r times iAR and JVR, respectively. So, we can apply the induction
hypothesis: there are simpler terms @1',...,0y' and o1',...,0y' (With r—1 times 1AR and
JVR) such that foralliand j, 1 Si<v, 1 £j <w: ¢iX)(*04(Z")) & i X)(ai'(Z").
But then for @" = AXAVAY. . ®[Vv(*AV.@1'XNV)T"))s.... Y V(AAV .0y XDV N], o
= AZAW. AW (@), W( o' (Z))] we have o) (Ca®) & 0" )" (D))

These facts suffice to check the claims about numbers of readings for the sentences
treated in the paper. They also suggest minimal ways of obtaining these readings: (i)
apply AL only to basic lexical translations; (ii) apply VR and AR only to translations of
lexical items and coordinations; (iii) apply only 1VR to S, T, and CN; 1AR, 2AR and
3VR to TV and PV; and !AR and 2VR to IV and Det; (iv) apply no VR to (coordinates of)
the main functor of the sentence; (v) do no final applications of JVR to (the j—1-ary main
functor of) an i-th argument which are ‘answered’ by an application of IAR to (the
coordinates of) its functor; (vi) do no consecutive applications of JVR to (the coordinates
of) (the j-1-ary main functor of) an i-th argument which are ‘answered’ by two
applications of 1AR to (the coordinates of) its functor; (vi) do no consecutive applications
of IAR to (the coordinates of) a functor which are ‘answered’ by two applications of J'VR
to (the coordinates of) (the j—1-ary main functor of) its i-th argument. Two examples:

9 Mary walks and seeks every unicorn
(126) Fred claims that every schoolboy believes that a mathematician wrote Through the

looking glass.

If we assume (for simplicity) that every unicorn is a lexical item, we see that there are five
candidates for type change: the four lexical items and the coordination walks and seeks
every unicorn. Seeks can undergo 1AL. The proper name only gives rise to final 1VR
applications which have to be answered by 2AR (on both conjoined verb phrases or on
their conjunction), so no type change is needed here (v). The quantifier every unicorn
necessitates 1AR for lowered seeks. VR for this noun phrase would be ‘final’ and
‘answered’ by 1AR on seeks, hence the verb needs at most one LAR. For the conjoined
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verb phrases and their conjunction, VR is ruled out (iv). We saw that 2AR on the
conjoined verb phrases or their conjunction would have to be answered by a final
application of 1VR to the proper name. So the choice is between <> (nothing) and
<1AL,IAR> for seeks: two readings.

Sentence (126) does not give rise to argument lowerings; there are no coordinations,
so the type change can be kept lexical. As for the term phrases, we see that the proper
names Fred and Through the looking glass only give rise to final VR applications which
have to be answered by their functors claims and wrote — no type change is needed here
(v). However, the quantified noun phrases every schoolboy and a mathematician
necessitate (‘unanswered’) applications of 2AR in their functors believes and wrote,
respectively. Iteration of 2AR on these functors would involve applications of final IVR
to the quantifiers (v). For wrote, then, we have exactly one 2AR and zero 1AR. The
remaining option, 3VR, is necessarily answered; hence it must be non-final (v) and non-
consecutive (vi). So, we are left with (o) <2AR> and (B) <3VR,2AR>. For claims, we
have zero 2AR. Besides, 3VR is impossible for this main functor of the sentence: value
raising would not lead to a translation of type t (iv). lAR will be answered; hence it must
be non-consecutive (vii). Le., (a) <> and (b) <lAR> remain. For believes, we have
exactly one 2AR and two possibilities, !AR and 3VR. The facts about wrote entail that
1AR will be applied at most once. 3VR is necessarily answered; hence it must be non-
final. Moreover, we saw that applying it more than once would violate (vii). Therefore,
the remaining options are (A) <2AR>, (B) <lAR,2AR>, (C) <2AR,!AR>, (D)
<3VR,2AR>, (E) <2AR,3VR,1AR>, (F) <1AR,3VR,2AR>, (G) <3VR,2AR,!AR> and
(H) <3VR,1AR,2AR>. Only the combinations (A)(a)(ct), (B)(a)(B), (C)(a)(B),
(D)(b)(), (EYDB)(B), (F)(®)(B), (G)(b)(B) and (H)(b)(P) fit: eight readings.
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