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1 The Interplay of Truth and Action

Many of our central cognitive notions have a dual character. For instance,
judgment stands for both an intellectual action and the content of that action, and
likewise reasoning denotes both an intellectual process and its products. This interplay
between 'static' contents and 'dynamic’ actions is also to be observed in our ordinary
use of the term 'natural language’, which can be either a static mathematical structure
of words and rules, but also a dynamic social activity with many systematic
conventions that are not necessarily encoded in explicit syntax. In the mainstream of
contemporary Logic and Linguistics so far, static aspects have been predominant,
witness the emphasis on isolating so-called ‘truth conditions' for linguistic discourse.
Here, what may be called Boolean propositional structure is paramount, with various
logical operators creating complex forms of description, such as negation, conjunction

or disjunction. In other words, the emphasis lies on "that" or "whether" certain
statements are true about a situation, not so much on "how" they come to be seen as
true. To some, this 'declarative’ bias, as opposed to a 'procedural’ one, is even a
laudable hall-mark of logical approaches as such. But, in recent years, there has been a
growing tendency in logical and linguistic research to move dynamic considerations of
cognitive action to the fore, trying to do justice to the undeniable fact that human
cognitive competence consists in procedural facility just as much as communion with
eternal truths.

The purpose of this paper is to propose a general model for construing the
interplay of content and action, which may be discerned behind many current
proposals in the field. Its mathematical core is not new at all, being derived from
existing systems of Relational Algebra and Dynamic Logic. What we want to show,
however, is its wide applicability and unifying power across a great variety of
apparently diverse research lines in the literature. Moreover, such a general model
allows us to start raising systematic questions of 'dynamic logic' across various fields.
In particular, we shall make technical proposals for studying such issues as the proper
choice of fundamental dynamic logical constants, charting the variety of dynamic
forms of inference, and the systematic interplay between newer forms of procedural
logic and the original standard systems. Finally, the model also invites reflection in the
end on a number of counts. We shall discuss a number of pertinent questions, such as
the ontological status of 'transitions' as a new basic category, or the complexity of
more procedural systems of logic.

In all this, our focus is on language and cognition, but not exclusively so: the
'general dynamics' of this paper applies also to non-linguistic activities, such as
digging or playing. Indeed, we feel that this is the proper strategic depth from which to



start logical analysis of these phenomena, before looking at the peculiarities of
cognitive action, or within the latter realm again, at specifics of lexically or
syntactically encoded cognitive action. Restricting oneself to the latter from the start is
like working with a one-dimensional projection of reality, deliberately throwing away
valuable clues out of respect for academic conventions. Moreover, at the present level
of abstraction, many similarities become visible between Logic, Linguistics,
Philosophy and Computer Science, which may become of mutual benefit. Thus, a side
purpose of this paper is precisely to effect a quantifier interchange here: each piece of
our picture is already in the hands of a number of colleagues, but we would like a
number of colleagues to hold all of them together.

2 The Procedural Structure of Dynamics

2.1 Relational Algebra of States and Transitions

The most general model of dynamics is simply this: some system moves
through a space of possibilities. Thus, there is to be some set S of relevant states
(cognitive , physical , etcetera) and a family { R, |ag¢A } of binary transition
relations among them, corresponding to actions that could be performed to change
from one state to another.

Procedural aspects of action or cognition then have to do with the way in which
such transitions can be combined to obtain certain desired effects. For instance, one
can think of an instruction manual for building a model airplane, or of a computer
program guiding some computation, or even a linguistic text as it modifies the
information state of its reader. For the moment, we do not constrain these examples
any further. '

'Logic' now enters as a study of the structure of complex procedures on binary
relational models and their general effects. If one wishes, this may be contrasted with
the 'standard approach', where logical systems strive for description of unary
propositional properties of states, which can only be tested for truth or falsity. The
difference is reflected, for instance, in the greater number of natural operators for
constructing procedures arising in the dynamic perspective, over and above the
Boolean Algebra of mere sets of states. It is easy, however, to exaggerate here: and
our view will be that the standard approach retains its value too, both intuitively and in
the technical sense of being able to reduce the dynamic one by 'translation’ if the need
arises.



What are the most general operations on actions? Specific examples, that occur
over and over again, are sequential composition and choice. But others occur
frequently too, such as undoing an action.

A convenient formalism for studying such general operations is that of
Relational Algebra, being the study of logical operations on binary relations initiated by
Ernst Schroder and Alfred Tarski (see Jonsson 1984, Németi 1990). Basic operations
here are the following:

—->N, VvV set-theoretic Booleans:
complement, intersection and union
o,” ordering operations:
composition and converse
A the identity relation.
More precisely,
RoS = { x,y)| dz: Rxz and Szy }

RV

{(x,y)| Ryx}

For instance, U models choice, o sequential composition and ~ ‘reversal' for
binary relations.

These operations O form a completely general procedural apparatus, which is
'logical' in the sense of being independent from any specific structure of states.
Technically, this may be seen in their so-called invariance under permutations of states.
For instance, in the binary case, we have that:

For every permutation TT of the state set S,
T[OR, S)] = O@[R], T[S] .

Therefore, not surprisingly, operations from relational algebra return across many
concrete systems of dynamics making more specialized choices for the space S .

Next, what are the basic inferential properties of the above logical operators?
A well-known list of axioms for these operations looks as follows. One starts with all
basic axioms of Boolean Algebra, and then adds the following equations



RoA = R = AoR
RYY = R

R = R

R U S)” = RY U S”
RoS)oT = Ro(SoT)
Ro(SUT) = (RoS)U RoT)
RUS)OT = RoT)U SoT)
(RoS)” = SYoRY
RY0o-(RoS)) U -S = -S.

Nevertheless, it is known that no finite axiomatization can capture all valid principles
of Relational Algebra in its set-theoretic guise: an observation to which we shall return
in Section 6.

It may not be clear a priori, however, why the 'static' mathematical notion of
validity chosen here, namely that of universally true algebraic identities, should be
suitable in all dynamic settings. Indeed, the literature shows that a dynamic approach
generates plausible new varieties of consequence, just as it generates new kinds of
logical operators (see van Benthem 1989A, D). For instance, genuine dynamic validity
of an inference might consist in the following sequential prescription:

'first process all premises successively,

then see if the resulting transition is succesful for the conclusion'.

But as we shall see later in Section 5, at least in principle, the latter notions can usually
be reduced to the above format.

Evidently, relational algebra as introduced here is a subsystem of first-order
predicate logic. What this means is that algebraic calculations may always be replaced
by predicate-logical reasoning using explicit variables for states. (In fact, Relational
Algebra is known to be an undecidable fragment of the latter formalism.) What this
gives us is at least a general reduction from dynamic reasoning to standard formalisms,
which may be useful for technical purposes, such as establishing standard meta-
properties or finding initial estimates of complexity.

In addition to first-order operations, however, there are also other natural
infinitary operations on binary relations. These correspond to 'unlimited' structures in
action, such as endless repetition. The most prominent technical example is that of
transitive closure:

R*

{ (x, y) | there exists some finite sequence of successive
R transitions linking x to y }.



This operation will also satisfy various algebraic principles, witness the following

sample
R U R* = R*
R** — R*
R U S)* = (R* o S*)* |

Digression. Relations and Functions.

Some current dynamic frameworks are couched in terms of functions rather
than relations, reflecting the intuitive idea of 'transformations' acting on states. In
principle, there is no conflict with our approach so far. In one direction, functions are
nothing but deterministic total relations, and hence the functional perspective is
subsumed in the present one. But also conversely, every binary relation R on S
induces a function R*" from pow(S) to pow(S) , by setting

R*(X) R[X] (={yeSI IxeXRxy }).

Moreover, nothing is lost in this larger setting, as these 'lifted' functions can still be
uniquely retrieved via a well-known mathematical property:

Fact. A function F:pow(S) — pow(S) is of the form R* for some binary relation
R on S if and only if F is continuous, in the sense of commuting with
arbitrary unions of its arguments.

The reason is that continuous maps F can be computed 'locally’, from their values at
singleton arguments only. The existence of such 'liftings' and 'lowerings' between
various levels of set-theoretic representation can also be studied more systematically
(see van Benthem 1986, chapter 3). As another example, here is a similar reduction of
maps on sets of states to 'propositions' in the standard style, being subsets of S :

Fact. A unary operation F on pow(S) is both continuous and introspective
(.e., FX)EX forall X&S) if and only if it represents some unary
property P via the rule

FX) = XnP.



2.2 Dynamic Logic at Two Levels

Although relational algebra is powerful enough in principle for embedding
standard propositions as special relations, there is much to be said for adopting a two-
level perspective merging propositional dynamics with statics. For instance, let us also
allow unary properties P, Q, ... of states henceforth. Then, the following picture
arises, connecting 'propositions as tests' on states with "propositions as programs' for

changing states:
unary properties - 'modes’ - binary relations
of states « ‘projections’ « between states
propositional operators program operators
(Boolean Algebra) (Relational Algebra)

The motivation for this dual system is partly technical, having to do with mathematical
elegance (see Section 4.1), but mainly conceptual: there remains a clear independent
intuition behind classical propositions. And there may also be a practical advantage
here. Procedural effects are 'local’, leaving no traces in short-term memory, while
classical propositions may be closer to eventual stored content that can be recalled
afterwards. Thus, operating jointly with two (or even more) levels of 'short-term
logic' and 'long-term logic' may be eventually what is needed in cognitive practice.

Indeed, the above picture suggests a number of mechanisms for switching from
one perspective to another, which turn out to correspond to plausible moves that we
make in practice. For instance, classical propositions give us 'descriptive contents' for
different kinds of action on states, such as

testing P P AXy. y=x A Py
realizing P P Axy. Py .

And the latter proposition-driven modes of action deserve independent logical
investigation as such. For instance, even in ordinary argument, there are clear shifts of
mode. Intuitively, in the transition "so" from premises to conclusion, a shift is felt
from a processing mode for the successive premises to a testing mode for the
conclusion.



Likewise, in the opposite direction, there are various natural projections from
programs to statements, providing classical properties recording the behaviour of
binary relations between states, such as

domain R Ax. dy Rxy
diagonal R Ax. Rxx ,

where the latter gives the 'fixed points' of the transformation R .

A simple mathematical analysis of special transitions between the two sides,
preserving basic logical structure, tells us the following (cf. van Benthem 1986):

Proposition. Among the logical (i.e., permutation-invariant) modes, exactly two are
Boolean homomorphisms, namely
AP. Axy. Py ('left expansion")
AP. Axy. Px (‘right expansion')
Among the logical projections, only one is a Boolean homomorphism, namely
AR, Ax. Rxx (‘diagonalization').

The other transformations mentioned above, such as 'domain’ or 'test', are not entirely
without preservation behaviour either. Both are continuous, in the earlier sense of
commuting with arbitrary unions of their arguments. In fact, all continuous logical
modes and projections can easily be classified: they form a finite set.

Such mathematical properties are not ad-hoc. They also make sense in other
domains: in particular, for logical operations within the two domains of propositions
themselves. For instance, of the earlier basic operations of relational algebra, Boolean
intersection and union are continuous in both arguments, and so are composition and
converse. The only exception is Boolean negation, which has a special position in
other respects too. Thus, we can trace analogies in the logical behaviour of expressions
across different categories.

The above system may be compared to 'Dynamic Logic' in the technical sense
of the word, a branch of applied Intensional Logic developed by Vaughan Pratt and
Rohit Parikh (see Harel 1984). The core system of propositional dynamic logic has
'formulas' and 'programs’, defined via a mutual recursion. Basic operators on
formulas are the Boolean connectives, while programs are joined by means of the so-
called regular operations':



(sequential composition)

.o

(Boolean choice)
* (Kleene iteration) .

Finally, there is a 'test' mode ? taking formulas to programs, and a 'projection’
modality < > taking programs TI and formulas ({ to formulas <TT>( . (A dual
universal modality [ ] may be defined in the usual manner.) This formalism is capable
of expressing many standard operators on programs, such as Conditional Choice or
Guarded Iteration:

IF ¢ THEN 11 ELSE T2 (e?;11) U ((Me)?7;112)
WHILE ¢ DO T (e?;m)*;(7¢g)?

Moreover, it expresses various useful types of statement about execution of programs,

such as Correctness, Termination or Enabling:

p - [m]ly precondition ¢ implies postcondition

after every succesful execution of program TT
<m>T program TT terminates
[TT1]<T2>0 program Tl 'enables' program TT2

to produce effect @.

One virtue of the restricted set of regular program operations, as compared to
full relational algebra, is that the resulting logic is decidable. Moreover, it manages
with a perspicuous set of principles (on top of the minimal propositional modal logic),
the so-called 'Segerberg Axioms':

<Tml;m20 > 0@ o <MI><N2>0
<TIum2>0@ <TI>V <T2>0@
<@?>y o @AY

<T*> 0@ - PV <T>LT*>0

(@ A [m*)(e — [m]e)) - [T*]e

Most of these equivalences are direct reductions' determining the behaviour of
program constructions. The final Induction Axiom for iteration, however, reflects the
more complex infinitary behaviour of this notion. This logical calculus generalized
various earlier natural systems of reasoning, such as 'regular algebra’, 'propositional
modal logic' and 'Hoare calculus' for correctness assertions.



Like Relational Algebra, Dynamic Logic is an open-ended enterprise, in that
many further operations may be studied. For instance, on top of the above, one can
add the earlier converse operation on programs, running them backwards. This gives
rise to what may be called a two-sided 'tense-logical’ variant of the system. Moreover,
in the literature, the missing Booleans N and - have been brought in after all, be it
at the price of loss of decidability (cf. Goranko & Passy 1990, Vakarelov 1990). And
finally, there has been a good deal of research on various less standard operators of
'parallel execution' in this framework.

3 Concrete Dynamic Systems
3.1  The Structure of States
So far, we have only discussed general procedural structure. A specific

dynamic system will usually specify a more detailed set of states, in order to introduce
meaningful basic actions. These can have quite diverse forms, such as

real action put the block on the table
games serve the ball

computation assign some value to a register
information flow update the current state.

We shall review a number of more concrete examples below, with 'states’ being either
concrete physical states, or more abstract procedural ones, or mixtures of both (the
most frequent case in practice).

Not only different types of activity induce different kinds of state. Even one
and the same activity may be studied using states with different degrees of detail. For
instance, already in relational algebra, one can make a standard shift from the original
states S to finite sequences of such states, being the 'traces' of some relational
process. Then, the algebraic operators acquire obvious new meanings: for instance,
composition becomes 'concatenation' of traces (see Section 6 below). But of course,
one can also give states various components, recording different aspects of the process
taking place.

Supplying further detail about the set S of states does not only show up in
basic actions: it may also produce further complex procedural operations. For instance,

10



suppose that cognitive states are ordered by some pattern & of inclusion by
informational content. Then, there arises a much richer array of

. 'propositional modes', such as
updating up(P) AXy. xSy A Py
minimal updating K =up(P) AXxy. XEy A Py A
14z (xSzCy A Pz)
downdating down(P) AXy.x2y A TPy
. 'unary propositional operators', such as
possibility poss(P) Ax. dy xSy A Py)
. or 'binary operators' in general, such as
upward part upw(R) Axy.Rxy A xCy.

This study can be undertaken in two ways. One is to retain the above relational
algebra, while adding a constant relation symbol & explicitly (in addition to the
already available identity A ). The other option is to leave the inclusion ordering
implicit, more like accessibility in Modal Logic, and develop a generalization of
relational algebra to 'information models', where logical operators no longer satisfy
invariance with respect to all permutations of states, but only with respect to those
which are also S -automorphisms (cf. van Benthem 1989C).

More concretely, the above models may be used to create dynamic variants of
standard systems of intuitionistic or modal propositional logic. For instance, one can
read the modal operator > itself as a name for the inclusion relation. Moreover,
atomic propositions p can be interpreted as standing for updates, either general or
'minimal’ in the above sense. Then, there will be further complex algebraic operations
corresponding to connectives, such as sequential composition, or testing for
domainhood of some relation. (An implementation of this idea for the related case of
temporal logic may be found in van Benthem 1989E, 1990.) In a sense, this comes
closer to the original intuitions behind possible worlds semantics for intuitionistic
logic, as being concerned with the growth of knowledge for an epistemic agent. But
now, we want this implicit ideology to have its explicit reflection in the design of our
logical system itself. Here is a concrete system of 'dynamic modal logic' to illustrate
this new perspective on standard intensional systems (cf. van Benthem 1989C for
further details):

Propositions now denote transition relations in a standard possible worlds

model M = (W, R, V) of 'information states' ordered by some relevant relation R
('inclusion' & as above, or 'cognitive preference’, etcetera):

11



First, here are some atomic actions:

(9] = { (w,w) I weV(q) }
[lq!1] = {(w,v)IveV(qg) }
[[up(q)]] = { (W, v) IRwv and veV(q) }

[ =up(@)]] { (w,v) IRwv and veV(q) andno u
strictly in between w and v isin V(q) }
Perhaps surprisingly, the modality itself may be viewed as an instruction standing for
an atomic move (say, random extension’):
<on = R
Then, the procedural repertoire on top of this contains at least 'sequential conjunction'
and a test of 'strong failure':

leAwll
(=@l

[[@e1le[[y]]
{ (w,w)Iforno v, (w,v)e[[@]]}.

This is just one basic system. In general, 'dynamic modal logic' is more of a
family of related systems, differing in their choices of repertoire for atomic actions and
general procedural operations. For instance, one can also have downward atomic
actions of liberal or strict downdating. And one may add further procedural relational
operations too, such as Boolean complement or intersection (standing for parallel
conjunction):

[ A ]I = [eINIyll.

And finally, a full dynamic logic on this basis is possible, having both static and
dynamic formulas, incorporating the initial atomic modes uniformly for the former,
e.g., allowing updates for all complex formulas.

The theory of even this full relational version of basic modal logic may still be
studied by standard analogies. For instance, its transition predicates allow of a
'standard translation' into the full first-order language over information models, which
explains a number of general features of its logical behaviour. Indeed, e.g., its 'pure
test fragment’ may still be embedded back into its standard counterpart (van Benthem
1989E). Even so, many of its properties, especially concerning decidability, are still
largely unknown.

3.2 General Activities
Let us now briefly consider a number of dynamic 'genres', seeing how the

above structures are exemplified in them. The first batch concerns non-linguistic, or
non-primarily linguistic phenomena.

12



. Real action in the world changes actual physical states.

Basic actions are defined either by intrinsic properties of a process, such as
"moving", or by a desired end state: "to put a block on the table". In both cases, we
recognize our earlier modes: either the resultative ! describing the resulting state, or
some imperative linked to a pure description of the desired transition itself.

The algebra of actions includes all Boolean operations: "walk and whistle"
(intersection), "walk, don't run" (complement), "take it or leave it" (union), and also
all ordering operations: "hit and run" (composition), "put it back" (converse).

Finally, real action involves a natural interplay between instructions and
descriptive tests, as shown in "take the tram if you are late" or "run until you are
safe" . Not surprisingly then, Pratt 1980, Segerberg 1980 and Moore 1984 have used
Dynamic Logic as a general theory of action (see also Meyer 1988). Note that there are
also various natural relations between actions that can be expressed in this framework,
ranging from 'implying' to 'enabling’ in an earlier sense.

. Playing games is another form of action with a clear procedural structure.

Here, the notion of state can be more complex, involving both physical
components and more ephemeral obligations and commitments of participants.
Examples range from sports to cognitive games, such as those introduced into Logic
by Lorenzen 1962, Hintikka 1973B.

Again, basic actions include both kinds of transition ("serving a ball", "drawing
an object to be inspected") and tests ("the ball is in", "a player is over-committed").

As for operations on games, the most natural ones seem to be those of choice
and sequential composition. Already in a two-person game, the former leads in fact to
two options, depending on whose choice is involved. To see this, identify such games
with Parikh 1984 as relations between states representing a win for player I if she
plays her best strategy. Then starting with a choice for I amounts to Boolean union,
but starting with a choice for player II to Boolean intersection. Moreover, the two
roles suggest a natural operation of 'role switching', which amounts to switching of
winning and losing states: i.e., to Boolean complement in this representation.

Of course, subtler representations for games are possible too: modelling them,
for instance, with both possible transitions and sets of distinguished winning states.
Then, e.g., role switching might affect only the latter coordinate. But this is just an
earlier general point about all our examples: activities and processes can be modelled at
different levels of 'grain size'.

. Perhaps the most important physical process of state change, as far as logical
theory is concerned, is that of computation.
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In the simplest set-up, states are environments mapping variables (‘identifiers’)
in a programming language to values in some data structure. These represent snapshots
of the registers during computation.

Basic actions are then assignments x:=t and tests €? for so-called 'Boolean
conditions' € .

The procedural structure of programs has been investigated since Floyd 1967,
with operators including the earlier-mentioned sequential composition, conditional
choice and guarded iteration. All of these fell within relational algebra, be it that the
latter involves infinitary iteration. The latter is often taken to be a special feature of
computation: but see van Benthem 1989D for more general cognitive uses of such
operators, for instance, when recording continuing (as opposed to singular)
commitment in a dialogue.

The semantics of programming contains many cues for a more detailed general
logic of dynamics. We mention two simple features that connect up with Section 1.

First, in Computer Science, there is sometimes a preference for an alternative
operational description of what a program does: namely, as a 'predicate transformer’
mapping 'preconditions’ into associated 'strongest postconditions'. What this amounts
to is nothing but the functional representation of Section 1.

Then, even for sequential imperative programming, there are standard
techniques that reduce relational assertions to statements in some standard logical
formalism over states (via 'transition predicates' explicitly manipulating their
variables). This will lead us into first-order predicate logic, or in the presence of
infinitary program constructions, into logics having infinite conjunctions and
disjunctions (cf. Goldblatt 1982 for a principled defense of the latter habitat).

Finally, again, there is no single notion of state serving all computational
purposes. For instance, Pnueli 1977 has a mixture of physical environments and
internal recording of 'control’. Likewise, one may want to preserve more information
about the traces of computations, as in Process Logic (Harel, Kozen & Parikh 1982)
or Process Algebra (Milner 1980, Bergstra & Klop 1984).

3.3  Linguistic Activities

In the field of natural language, dynamic ideas have been around for a long
time. For instance, in Semantics, incremental growth of discourse representations was
already advocated, amongst others, in Seuren 1975, with modern implementations in
Heim 1982, Kamp 1984, Seuren 1986. And in Pragmatics, the tendency dates back to
at least Stalnaker 1972, who proposed 'context change' as a driving force. This is no
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coincidence, since a more procedural orientation goes naturally with the older historical
perspective of global 'language games'.

Here again, there is a great variety of states and prominent operations,
depending on the particular speech act or linguistic 'mode’, such as evaluating a
sentence against a given model, constructing some partial model, querying a certain
predicate, etcetera. We shall survey a few families of linguistic procedures
demonstrating this dynamic potential.

3.3.1 Tarskian Variations

The standard truth definition explains the notion @ D,IL, b F @ : thatis,
'formula @ is true in structure D under interpretation I and variable assignment b'.
In this scheme, various 'parameters' may be varied dynamically. For instance,
evaluation of formulas may be viewed as a process which changes the assignment b .
This idea has been proposed by Heim 1982, Barwise 1987 and Groenendijk &
Stokhof 1989, who provide different technical implementations. But then, one can also
change the interpretation function I : for instance, when incorporating the answer to a
question "who wants an ice cream?" into one's partial picture of the model. And even
the whole structure D itself may be changed, for instance, when learning about new
individuals and new facts. All these possibilities are demonstrated rather nicely in the
graphics of the computer program Tarski's World' (Barwise & Etchemendy 1988).

Here is a basic system of this kind, analyzed in our general framework. The
'dynamic predicate logic' of Groenendijk & Stokhof has assignments for its states, and

essentially two kinds of basic action:

Xi=- random assignment to the variable x
P? tests for atomic assertions P.

Its further operations are then just two: sequential composition, as well as a test of
strong failure

~R

{(x,x)| T13dyRxy}.
The latter can be defined as follows in relational algebra:

AN -(ToRY).
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Thus, dynamic predicate logic is a relational algebra of random assignment with a
limited number of algebraic operations on propostions.

Note how there is no independent instruction for quantifiers in this set-up. The
existential quantifier corresponds directly to random assignment, while the universal
quantifier may be viewed as a test defined out of this. What this suggests is that there
need not be any 'quantified dynamic logic' over and above the 'propositional’ analysis
that we have already given in Section 1.

Finally, from the point of view of 'design’ then, it would also make sense to
study the full relational algebra of random assignment, including all Boolean
operations, whether or not this happens to be realized in natural languages.

Next, as an example of changing interpretations, one can think of imperative
instructions of the form

Px!

which drive a 'state’ consisting of a pair (b, I) to a new (b, I') in which we have
added the object b(x) to the interpretation I(P): I'(P) = I(P) U {x}.
We shall not go into such systems here: the main principle will be clear.

Finally, more intricate semantic settings are conceivable too. For instance, in
Hintikka's game-theoretical semantics, the main idea in evaluation is finite sampling
from a given structure. In that case, states may consist of partial assignments plus
some finite subset of the domain of individuals where they take their values. Thus, Jx
will become an instruction for drawing one more object from the background. (In more
psychological terms: one shifts an item from long-term to short-term memory.) Then,
further distinctions arise for other quantifiers. For instance, a universal quantifier may
now be read as either referring to the sample, or to the total domain. Or more
generally, we can now make a plausible distinction between local procedures operating
on the sample and global procedures operating on the whole structure.

3.3.2 Information Flow
The preceding example was concerned with dynamics of interpretation. Now,
let us consider the dynamics of information flow, accompanying the uses of natural

language. There is a wide variety of models in the literature capturing parts of this
phenomenon, which we shall first review in broad outline.
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A very general perspective was proposed in Gérdenfors 1984, which starts
from a bare set of cognitive states and a family of propositions as operations on these,
and then explains logical operations on the latter by means of mathematical structures
from Category Theory. In particular Girdenfors has composition, but also equivalence
(due to the assumed existence of 'equalizers’). Then, he imposes very strong
constraints, such as Idempotence (i.e., f(f(x)) = f(x) forall f and x ) and
Symmetry of composition, in order to pave the way toward standard intuitionistic
logic. These constraints are removed in van Benthem 1989D, which views
idempotence or symmetry as special denotational properties which propositions may or
may not have. Moreover, an inclusion order € is postulated among cognitive states,
which allows for the formulation of finer propositional properties, such as that of
being an 'update function', or certain plausible forms of 'monotonicity’ (i.e., the
property that a function f preserve the inclusion order among states). Finally, more
concrete notions of state may be found in Gérdenfors 1988, namely both decfuctively
closed sets of statements and probability distributions over a language. In the latter
setting, a more detailed logical theory is developed of various modes for standard
propositions: not just updating, but also revision and contraction (the earlier
'‘downdating’).

But there are many more concrete models too. For instance, in the literature on
temporal logic, already Allen 1983 has a semantics in terms of temporal data networks
that get updated, and which produce the outcome 'true’ for a statement in a state just in
case its processing leaves that network state unaffected. And likewise, the temporal
discourse theory of Kamp 1979 has a similar flavour, with states being partial temporal
data bases. This idea then became generalized in the Discourse Representation Theory
of Kamp 1984, where 'discourse representation structures' serve as cognitive states,
which are transformed by each successive proposition that gets incorporated.

A simpler, 'non-representational’ model of information stems from the logical
folklore, with recent explicit expression in Heim 1982, Veltman 1988. Here, states are
merely classes of valuations, models or indices, which get narrowed down as further
propositions are learnt. In a sense, this was already the original leading motivation
behind possible worlds semantics as an account of information (although an alternative
dynamic view of the framework takes the indices themselves to be information states).
This model can be enriched to accommodate various epistemic operators. For instance,
in Conditional Logic, implications have been traditionally explained in terms of
'preferences’ among models: 'the conclusion must be true in all most preferred worlds
where the antecedent is true'. But then, it is reasonable to think of a state as a set of
worlds together with a preference order over them. And certain operations will affect,
not so much the descriptive content of a state, but rather our preference pattern over the
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worlds in it. This is the main idea, for instance, in Spohn 1988, Veltman 1989,
Sandewall 1989, when explaining the cognitive effect of adopting certain heuristic
default rules.

Finally, however, there is an alternative approach too, where information states
would not be sets of models, but rather indices within one single possible worlds
model (cf. Vermeulen 1989, as well as the dynamic modal logic of Section 2.2). This
would be appropriate for, say, intuitionistic logic, where worlds have traditionally
been thought of as representing stages of knowledge. In that case, cognitive dynamics
consists in moving through one such model, going from world to world. (An idealized
mathematician will always move forward along the inclusion order, ordinary human
beings can also be observed plodding on more zigzagging tracks.)

What has been described so far is merely a number of possible notions of
cognitive state. In addition, as before, a system of information flow must specify basic
actions and procedural operations over these. We shall merely give some examples
here of what may be encountered. In 'constructive' accounts of cognitive states, basic
actions will consist in adding or removing pieces of code, perhaps followed by closure
under some deductive algorithm. It seems fair to say that little systematic theory has
been developed concerning these matters so far. In the more global account with sets
of models, things are a little easier. Basic actions may be intersection of these models
with some fixed set, thus increasing descriptive content, or changing the preference
pattern over them in some prescribed manner. As for procedural operations, it may be
of interest to list a few found in Veltman 1988, which is concerned with the
'deterministic’ case, where all relevant relations are functions:

[[q]] X) = XNnQ

e APl X) = [y deN X))

[([eVvyllX) = (1l X) VU [[yll X

[[=%11 X = X -1l X)

(Sl (X) = X if [[EIX)#@
@ otherwise

All these operations move an agent 'forward’, to ever smaller sets of possibilities.
Backward movement would come in with an 'epistemic retreat', as produced by the
qualifier "unless (@ ", which adds the whole range [[@]] to the information state
again. Moreover, relations instead of functions over states would arise here with a
revision variant' of the modality, where one would have to retreat to 'some' superset
of X for which [[@]](X) is still non-empty.
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Without the modality, this is still a purely descriptive system, where
propositions p map states X to their intersection with the standard models for @ .
(The technical reason is that all such functions are still 'continuous’, in the sense of
Section 1.)

Once a preference relation comes in, as outlined above, more complex
instructions may be formulated. For instance, van Benthem 1989D takes incoming
propositions with a 'heuristic' surplus of information. That is,

[[q]] X) consists of only the most preferred statesin X N Q.

Then, even in the purely 'descriptive’ propositional case, order of presentation
becomes important: there will already be differences between the dynamic effects of
P°q, q°p or pNgq. Also, even atomic functions [[q]] will no longer be continuous.

4 General Procedural Logic

In the above framework, a number of general questions of logical dynamics
arises, of which we discuss a few of the more salient ones: namely, expressive power,
interaction between truth-conditional and procedural views, varieties of inference and
natural kinds of informational 'aspect'.

The results thus obtained may be applied again to the concrete systems listed in
Section 3.

4.1 Logicality and Invariance

Traditional Boolean Algebra comes with a rather clear-cut idea as to what are
the central truth-functional operations on propositions, which is then sanctioned by the
usual Functional Completeness theorem. By contrast, Relational Algebra provides a
plethora of possible operations on relations. So, one immediate foundational question
is what are most natural operations on propositions, the 'logical constants' so to speak,
in a dynamic setting. This question probably has no single definitive answer (cf. van
Benthem 1989A, C). But what we can do in the present setting is provide an important
type of systematic approach.

One basic idea in semantics is that we can measure the expressive power of a
formalism against its sensitivity to comparisons between similar models that 'simulate’
each other to some extent. Now, one reasonable notion of simulation for dynamic
processes derives from ordinary Model Theory. If we want to compare two structures
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of states-cum-transitions, it must be possible to trace similar processes on either side
across suitably connected states and transitions. Technically,

A binary relation C from S1 to S2 linking points to points and ordered pairs
to ordered pairs is a 2-simulation between two models (S1, {R151agA}),
(52, {R2, lagA}) if it satisfies
'Partial Isomorphism':
matching points (in ordered pairs) satisfy corresponding relational
transitions R1g, R2,,
as well as 'Zigzag'":
if xCy and zg£S1, then JueS2: xz C yu,
and vice versa.

Then, a formula @Q(x,y) may be called invariant for 2-simulation if its truth value is
unaffected by passing from evaluation in one model to a corresponding pair of states in
a simulated one.

At least within first-order logic, the syntactic effects of this notion can be
described very concretely (cf. van Benthem 1990A):

Proposition. A first-order formula @ (x,y) is invariant for 2-simulation if and only
if it can be written using the two variables x and y only (free or bound).

Examples are the defining schemata for the following operations from our

earlier relational algebra:
all Booleans AXy. —Rxy
Axy. Rxy A Sxy
conversion Axy. Ryx
identity AXY. X=y
domain Axy. dx Ryx (no fresh variable z is needed!)

By contrast, composition involves three variables essentially:
Axy. 3z (Rxz A Szy).

More concretely, this tells us the following about the algebra of relations. If one
wants procedural structure that involves essentially just computation over two
registers’ X, y when traversing states, then the following limited set of operations
suffices:
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Proposition. Each first-order formula @(x,y) with two free variables using only
X,y atall can be written in a variable-free notation using the following
algebraic operators:

Booleans -, N,V Conversion
Identity A Domain Do.

The complete Relational Algebra of Section 1 moves us one step up, as was
already observed by Tarski:

Proposition. The operators { =, N, U, ¥, A, o } form a complete variable-free
notation for all first-order formulas @(x,y) that can be written using only
three variables x,y, z.

Again, there is also a model-theoretic characterization of the three variable
formalism, this time in terms of 3-invariance with respect to simulation of states,
pairs of states and triples of states. (See van Benthem 1990A for more general results.)

These propositions are instances of a more general effective correspondence,
between 'finite variable fragments' and complete finite sets of algebraic operators (cf.
Gabbay 1981, van Benthem 1989C). In general then, the following Procedural
Hierarchy arises:

level k=1 is that of the Boolean operations
levels k=2, 3 have been described above

Corresponding invariances will provide ever finer views of processes. For instance,
2-simulation preserves only the structure of successive transitions, while 3-simulation
already allows us to decompose a transition into components and make comparisons
on both sides. From here, the finite-variable hierarchy extends indefinitely:

The full first-order language over state structures is not exhausted by any of its
k-variable fragments, and hence no finite set of algebraic operations is
functionally complete for all of relation algebra in this wider sense.

This, then, is our proposed general background against which to discuss choices of

logical operations in a dynamic setting. The Procedural Hierarchy of logical constants
allows us to determine the fine-structure of various combinations of instructions.
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Example. This perspective may be applied to determine the 'fine-structure’ of
proposed dynamic operations. For instance, the 'strong negation' of Groenendijk &
Stokhof 1989 lies within the 2-variable fragment, since it may be written as:

~R = AXy. y=x A—3Jx Ryx.
Also, even though composition is essentially of 3-variable complexity, taking domains
of compositions may already be done using two variables only:

Do(RoS) = Ax. dy Rxy A 3Ix Syx) ().
Then, in the dynamic version of modal logic considered earlier, ordinary updates lie
within the two variable fragment:

AXy. XSy A Py , or algebraically
S N Do(P?) .

But minimal updates require three variables essentially:
AXy. XSy A Py A =3z (xE#z A zE#y A Pz) , or algebraically

S N Do(P?) N - ((€n-A) o (P? o (Sn=-A))).
Some technical details on the Procedural Hierarchy are given in Appendix 6.1.

4.2  Dynamic Logic Revisited

From the above point of view, it seems natural to consider both unary
statements @(x) and binary ones @(x,y) in technical co-existence. This brings us
again to the earlier Dynamic Logic.

The notion of invariance can also be specialized to explain the specific 'modal’
operations available in the basic propositional dynamic logic. For this purpose, one
needs so-called modal zigzags (or 'bisimulations' in the computational literature): that
is, 2-simulations where the back-and-forth clauses only refer to taking Rg-successors
of C-connected states. This amounts to tracing a process only via successive atomic
actions. Again, a characterization result exists (cf. van Benthem 1985):

Theorem. The first-order formulas (p(x) that are invariant for bisimulation are
precisely those that occur as translations of modal formulas (in a poly-modal
logic with possibility operators for each atomic relation).

Of the first-order relational algebraic operations, this still leaves composition and

union: as these admit of obvious reductions. But statements involving, e.g., Boolean
intersection or complement of relations need no longer be preserved in this fashion.
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What we see here is an instance of a more general phenomenon. The usual
notions of Modal Logic may be generalized to a dynamic setting - and then, they
provide us with specific 'semantic constraints' on algebraic operations, that bring out
some characteristic differences among the various inhabitants of Relational Algebra.
Another illustration is modal 'Locality’, being the restriction of evaluation to iterated
successors and predecessors of the point of evaluation only, which distinguishes
negation from 'positive’ Booleans like union or intersection.

Also, here is an example of a natural 'model shifting' constraint, relating
evaluation of instructions in one model to that in its extensions:

Which relations [[TT]] expressed in our language have the following

'Persistence Property":

if M1 is a submodel of M2, then [[TT]Ip1 is the

set-theoretic restriction of [[TT]]p2 to the domain of M1 ?
This time, the Booleans operations are completely harmless, but it is rather
composition which may fail to be persistent: a transition might be decomposable into
certain steps in the larger model which are not available in the smaller. And a similar
observation applies to the earlier testing mode for negations ~( .

These semantic constraints are of a structural nature, and do not depend on any
specific (first-order) formalism. In particular, infinitary operations can share them too.
Invariance for bisimulation provides a good illustration. In fact, we have the following
joint observation, whose proof is by a simple mutual induction, showing that basic
behaviour for atomic propositions and atomic programs extends to all complex ones:

Fact. Let C be amodal zigzag between two models M1, M2 for propositional
dynamic logic. Then,
1 C-corresponding states X, y verify the same formulas @ ,
2 all programs TT have the back-and-forth property:
if xCy and x[[TT]]p1X', then there exists some y' with

yl[T]IMm2y' and yCy'.

The infinitary construction TI* presents no special difficulty here. In fact, it may be
shown that modal zigzags exist between two models if and only if these have the same
theory in an infinitary standard formalism, namely, the above poly-modal logic
provided with arbitrary infinite conjunctions and disjunctions.

Remark. It remains to be understood precisely what makes the regular fragment of
the latter formalism so special. By Kleene's Theorem, regular programs 1T correspond
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one-to-one with finite state automata, recognizing, in this case, 'languages' consisting
of all finite sequences of atomic transitions that form the traces of succesful
computations for TT . Thus, regular programs have a relatively simple computational
behaviour. Moreover, regular operations correspond to natural ways of combining
processes, such as putting them in 'series' or in 'parallel'. Can we give similar
computational analyses for other fragments of relational algebra? For instance,
complement corresponds to switching accepting and rejecting states (like the earlier
role switching in games), while intersection involves running two processes
simultaneously. Thus, one might get a handle on the relative complexity of various
procedural constructs per se, rather than of global classes of programs.

Digression. The earlier perspective of Section 2 also suggests certain changes in
Dynamic Logic as it is usually conceived. These include adding
. a fixed program A ('skip’) for the identity relation.
. the 'realizing' mode ! (sending the property P to the relation Axy. Py),
or equivalently,
a fixed program U for the universal relation (random change").
(The resulting extension has been axiomatized and shown decidable in
Goranko&Passy 1990.)
. the projection of diagonalization sending relations R to properties Ax. Rxx .
(Gargov & Goranko 1990 axiomatize this, under the name of 'loop'.)

Finally, the Dynamic Logic perspective may be used to implement a two-level
architecture for various dynamic systems from Section 3, computing both dynamic
effects and their static 'projections':

................................. procedural logic
projection
standard logic
Example. Computing Preconditions and Postconditions.

In computational practice, behaviour of programs is often explained in terms of
changing preconditions and postconditions. From our dualistic point of view, this
amounts to measuring standard 'unary' informational content along the way. In
particular, starting from some set of states described by a predicate P, execution of a
program TI moves us to a new set of states (the image of P under TT '), defined
by the strongest postcondition of P under T :

SPP, ).
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Conversely, one may also compute weakest preconditions for a resulting predicate
under a program: WP(TT, P) . The two are related by conversion:
SP(P, 1) = WP(TTY, P).

Now, weakest preconditions describe nothing but the inverse images of
relations with respect to certain sets. But, this is precisely what is defined by the
central notion of propositional dynamic logic, being < T > @ . And then, the
reduction axioms of the latter system may be seen as recursive clauses for computing
weakest preconditions. (No similar recursion holds for a pure 'domain' operator on
relations: the unary predicate at the back is essential.) Again, this will work only for a
limited fragment: there is no similar decomposition for such Boolean combinations as
<T1INTM2> or <-T> ,which explains their somewhat more complex status.

Applying all this to the earlier system of dynamic predicate logic, a simple
effective mechanism results for computing changing ‘classical’ informational contents
during the dynamic process. First, we note this

Proposition. Weakest preconditions decompose via the following recursion:

WP(At, P) = P A At

WP(x:=-, P) = dx P

WP(p10@2,P) = WP(@1, WP(92, P))

WP(~(p, P) = PA-=WP(@,T) (with 'T' for 'true') .

These clauses may be computed directly or derived via transcription into
propositional dynamic logic.

For strongest postconditions then, the above reduction works, since dynamic
predicate logic is closed under conversion:

both atomic actions are symmetric

(At~ = At (x:=-)" = x=
and conversion treats compounds as follows

(gop)” = yYou¥ (~9)” - -,
More direct recursion clauses would look like this:

SP(P, At) = PA At

SP(P, x:=-) = dx P

SP(P, @oy) = SP(SP(P, @), W)

SP(P, ~@) =  PA-WPQT) ().

Further details of this and other examples of the SP projection procedure may
be found in Appendix 6.2.
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4.3  Varieties of Dynamic Inference

What would be a proper notion of valid consequence in a dynamic setting?
As with 'logical constants' in earlier Sections, the matter is no longer so clear-cut here
as has been traditionally assumed for standard logic. There turns out to be a
proliferation of attractive options.

One relatively canonical choice arises by the following recipe:

I ‘process all premises successively,
then see if the resulting transition is succesful for the conclusion'.

In other words, inclusion and composition are the key notions here:

([e1l]le..ollenl]l = [[yll.

This notion of validity is highly sensitive to the order and multiplicity of
premises. In particular, the structural rules of standard logic (such as Permutation or
Contraction of premises, or Monotonicity under additions; cf. van Benthem 1989D) no
longer apply in their generality. One only retains the usual Cut Rule.

But there are other reasonable options too. For instance, Groenendijk &
Stokhof 1989 have this notion:

I 'process all premises,
then see if a transition can still be made for the conclusion'.

This amounts to stating that the range of the composed premises should be contained in
the domain of the conclusion. And likewise, one could merely test the conclusion in
the latter range.

But, there are already further competitors around. For instance, Veltman 1990
also considers the following instructions:

I 'see if the conclusion 'holds' at all states where all premises 'hold’,
(where a proposition holds at a state if that state is among its fixed points),
v 'see if the conclusion holds at all states arrived at by processing the premises
starting from some state of no information' .
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These various notions of inference may have quite different logical behaviour.
For instance, some of them are at least monotonic for additions to the left-hand side of
the premises, some allow permutation of premises after all, and so forth.

Here again, Relational Algebra provides a unifying perspective. First, there is
an analogy here with current 'occurrence-based logics' such as Lambek Calculus or
Linear Logic (cf. van Benthem 1989A). There, the basic systems have no structural
rules at all, but one can often (though not always!) get the effects of certain structural
rules (either the classical ones, or more refined versions, such as those discussed in
Makinson 1989), by introducing suitable logical constants allowing special types of
inference for specifically marked formulas.

And indeed, all of the above notions of consequence may be reduced to the
original one I by introducing standard relational operations from earlier Sections.
Here are some possible definitions:

1| Do((tp 10...0n)") € Do(y)

(the variant with test would have 'diag(y')' on the right)
I (¢1o..0pn)NA S ¢
v Do((Eo(p10..09n))¥) S diag(y)

(where 'E' consists of a single loop at the empty information state) .

After this pruning process, what are the remaining broad options for dynamic
logical consequence?

Here is one attractive viewpoint. The main option in our notions of inference
may be localized in a matter of 'text logic', namely, the interpretation of the commas in
inferences involving a sequence of premises. In classical logic, these are interpreted as
an instruction for parallel processing, via Boolean intersection

@111 n .. n [lenl]  [[yl].

In the basic dynamic case, however, they were read as instructions for sequential
processing, via relational composition. The two options turned out to differ in their
logical behaviour, even at the level of purely structural rules.

There are also more technical reasons why these two notions are natural
candidates. These will be set forth in Appendix 6.3 below, to which we also refer for
missing explanations in what follows.

Notions of inference may be classified as to their global logical properties.

For instance, classical consequence F has all the basic features of set inclusion.
Structurally, it satisfies the following one-premise principles:
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AEA Reflexivity
AEB,BEC imply AEC Transitivity .

Next, it also has such Boolean features as:

AFB implies (AAC)EB Left Monotonicity
AFB implies AFBVO Right Monotonicity
AEB,AEC imply AEBAOC Conjunction.

These same properties also hold for the above dynamic inference I, with the Booleans
now applying to binary relations. (Other options may have different behaviour here.
For instance, II does not satisfy Conjunction.)

With multi-premise principles, classical and dynamic consequence will diverge.
For instance, the former, but not the latter, satisfies the 'structural rules' of

Permutation
XEA implies TX]E A
for any permutation T of X
Contraction ,
X,A,Y,A,ZF B implies X,Y,A,ZE B and
X,A,Y,ZF B
Monotonicity
X,YEB implies X,A,YEB.
Remark. Note the different senses of 'monotonicity’ involved here. Dynamic

inference does admit Boolean strengthening of existing premises, but it does not allow
arbitrary addition of new premises.

Nevertheless, there also remain general analogies at the multi-premise level.
Classical and dynamic consequence are both anti-additive in their left-hand arguments:

X,R1UR2, YFZ iff X,R1,YEZ and X,R2,YEZ,

and both are multiplicative in their right-hand argument:

XFRINR2 iff XERI1 and XFR2.
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Interestingly, most important structural properties of the above kind can still be
studied within Relational Algebra itself. The reason is this. Such properties usually
have a universal 'clausal form', as exemplified in the schema of Conjunction:

if XF@ and XFy ,then XFQAY .

This says that, in any model, if the premises are included in two conclusions, then they
are already included in their Boolean intersection. (This is stronger than the 'derived
rule' that universal validity of the two premises implies that of the conclusion!) Now,
such a principle is not an algebraic identity itself, but rather a 'conditional inclusion'.
But, as we have seen before, statements of inclusion may be reduced to identities,
already in Boolean Algebra. And also, unlike Boolean Algebra, Relational Algebra has
the following reduction property:

Proposition.  All universal clauses involving algebraic identities are reducible to
equivalent identities.

Combining this observation with the earlier reduction strategy employing
additional relational operators, we see that a large part of the structural properties of
varieties of dynamic inference lies encoded within Relational Algebra itself.

4.4  Aspectual Calculus for Information
Finally, many special inferential properties of dynamic propositions can be

studied in a similar manner.
For instance, certain relations R are 'tests', in that they do not change states:

VxVy Rxy — y=x) ie, RS A.
Other relations are 'idempotent’, in that repeating them will produce no further effect:
VxVy (Rxy — Ryy) i.e., Do(R) € diag(R).
The latter property (the 'quasi-reflexivity' of possible worlds semantics) is plausible
for updates. Such special relations may be recognized by their inferential behaviour.
For instance, tests are 'monotonic’, in that they can be inserted in sequences of

premises without disturbing any dynamic conclusions in sense I. And the latter
property is also characteristic for them: monotonic relations in this sense must be tests.
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Many standard properties of binary relations make sense for the purpose of
dynamic classification. For instance, both tests P? and realizations P! are
idempotent. But the former have other well-known modal properties too, such as
Symmetry and ‘Euclidity":

VxVyVz (RxyARxz) = Ryz).
The latter rather has
VxVyVz Rxy — Rzy).

This picture becomes richer in the special case of information structures
carrying an inclusion order € . Then, many other interesting properties arise, such as
that of being 'updating' or 'progressive': i.e., being a subrelation of the inclusion
order. (For the special case of functions on information states, there are even some
natural conditions of preserving inclusion, or infima and suprema in the information
ordering.) Here, we only want to point at a general analogy. The ordering & may be
compared to inclusion of matter or time, as in Dowty 1979 or Krifka 1989: information
is a kind of 'stuff’ too. Thus, we have what linguists would call an 'aspectual calculus'
for various kinds of informative behaviour of propositions. In particular, we may
investigate syntactic or semantic criteria for recognizing whether a given complex
proposition is going to have specific desirable dynamic properties. Here is a question
illustrating this kind of concern:

Which syntactic forms in the relational algebra over & are progressive ?

Which syntactic operations create, or endanger, this property?

5 Conclusion

The main point of this paper has been the following: Relational Algebra and
Dynamic Logic provide a convenient setting for bringing out essential logical features
of action and cognition. To conclude, here is some clair-obscur to this clear picture.

In reality, there are mathematical alternatives too, witness the earlier-mentioned
category-theoretic approach of Girdenfors 1984. And even closer to the present
paradigm, variations are possible. For instance, it would also be possible to assign
each proposition its 'trace set', being those finite sequences of atomic transitions
traversed during its succesful computations. The latter assignment also records
intermediate stages (for instance, for compositions), that are lost in our more
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‘extensional’ account of dynamics. In fact, 'state models' (S, {Ry lacA}) asused
so far can be mapped to 'trace models' S* , whose domain consists of all finite
sequences of states from S . Then, atomic relations R; may be mapped onto sets of
sequences, for instance

R, - {xy | Rxy},
or

Ry - 'all sequences whose beginning and end

form a transitionin Ry .
Evaluation of complex relational expressions in trace models may then follow its own
intuitions. In particular, composition will now refer to concatenation of sequences
having matching ends and beginnings:

[[RoS]] = all sequences in [[R]] concatenated with a

matching sequence in [[S]] .
Boolean operations will retain their usual meaning here.

The latter approach takes us closer to the 'language models' studied in van
Benthem 1989A, 1990A: trace models really consist of families of 'transition
languages' for processes. The resulting logic is related to relational algebra, but also to
categorial 'occurrence logics'.

Moreover, the modelling given so far may eventually prove not radical enough.
After all, if one is willing to believe that logical dynamics is of equal importance to
logical statics, then perhaps, the two aspects ought to be accorded equal ontological
status. What this means again is that transitions would come to be viewed, not as
ordered pairs of states, but rather as independent basic objects in their own right. In
that case, the relevant mathematical paradigm would no longer be Relational Algebra
with its intended set-theoretic semantics, but rather some form of 'arrow logic' as
advocated in van Benthem 1989B. Its structures are of the form

W,CF1I

where W is a set of arrows, C a ternary graph for the partial operation of

composition of arrows, F a binary predicate for their conversion,

and I the unary predicate of being an identity arrow.

In particular, then, transitions can be extensionally the same in having equal starting
and finishing points, without being intensionally identical.

The latter move might also alleviate a problem of computational complexity.
Relational Algebra is known to be a more complex theory than Boolean Algebra. As
was already observed in Section 1, it is undecidable: such is the price of its greater
expressive power. Thus, perhaps surprisingly, incorporating cognitive dynamics has
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not led so far to any gains in practicality or simplicity. But arrow logic is less costly
(I. Németi, personal communication, has claimed its decidability).

Next, the word "general" has been used deliberately at various places in this
paper to state our aims, as not being tied to specific linguistic forms or practices in
logical semantics. For instance, it remains to be seen in the long run how much
essential procedural structure can be captured in the standard semantic approach. Many
important procedural aspects of cognition seem deeply tied up with the actual syntactic
lay-out of arguments, or the actual course of games. What compositional semantics
tends to do is provide only limited access here, by discarding the syntactic structure
that produced its denotations as soon as possible. (Admittedly, for some purposes, that
is precisely its strength.) There is a certain unnaturalness to this, in that humans do
have short-term recall of syntactic structure: so, why not make free use of it? In this
respect, recent proof-theoretic approaches, like that of Kracht 1988 or Ranta 1990,
may have their advantages, identifying states with the available proof-theoretic
'context', which allows for a more flexible dynamics, switching between what was
said and how it was said.

Likewise, once more, we want to stress our rather free-wheeling attitude
toward 'natural language' in the current investigation. As was stated before, the crucial
issue is to understand human action and cognition, whether or not this is fully encoded
linguistically. It would be a kind of wilful suppression of the evidence to stick with the
letter’ of cognition, rather than its 'spirit' here (compare Levelt 1989 on this issue).
And indeed, the procedural perspective is rather unorthodox, in that one is treating
lexical expressions, such as "and", "if" or "not", on a par with discourse particles like
"so", or even just punctuation signs, such as commas or dots. (The latter idea is not
new in Logic: see Jennings 1986, Dosen 1989 for a view of logical constants
themselves as 'punctuation marks'.) The latter theme could be elaborated more
systematically: for instance, certain typographical devices are obvious 'mode
switchers', witness question or exclamation marks, or semicolons inside a sentence.
And from graphics, the border line to acoustics, or even just abstract game conventions
'in the air', becomes quite fluid.

Thus, one has to admit the justice of an unconventional position which was
already advocated in Hintikka 1973A, Barwise & Perry 1983: studying cognition
entirely at the level of syntax means using an 'existential projection' which might be
even more complex than the full picture (compare the non-decidability of many
recursively enumerable predicates). And in the end, logical analysis becomes
concerned, as it should be, with just any rational clue in discourse and argumentation.
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6 Appendices

6.1 The Finite Variable Hierarchy

Here are some details behind the assertions in Section 4.1.
. Explicit Syntactic Description of the Two-Variable Fragment.

Consider any formula ¢ (x, y) written with the two variables x, y only.
Without loss of generality, it may be supposed that ¢ involves only atoms, =, A and
3. If there are no quantifiers, then a Boolean combination suffices of cases

Axye Rxy R Axye Ryx RY

Axye Ryy Do(RNA) Axye Rxx (Do(RNA))™
Now, consider any innermost quantifier occurring in a position

dy a x,y) where o is quantifier free.

That is, we may assume that o already has a relational transcription o* . But then,
Do(a*) will do. This procedure may be repeated until one reaches the outside
formula.

This explains the 2-variable completeness of the operator set

{-,N, U Y A Do}.

. Semantic Characterization of k-Variable Fragments by Means of Invariance.

First-order model theory has the notion of partial isomorphism between two
models M and N, via some non-empty family PI of finite partial isomorphisms
between their domains, satisfying the Back and Forth extension properties:

If the partial isomorphism (X, Y) (viewed as a pair of matching sequences)

isin PI,and a isany objectin M, then there exists some object b in N

such that (Xa, Yb) is alsoin PI. And analogously in the opposite direction.
One important observation is that corresponding sequences X, Y verify the same
first-order formulas in the two models.

Now, for k-variable fragments, this notion may be restricted in an obvious
manner to partial isomorphisms of length at most k, to obtain a notion of k-partial

isomorphism . And then, a straightforward induction shows that

Proposition.  Formulas from the k-variable fragment are invariant for
matching sequences in k-partial isomorphism.
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There is also a converse (cf. van Benthem 1990B).

Theorem. Any formula ¢ = ¢ (x1, ..., Xg) in the full first-order language
(possibly employing other bound variables besides those displayed )
which is invariant for k-partial isomorphism is logically equivalent
to a formula constructed using X1, ..., Xk only.

Proof Sketch. This may be proved using the following claim:
+ Eachinvariant formula ¢ follows from the set k(¢)
of its own k-variable consequences.
By the Compactness Theorem, ¢ must then be equivalent to some finite conjunction
of k-variable formulas.

The proof of the claim runs roughly as follows:

Suppose that M, a F k(¢) . Then, there exists some model N, b thatis
k-elementarily equivalent to M, a in which ¢ holds. But now,

+  Any two models that are elementarily equivalent with respect to k-variable
formulas have saturated elementary extensions that are k-partially isomorphic
via the family of all their pairs of sequences up to length k verifying the same
type in the k-variable language.

Take two such elementary extensions, say M*, N* . Then we have
N,bF ¢ (by assumption) N* b F ¢ (by elementary extension)
M* akF ¢ (by k-invariance) @ M,aF ¢ (by elementary descent) .

. Lack of Functional Completeness for the Full Relational First-Order Language.

We merely demonstrate the kind of argument that is required for a negative
conclusion like this.

As is well-known from standard logic, two models are indistinguishable by
first-order sentences up to quantifier depth n iff the second player in an Ehrenfeucht
comparison game over these structures has a winning strategy in any play over n
rounds. Now, this analysis has been refined in Immerman & Kozen 1987, to show
that

Indistinguishability by sentences up to depth n employing only some fixed set

of k variables amounts to the existence of a winning strategy for the second

player in a modified Ehrenfeucht game over n rounds, where each player
receives k pebbles at the start, and can only select objects by putting one of
these pebbles on them.
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Now, any finite operator formalism has a first-order transcription involving only some
fixed finite number k of variables over states. Therefore, if any such formalism were
functionally complete, this would mean that the full relational first-order language
would actually be logically equivalent to one of its own k-variable fragments. But the
latter kind of reduction is impossible:

Consider the first-order sentence ¢ stating the existence of at least k+1
distinct points all unrelated in the relation R . Consider also two models consisting of
k and k+1 R-unrelated points, respectively, with all other relations empty too.
Evidently, the second player has a winning strategy in the Ehrenfeucht comparison
game between such models with k pebbles, over an arbitrary finite number of rounds.
So, no k-variable sentence distinguishes between these two models: whereas ¢ can.

6.2 Two-Level Logic
. A Sample Computation of Postconditions for Dynamic Predicate Logic.
Here is an illustration, with 'trace points' indicated in bold-face subscripts:

dx(Ax o Bx).3dx Cx. ~Ix Dx
dx 1 (Ax2 9 Bx3).3dx4Cx5.(~3xDx) ¢

SP 0 T 1 AxT=T 2 Ax
3 AxABx 4 3Ix (AxABx) * 5 Ix(AxABx)A Cx
6 Jx(AxABx)A CxA T13x Dx.

At the trace point * the initial 3x becomes an ordinary quantifier after all.
. Postconditions for an Update System.

Similar calculations are possible for other dynamic systems, even when based
on slightly different principles. An illustration is the propositional update semantics

presented in Section 3 (cf. Veltman 1986). Here, the relevant clauses for on-line
computation of classical content are as follows:

SP(P, q) = PAgq

SP(P,@ A w) =  SP(SP(P, @), )
SP(P, ® V ) =  SP(P, @)V SPP, )
SP(P, —(p) = P A-SP@, ®)

SPP, O @)

P if SP(P, (p) is consistent, 1 otherwise.
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. Postconditions for Dynamic Modal Logic.

One can also compute weakest preconditions for a dynamic modal logic in one
of its standard relatives, provided that a suitably strong formalism is chosen for the
latter. In particular, consider a language with a future modality Fut and a past
modality Past , as well as binary operators Since and Until . (Indeed, the latter
suffice, as they a]ready' define the former.)

Proposition. Weakest preconditions for dynamic modal logic may be computed
via the following recursion:

WP (p?,A) - pAA
WP (upp,A) = Fut (pAA)
WP (p-upp,A) = Until (pAA , —p)

WP (downp,A) Past (—pAA)

WP (u-downp, A) Since (—pAA , p)
WP(¢A\|”A) = WP(¢,WP(\|I,A))
WP (—-$,A) = AA-WP(¢,TRUE).

The proof is by a straightforward calculation. Note how a 3-variable standard
formalism is needed for tracing a 2-variable dynamic counterpart.

Thus, we can use standard modal formalisms for keeping track of the long-term
effects of dynamic ones.

6.3 Structural Rules and Representations

. Relational Algebra Embeds its own Universal Clauses.

A universal clause of the form

'universal prefix VR1 ... VRn, followed by a disjunction of

equalities and inequalities between terms in R1, ..., Rn'
may be reduced as follows. First, already by Boolean Algebra, it suffices to consider
equalities of the form 'A=1'. Next, inequalities may be replaced by equalities,
because of the key equivalence

A#l : lo-Aol=1 (A#=1") .
But then, even one equality suffices for the remaining disjunction of equalities,
thanks to the following chain of equivalences

A=1V B=1 - (A#1 A B#1) - (A#=1 A B#=1)

A#NB#=£1 (A#NB#H)#=1.
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° Systematic Perspectives on Basic Notions of Inference.

The variety of dynamic notions of inference may be approached more
systematically than has been done in the main text.

For instance, all possible candidates satisfying the earlier two constraints of
'anti-additivity' and 'multiplicity' can be analyzed still further, using the mathematical
property of permutation invariance. Arguably, proposed notions of inference should be
permutation-invariant 'meta-relations' between the binary relations corresponding to
their component propositions. Then, only a finite number of possible interpretations
remains for the comma: most prominently, Boolean conjunction, disjunction and
relational composition:

Proposition. In any set-algebra of binary relations, the only permutation-invariant
anti-additive and multiplicative inference relations are those definable by a
conjunction of schemata of the form

Vx1y18@1 ... VXK €@k : @ — B,
where & is some Boolean condition on identities in the variables xj, yj and
B is some atom of the form Pxjy; -

The above two notions of classical and dynamic consequence are characteristic
of anything that may be encountered in this general area. For, many of the above
schemata are reducible to these two, using suitable algebraic compounds of the @
and Y . Moreover, their shape suggests one further plausible restriction. The above
schemata are all universal clauses. But intersective or compositive inference is even
defined in the more restricted Horn clause format. For instance, with two premises,
they read as follows:

Vxye @1 Vzue @o: (x=z A y=u) — Yxy,
Vxye @1 Vzue @p: y=z — Yxu.

And all candidates in this Horn format are algebraically reducible to just these two.
. Natural Clusters of Structural Rules.

Another way of stating the special status of classical intersective and dynamic
compositive inference arises via purely structural rules only, without any Boolean

connectives. Natural clusters of structural rules determine natural kinds of reasoning,
and hence, they provide a convenient focus for logical research.
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For a start, standard consequence is characteristic for the usual set of structural
rules, which lump premises together into mere sets of formulas, namely:

Reflexivity Cut
Monotonicity Contraction .

(We omit Permutation here, as it is derivable from these four.)

Proposition. The classical structural rules axiomatize precisely the theory
of the set-theoretic relation ajN..N ax € b.

Proof. The reason is the following representation result. Let R be any abstract
relation between finite sequences of objects and single objects satisfying the classical
structural rules. Now, define

a* = { A | A is a finite sequence of objects such that ARa}.

Then, it is easy to show that
1 if ay,.,agRb,then aj*N...Nag* € b*,
using Cut and Contraction, while
2 if a;*N..Nag* € b*,then ay,.,axRb,
follows by Reflexivity and Monotonicity.

Actually, a similar representation would also have worked for the earlier
inference notion III in terms of mere testing of the premises.

On the other hand, dynamic consequence is characteristic for the opposite
extreme, leaving the ordering of premises completely intact.

Proposition. Reflexivity and Cut axiomatize precisely the theory of
the set-theoretic relation ajo..oax €b.

Proof. This time, a relational representation is needed for any abstract relation R
like above satisfying only the two mentioned constraints. Again, consider the universe
of all finite sequences of objects B, and set

aff

{ (B, BA) | for any finite sequence A suchthat ARa}.
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Then, by Cut alone, we have that, if aj,..,axRb, then a1¥o ..o # € b¥,
while Reflexivity already implies the converse, when applied to the sequence of
transitions (<>, a1), (ay, ajap), ..., (a1...ax-1, a1...ax) .

o Subtleties of Preferential Reasoning.

Other natural clusters of structural rules will arise with further notions of logical
consequence. These also illustrate a new phenomenon, namely that adherence to
standard principles need not be an all-or-nothing matter.

For instance, universes of models graded by a preference order as in Section 3
lead to a different broad option, namely that of 'preferential entailment':

"The conclusion should be true in all most preferred models for the premises".

In the latter case, those structural rules for standard consequence which reflect its set-
like treatment of the premises are not at issue, such as Permutation, Contraction and
Expansion (allowing duplication of occurrences of available premises). Moreover,
Reflexivity holds even in the following strong form:

XEA whenever A occursin X.
But, with this kind of more heuristically oriented reasoning, not only Monotonicity but
also the Cut Rule ('Transitivity') becomes invalid in general. One only retains these
principles in 'cautious' forms, allowing only addition of premises which follow from
the original ones, or removal of premises already derivable from the remaining ones.
These form a dual pair:

XFA and XEFB imply X,AFB

XFA and X,AFB imply XEB.

Proposition. Preferential entailment has its structural rules axiomatized completely by
Contraction Expansion Permutation
Strong Reflexivity Cautious Monotonicity Cautious Caut.

The key idea of the required representation is this. Objects are now mapped to
the family of all 'states' to which they belong. Here, a state is any set X of objects for
which we have 'harmony":

beX iff XFb for all objects b.

The relevant preference order over states is just ordinary set-theoretic inclusion

('the smaller the better’).
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