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Abstract In this paper a partial semantics for the higher-order modal language of Intensional
Logic is suggested. Partial semantic values of functional types are defined as monotonic functions
on partially ordered sets; it is showed that this characterization is materially adequate for
representing partial values and that it overcomes the difficulties which arise in the attempt to
introduce one-place partial functions in the hierarchy of types. Partial semantic values of any
type are related to classical semantic values of the same type by the mean of a relation of
approximation. This allows us to compare partial models with classical models. Classical
semantics then appears to be a part of the partial semantics to the extent that there exists a
bijective mapping from classical models onto totally defined partial models.  Also, this allows
us to define, relatively to the partial semantics, a notion of entailment which is coextensive with
the classical notion.
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A. Introduction.

Though a very large amount of works has been done in partial semantics for modal or
non-modal propositional or quantified first-order languages, very few has been said
about partial semantics for modal or non-modal higher-order languages. According to our
knowledge the first attempt to introduce partiality in the theory of types goes back to
Pavel Tichy [1982]. There is also the nice work of Reinhard Muskens [1989], which
suggestes a partialised version of Montague's Semantics. Musken's Semantics is
relational, in the sense that partial semantical objects are defined as partial relations and
not as partial functions. This strategy is in large part justified by the apparent
impossibility, discussed in this paper, to code partial relations or partial many-places
functions by one-place functions, as Shonfinkel's theorem could suggest. Notice that the
same problem has motivated Tichy's own strategy, which consists to consider only
many-places partial functions. On our side, we don't claim that Tichy's and Musken's
strategies are not adequate or that they are not interesting. We just claim that it is possible
to construct a partial semantics for the higher-order modal language of Intensional Logic
which uses only one-place functions.

Our strategy, which will be explained in detail in Section C.1 of this paper, is in fact
inspired by another interesting attempt to introduced partiality in the semantics of
Intensional Logic, that is the one of Frangois Lepage [1984] (see also F.Lepage [1987]
and [1989a,b]). However, according to us many notions used by Lepage were not
precise enough to be used as foundations of a partial semantics for Intensional Logic
(notice that the purpose of Lepage was not to suggest a foundational theory of partiality in
the theory of types, but rather to suggest a formal analysis of sentences of belief and
knowing by using the notion of incomplete knowledge of semantic values - of course,
these two enterprises aren't exclusive). In particular, his notion of a good representation
of a classical semantic value, or equivalently, of an approximation of a classical semantic



is total behaves exactly as one and only one classical value. Consequently, the notion of a
partial model which is total was not precise enough neither. In this paper we shall fill
these gaps by providing a unifying view on partial semantics and classical semantics. In
particular, we shall give a precise account of the idea that classical models are limit cases
of partial models. Though this seems trivial at first glance, in fact it is not, for the class of
classical models is disjoint from the class of partial models.

Let us first present our formal framework: the language of Intensional Logic, and its
standard classical semantics.

B. The language of Intensional Logic and its standard classical semantics.
The formal system described in this Section is very close to the one described by Daniel

Gallin [1975], chap.1, as a version of Montague's Intensional Logic (Richard Montague
[1970]).

B.1. The modal hierarchy of types.

Let e, t and s be three distinct objects. The modal hierarchy of types is the smallest set T
such that:

@G e teT,
(ii) if o e Tand B € T, then (a,,p) € T;
(iii) if a € T, then (s,o0) € T.

When no confusion arises, (c,p) and (s,o) are abbreviated by off and sa respectively.
We use the Greek letters o, B and © as variables of types.

B.2. The formal language of Intensional Logic.

The language of Intensional Logic (henceforth, the language of IL) has the following
TESOUrces:

(1) The following improper expressions: [, ], =, A,”, ¥, A.

(2) For each a0 € T, a countable set Con o of constants of type o and a countable set
Var  of variables of type o.

(3) For each o € T, a set of terms of type «, recursively defined as the smallest set
Trm,, such that:




@® Con, U Var, & Trm ;

(i) if A € TrmmB and B € Trm , then [AB] € TrmB;
(iii) if Ae Trm, then “A € Trm_;

(iv) if A € Trm_, then YA e Trm;

(v) ifxe Var_andAe TImB,then AXA e Trm,,
(vi) if A,Be Trm , then [A = B] € Trm;;

(vii) if A, B € Trm,, then [A A B] € Trm,.

B;

Notice that = and A intuitively mean identity and conjunction respectively. Actually
however expression A and rule (vii) are redundant, since A can be defined in terms of =

and A. The reason of this redundancy, which appears to be untimely here, will be
explained latter.

Henceforth, for any type o, we use the symbols A , B , C_, etc., as schemata of terms
of type a. We use more particulary the symbols x , y,. z,. etc., as schemata of

variables of type o and the symbols Co da, €, etC., as shemata of constants of type o

When no confusion arises, subscripts are dropped. We introduce by definitions some
terms of the language of IL.

T := [?xxtx = hxtx]

F .= [hxtx = I&xtT]

DA = [A = F]

[Atv Bt] ="1[77A A TB]
[AtD Bt] :=[77A v B]
¥x A, = [AxA = AxT]
Ix A, = T¥xTA

[Aa§ Ba] =["A = "B]
OA =[A= T]
<>At =" 0O"A.

B.3. The standard classical semantics for the language of IL.

Let E and I be two non-empty and disjoint sets. Intuitively, one considers E as a set of
individuals and I as a set of possible worlds. The standard system of classical objects
based on E and I is the indexed family {Mm}mGT of sets, such that:

@ M, =E
i) M, ={0,1)

_ a1 Mo
(iii) Ma[i = MB

@) M =M



A standard classical model based on E and I is an ordered pair:

M= <{Ma} m>

oeT’

where: {M_},_r is the standard system of classical objects based on E and I; mis a
function:

m(i'éj’l' Conu. - (i!JTMsa

such thatm(c ) € M_, forany c € Con,. We denote by As(M) the set of assignments
over M, that is the set of all functions:

a:aLEerara — tiEJTMa

such that a(xa) e M, for any X, € Var,. For each a € As(M), each X, € Var and
eachy € M, we denote by a(x_/y) the assignment in As(M) which differs at most from
a by assigning y to x,. We define recursively the classical value I[Am]ll::li in M of a

term Aa according to an assignment a € As(M) and ani € I as follows:

@ L IV, = mlc )@

G Ix I);=a(x);

M M M .
(iii) [[AaBBa]]a,i= I[AaB]a,i(EBa]a,i)’

@iv) I["AOLJIIZIi = the function f from I such that for every j € I, f(j) = l[Aa]]I;'lj;
v) A MM -rfA_ 1M ),

so.” a,i so.” a,i

(i) [ix A IM. =the function ffrom M o Such that forevery ye M, f(y) =

o B a,i

LA,IM., where a' = a(x_/y);

Ba'i~

(vii) [L[A, = B,JI) = 1if [A 1%, =IB_ 1% and O otherwise;

a

M _q: M _ M _ .
(viii) L[A A Bt]]la’i =1if [A T i= B i= 1, and O otherwise.

We can easily check that foreach € Tandeach A € Trm, IIA(IJII:I € M.

B.4. The classical notions of entailment and validity.

A formula of the language of IL is a term of type t. Let A be a formula, M be a
standard classical model, a € As(M) andie I A is satisfied in M according to a and i,
formally: k. A, iff LA}, = 1. A s not satisfied in M according to a and i,

formally: ¥ . A, iff I[A]ll:fi = (0. If T is a set of formulas, then T is satisfied in M



according to a and i, formally: F M.ai T, iff |=M,a,i Aforevery Ae I'. IfAisa
formula, then A is true in M iff E Ma; Aforevery a € As(M) and every iel. Aset”
of formulas classically entails a fo’r;nula A, formally: ' F A, iff for every standard
classical model M, every ae As(M) and everyie L if E Moai I',then F M.ai A. At

last, A is classically valid, formally: F A, iff @ E A, that is, iff A is true in every standard
classical model.

C. The standard partial semantics for the language of IL.
C.1 Introduction.

Our only basic intuition for the construction of a partial semantics for the language of IL
is the following: partial semantic values must be approximations of classical semantic
values. How to define formally the partial values in order to meet this intuitive
requirement? Since in the classical semantics of the language of IL, the values of any

functional type (type oy or sot) are total functions , then it seems appropriate to define the
partial values of any given functional type as partial functions approximating total
functions of this type. This raises some questions however.

What is a partial function? Under which conditions a partial function is an approximation
of a given total function? According to the set-theoretical definition of the notion of
function, if X and Y are two non-empty sets, then a function from X (starting set) into

Y (target set) is a relation f € X X Y such that for any (x,y), (x,y') € f, if x =X/, then
y =Yy'. Let f be a function from X into Y; the domain of f is the set D(f) & X such that
forevery x e X, x € D(f) iff thereisy € Y such that (x,y) € f. We say that f is rotal
if D(f) =X, non-total if D(f) C X, and partial if D(f) € X. Iff is a partial function

and x € D(f), then we write "f(x) = y", instead of "(x,y) € {"; if x ¢ D(f), then we
write "f(x) is undefined" (or "f is not defined for x"). If f is a total function, then we

write "f:X — Y" (or "f e YX"), in order to indicate that f is a function having X as

domain and Y' & Y asrange. Let f and f' be two partial functions from X into Y; we
say that f is an approximation of f (or that f is at least as well defined than f), and we

write: £ < f', iff D(f) € D(f') and for every x € D(f), f(x) = f'(x). Let P(YX) be the set
of all partial functions from X into Y; one checks easily that the relation of approximation

defined on P(YX) is a partial order; in fact, (P(YX), <) is a meet-semilattice, whose
smallest element is the less defined function (that is, the function f such that D(f) = @).

For instance, if we represent each f e P({0,1} (0.1 }) by the image of {0,1} under f:

f = {£(0), f(1)}

and use the star * to indicate that f is undefined for the given argument, then we can

represent the whole semilattice P({O,l}[o’l}) by the following figure (underlined
numerals are just names):



FIGURE 1 The approximating semilattice P({O,l}{o’l})

1 2 3 4
{00y {01} {10} {1,1}

3 ' 1 8
{0} {0t {x1} {1*}

9
{**}

Are the notions we have just presented rich anough to build on them an adequate theory
of partial functions in the theory of types? More specifically, can we restrict ourselves to
these notions and use them to characterize the partial semantic values of a given functional
type as partial functions which approximate classical values of the same type?
Unfortunately, no; three major difficulties appear.

Difficulty 1. Of course, it would be possible to use these notions in order to define the
partial values of types (t,t), (e,e), (t,€), (e,t), (s,t) and (s,e), and then to compare, in
terms of approximation, the partial values of each of these types with the classical values
of the same type. But for higher-order types, things would become much more
complicated, for partial functions of these types can take partial functions as arguments.
For instance, the domain of a partial function of type ((t,t)(t,t)), if non-empty, may

contain total or non-total functions in P({0,1} {0’1}) and the values of such function can

also be total or non-total functions in P({O,l}{o’l}). Then we already make out the
problem to compare, in terms of approximation, the partial functions of a given higher-
order type with the classical functions of the same type: given the fact that the starting and
target sets of the partial functions will be different from the starting and target sets of the
classical functions, the conditions of inclusion of domains and of identity of values will
not be directly applicable.

Difficulty 2. This problem concerns the reiteration of functional applications and raises
correlatively the question about the status of the indefiness in the theory of types. By the

way of example, let f be a classical function of type (t,t), that is to say, letf e {0,1} (0.1}

Obviously, for each x € {0,1}, f(x) is of type t, that is, f(x) € {0,1}; therefore, f(f(x))
is also of type t. We believe that such reiteration of functional applications should be
possible in the universe of partial functions. But consider a partial function g of type (t,t),
that is to say, a function g € P({0,1} {0'1]), such that g(1) is undefined. Try then to
apply g to g(1). Strictly speaking, this application has no sense. But on the other hand,
if g is the value of an expression A of type (t,t) and 1 is the value of an expression B, of

type t, then by the principle of compositionality ,g(g(1)) must be the value of the
expression [A[AB]] of type t. But again, one cannot see what could be this g(g(1)).



Difficulty 3. It is Pavel Tichy [1982] who has pointed out this difficulty. The famous
Schonfinkel's theorem:

XYZ - (XY)Z

which is fundamental in lambda calculus, appears to be not valid in the universe of partial
functions. The counterexample of Tichy is the following. Consider the partial function f

from {0,1} x {0,1} into {0,1} such that:

yifx=0
(1 f(x,y) =
undefined, otherwise

There are two distinct partial functions from {0,1 }which correspond to f: one assigns to
0 the identity function and is undefined for 1; the other assigns to O the identity function
and assigns to 1 the function which is undefined both for 0 and 1. The idea here is that
wathever is, between these two functions, the one which really corresponds to f, the
other function must also correspond to f, if it corresponds to something.

We believe that these difficulties can be simultaneously solved by the application of the
following three measures: (i) to give at the level of types e and t the status of object to
undefiness, and for each functional type, to identify the undefiness with the less defined
function; (ii) to define on each domain of partial objects a partial order relation,
interpreted as a relation of approximation; (iii) to restrict the function spaces to monotonic
functions. Let us see how the application of these measures can solve our problems.

In the sequel we shall adopt the following notational convention. If X and Y are two non-
empty sets (not necessarily distinct) and O is an operation such that when it is applied to

an element x € X gives one element O(x) € Y, then we shall denote by "Ax € X.0O(x)"
the function £:X — Y such that f(x) = O(x) for every x € X. When no confusion can
arise, we shall simply write "Ax.O(x)".

Consider in first place Tichy's difficulty. Tichy's counterexample reveals the fact that :
P(XV%) £ PPXY)P).

Indeed, writting IX| for the cardinality of a set X, it is the case that for any non-empty sets
X,Y and Z:

IPX D) = (XD = X1+ < ((x+D)YH+D)Z = PP Y.
However, since (IXI+D)YZ = ((x1+1)YHZ = px¥)Z then:
PXY%) = (P(XYYA).

This means that we can go toward a solution of the problem if we identify, in a domain of
partial functions, the undefiness with the less defined function. Accordingly, to the
function f defined by (1) corresponds an unique function, that is the function f' from

{0,1} into P({0,1}{%1}) such that:



Ayyifx=0
(2 f(x) =
Ay.undefined, otherwise.

Of course, this raises another problem, which is reminiscent of the second of our
difficulties: the application of f' so defined to (f'(1))(1) has no sense.

However, the application of ' to (f'(1))(1) would have a sense if the undefiness were
admitted among the possible arguments of f'. The only intuitive constraint we would like
to see be respected is that the result of the application of f' to the undefiness be the
undefiness.

Let us represent the undefiness of type t by @; define the set of partial objects of type t as
the set PM, := {0,1,9}. Asusual 0 and 1 can be considered as the truth values false and

true respectively; therefore ¢ € PM, can be considered as a truth value which is not
defined.

It seems natural to define on PM, a relation of approximation in this way: for x,y € PM,

x<yiffx=@orx=y.

Under this relation, PM, is a (flat) meet-semilattice which can be pictured as follows:

0 1
¢

(Notice that PM, is reminiscent of the approximating lattice BOOL of Dana Scott, minus
the top). We can define in a similar manner the set PM, of partial objects of type e.

Given a non-empty set E of individuals, let PM, := EU {¢@} (we can of course distinguish

between ¢ € PM_ and ¢ € PM, by using PM, and PM, as subscripts of ¢). Then a
relation of approximation can be defined on PM, in the same way than on PM..

It is obviously possible to identify formally each function f € PM,"™" with the function
p® € P({0,1} {0’1}) by the surjection p:PMtPMt — P({0,1} {0’”) defined as follows:

f(x)if f(x) = @

(3) p(f) = Axe {0,1}.
undefined, otherwise.

From this point of view, a function f € PMtPMt is total if f(x) # @ for every x # @; then

it is non-total if f(x) = @ for at least one x # @. So it seems that only elements in
{0,1}are relevant arguments for the functions in PMtPM‘. Consequently, we may think

that only strict functions in PMtPMt represent suitably partial functions from {0,1} into
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FIGURE 2 The approximating semilattice PM,,
ll 1 4-' 1]
0 0 1 1
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L 2 3 4
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If we compare this figure with figure 1, we immediately see that each non-total function n
in P({0,1} (0.1 }) can be identified with the non-total function n'in PM, . Moreover, the

total functions 2 and 3 in P({0,1}{%1}) can naturally be identified with the total functions
2'and 3'in PM, respectively. Concerning the total and constant functions 1 and 4 in

P({0,1}(%1}), considerations above lead us to identify them with the functions 1" and
4" in PM, respectively.

Consider again the function f' defined by (2). By looking the figure 1, we see that the

functions f(0) and f'(1) are respectively the functions 2 and 9 in P({0,1}{%1}). By
looking the figure 2, we see that to these functions correspond respectively the functions
2'and 9' in PM, . Hence the function f' can as such be identified with the function

g:PM, = PM, such that:

Ayyifx=0
(5) gx) =
Ay.o, otherwise

and then we see that unlike the application of f' to (f'(1))(1), the application of g' to
(g'(1))(1) is meaningfull. Indeed, g'((g'(1))(1)) = g'(Ay.@(1)) = g'(p) = Ay.@. Notice
that according to our convention, the function Ay.¢ stands for the undefiness of type (t,t);
hence from this point of view g'((g'(1))(1)) is undefined. Such identification is without

doubt artificial, but it is nevertheless adequate for our purpose. Moreover, it is easy to
check that the function g' is monotonic relatively to the elements of PM,, so it belongs to

the set:

10



PM, ;= (PM, = (PM, — PM)).

W’

Now if we define a partial order on the product PM, x PM, in the standard way, that is to
say, for all (x,y), (x.y') € PM, X PMI:

xy < Xy)iff x <x'and y<y/,

then we can easily check that (PM, x PM, — PM,) is isomorphic to PMt(tt). This is in

general true for all spaces of monotonic functions. Hence not only monotonicity allows
us to define suitably partial functions, also the sets of functions restricted to monotonic
ones do satisfy Shonfinkel's theorem.

Consider again the figure 2. According to the terminology we shall adopte in the next
Sections, the functions 1',1"2',3',4"and 4" in PM, are (partial) total objects .

However, only the functions 1" 2', 3' and 4" are maximal approximations of classical

objects in {0,1}{0’1}. By the determination of the maximal approximation of each
classical object, we can compare, in terms of approximation, partials objects with
classical objects, and vice versa. For instance, the function 1" in PM, maximally

approximates the function Ax.0 € {0,1} (0.1} Hence every function f € PM,_ such that f

< 1" can naturally be seen as an approximation of Ax.0 € {0,1} (0.1},

We are now able to apply our approache to the modal theory of types.

C.2. The domains of partial objects.

1. Notational convention We shall use the letters a, b, c, ..., X, y, z, ..., X, ', Z',
... as metavariables of semantical objects. We shall use more particulary the letters f, g,
h, ..., f, g', h', ... as metavariables of semantical objects of functional types.

2. Definition Let T be the modal hierarchy of types defined in B.1 and let E, I be two
non-empty disjoint sets. The standard system of partial objects based on E and I is the
indexed family {PM_ } _ of partially ordered sets such that:

(i) PM,=EuU{¢}, whereforallx,y e PM:x<yiff x=¢orx=y
(>i1) PMt = {0,1,9}, where for all x,y € PM:x<y iff x=@Qorx=y
>iii) PM o = PM,, — PMB)’ where for all f,g € PMaB:

f< g iff for every x € PM,, f(x) < g(x)
@v) PM, = PM, |, where for all f,g € PM_:

f<giff foreveryie L f(i) < g(@).

11



3. Remark It is useless to define a partial order relation on the set I, since there is no
function having I as target set. Each domain PM stands for the set of Lepage's good

representations of classical objects in M (see F. Lepage [1984]), provided that the
systems {M a} and {PMa} are both based on the same sets E and L.

oeT oeT

The next proposition is standard and can be proved easily.

4. Proposition For each ¢ € T, PMG is an inf-semi-lattice, where for all x,y PMG,
the meet of x and y, denoted by xA\ y, isinductively given as follows:

(i) foro=ecort: x./'\y = x if x =y, otherwise x.-‘ﬁ"-.y= o;
(ii) for o =0af: f/\g=2Ax € PM_f(x)/\ g(x);
(iii) for o =so: £\ g=2Aie LIG)A g).

Moreover, if the joint of x and y, denoted by xVy, exists, then:

(@) foro=eort:xVy =yifx=0,

=xify=¢@orx=y;
(ii) for 6=0p: f¥g=Ax e PM_£(x)V g(x);
(iii) for o =sa: V¥ g =Ai e L)V g(i).

The notion defined below is very important. We borrow it from F.Lepage [1987].

5. Definition For each ¢ € T, we define the strong difference between objects in PM s
(formally x #¢ y) as follows:

(i) for o=eortx# yiffx#¢@and y# @andx=y;
(i) for o =0af: f#; giff thereisx e PM_, such that f(x) #g g(x);
(iii) for o =sa: f#; giff thereisie I such that (i) #g g(@).

Intuitively, strong difference means incompatibility : two distinct partial objects aren't
necessarily incompatible. Hence, the next proposition says that incompatibility is
transmitting "high up".

6. Proposition for each 6 € T and all x,y,x,y' € PM_:
if x#£,y,x <x'and y < y',then x' %, y'.

Proof We proceed by induction on the basis of types e and t.

(i) o=eort. If x # y, then by definition x # @, y # ¢ and x # y. So by definition again,
ifx<x'andy <y, then x =x"and y =y'. Therefore x' # y".

12



Gi)o=0af. Iff # 8, then by definition there is x € PM | such that f(x) #; g(x). Leta

€ PM, be an object of this sort. Soif f <f and g < g', then f(a) < f'(a) and g(a) <
g'(a). Then by the induction hypothesis, f'(a) #; g'(a). Therefore ' % g'.

(iti) © = so.. Asin (ii).00

The next proposition says that compatible objects are dominated by an object which sum
up them, and no more.

7. Proposition For each 6 € T, let C_ be the set of all non-empty subsets of PM

which contain only objects which aren't pairwise strongly different; formally (we write
T1(x #4 y) to express that x and y aren't strongly different):

Co={XSPM IX20 & Vxye PM_:xye X = T1(x# y)};
then for every X € C_, the supremum of X, denoted byVX, exists in PM_.

Proof We proceed by induction on the basis of types e and t.

(i) o=eort. Itis easily checked that C s is the set:
{(Xc PM; | dx e PM: X = {x}or X = {0, x}}.
It is clear that for each element X of this set, VX exists in PM -

(ii) o=oaf. LetFe C,: so foreachx € PM_, {f{x)Ife F} e CB' Indeed, suppose
the contrary. Then there is x € PM, and there are f, g € F such that f(x) #¢ 8(x). But
this implies that f #; g, which contredicts the supposition that f, g € F.

Since for every x € PM o {(f{x)Ife F} € CB’ then by the induction hypothesis, for

€very x € . X (S €Xx1sts 1n . ereiore, the tunction:
PM_, V {f(x) | f € F} exists in PM,. Therefore, the functi

B
Ax € PM_.V {f(x) | f € F}
is well defined, exists in PM . and is exactly VF.

(iii) o =so. Asin (ii).0

Now we are able to begin to compare partial objects with classical objects.

13



C.3 Comparing partial and classical objects.

Henceforth, given two non-empty sets E and I, we shall consider {M_} _ and
{PM,,} . respectively as the standard systems of classical objects and partial objects
based on E and I. No confusion should arise.

At first glance, comparaison in terms of approximation between partials and classical
objects can be done easily. Consider the following definition, suggested by F. Lepage
[1989a]. First, define inductively for each 6 € T arelation < & PMO xM s as follows
(x <,y means "x is an approximation of y"):

()foro=eortxs yiffx=@orx=y;
(ii) foro=oaf: f <, 8 iff forallx e PMa andy e Ma such that x A f(x) <, gy);
(iii) for o =sou: f < g iff foreveryie [, f(i) <, g(1).

Surely this definition is intuitively suitable. Moreover, each classical objecty € M can
naturally be identified with the partial object x € PM  which approximates maximally y,

x being simply A {x'e PM Ix' < y}. Unfortunately, it appears that the demonstration

of the existence of such object is far from be obvious; in fact, provided that there is a
proof of this, it would requier a lot of lemmas. But we think that there is a more simple,
general and elegant way for reaching the same result.

To begin with, we shall define, for each ¢ € T, the property of to be a total object in
PM . Intuitively, to be a total object in PM,_ is to be a very good approximation of one

classical object in M.

8. Definition For each ¢ € T, we define inductively the set QG (E PMG) of total
objects in PM_; as follows:

(i) foro=eort: Q0:= {xe PMCIx;t(p};

(ii) for o= ap: Q, ={fe PM IVxe Q;f(x)e QB};

(iii) for ¢ = so QG ={fe PM_ | Vie I: f(i) € Q }.

9. Remark Obviously, Q =M _=Eand Q =M = {0,1}. However, for any type G of
€ [ t t

the form af3, it is not the case that M, = Q. For instance, M, contains exactly four
objects, while Q, contains six objects - if one takes a look on the figure 2 of the Section
C.1, one sees that Qtt ={1,2,3,4,1", 4"}. But an equivalence relation can be
defined on a set of total objects. For instance, the functions 1'and 1"in Qn, restricted
to Q,, are identical; so we can consider that both are very good approximations of the

function Ax.0 in M, . Similarly, the functions 4' and 4" in Q,, can both be seen as very

good approximations of the function Ax.1 in M,,. From this point of view, we can

consider 1' and 1" (and 4' and 4") as equivalent total objects. The next definition
generalizes this view to all types.

14



10. Definition For each 6 € T, we define inductively an equivalence relation between
objectsin Q (formally, x<>y) as follows:

(i) foro=cortandxye Q: x>yiffx=y
(ii) foro=oPf andf,ge Q J f<>g iff forevery x € Qa: f(x)<>g(x)
(iii) foro=sa et f,g € QG: f<>g iff for everyie I: f(i)<>g(i).

The next proposition says that a partial object, y, which is as well defined than a total
object x, is total and equivalent to x.

11. Proposition Foreach o e T, every x € Q_ and every y € PM :
ifx<y,thenye Q; and x<y.
Proof We proceed by induction on the basis of types € and t.

(@) o=cort. Ifxe Q, then by definition x # ¢. Hence if x <y, then by definition

again, x =y. Thereforey e Q_and x<>y.

(i)o=0ap. Iffe Q, then by definition f(x) € QB forevery x € Q. Soif f < g, then
f(x) < g(x) for every x € PM,, and hence, f(x) < g(x) for every x € Q,. Therefore, by
the induction hypothesis, g(x) € QB and f(x)<>g(x) for every x € Q. Hence by
definition, g € Q and f<>g.

(i) o =so. Asin (i).00

The next proposition is not only obvious by itself but it will be useful in the proofs of
many future propositions. It says that each non-total object is an approximation of a total
one.

12. Proposition For each 6 € T and every x € PM =

ifx ¢ Q, then there exists y € Q such thatx <y.

Proof We proceed by induction on the basis of types € and t.

() o=cort. If xe Q_, then by definition x = @. By definition again, every y € Q_ is
such that ¢ <y.

(i)o=oaf. Iffe Qo, then by definition there is x € Qa such that f(x) ¢ QB’ But by
the induction hypothesis, for any x € Q, such that f(x) ¢ QB’ thereis y € Q’5 such that
f(x) <y. This assures that for each x € Qa, the set:
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S = [y € Qp 1®) <),

is not empty. Define:
Up= (X< QB | Ixe Q: X = Sf(x)},
etlet ¥ be any function from U, into QB such that:

(i) forevery X e U, x(X) € X;
(i) forall X, X' e U, if X € X', then x(X") < x(X).

We can check that there are functions of this sort. Now consider g:PM, — PMB such
that:

fx)ifxe Q,
g(x) =
x(Sf(x)) otherwise.

One easily verifies that if g is monotonic, then g€ Q_and f < g. So let us check that g is
monotonic.

- Let x,x"e PM,_ such thatx < x'. A priori, there are four possible cases for x,x":
D x,x'e Qa;

2)xe Q andx'e Qa;

B xe Q andx'¢ Q;

@ x x'e Q.

The case (3) is excluded by proposition 11. Let us see the other cases.

In case (1), we have g(x) = f(x) < f(x") = g(x"). Hence g(x) < g(x").
In case (2), we have g(x) = f(x) < f(x') < x(Sf(x.)) = g(x"). So g(x) < g(x").

£(x) cS fx)' Therefore

we have g(x) = x(Sf(x)) < x(S f(x,)) = g(x"). Hence g(x) < g(x). This means that g is
monotonic.

In case (4), it is easily checked, by the monotonicity of f, that S

(iii) o =so.. Asin (ii), but much more simple.[]
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The following proposition requires, in one direction (the direction =), the monotonicity

of functions of type o (for all total objects x and y, we write 1 (x<>y) to express the
fact that x and y aren't equivalent). '

13. Proposition For each o e T and for all x,y € Q:

X#gy iff Y (x<>y).
Proof (=) We proceed by induction on the basis of types e and t.

(i) o=eort. Ifx#gy, then x #y by definition. So by definition again, 7 (x<>y).

(i)o=af. Iff # g, then by definition there is x € PM_ such that f(x) #; g(x). Leta
€ PM_ be an object of this sort. If a € Q_, then by the induction hypothesis,
71 (f(a)<>g(a)) and therefore by definition, 71 (f<>g). If a¢ Q,, then by proposition

12, thereisy € Q suchthata<y. Let be Q, be an object of this sort. Since f and g
are monotonic, then f(a) < f(b) and g(a) < g(b). But f(a) #; g(a). Therefore f(b) % g(b),
by proposition 6. So by the induction hypothesis, 71 (f(b)<>g(b)) and so 71 (f<>g) by

definition.
(iii) o =sa. As in (ii), but much more simple.
(&) Again we proceed by induction on the basis of types e and t.

(i) o=eort. If 7 (x<>y), the by definition x # y and hence, by definition again, x =, y.

(ii) o = aff. If T (f<>g), then by definition thereis x € Q o, Such that 7 (f(x)<>g(x)) and
hence, by the induction hypothesis, such that f(x) #¢ f(x). So f #¢ g by definition.

(iii) o = so.. Asin (ii).O

The next proposition is analogous to the Leibniz's law. Its proof requires the
monotonicity of functions of type of.

14. Proposition For every 6 € T of the form aff, and forfe Q andx,y € Q. :
if x<>y, then f(x)<>f(y).

Proof If x<>y,then 7 (x #y) by proposition 13. Hence by proposition 7, there is z
€ PM_ such that z = xVy and so such that x <z and y < z. Therefore, by the
monotonicity Qf f, f(x) <f(z) and f(y) < f(z). But f(x), f(y) € QB; so by proposition 11,
f(z) e QB’ f(x)<>f(z) and f(y)<>f(z). Therefore f(x)<>f(y).[]
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15. Proposition Let, for each 6 € T, II o be the partition of Q_ generated by <>;
formally:

I'Ic ={XCE QGI.'-_Ixe QG:X={ye Qolx<>y}};
then for each 6 € T and for every X € I1 - VX exists in PM - and belongs to X.

Proof By the definition of II  and proposition 13, each X € II ; belongs to C . Hence
by proposition 7, W X exists in PM_. Moreover, it is obviously the case that x < VX

for every x € X. Therefore, x<>V X for every x € X, according to proposition 11.
So by definition, ¥ X € X.O

16. Proposition (i) LetFe II ap ’ Xe 1'[0L and Y € HB such that VF(V X)e Y;

thenVF(VX) = VY. (i) Let Fe I ,ie Iand Y € II_ such that VF(i) € Y; then
VE@ = VY.

Proof (i) Since for every x € X andeveryfe F,x < VX and f < VF, then for every
x € X and every f € F, f(x) < VRV X). Similarly, for every y € Y,y < Vy;

therefore, since by hypothesis, ¥ F(V X) € Y, then ¥ F(V X) < VY and
consequently:

(@) for every x € X and every f € F: f(x) < VF(VX) <Vy.
Now by proposition 15, VX e X and VF e F; so this plus (1) imply:
(2) for every x € X and every f € F, it VF(VX) <f(x) < VY, then f(x) = VF(VX).

Suppose that VF(V X) # V' Y. Then there is y € Y such that VF(V X)y=y
and VRV X) < y < VY. Letae Ybean object of this sort and consider the function
g:PM, — PMB such that:

aifx = VX
g(x) =
F(x) otherwise.

One can easily check that if g exists, then g € PMaB’ g# V'F butVF < g. By

proposition 11 this implies that g € F, contradicting (2) above. Therefore, VF(VX) =
VY. (iii) As in (ii), but more simple.]
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We would like to associate to each classical object x € M, and this for each 6 € T, the
equivalence class X e II | of objects in Q_ which are very good approximations of x.
- Inversely, we would like to associate to each equivalence class X € II the classical

object x € M which is approximated by the objects in X. This is the purpose of the next
definition.

17. Definition We define iﬁductively two functions:

O fh M, = L 1T,

W LT,
as follows.
(i) for o =e or t: D(x) = {x} and ¥({x}) =x;
(ii) for o = af:

o) =({fe QO IVx e M, Vy e ®®x): f'(y) e ®(f(x))};
Y(F) =2Axe M_ ¥({ze Q‘3 | Vge F: Vye ®(x): z<>g(y)});
(iii) for o = sa:
Of)={f e Q;1Vie L (i) e O(f(i))}
Y(F)=Aie L¥({ze Q,!Vge F: z<> g()).

18. Proposition @ is bijective and ®&! = ¥,

Proof It is sufficient to show that ¥(®(x)) = x and ®(¥ (X)) = X. One proceeds by
induction on types e and t.

(i) o=eort. PY(®®x)) =¥({x}) = x and P¥({x})) = P(x) = {x}.

(i1) o = a. Suppose that the property is satisfied by the objects of types o and . Let f
€ M(j and F = ®(f). So ¥(®(f)) =¥Y(F) =

1) Axe M ¥((ze QBI Vge F: Vy e ®O(x): z<>gy)});
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By definition, g(y) € ®(f(x)) for every g € F, every x € M_ and every y € ®(x);
therefore (1) is equal to:

Axe M ¥({ze QBI ze O(f(x))}
and this is of course equal to:
2) Ax € MW (D(f(x))).
Therefore (2) is equal to Ax € M_.f(x), thatis f.
On the other hand, let F HG and f = WY(F). So ®(¥(F)) = () =
a {f'e ch‘v’xe M, Vye Okx): f(y) e D(f(x))}.
But by definition, for every x € M,
fx)=¥({z e QB | Vg e F: Vy € ®(x): z <> g(y))).
Therefore (1') is the set:
{fe Q,lVxe M Vye ®(x): f(y)e {ze QB Vg e F:Vy € ®(x): z <> g(y)}},
which is equal fo the set:
F={fe QG IVx e M Vy e ®(x): Vg e F:Vz e O(x): f(y)<>g(z)}
Now F € F'. Indeed, suppose there is f € F such that f ¢ F'. Therefore:
2" dx e M, :Jy € O(x): 3g € F:3z e O(x): 7 (f(y)<>g(2)).
But for every x € M and for all y,z € (), y,z € Q_ and y<>z. Hence (2') implies:
3" dge F:3y,ze Q  y<>z & T (f(y)<>g(2).

But since f € F, then for every g € F, f(x)<>g(x) for every x € Q_ . This and

proposition 14 imply that for all y,z € Q, such that y<>z, f(y)<>f(z)<>g(z), so
f(y)<>g(z), and this clearly contradicts (3').

~ On the other hand, F' € F. Indeed, suppose there is f' € F' such that f' ¢ F.
Therefore, it is obviously the case that for any g € F, 71 (f'<>g) and so:
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4" Jdz e Q1 (2)<>g(2)).
But since f' € F':
s" Vxe M :Vy e D(x): f'(y)<>g(y).

So (4'), (§8") and proposition 14 imply:

(6" Jdze Q:Vxe Ma:Vy € D(x): T1(z<>y).
But Q, ={ye ®(x)Ixe Ma}. Therefore (6') is equivalent to:

Jdze QVye Q : T (z<>y),
and this implies that there is z € Q_ such that ™ (z<>z), which is absurd.

(iii) o = sa.. Assuming that the property is satisfied by the objects of type a, the proof is
as in (ii), but much more simple.[]

19. Remark Now we know that for any 6 € T, M = II . Moreover, proposition 15

assures that for every classical object x € M_, the object \/(I)(x) € Q,is the unique
partial total object which approximates maximally x. Therefore we can identify each
classical object x € M with its maximal approximationV(D(x), and then consider any

partial object y € PM_ such thaty < V(D(x), as an approximation of x.

20. Notational convention For any 0 € T and any x € M, we denoteV ®(x) (the
maximal approximation of x) by ma(x) .

21. Proposition (i) Let f € Moqs and x € M_; then (ma(f))(ma(x)) = ma(f(x)). (ii) Let f
€ M_,; then for every i € I, (ma(f))(i) = ma(f(i)).

Proof (i) By definition 17-(ii) and proposition 15, (ma(f))(ma(x)) € ®(f(x)). Therefore,
by proposition 16-(i), (ma(f))(ma(x)) = ma(f(x)). (i) By definition 17-(iii) and
proposition 15, (ma(f))(i) € ®(f(i)). Therefore, by proposition 16-(ii), (ma(f))(i) =
ma(f(i)).]

22. Remark The partial functions of type (t,t) or (t,(t,t)) of our system which
correspond to the truth functions of Kleene's strong three-valued logic (KSL) are exactly
the maximal approximations of the classical truth functions. Indeed, to the function of
negation according to KSL corresponds the function 3'in PM,, (see figure 2, Section

C.1) and this function is obviouly the maximal approximation of the classical truth



function of negation. Moreover, to each binary truth function of KSL corresponds a

function f in PMt(n) which can be represented by the image of PM, under £, as follows:
Conjunction Disjunction
0O 0 0 1 0 1 1 1
0 (0] (0] 1
0 9 o 1
¢ ¢
Conditional Biconditional
1 1 0 1 1 0 0 1
1 L ¢ ?
o 1 ¢ ¢
o ¢

It is then easy to check that each of these functions belongs to Qt(n) and that it is not

dominated by another function and so that it is the maximal approximation of its classical
analogue. :

This ends the description of the domains of partials objects. We are now able to define
the notion of standard partial model for the language of IL.

C.4. Definition of the notion of standard partial model.

Let E and I be two non-empty disjoint sets. A standard partial model based on E and I is
an ordered pair:

PM = <{PM_}__r, pm>

oeT’

where: {PM_} . is the standard system of partial objects based on E and I; pm s a
function:

pm:&erona — &EJTPMSG

such that pm(c ) € PM_ for each ¢, € Con,. We denote by As(PM) the set of
assignments over PM , that is the set of all functions:

pa:l) var, — Ll PM_

oET
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such that pa(xa) € PM, for any X, € Var,. For any pa € As(PM), any x € Var,
andany ye M, we denote by pa(xa/y) the assignment in As(PM) which differs at
most from pa by assigning y to x .. We define recursively the partial value [[Aall?:'i in
PM of aterm Aa according to an assignment pa € As(PM) and an i € I as follows:

@  Lc 1%, = (pm(c )@

a gﬁ,i
R i P
(iii) EAaBBa] pai= I[AaB]] p a,i(EBa] pa.i);
@iv) I["AO‘]I:;I‘:i = the function f from I such thatforany je I, f(j) = [ Aa]]l;l‘:j;
v PM PM ,:\.
v VA I =LA T30

(vi) [hx aABJII;I‘:f the function f from PM,_ such that for any y € PM,, f(y) =

PM — .
IIAB]lpa.,i where pa' = pa(x /y);

1if LA ™M [B_1*M e Q, and [A T™™. < [B_ I*M

a“pa,i o PalslM a~ pa,i o™ pa,i
- = PM _ . PM
(vi) [[A, = B,JI'Y =1 0if [A TV # [B I°7.

¢ otherwise.

1ifIATPM =B I?M =1

tTpa,i t” pa,i

PM _ ) PM _ PM _
(viii) [[A, A Bt]]]pa,i_ 0if [A T pai= 0or I[Bt]]pa,i =0
¢ otherwise.

23. Remark The rule (vii) of identity makes indiscernable, in the object language, all
total equivalent objects, and by proposition 13, it makes discernable all non-equivalent
total objects. So identity between total objects has the same behaviour than standard
identity between classical objects. This expresses the idea the if the known denotations
of two expressions are total objects, then one can safely determine if the two expressions
denote in fact the same thing or not. On the other hand, it is sufficient that the known
denotations of two expressions be incompatible to be able to infer that the denotations of
the expressions aren't in fact the same. However, if the known denotations of two
expressions aren't total but compatible, one cannot determine if the two expressions
denote in fact the same thing or not; this is the case even if the known denotations of the
two expressions are both equally undefined.

24. Proposition Forany o€ T,any A € Trm , any pae As(PM)and anyie€ I,
LA TN e PM .

o pa,i
Proof This is immediately verified if A is a constant or a variable - this follows from
the definitions of pm and pa. This is also verified by induction when A is of the form

[BC], AxB, ¥B or “B. Indeed, we note that to these four sorts of terms, correspond the
functional application and its inverse, the functional abstraction, two operations which
always preserve partial order and monotonicity. Remain identity and conjunction.

Though it is obviously the case that forall A, and B, [[A_ = B ]I™™ . PM , we

pa,i
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have to check that identity can only generate, by functional abstraction, monotonic
functions; that is, we must check that it is effectively the case that:

Cax Ay [x, = ym]]lPM e PM

pa,i o(ot)’

We easily check that LAx Ay [x,
PMfMa such that for all x,y € PM:

ya]lll;l‘:iis the function, say id, from PM_ into

lifx,y € Q, and x<>y
(id x))(y) =4 Oif x %y
¢ otherwise.

It is then sufficient to show that id is monotonic. This is shown by proving that for
every X € PMa, the one-place functions Ay.(id (x))(y) and Ay.(id (y))(x) are monotonic.

We shall show this by restricting our proof to the case of the first function; the proof for
the other function is similar, anyway.

Letx,y,z€ PM_ andy < z. Four cases are possible for x, y:

D xy e Qg
(2)xe Q,andy e Q_;
() xe Q,and ye Q;
@ xy e Q,.

In case (1), if x<>y, then (id (x))(y) = 1. But by proposition 11, z € Qa and y<>z,
and this implies that x<>z, so (id (x))(z) = 1. Therefore, (id (x))(y) < (id (x))(z). If, on
the other hand, ™ (x<>y), then by proposition 13, x #g Y and hence (id (x))(y) =0. But
by proposition 6, x #g Z and so (id (x))(z) = 0. Therefore, (id (x))(y) < (id (x))(z).

In case (2) proposition 11 implies 71(x <y). Therefore, either y < x, or either x #y y,
or either 71 (y < x) and 71 (x #¢ y). First, if y <x, then of course 71 (x # y), so we

have (id (x))(y) # 1 and (id (x))(y) # 0. Therefore (id (x))(y) = ¢ and hence (id (x))(y) <
(id (x))(z). Secondly, if x #5 Ys then (id (x))(y) = 0. But by proposition 6, x # z and

hence (id (x))(z) = 0. So (id (x))(y) < (id (x))(z). At last, if 7 (y £x) and 77 (x # Y
then again (id (x))(y) # 1, (id (x))(y) # 0 and hence (id (x))(y) = ¢. Therefore,
(id (x))(y) < (id (x))(2).

The case (3) is similar to the previous one. The case (4) is just the sum of the two
previous ones.

It is shown in a similar manner that the conjunction is monotonic. (]
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25. Proposition Let PM = <{PM_} _;, pm>and PM' = <{PM_} .

standard partial models and let pa, pa' € As(PM) = As(PM’); then if for every a €T,
every ¢, € Con o and every x € Var,, pm(c 0t) < pm'(ca) and pa(x a) < pa'(xa), then

pm'> be two

forevery aeT, every A, € Trm and every i€ I, IIAa]ll;’I‘:,i < EAa]?:[",r

Proof This is immediately verified for constants and variables. Let us see the other
cases.

» Consider a term [A aBBa]' By the induction hypothesis:

[A 1%, STAGIPY and [B I°Y < [B I°0

oaf pa,i af " pa',i o pa',i’

By the definition of the partial order on PM ap and by the monotonicity of the objects in
PM o this implies:

LA, I (B 1Y) < LA TN (IB I°00 ).

af  pa,i af pa',i o pa',i
This means that [[A gB JT7" . < [[A¢B 1170 .

» Consider a term "A . By definition, for any je I, ["A 1°M ) = TA_1°M  and

o pa,i o™ pa,j
A a]]g’:‘,’i(i) = I["Aa]lpplr,,j. By the induction hypothesis, I[Aalll;r‘:’j < I[Aa]lglr,’j for
any j € 1. By the definition of the partial order on PM_, this means that Il."‘Am]lll))l\:lI . <
LA M
pa',i

* Consider aterm “A_ . By definition, foranyie I,[YA 1™ = [A_ 1M (j) and

) , so.” pa,i sa” pa,it
[¥A TN = LA T7% (). By the induction hypothesis, LA T°%. < LA TV for
. PM . PM' . . v PM
anyie L 'Therefore AT pa,i(l) < [[Asa]]pa',i(l)’ This means that [*A_ 1 pai <

[¥A TI°M .

so” pa’',i
* Consider a term ?txaAB. By definition, for an)f y € PM, I[k{(aAB]]I;hf,i(y) =
[AIYY, where pb = pa(x,/y), and DAx,A I (y) = LAGIVM . where pb' =

pa'(x,/y). By the induction hypothesis, I[ABJI?:JS I[AB]II:)I::[,"i and of course,

pa(xa/y)(xa) < pa'(xa/y)(xa) forevery y € PMa. This means that I[?nxaAB]II;I‘:’i <
Lxx A.IM

o Bpa',i’

» Consider a term [A, = B_]. By the induction hypothesis, [A_ 1™ < LA 1" and

pa, o pa',i
PM PM' . . . S . .
B 0‘]lpa,i <[IB_1 pa’ i Since we have just shown that identity is monotonic, this

implies that [[A, = B JI°™ . < [[A, = B JI°Y

pa',i’
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* Atlast, for aterm [A A B ], the reasoning is similar to the previous one.[]

26. Définition Let PM = <{PM_,} , 1, pm> be a standard partial model and let pa €
As(PM); an extension of PM is a standard partial model PM' = <{PM 0t}

that for every a € T and every ¢, € Con,, pm(c,) < pm'(c ); an extension of pa is an

oe T+ P> such

assignment pa' € As(PM) such that for every o € T and every x € Var, pa(x ) <

pa'(x,); a maximal extension of PM is an extension PM' = <{PM_} pm> of PM

aeT’
such that for every a € T and every ¢, € Con_, pm'(c ) = VX foranX e Il ;a

maximal extension of pa is an extension pa' of pa such that for every o € T and
every x, € Var ,pa'(x ) = VXforanXe II o A standard partial model is toral if it
is a maximal extension of some standard partial model.

27. Proposition Let PM be a standard partial model and let pa € As(PM); then: (i)
PM has a maximal extension (not necessarily unique); (ii) pa has a maximal extension
(not necessarily unique).

Proof (i) Let PM = <{PM_}

every o. € T and every C, € Cona, either pm(c 0L) € Qsa, or pm(c 0t) & Qsa; in this last

acT PM> be a standard partial model. Obviously, for

case, proposition 12 assures that there is an y € Q_, such that pm(c ) <y. Let PM' =

<{PMa}aeT’
€ Cona, pm'(ca) =V {x € Qsa I x<>pm(ca)} if pm(ca) € Qsa; otherwise, pm'(c ) =

pm'> be any standard partial model such that for every o€ T and every c

v {xe Q. | x<>y} forany e Q_, such that pm(c,) <y. It is clear that PM' is an

extension of PM which, moreover, is maximal. (ii) As in (i), considering pa € As(PM)
instead of pm. ]

28. Remark Consider the terms defined in Section B.2. On the basis of the definition
of identity between partial objects, it is easy to check that T denotes 1, F denotes 0 and
that the definition of ™ is equivalent to the definition of the negation according to KSL.
Moreover, it is clear that the definition of A is equivalent to the meaning postulate for the
conjunction according to KSL; therefore it follows that the definitions of v and 2 are
respectively equivalent to the definitions of the disjonction and the conditional according
to KSL. Notice that the biconditional is the sign = restricted to Trm, and it is easy to
check that this sign so restricted corresponds to the biconditional according to KSL. The

definition of the universal quantifier ¥ induces interesting truth conditions; for instance,
one easily checks that:

1 if for every x € PM_ such that x # @, I[Aet]ll:‘: =1
[¥x [A x 1174 =1 0if there is x € PM, such that [A_ 1™ (x) = 0
pa.i e et” pa,i

¢ otherwise.
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At first glance, this result may appear to be not consistent; indeed, one could imagine that
A, is such that [[Aet]?: (9)=0and LA I™M (x) =1 for every x € PM_ such that x

et” pa,i
# @. Clearly the result would be that IIVxe[Aetxe]]l”:: = 1 and 0. But the truth is that

no predicate may have this behaviour, for this behaviour is not monotonic. Monotonicity
implies that if there is anx € PM, such that [TA_I™™ (x) = 0, then [A_I"™ (y) = 0 for

t pa, et pa,
every y € PM,_ such that x <y. One can check that the definition of the existential

quantifier 3 induces the following truth conditions:

1if there is x € PM_ such that [A_T™ (x) = 1

et” pa,i

x JI"™M =2 0 if for every x € PM,_ such that x # o, [A I™M x)=0

et"e " pa,i et” pa,i

L er[A

¢ otherwise.

At last, one easily checks that the definitions of the modal operators induce the following
truth conditions:
p

lifforeveryje I, IATM =1

tpa,
[OATY ={ Oif thereis j & I'such that LAY = 0
¢ otherwise.
’
1 if there is j € I such that I[At]ll;r‘:j =1
PM _ . . PM _
EOAt]pa,i’* 0if forevery je L IAT ¥ .=0

¢ otherwise.

\

In Gallin's presentation of the language of IL, conjunction is introduced by the following
definition:

Def.A A = Nx Ny [z [[zx] = y] = Az [2T]]

and the convention is to write [A, A B] instead of [[AAt]Bt]. In the classical semantics,
the truth conditions of [A, A B ] so defined are exactly the truth conditions given by the
rule B.3-(viii). But in the partial semantics, the truth conditions of [At A B|] introduced

by Def.A do not coincide with the truth conditions given by the rule C.4-(viii). Indeed,
we obtain:

[[A ABITY =¢if [ATY =0and [BI?Y = o.

t" pa,i_

In all other cases however, the values of [A, A B ] agree with those given by the rule
C.4-(viii). This means a non-commutative conjunction, which is of course undesirable.

C.5. The notions of entailment and validity in the partial sense.

Most of the so-called partial logics are weakened logics, lacking many fundamental laws
of classical logic such the excluded middle. But a certain faintness come to us front such
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exclusion. What is troublesome is not the thesis that there are sentences which are neither
true nor false (there are indeed many good reasons to believe that); the problem is that on
this basis, one concludes that the law of excluded middle (this is just an example) is not
valid. But this conclusion rests on a particular notion of validity: to be true in every
model, or equivalently, to be true under every substitution of terms for non-logical
constituents. In classical logic of course this notion is equivalent to the notion of to be
not false in every model, or equivalently, to the notion of to be not false under every
substitution of terms for non-logical constituents. This follows obviously from
bivalence. In partial logics however, this equivalence doesn't hold anymore: the class of
valid formulas according to the first notion of validity is generally smaller than the class
of valid formulas according to the second. For instance, Kleene's strong three-valued
propositional logic doesn't have valid formulas according to the first notion, because
given any formula A, it is always possible to construct a model in which A is not true.
But N. Rescher [1969] showed that for the same logic (and others like that one) the class
of valid formulas according to the second notion is exactly the class of valid formulas of
the classical logic. A more general result can be obtained. For the langage of
propositional logic interpreted by the coherent partial situation semantics - whose
meaning postutlates for the logical connectives are equivalent to those of the Kleene's
strong three-valued logic - J. van Benthem [1986] defined a notion of entailment which
turns out to be coextensive with the classical notion. This notion (called "weak

consequence") superficially appears identical with the classical notion: a set I" of formulas

entails a formula A, if and only if there is no model in wich all fomulas in I" are true and
A is false. In the spirit of partiality however, that amounts to say that a deductively valid
reasoning whose conclusion is a sentence B is a sequence A,, ..., An, B of formulas
such that, necessarily if Al, e An are true, then B is not false. According to us, this is

the essential property of a valid reasoning, for, though it may appear to much weak, it is
not controversial on the one hand (in the sense that nobody may seriously think of it as
false), and on the other hand, it leads to a class of valid formulas which is identical with
the class of valid formulas according to the classical notion. So let us apply this notion of
entailment to our system.

Let A be a formula of the language of IL, PM be a standard partial model, pa € As(PM)

andi € L. A is satisfied in PM according to pa and i, formally: IEPM pa A, iff l[A]ll;If ;
= 1. Ais not satisfied (or is unsatisfied) in PM according to pa and 1, formally: '

=y pa A iff TAIPY = 0. Ais not unsatified in PM according to pa and i,

formally: #| PM.pa A, iff I]IA]]I;I‘;[i =1or ¢. If T is a set of formulas of the language of
IL, then T is satisfied in PM according to pa and i, formally: |EPM pai T, iff

A forevery A € I'. If A is a formula of the language of IL, then A is true or

IEPM,pa,l

undefined in M iff $IPM,p a‘iA for every pae As(M) and every i € 1. A setT” of
formulas entails a formula A (in the partial sense), formally: I' 2| A, iff for every
standard partial model PM, every pa € As(PM) and every i€ I, if IEPM’pa’i I', then
2 |PM pa iA. At last, a formula A is valid (in the partial sense), formally: 2| A, if and
only if @ #]| A, that s to say, iff A is true or undefined in every standard partial model.
The notion of entailment in the partial sense is equivalent to the notion of classical
entailment (see proposition 33, Section C.6). This is due to the fact that partial models

which are total can be identified with classical models. This of course presupposes that
we can compare partial models with classical models.
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C.6. Comparing partial and classical models.

29. Proposition Let PM be a standard partial model, pa € As(PM), PM' be a
maximal extension of PM and pa' € As(PM) = As(PM") be a maximal extension of pa;
then for every a €T, every Aa € Trmaand every ie |, I[Aa]]?:'i < I[Aa]li:}:[."i.

Corrolary Let PM be a standard partial model, pa € As(PM), PM' be a maximal
extension of PM and pa' € As(PM) = As(PM') be a maximal extension of pa; then for

.Aand =| A

. A implies IEPM-,],a.,1 PM,pa,i

any formula A and foreveryie Lt |=p,

implies =| 5, pa’ A

Proof By definition 26 and proposition 25.[]
30. Definition Let M =<{M,_},_, m> be a standard classical model and a € As(M);
the partial replica of M is the standard partial model PR(M) = <{PM_}

that for every o € T and every ¢ € Con,, pm(c ) = ma(m(c o)) the partial replica of a

e P> such

is the assignment PR(a) = pa € As(PR(M)) such that for every a € T and every Xy €

Var,, pa(xa) = ma(a(xa)). It is easily seen that the partial replica of a classical model is a
partial model which is total.

31. Proposition Let M be a standard classical model, a € As(M), PM = PR(M) and
pa = PR(a); then for every « € T, every term A_and every i€ I, [A 1°M

o™ pa,i
ma([[Aa]]I;’[ D-

Corrolary Let M be a standard classical model, a € As(M), PM = PR(M) and pa =
PR(a); then for any formula A and foreveryie I: |= Aiff E Mai A and
Aiff ¥ MaiA

PM,pa,i
= IPM.pa,i

Proof This is immediately verified for variables. For constants this is also

straightforward: provided that M = <{Ma} weTs >, then I[calll;lfi = (ma(m(c))({) =
ma((m(c))(1)) (by proposition 21-(ii)) = ma(l[ca]I’:[ .- Let us see the other cases.

* Consider a term [AaBB oJ- BY the induction hypothesis:

LA, Ty, =malAgIY ) and [B IV, =maB,I} )

oaf pa,i o a,i

hence

[[A,eB, 10y ; = LA I0Y (IB I°M ) = (ma(LA T} ))(ma(B, I} ).

o pa,i aa,

But by proposition 21-(i),
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(ma(lA 1Y ))(ma(@B 1Y )) = maA 1Y (IB T} )

ofa,i of~a,i o a,i

and by definition,

ma([A I} ([B, I} ) = ma(L[A zB 11} ).

Therefore, [[A B 1174, = ma(L[A B 1T} ).

pa,

* Consider a term "A . By definition, for any j € I:

[*A 1M ) =LA 1*M

o pa, o pa,j

[*A M G) = [A IM

o a,i o a,j’

and by the induction hypothesis:
PM _ M
I[Aa]]pa,j = ma([A I ,J.).

SoL~A I°M () = ma([A, T} ) = ma(l~A T} (). But by proposition 21-(ii):

o~ pa,i

ma(*A_IM () = ma@*A_IM ))().

o~ a,i o a,i

Hence [*A_I™ (j) = (ma(@~A_IM ))(j) and this implies [*A _I?M =

o pa,i o a,i o pa,i

- ma(l*A IM ).

o a,i

* Consider aterm YA__. By definition, for anyie I:
sOL

YA _I™M =fA 1°M )

sa” pa,i so” pa,i

A 1M =1A_IM (i),

SO~ a i sou” a,i

. . . PM _ M ~ PM _
and by the induction hypothesis, [A_ 1 pai= ma(LA_ 17 - Hence ["A_ T pai=
(ma(LA_ I™ ))(i). But by proposition 21-(ii):

s a i

(maA_IM ){) =maA_ IV (i)).

so” a,i so” a,i

Therefore, [YA_IT™™ =ma(A_ IM (1)) =ma@@>A_IM ).

sa” pa,i so.” a,i so” a,i

» Consider a term Ax uAB‘ It is sufficient to show that foreveryy € M :



I[)\xaAB]ll;L:'i(ma(y)) =ma([Ax A, IM (y))

o BTa.i

for by proposition 21-(i), ma(IAx A IM (y)) = (ma(Thx A I ))(ma(y)), and this

o B a, o BT a,i

shows effectively that I[)\xaAB]Il; I‘f,i = ma([Ax aAB]]I:[,i)‘

First, by definition, it is the case that foreveryy € M :

D\xaAB]ll;I‘:’i(ma(y)) = l[AB]lg:{i where pa'= pa(x /ma(y))

CAx aABJJIZI'i(y) = EAﬁlg’i where a' = a(x_/y).
Secondly, by the induction hypothesis, I[AB]II::;I = ma(I[AB]II;’I ) and it is obviously the
case that pa(x a/ma(y))(xa) =ma(a(x a/y)(xa)) forevery ye M o Therefore, for every

v _ — PM _ PM _
y € M, a' =a(x,/y) and pa'= pa(x_ /maf(y)), I[)\xaAB]l lm’i(ma(y)) = [[AB]lpa.’i =
ma(lIAB]lI:,[,i) = ma(l[)\xaAB]]If’i(y)).

* Consider a term [A, = B_]. By the induction hypothesis, Il'.Am]ll;I:{i =ma(lA_IM)

o~ a,i
and IIZBm]L;)/I[‘:,i = ma(EBgl\ldl?,i). So l[zgﬁ]ll;]f’i, [B 0{){; If’i € Q, and by proposition 15,
= ([[Amillpa’i <>[B_1 pa’i) iff I[Am]]pa’i #s [B 1 pai Hence we have:

. PM PM
1if I[Aa]]pa,i < [B 1

o™ pa,i

[[A, =B I =

pa,i .
0 otherwise

and so obviously we have:

[[A, =B I =[[A, =B II}

pa.i

- = PM _ = M
and a fortiori we have [[[Aa = Bm]]lpa’i = ma(l[[Aa = Ba]]a ’i) .
* For a term [A A B ], the reasoning is similar to the previous one.[]

32. Proposition Let PM be a standard partial model, pa € As(PM), PM' be a maximal
extension of PM and pa' € As(PM) = As(PM') be a maximal extension of pa; then

there exists a standard classical model M and an assignment a € As(M) such that PR(M)
=PM' et PR(a) =pa'. As corrolary, to every partial model that is total corresponds one
classical model.
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Proof Let PM' = <{PMa}
_ <{PMa}aeT’
pm'(ca) =VXforanXe Hsa. LetM = <{Ma}

such that for every o € T and every ¢, € Con_, m(c ) = Y({x e Q. | x<>pm'(c,)}).

acTs PM™> be a maximal extension of the model PM =

pm>. By definition, for every o € T and every ¢, € Con , pm(c ) <

e 1> be a standard classical model

Obviously, M exists. Moreover, for every a € T and every ¢ € Con , pm'(c ) =
V({xe Q| x<>pm'(c)}) = ma(¥({x € Q| x<>pm'(c)})) = ma(m(c,)).
Therefore PR(M) = PM'. On the other hand, let a € As(M) be an assignment such that
for every o € T and every x € Var, a(x,) = Y({x € Q,! x<>pa'(x a)}). Again,

ma(a(x ) = pa'(xa) for every o€ T and every x € Var,. Therefore PR(a) = pa'.(]

33. Proposition Let I" be a set of formulas and A be a formula of the language of IL;
then 2| AiffT E A.

Proof First suppose that I' #| A but not I' F A. This means that there exists a
standard classical model M, an assignment a € As(M) and ani € Isuch that F Mai r
and ¥, . . A. Let PM =PR(M) and pa = PR(a). So by the corrolary of proposition 31,

IEPM,pa,i I and = IPM'pa’iA. This clearly contradicts the assumption that ' 2| A.

Therefore I’ F A. On the other hand, suppose thatI' F A butnotI" #| A. This means
that there exists a standard partial model PM, an assignment pa € As(PM) and ani e I
such that |=,,, . T and = IPM’p aiA- By proposition 27 and the corrolary of
proposition 29, there exists a maximal extension PM' of PM and a maximal extension

pa' of pa sucht that IEPM,‘W,‘i I'and = IPM,‘pa,'iA. But by proposition 32, there exists a

standard classical model M and an assignment a € As(M) such that PM' = PR(M) and
pa' = PR(a). Therefore, by the corrolary of proposition 31, F, _.T" and ¥, _.A.

This clearly contradicts the assumption that I' F A. Therefore I 2| A.OJ

34. Remark Consider the deductive system IL described by D. Gallin [1975], chap.
1, § 3. Let IL+Cnj be the system IL plus the following axiom schema :

Cjn. [[A,AB]= [J&za[[zA] = B] = hzu[zT]]], if z is not free in A and B.

Of course, this schema is redundant if conjunction is introduced by Def.A. However,
IL+Cnj is deductively equivalent to the system IL and in our version of the language of

IL, conjunction is not introduced by Def.A. It is then easily seen that Cjn is not
redundant given our version of the language of IL.

Given the fact that the system IL is sound in the standard and classical sense (every
theorem of IL is valid in the standard classical semantics), the last proposition allows us
to claim that IL+Cnj is sound in the standard and partial sense (one verifies easily that
the rules of inference preserve validity in the partial sense). Moreover, we know that

restricted to a certain class X of formulas (the class of persistent formulas), the system IL
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