Institute for Language, Logic and Information

THE MODAL LOGIC OF INEQUALITY

Maarten de Rijke

ITLI Prepubiication Series
for Logic, Semantics and Philosophy of Language LP-90-15

(8332

University of Amsterdam



1986 The ITLI Prepublication Series

86-01 The Institute of Language, Logic and Information

86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules

86-03 Johan van Benthem Categorial Grammar and Lambda Calculus

86-04 Reinhard Muskens A Relational Formulation of the Theory of Types

86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time,
6-06 Johan van Benthem Logical Syntax Forward looking Operators

87-01 Jeroen Groenendijk, Martin Stokhof Type shifting Rules and the Semantics of Interrogatives

87-02 Renate Bartsch Frame Representations and Discourse Representations

87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing

87-04 Johan van Benthem Polyadic quantifiers

87-05 Victor Sinchez Valencia Traditional Logicians and de Morgan's Example

87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time

87-07 Johan van Benthem Categorial Grammar and Type Theory

87-08 Renate Bartsch The Construction of Properties under Perspectives

87-09 Herman Hendriks Type Change in Semantics: The Scope of (gue:ntification and Coordination

1988 | p_88-01 Michicl van Lambalgen Logic, Semantics and Philosophy of Language: Algorithmic Information Theory

LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic

LP-88-03 Year Report 1987

LP-88-04 Reinhard Muskens GoincgaFartial in Montague Grammar

LP-88-05 Johan van Benthem Logical Constants across Varying Types

LP-88-06 Johan van Benthem Semantic Parallels in Natural Langvage and Computation

LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse

LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in Dynamic Semantics

LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra

LP-88-10 Anneke Kleppe . . A Blissymbolics Translation Program

ML-88-01 Jaap van Oosten Mathematical Logic and Fourdations: | jfschitz' Realizabiility

ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L6f's Type Theories with weak Z-elimination

ML-88-03 Dick de Jongh, Frank Veltman Provability Logics for Relative Interpretability

ML-88-04 A.S. Troclstra On the Early History of Intuitionistic Logic

ML-88-05 A.S. Troelstra . Remarks on Intuitionism and the Philosophy of Mathematics

CT-88-01 Ming Li, Paul M.B.Vitanyi Computation and Complexity Theory: Two Decades of Applied Kolmogorov Complexity

CT-88-02 Michiel HM. Smid General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michiel H.M. Smid, Mark H, Overmars Maintaining Multiple Representations of
Leen Torenvliet, Peter van Emde Boas Dynamic Data Structures

CT-88-04 Dick de Jongh, Lex Hendriks Computations in Fragments of Intuitionistic Propositional Logic
Gerard R. ienardel de Lavalette

CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)

CT-88-06 Michiel HM. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity

CT-88-07 Johan van Benthem Time, Logic and Computation
CT-88-08 Michiel H.M. Smid, Mark H. Overmars Multiple Representations of Dynamic Data Structures
Leen Torenvliet, Peter van Emde Boas
CT-88-09 Theo M.V, Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sicger van Denncheuvel, Peter van Emde Boas  Towards implementing RL
X-88-01 Marc Jumelet Other prepublications:  Oq Solovay's Completeness Theorem

9 LP-89-01 Johan van Benthemlo8ic, Semantics and Philosophy of Language:Tye Fine-Structure of Categorial Semantics

LP-89-02 Jeroen Groenendijk, Martin Stokhof ~ Dynamic Predicate Logic, towards a compositional,
non-representational semantics of discourse

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and Temporal Logic of Intervals
LP-89-04 Johan van Benthem !A:g:a e in Action
LP-89-05 Johan van Benthem Modal Logic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application
LP-89-07 Heinnch \‘}ansin The Adeg;ucy Problem for S?ucnﬁal Propositional Logic

LP-89-08 Victor Sinchez Valencia Peirce's Propositional Logic: From Algebra 1o Graphs
LP-89-09 Zhisheng Huang l_)ea?cndcx_wy of Belief in Distributed Systems
ML-89-01 Dick de Jongh, Albert Vissey Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic

ML-89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative
ML-89-03 Dick de Jongh, Franco Montagna Rosser Orderings and Free Variables
ML-89-04 Dick de Jongh, Marc Jumelet, Franco Montagna On the Proof of Solovay's Theorem

ML-89-05 Rincke Verbrugge X-completeness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgea The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
ML-89-08 Dirk Roorda Investigations into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provabfc'Fixcd points in IAp+9Q4

CT-89-01 Michicl HM. Smid Computation and Complexity Theory: Dynamic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Ncuféglise, Leen Torenvliet, Peter van Emde Boas On Space Efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space

CT-89-05 Picter H. Hartel, Michiel HM. Smid A Parallel Functional Implementation of Range Queries
Leen Torenvliet, Willem G. Vree

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Ficlds
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learning Simple Concepts under Simglc Distributions and
Average Case Compﬁxily l!)'or the Universal Distribution (Prel. Version)
CT-89-08 Harry Buhrman, Steven Homer Honest Reductions, Completeness and
Leen Torenvliet Nondeterminstic Complexity Classes
CT-89-09 Harry Buhrman, Edith Spaan, Leen Torenvliet On Adaptive Resource Bounded Computations
CT-89-10 Sieger van Denneheuvel The Rule Langunage RL/1

CT-89-11 Zhisheng Huang, Sieger van Denneheuvel Towards Functional Classification of Recursive Query Processing

Peter van Emde Boas C
X-89-01 Marianne Kalsbeek Other Prepublications: An Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory
X-89-03 A.S. Troclstra Index of the Heyting Nach{ass
X-89-04 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar, a first sketch
X-89-05 Maarten de Rijke The Modal Theory of Inequality
lg::mam:i voor Conceptueel Modelleren: Het RL-project

¥-88-06 Peter van ¢ Boas Een Relationele
9 SEE INSIDE BACK COVER



| Instituut voor Taal, Logica en Informatie
| Institute for Language, Logic and

Information
Facuiteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Piantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

THE MODAL LOGIC OF INEQUALITY

Maarten de Rijke
Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublications
for Logic, Semantics and Philosophy of Language
ISSN (924-2082
Research upported by the Netherlands Organization for
. Scientific Research (NWO).
Received November 1990 This paper is a revised version of X-89-05






The Modal Logic of Inequality

Maarten de Rijke*

Abstract

We consider some modal langnages with a modal operator D whose semantics
is based on the relation of inequality. Basic logical properties such as definability,
expressive power and completeness are studied. Also, some connections with a number
of other recent proposals to extend the standard modal language are pointed at.

1 Introduction

As is well-known standard (propositional) modal and temporal logic cannot define all the
natural assumptions one would like to make on the accessibility relation. One obvious
move to try and overcome this lack of expressive power, is to extend the languages of
modal and temporal logic with new operators. One particular such extension consists
in adding an operator D whose semantics is based on the relation of inequality. The
proposal to consider the D-operator is due to several people independently, including
Koymans [15], and Gargov, Passy and Tinchev [10]. This particular extension of the
standard modal language is of interest for a number of reasons. First of all, it shows
that some of the most striking deficiencies in expressive power may be removed with
relatively simple means. Secondly, several recent proposals to enhance the expressive
power of the standard language naturally give rise to considering the D-operator; thus
the language with the operators & and D appears as a kind of fixed point amongst the
wide range of recently introduced extensions of the standard language. And thirdly, many
of the interesting logical phenomena that one encounters in the study of enriched modal
languages are illustrated by this particular extension.

Applications of the D-operator can be found in [9], where it has been used in the study
of various enriched modal languages, and in [15], where it is applied in the specification
of message passing and time-critical systems.

The main subject of this paper is the modal language £(<, D) whose operators are <
and D. The remainder of §1 introduces the basic notions, and examines which of the
(anti-) preservation results known from standard modal logic remain valid in the extended
{formalism. Next, §2 compares the expressive powers of modal languages that contain the
D-operator with a number of other modal languages. In §3 we present the basic logics
in some languages with the D-operator, and we give complete axiomatizations for several
special structures; in it we also prove an analogue of the Sahlqvist Theorem for £{<, D).
§4 then deals with definability—both of classes of frames and of classes of models.

*Research supported by the Netherlands Organization for Scientific Research (NWO). This paper is
based on my Master’s Thesis written at the University of Amsterdam, Department of Philosophy, under
the supervision of Johan van Benthem; I am grateful to him for his questions and suggestions.



1.1 Basics

The (multi-) modal languages we consider have an infinite supply of proposition letters
(p, g, 7, -..), propositional constants L, T and the usual Boolean connectives. Further-
more, they contain one or more unary modal operators. The standard language £(<) has
operators & and [—< being regarded as primitive, and 0 being defined as ==, (In gen-
eral, £(01,...,0;) denotes the (multi-) modal language with operators Oy,...,0,.) We
use ¢, P, X, ... to denote (multi-) modal formulas. The semantic structures are frames,
i.e. ordered pairs (W, R) consisting of a non-empty set W with a binary relation R on W.
To save words, we assume that F denotes the frame (W, R). In addition to these frames,
structures called models will be used, consisting of a frame F together with a valuation
V on F assigning subsets of W to proposition letters. We assume that M denotes the
model (F,V).

M = ¢[w] is defined as usual—the important case being: M = Op[w] iff for some
v € W, Rwv and M | ¢[v]. For temporal logic the clause for < is replaced by two
clauses for F and P: M |= Fo[w] iff for some v € W, Rwv and M |= ¢[v]; M = Py[w]
iff for some v € W, Rvw and M |= ¢[w]. The semantics of the D-operator is given by
M = Dy|w] iff for some v # w, M |= ¢[v]. From this, notions like M |= ¢, F | p[w],
and F = ¢ are defined as usual.

G and H are short for ~F- and - P-, respectively. Ds dual ~D- is denoted by D.
Using the D-operator some useful abbreviations can be defined: E¢ := ¢ V Dy (there
exists a point at which ¢ holds); Ay := ¢ A D¢ (¢ holds at all points); Uy := E(¢A-Dyp)
(¢ holds at a unique point).

The fact that some notions are sensitive to the language we are working with, is reflected
in our notation: e.g. we write F =¢ p G for F and G validate the same ¢ € £L(<, D), and
The p(F) for the set of formulas in £(<, D) that are valid on F.

We will sometimes refer to the first-order languages £ and £1: Lo has one binary predi-
cate symbol R as well identity; £, extends £y with unary predicate symbols Py, P,,..., P,
Q, ... corresponding to the proposition letters of the (multi-) modal language. First-order
formulas will be denoted by a, 8, 7v,.... a is called locally definable in £L(O,...,0,) if
for some ¢ € L(04,...,0,), for all F,and all w € W, F |= a[w] iff F |= ¢[w]; it is called
(globally) definable in L£(O4,...,0,) if for some ¢ € L(04,...,0,), for all F, F | a iff
F .

1.2 (Anti-) preservation and filtrations

It is well-known that standard modal formulas are preserved under surjective p-morphisms,
disjoint unions and generated subframes:

Definition 1.1 1. A surjective function f from a frame F; to a frame F, is called a
p-morphism if (i) for all w, v € W1, if Rywv then R, f(w)f(v); and (ii) for all w € Wy,
v € Wy, if Ry f(w)v then there is a w € Wy such that Rywu and f(u) = v.

2. F is called a generated subframe of a frame F, if (i) W1 C Wo; (ii) Ry = RanN(Wy x
W5); and (iii) for all w € Wy, v € Wy, if Rowv then v € Wj.

3. Let F; (z € I) be a collection of disjoint frames. Then the disjoint union W;c; F; is
the frame (U{W;: i€ I}, U{R;:i€I}).

Here are some examples showing that adding the D-operator to £(<) gives an increase
in expressive power:



1. Op — Dp defines Vz ~Rzz;
2. Dp — Op defines R = WZ;
3. OT V DOT defines R # 0.

Using the above preservation results it is easily verified that none of these three conditions
is definable in £(<). And conversely, the fact that they are definable in £(<, D) implies
that we no longer have these preservation results in £(<, D). Moreover, they can be
restored only at the cost of trivializing the constructions concerned.

A fourth important construction in standard modal logic is the following:

Definition 1.2 Let F be a frame, and X C W. Then Mgp(X) = {w € W : Vv €
W (Rwv — v € X)}. The ultrafilter extension ue(F) is the frame (Wx, Rr), where Wx
is the set of ultrafilters on W, and RxU,U, holds if for all X C W, Mpg(X) € U; implies
X e U,.

Standard modal formulas are anti-preserved under ultrafilter extension, i.e. if ue(F) |= ¢
then F | ¢. (Cf. [4, Lemma 2.25].) Perhaps surprisingly, for formulas ¢ € £(<, D) this
results still holds good—as one easily deduces from the following result.

Proposition 1.3 LetV be a valuation on F. Define the valuation Vir on ue(F) by putting
Ve(p) ={U :V(p) € U}. Then, for all ultrafilters U on W, and all formulas ¢ € L(<, D)
we have (ue(F), V) E o[U] iff V(p) € U.

Proof. This is by induction on ¢. The cases ¢ = p, =1, P Ay, O are proved in [4, Lemma
2.25]. The only new case is ¢ = D). Suppose V(DY) ={w: v #w(v e V(¥))} € U.
We must find an ultrafilter Uy # U such that (ue(F), V) = ¥[U;]. First assume that U
contains a singleton—say, U = { X C W : X D {wo } }. Then wy € V(D1), so there exists
a v # wo with v € V(4). Since v # wp, we must have {v} ¢ U. Let U; be the ultrafilter
generated by {v}; then U # U;. Furthermore, v € V(%) implies V(¢) € Uy, and hence
(ue(F), Vr) | ¥[Ui], by the induction hypothesis. It follows that (ue(F),Vz) = Dyp[U].
Next, suppose that U does not contain a singleton. Since V(D) € U, we find some
wo € V(D). Let v be a point such that v # wo and v € V(¢). Then {v} ¢ U—and we
can proceed as in the previous case.

Conversely, assume that V(D) ¢ U. We have to show that (ue(F), V) £ Dy[U].
Since V(D) ¢ U, we have that X = {w : Vo (v # w — v ¢ V(¢))} € U, and hence
X # 0. Let wg € X. Clearly, if wo ¢ V (%), then X = W and V() = 0. Consequently,
for all ultrafilters U; # U we have V(¢) ¢ U;. So, by the induction hypothesis, (ue(F),
Vr) ¥~ [U1], and hence (ue(F), Vg) £ D1p[U]—as required. If, on the other hand
wo € V(9), then X = {wo} = V(¥), and U is generated by X. It follows that for any
ultrafilter Uy # U, X = V() ¢ Uy. So by the induction hypothesis (ue(F), V) £ ¥[U1],
for such U;. This implies (ue(F), V£) £ Dy[U]. QED.

Corollary 1.4 For any frame F and all ¢ € L(O, D), if ue(F) |= ¢ then F | .
Corollary 1.5 3z Rzz is not definable in L(O, D).

Proof. Evidently, 7 = (N, <) £ 3z Rzz. Some elementary reasoning shows that for any
principal ultrafilter U on N, RxUU. Hence, ue(F) |= 3z Rzz. Now apply 1.4. QED.

Another important notion from standard modal logic is that of a filtration. It has a
straightforward adaptation to £(<O, D):



Definition 1.6 Let M;, M, be models, and let & be a set of formulas ¢ € £L(<O, D)
closed under subformulas. A surjective function g : M; — M, is an eztended filtration
with respect to X, if

1. for all w, v € Wy, if Rywv then Ryg(w)g(v),
2. for all w € Wy, and all proposition letters p in X, w € V;(p) iff g(w) € Va(p),

3. for all w € Wy, and all Ay € %, if M; E Ayp[w] then My = Ap[g(w)], where
Ae{O,D}.

Proposition 1.7 If g is an extended filtration w.r.t. & from My to M, then for all
w € Wy, and all ¢ € , My | olw] iff M2 = ¢[g(w)].

Recall that the standard example of a filtration in ordinary modal logic is the modal
collapse: given a model M and a set ¥ that is closed under subformulas, it is defined as
the model M’, where for g(w) = {9 € T : M = p[w] }, W' = g[W], R'g(w)g(v) holds iff
for all Op € =, Op € g(w) implies ¢ € g(v), and V'(p) = { g(w) : p € g(w) }. To obtain an
analogue of the modal collapse for £(<, D), take the ordinary modal collapse and double
points that correspond to more than one point in the original model. A simple inductive
proof then shows that corresponding (doubled) points verify the same formulas.

Using the extended collapse one may show in a standard way that formulas ¢ € £(<, D)
satisfy the finite model property, and that the validities in £(<, D) form a recursive set.

2 Some comparisons

In this section we compare modal languages with the D-operator to some languages with-
out it. It is not our aim to give a complete description of all the aspects in which languages
of the former kind differ from, or are the same as, languages of the latter kind, but merely
to highlight some of the features of the former languages.

2.1 The language £(D)
Proposition 2.1 All formulas ¢ € L(D) define first-order conditions.

Proof. Using the ST-translation as defined in §4.2, such formulas can be translated into
equivalent second-order formulas containing only monadic predicate variables. By a result
in [1, Chapter IV] these formulas are in turn equivalent to first-order ones. QED.

Proposition 2.1 marks a considerable difference with £(<): as is well-known, not all
L(©)-formulas correspond to first-order conditions. In the opposite direction, there are
also some natural conditions undefinable in £(<) that are definable in £(D). For example,
using the preservation of standard modal formulas under generated subframes and disjoint
unions, it is easily verified that no finite cardinality is definable in £(<); on the other hand,
although 2.1 implies that ‘infinity’ is not definable in £(D), we do have

Proposition 2.2 (Koymans) All finite cardinalities are definable in L(D).
Proof. For n € N, [W| < n is defined by Aj<icny1 UPi — Vicicj<ni1 E(pi A p;), while
|W| > n is defined by A(Vi<i<nPi) — E Vi<i<a(pi A Dpi). QED.
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Theorem 2.3 (Functional Completeness) On frames L(D) is equivalent with the lan-
guage of first-order logic over =.

Proof. All first-order formulas over identity can be defined as a Boolean combination of
formulas expressing the existence of at least a certain number of elements. By 2.2 these
formulas are definable in £(D). The converse follows from 2.1. QED.

2.2 The languages £(<{, D) and L(O)

One way to compare the expressive powers of two languages is to examine their ability to
discriminate between special (read: well-known) structures. For example, in contrast to
L(<C), L(C, D) is able to distinguish Z from N: (N, <) #o,p (Z, <). This follows from the
fact that the existence of a (different) predecessor is expressible in £(<, D) by means of
the formula p — DOp.

So Vz3y (z # y A Ryz) is an Lo-condition on frames which is definable in £(<, D), but
not in £(<©). Other well-known Lo-conditions undefinable in £(<) are irreflexivity and
anti-symmetry. By the next result, these conditions do have an £(<, D)-equivalent:

Proposition 2.4 All IIi-sentences in R, = of the purely universal form
VP, ...VP,Vz,...Va, BOOL(P;zj, Rz, ¢; = x;)
are definable in L(<O, D).

Proof. Let p1,...,Pm, Q1,...,qn be proposition letters such that each of py,...,pm is
different from each of ¢y, ..., ¢,. Now take Ug1A.. . AUq, — BOOL(E(q;Ap;), E(¢:iAOgj ),

E(q,' A qj)). QED.

It is well-known that two finite, rooted frames that validate the same formulas ¢ € £(<),
are isomorphic. This is improved upon in £(<, D):

Corollary 2.5 If F;1 and F; are finite frames, then F1 =¢ p Fo iff F1 = Fo.

Proof. Finite frames are isomorphic iff they have the same universal first-order theory.
So from 2.4 the result follows. Alternatively, one may give, for each finite frame F, a
‘characteristic formula’ xr such that for all G, G | - xr iff G = F (cf. §4.1). QED.

Let us call a set T' of (multi-) modal formulas (frame) categorical if, up to isomorphism,
there is only one frame validating T'; T is called A-categorical if, up to isomorphism, T
has only one frame of power A validating it. (A-) categoricity is an important notion in
first-order logic that is meaningless in standard modal languages: by some elementary
manipulations one easily establishes that if F |= T, where T is a theory in either £(<{) or
L(F,P), and if I is a set of indices, then for each 7 € I there is a frame F; = T such that
F; ¥ Fj if 1 # j. In contrast, for any finite frame F the complete &, D-theory The p(F)
is easily seen to be categorical by 2.4.

The classical example of an w-categorical theory in first-order logic is the complete theory
of the rationals. By standard techniques one can show that The(Q) is not w-categorical;
but Tho p(Q) is w-categorical:

Proposition 2.6 The complete &, D-theory of Q is w-categorical.



Proof. It suffices to give formulas ¢ € £(<, D) which are equivalent to the axioms for the
theory of dense linear order without endpoints:

Veyz(z < yAy< z—>z < 2z) O0p — Op
Vayz(e <yAy<z—z=y) UpAUg— E(pAq)

Vz -(z < z) Op— Dp

Vey(z=yVez<yVy<z) UpAUq— E(pAq)V E(pAOq)V E(gAOp)
Veydz(z<y—oz<zAz<y) Op—0Odp

dzy (z # y) DT

Vz3y (z < v) OT

Vz3dy (y < z) Up — DOp. QED.

Recall that a modal sequent is a pair 0 = (I'g, ®¢) where I'y and ©¢ are finite sets of
(multi-) modal formulas; F = o if for every V, if (F,V) |= T'o then there is a § € O¢
with (F,V) = 0. A class K of frames is sequentially definable if there is a set L of
modal sequents such that K = { F : Vo € L(F [ o) }. Kapron [14] shows that in £(<)
sequential definability is strictly stronger than ordinary definability. By our remarks in
§1.2 and the fact that validity of sequents is preserved under p-morphisms (cf. [14]), it
follows that definability in £(<, D) is still stronger. Furthermore, in £(<, D) the notions
of ordinary and sequential definability coincide; as is pointed out in [13] this is due to the
fact that we can define the ‘universal modality’ A4 in £(<, D):

Proposition 2.7 Let K be a class of frames. K is sequentially definable in L(O, D) iff
it is definable in L(O, D).

Proof. One direction is clear. To prove the other one, assume that K is defined by a set

L of sequents. For each 0 = ({¢o,..-,0n},{%0,.--,¥m}) € L put 0* 1= Agcicn Api —
Voci<m A%i. Then K is defined by {o*:0 € L}. QED.

It should be clear by now that adding the D-operator to £(<) greatly increases the
expressive power. Limitations are easily found, however. As we have seen, Jz Rzz is still
not definable in £(<, D). And just as with the standard modal language we find that
on well-orders a sort of ‘stabilization of discriminatory power’ occurs at a relatively early
stage (cf. [5] for a proof of this result for the standard modal language). To prove this we
recall that the clusters of a transitive frame F are the equivalence classes of W under the
relation ¢ ~ y iff (Rzy A Ryz) V ¢ = y. Clusters are divided into three kinds: proper, with
at least two elements, all reflexive; simple, with one reflexive element; and degenerate,
with one irreflexive element.

Theorem 2.8 If ¢ € L(O, D), and F is a well-ordered frame with F £ ¢, then there is
a well-ordered frame G such that G < w? and G ¥ .

Proof. Suppose that for some V, w € W, M = (F,V) | -p[w]. Let £~ be the set of
subformulas of —¢p, and define ¥ := 27 U {Oy : Dy € £~ }. Let My be the (extended)
collapse of M w.r.t. ¥. Then M, is transitive and linear. Consequently, M; may be
viewed as a finite linear sequence of clusters.

Next, M; will be blown up into a well-ordered model M, by replacing each cluster
with an appropriate well-order. If C = {w} is a degenerate cluster, then C is itself a
well-order, and we do nothing. Non-degenerated clusters { wy, ..., wy } are replaced with



a copy of w; the valuation is adapted by verifying p in a newly added n iff n = :mod k
and w; € Vi(p). The resulting model is a well-order, and since M, is finite it will have
order type < w?.

If w € W1, we write @ for (a) point(s) corresponding to w in Mj. Then, for all ¥ € Z,
and w € Wy, M; = ¢[w] iff M, |= ¥[w]. This equivalence is proved by induction on .
The only non-trivial case is when 7 = Dy, and My |= Dx[®@]. In that case one uses the
fact that Dx € T implies Ox € £. QED.

From 2.8 and [5, Theorem 5.2] it follows that the well-orders of type < w-k+n (k < w,
n < w) all have distinct O, D-theories, while for £ > w,w-k+n=opw -w +n.

2.3 The languages £(<,D) and L(F,P)

On strict linear orders the D-operator becomes definable in £L(F, P): on such frames we
have F |= (Py V Fyp) & De. In fact, this may be generalized somewhat; call a frame F
n-connected (n > 0) if for any w, v € W with w # v, there exists a sequence wy,...,wk
such that wy = w, wx = v and for each j (1 < j < k) either Rwjw;4; or Rwjiw;. Then,
using a suitable translation, one may show that on irreflexive, n-connected frames every
<&, D-formula is equivalent to one in £(F, P). This shows that new results about standard
modal languages may be obtained by studying extended ones: for it follows from 2.4 that
on the class of irreflexive, n-connected frames every purely universal IIi-sentence in R, =
is definable in L(F, P).

By the next result there is no converse to our previous remarks: P is not definable in
L(<, D)—not even on strict linear orders.

Theorem 2.9 1. (Q, <) #rp (R, <),
2. (Q} <> =0,D <R, <>,

Proof. The first part is well-known. To prove the second part, assume first that for some
¢ € L(C, D) and valuation V, (R, <, V) [~ ¢. Using the ST-translation as defined in §4.2
we find that (R, <, V) = 32 ST (—¢). Hence by the Léwenheim-Skolem Theorem, (Q, <,
V') | 3z ST(-¢), where V'(p) = V(p) | Q, for all proposition letters p. It follows that
(Q, <) o

Conversely, assume that for some ¢ € £(<, D) and a valuation V, (@, <, V) [~ o.
Define ¥ and M; as in the proof of 2.8. Then M is transitive, linear and successive—
both to the right and to the left. A model My may then be constructed by replacing
each cluster with an ordering of type A if it is the left-most cluster, and otherwise, if it is
degenerated it and its non-degenerated successor (by [18, Lemma 1.1] M; does not contain
adjacent degenerated clusters) are replaced in one go with an ordering of type 1+ \; after
that, the remaining non-degenerated clusters are also replaced by 1 4+ A. The valuation
may then be extended to newly added points in such a way that an induction similar to
the one in the proof of 2.8 yields Mz [~ ¢. QED.

2.4 The language £(<, D) and some other enriched languages

In [6] a simple method of incorporating reference into modal logic is presented by introduc-
ing a new sort of atomic symbols—nominals—to the modal language. These new symbols
combine with other symbols of the language in the usual way to form formulas. Their only



non-standard feature is that they are true at exactly one point in a model. Let £,(O)
denote the language £(<) with nominals added to it. From [6] we know that £,(<) is
much more expressive than £(<): important classes of frames undefinable in £(<) become
definable in £,(<). But it turns out that £(<{, D) is even more expressive than £,(<).
To see this, let ng, n1,n9, ... range over nominals; let po, 1, P2, . . . denote the proposition
letters in £,,(<) and £(O, D), and define 7 : £,(O) — £(<, D) by putting 7(p;) = po; and
7(n;) = p2i+1, and by letting 7 commute with the connectives and operators. Given a for-
mula ¢ € £,(0), let nq, ..., nk be the nominals occurring in ¢, and define (¢)* € £L(<, D)
tobe Ur(ny ) A...AUt(ng) — 7(p).

Proposition 2.10 Every class of frames that is definable in L,(<) is definable in L(<O, D),
but not conversely.

Proof. The first part follows from the observation that for any formula ¢ € £,(<), and
any model (W, R, V), (W, R,V) E olw] iff (W, R,V*) |= p*[w], where V*(p) = V(77 1(p)).
The second part follows from 2.2 and the fact that 1 is the only cardinality definable in
L,(O) (cf. [6]). QED.

In [6] and [9] the extension £,(<, A) of £,(<C) is studied—here A is the operator defined
in §1.1, whose semantics is given by M | Ap[w] iff for all v € W, M [ ¢[v]; it is
sometimes called the shifter (in [6]), or the universal modality (in [9]). By the above
observations £,(<, A) is no more expressive than £(<, D). Moreover, by a nice result
in [9] the converse holds as well:

Theorem 2.11 (Gargov and Goranko) A class of frames is definable in L,(<, A) iff
it is definable in L(O, D).

Combining results from this section and earlier ones together with results from [9]
and [13], we arrive at the following picture:

L(O)%e
£(<, A)
/ N\
L(<O, D)
£(O) /4% Ln(©,A)
Ln(o)seq
N /
Ln()

(Here, L(<)** is L(<O) with sequential definability; each box contains languages that are
equivalent w.r.t. definability of frames, and arrows point to more expressive languages.)

3 Axiomatics

Starting from the basic logic K in £(<{) some obvious questions concerning its extensions
in £(<, D) may be asked. The following such questions will be considered in this section:



What is the basic logic in £(<O, D)? What are the logics (in £(<, D)) of structures like N
or Z? Is there a general completeness theorem in £(<, D) for a wide class of extensions of
the basic logic—like the Sahlqvist Theorem for £(<)? And, given a logic K + ¢ in L(<)
with property P, does its minimal extension in £(<, D) have P?

3.1 The basic logic
Definition 3.1 DL~ is propositional logic plus the following schemata:

(A1) D(p — q) — (Dp — Dy),
(A2) p — DDp (symmetry),
(A3) DDp — (pV Dp) (pseudo-transitivity).

As rules of inference it has Modus Ponens, Substitution, and a ‘Necessitation Rule’ for D:
F o = Dep.

Theorem 3.2 (Koymans) Let ZU{ ¢} C L(D). ThenZ Fp;- ¢ iff £ = ¢.

Proof. Soundness is immediate. To prove completeness, assume ¥ /pr- ¢, and let A D
Y U{-¢} be a maximal DL~ -consistent set. Consider W := {T : In (Rp)"AT }, where
T ranges over maximal DL~ -consistent sets and Rp is the canonical relation defined by:
RpIy Ty iff for all Dy € Ty, ¥ € Ty. Then Vzy(Rpzy — Rpyz) and Vzyz (Rpzy A
Rpyz — RpzzV z = z). If there are any Rp-reflexive points, let ¢ be such a point;
replace it with two points c;, c2, and adapt Rp by putting Rpcics, and conversely, and
by putting Rpc;w (Rpwe;) if Rpew (Rpwe) (¢ = 1,2). In the resulting structure Rp is
real inequality, and ¢ is refuted somewhere. QED.

Hence, one may be inclined to think that DL~ is the basic logic in £(D)—just like
K is the basic logic in £(<{). However, DL~ is, so to speak, not as stable as K: in
L(<©) incompleteness phenomena occur only with more exotic extensions of K (cf. [2]); in
contrast, here’s a very simple incomplete extension of DL~:

Example 3.3 Consider the system DL~ 4 (¢ — D¢). Then DL~ + (¢ — Do) E L,
since no frame validates DL~ + (¢ — D¢). On the other hand, DL~ + (¢ — D¢) I/ L.
To see this, recall that a general frame is a triple § = (W, R, W), where W C P(W)
contains (), and is closed under the Boolean operations as well as the operator Mg (cf. 1.2);
valuations on a general frame should take their values inside W. Now, let § = (W, R, W),
where F = ({0,1},0) and W = {0,{0,1}}. Then § | DL~ + (¢ — D¢). Therefore,
DL~ + (¢ — D) is incomplete.

By the Sahlqvist Theorem for £(<{) (cf. [17]) K + O™(¢ — ) is complete for any m
and for ¢, 1 that satisfy certain requirements. Any obvious adaptation of this result to
L(D) would imply that DL~ + (¢ — D) is complete—hence, by the above example there
is no such adaptation. To avoid incompleteness phenomena as those sketched above, we
follow some suggestions by Yde Venema and Valentin Goranko, and add the following rule
of inference to DL™:

(IR) if for all proposition letters p not occurring in ¢, - p A D=p — ¢ then F o.



Let DL denote DL~ plus the rule TR. Notice that, given the Substitution Rule, IR is
in fact equivalent to a finitary rule: if for some proposition p letter not occurring in ¢,
FpAD-p — ¢ then F . Our next aim is to prove that in terms of general consequence,
DL has no effects over DL~. To this end it suffices to show that DL precisely axiomatizes
the basic logic in £(D). In doing so we will closely follow the proof of the completeness
of the basic logic in £,(<) as presented in [10].

Let L D DL be alogic. A set of formulas A is L-closed if it contains all theorems of L
and is closed under M P and IR; clr(A) (or cl(A) when L is clear) denotes the smallest
L-closed set containing A.

Theorem 3.4 Let TU{ @} C L(D). ThenZtpr ¢ iff T = .

Proof. Soundness is immediate. To prove completeness, assume that ¥ l/pr ¢. We
construct, for each consistent set A a maximal D L-consistent set A’ O A such that A’
is Rp-irreflexive. Let { ¢; }ic,, enumerate all D-formulas. Put Ag = c/(A). Assume
that the consistent closed set A, has been defined. If A, U {¢,} is consistent, put
Apy1 = c(A,U{ ¢, }). Otherwise, the rule IR yields a proposition letter p not occurring
in ¢, such that A,U{ ~(pAD-p — ¢,) } is consistent; put A,y = cl(A,U{~(pAD-p —
¢n) }). Finally, put A’ = |J,, An. Since A’ If L, IR yields a proposition letter p with
p A D-p € A'—hence A’ is Rp-irreflexive.

Now, let &’ be an Rp-irreflexive maximal D L-consistent set extending X U { ~¢ }. Put
W = {T : 3n(Rp)"T'T}, where T ranges over Rp-irreflexive maximal D L-consistent
sets. Then, on W, Rp is real inequality. Define V(p) = {T € W : p € T'}. Then

(W,#V) = ~¢[Z]. QED.

It follows from 3.2 and 3.4 that the rule IR is superfluous in the basic logic. However,
it does yield new consequences in extensions of DL: DL + (¢ — D) is inconsistent, and
thus complete. (To see that it’s inconsistent, notice first that for any proposition letter p,
DL+ (¢ — D)+ (pAD-p — 1), hence by the rule IR, DL+ (¢ — D¢p)  L1.) A further
Jjustification for adding IR to DL~ may be found in §3.3, where a Sahlqvist Theorem for
the basic logic in £(<, D) (which contains I R) is proved.

Definition 3.5 The basic logic DL, in £(O,D)is DL+ K + (Op — p V Dp); its rules
of inference are those of DL plus those of K. The basic logic DL; in L(F,P,D)is DL +
K+ (Fp — pV Dp) + (Pp — pV Dp); its rules of inference are those of DL plus those of
K,.

Theorem 3.6 1. Let XU { ¢} C L(O,D). Then Ztpr,, ¢ iff & | .
2. Let XU {¢@} C L(F,P,D). Then Ztpr, ¢ iff T = ¢.

Proof. Similar to the proof of 3.4. Notice that by the additional axiom Cp — p V Dp any
set W of maximal D L,,-consistent sets that is closed under Rp, is also closed under the
canonical relation R¢, defined by RoI' Ty iff for all O0¢ € Ty, ¥ € T'y. Analogous remarks
hold for DL; and the canonical relations Rr and Rp. QED.

3.2 Some extensions of DL,,

We present axioms in £(<, D) for some familiar classes of frames; we also axiomatize the
<, D-theories of some special structures. For a start, here’s a list of axioms together with
the corresponding conditions on frames:
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(44) OCp—Op transitivity

(45) p—-Cp reflexivity

(46) p— DpvO(Op — p) anti-symmetry

(A7) Op—> Dp irreflexivity

(48) p— OqVv D(q — ©p) linearity

(49) o©T successiveness to the right
(A10) p— DOp successiveness to the left
(A11) O(Op — p) — (COp — p) discreteness
(412) Op— OOp denseness.

Theorem 3.7 1. DL,, + A4-A6 is complete w.r.t. partial orders.
2. DL, + A4 + AT is complete w.r.t strict partial orders.
3. DL,, + A4 + A8 is complete w.r.t. linear orders.
4. DL, + A4 + AT + A8 is complete w.r.t. strict linear orders.

Proof. Assume that X If ¢ in DL, + A4-A6. As in the proof of 3.4 we can use an appro-
priate notion of a closed set to construct a canonical model consisting of Rp-irreflexive
maximal consistent sets. We then take a submodel M of the canonical model, which is
Rp-generated by some A extending ¥ U { -¢}. Using the characteristic axioms it’s a
routine matter to check that M is a partial order. Cases 2, 3, 4 of the theorem may be
proved in a similar way. QED.

Theorem 3.8 1. DL, + A4+ AT-A9 + A1l aziomatizes The p(N).
2. DL, + A4 + AT-A11 aziomatizes Tho p(Z).
3. DL, + A4 + AT-A9 + A12 aziomatizes Tho p(Q) (= Tho p(R) by 2.9).

Proof. To prove 1, 2 and 3, start by constructing an Rp-generated submodel of the canon-
ical model as in the proof of 3.4. In the case of 3 the resulting structure will be isomorphic
to (Q,<). In the case of 1 or 2 one may apply an appropriate version of the techniques
of [18] to turn the model into a model based on N or Z. QED.

What about decidability of the above logics? Using extended filtrations (cf. 1.7) one
easily establishes that both DL,, + A4 — A6 and DL,, + A4 + A8 have the finite frame
property (f.£.p.); from this their decidability follows in a standard way.

As for DL,, + A4 + A7, notice that it does not have the f.f.p.: any frame F with
F | DL, + A4 + AT and F £ -OCT must be infinite. However, DL,, + A4 + AT
does have the finite model property (f.m.p.)—thus showing that Segerberg’s Theorem
(which says that the f.f.p. and the fm.p. are equivalent in £(<)) fails in £(<, D). In fact,
DL,, + A4+ A7 may be shown to be complete w.r.t. the class of finite models M = (F, V)
which satisfy F |= DL,, + A4, and for any ¢ € L(O, D), if {w : Rww} N V() # 0 then
|[V(¢)| > 2. Soundness is immediate. The easy proof of the completeness is to lengthy to
be included here, so we only mention some steps in it. By 3.7 there is a model M = (F,V)
with F = DL,, + A4 + AT and M [£ p[w], for some w € M. Let & 35 ¢ be some finite
set of formulas that is closed under subformulas, and that satisfies Ovp € ¥ = Dy € 3.
We define a non-standard model M’ as follows; let g, W/, R', V' be as in our remarks
following 1.7; define Rp by Rpg(v)g(w) iff for all Dy € g(v), ¥ € g(u). Then, using Rp
as the interpretation of D, M’ }£ ¢, and moreover, R’ is transitive, R’ C Rp, Rp holds
between any two different points, and M’ is finite. Next, one may use the ‘doubling-points’
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technique of 3.2 to obtain a model M"” }£ ¢ in which Rp is real inequality, and which
satisfies all our requirements.

Using the fact that DL,, + A4 + AT has the f.m.p. one may establish the decidability
of this logic. The decidability of DL,, + A4 + A7 + A8 and of The p may be proved in a
similar fashion. To obtain decidability results for Tho p(N) and The, p(Z) one may apply
Rabin-Gabbay techniques (cf. [6, Chapter 5] for a similar move in £, (F, P)).

3.3 A Sahlqvist Theorem for £(<, D)

We start with some preliminary remarks. The canonical general frame (Wp,, Rr, Wr,) of
a logic L in £(©) is defined as follows: Wy, is the set of all maximal L-consistent sets,
RiTA holds if for all Op € T', ¢ € A, and

WL={XCWr:3pe LOVAEWL(pe A AEX)}.

A canonical general frame for DL~ has as its domain a set W, of points that correspond
(possibly not uniquely) to maximal DL~ -consistent sets; on Wy, the canonical relation
Rp holds between any two different points, and only between those (cf. the proof of 3.2);
Wpr- is defined like Wy,. The canonical general frame for a logic L O DL,, in £(<{, D)
has as its domain a set of (Rp-irreflexive) maximal L-consistent sets that is Rp-generated
by a single set (as in the proof of 3.6); Ry, and Wy, are defined as usual.

Next we introduce some notation. For the remainder of this section we use T' (7o, T4, .. .)
as a binary relation symbol to stand for either identity, R or inequality. The set operators
Pr and M7 are defined by Pr(S) = {w:3Jv(wTvAv € S)},and M7p(S) = (Pr(S°))°. T
may be associated with (modal) operators t and t in the following way. If T is the identity
both t and t are the identity function; if 7 = R then t = © and t = O, if T is inequality
thent =D and T = D.

In the sequel we consider propositional functions that are built up using the following
basic ones:

projections: 7*(p1,...¢n) = ¥i;
falsity: L™(p1,.. . 0n) = L
truth: T*(p1,...00n) = T;
V,A,$,0,D,D, T, L.

(Cf. [17].) For each propositional function ¢ and frame (W, R) we define a function
F¢ :p(W)* — P(W). For non-modal ¢, F¥ is the obvious Boolean set operation, while
FO%(S1,...,5,) = Pr(F®(S1,...,5,)), and FP¥(8y,...,8,) = Px(F¥(S1,...,8,)). The
functions F7¢ and FDP¥ are defined dually.

Define a general frame (W, R, W) to be refined if VS € W(y € S — z € Pr(S)) — zTy
(cf. [19]). For the proof of the original Sahlqvist Theorem it is essential that canonical
general frames for logics L in £(<O) are refined. Due to the fact that the canonical general
frame for DL~ may contain doubled (hence indistinguishable) points, it need not satisfy
the refinedness condition when T is the identity relation. Refinedness is restored when we
add the rule TR to DL™: the canonical general frame for any logic L D DL,, is refined. To
see this, let denote T' the identity relation, and assume  # y; then for some ¢ € £(<C, D),
pexzbut pgdy;soz e {A:pe A} (eW),butyé¢ {A: ¢ € A}. Next, let
T denote R (the case that T is the inequality relation is similar); assume that —Rzy,
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then there is a ¢ € £(<O, D) such that Op € z with o ¢ y. Soy ¢ {A:p € A}, and
z€ MrR({A:p€A}).

Now that we have restored refinedness, we may proceed to give a proof of a Sahlqvist
Theorem for £(<, D); this proof is a more or less straightforward generalization of the
proof of the original Sahlqvist Theorem.

Suppose that we want to prove a logic L DO DL,, in £L(<, D) complete. Let /7, 4. Then
there is a general frame § = (W, R, W) with ¥ |= L, but § [~ 1. To establish completeness
we want to find an ordinary frame F with this property. Below we indicate how one may
show that under certain restrictions F can be taken to be the frame (W, R) underlying the
above general frame §. First, we need to restrict our general frames to so-called simple
frames which form a subclass of the refined frames; second, the logic L needs to be of the
form DL, + ¢ for some so-called Sahlqvist formula .

Definition 3.9 A general frame (W, R, W) is simple if for all [, m, ny, . .., %y, , and positive
©1,...,4 it satisfies

m l
vs e W( A\ zi € M, (...(Mr, (5))..) - V uj € F¥i(...,5,..))

=1

i m
>V eFo(. Py (- (P {2}, 0)- (1)
j=1 i=1 )

To see that each simple general frame is refined, choose m =1 = ny = 1, and ¢; an
appropriate projection in (1).

Theorem 3.10 Let L D DL, be any logic in L(O, D). Then the canonical general frame
for L is simple.

Proof. This is a generalization of [17, Theorems 16 and 18]. QED.

Definition 3.11 A formula ¢ € £(<, D) is said to be positive if it is built up using L,
T, proposition letters, V, A, O, 0, D, D only. A formula ¢ € £(<, D) is called a Sahlquist
formula if it is (a conjunction) of formulas of the form t;...%,,(¢¥ — X), where each ¥;
is either O or D, x is a positive formula, and in 1 projections are brought outermost,
negations are brought inside all other connectives (— is eliminated), and each proposition

letter in 7 occurs only under sequents of connectives where no [ or D precedes any V, A,
<O or D.

Theorem 3.12 Let ¢ be a Sahlguist formula in L(<, D). Then ¢ corresponds to a first-
order condition on frames, effectively obtainable from .

Proof. Similar to the proof of [4, Theorem 9.10] or [17, Theorem 8]. For future reference
we mention a few steps in the latter proof. Let ¢ = t;...t,,(¢ — x), and let py,...,px
be all the proposition letters occurring in ¢. Having (W, R) = ¢ means having

VSl...Sk,v,u('leo-~~0Tmu/\u€ F¥(S1,...,5k) QUEFX(Sla---»Sk))a (2)
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where T4, ..., Ty, are the relations corresponding to %;...%t,, respectively. This may be
rewritten as a conjunction of formulas of the form

k mj k
Voo (@A N\ N zi € My, (.. (M1 (S)) ) > \ wj € F¥(S1,...,5)),  (3)
Jj=1l:i=1 7j=1

where ® is a quantifier free formula in £y ordering its variables in a certain way (each
variable occurs to the right of an R or # only once). Such formulas may in turn be
rewritten as a first-order formula of the form

(@*Vu € P UPT Py, ({21

" U Py (--(Py, ({a, })...). QED. (4)

i=1

Theorem 3.13 Let ¢ be a Sahlquist formula in L(O, D). Then L = DLy, + ¢ is complete
with respect to the class of frames that satisfy the first-order condition corresponding to .

Proof. Soundness follows from 3.12. To prove completeness, assume that Iy 1. Let
3L = (Wi, R, L1) be a canonical general frame for I with 7 = L and J1 [~ 9. So
(Wr,Rr) [~ . By 3.10 Fr, is simple, and so it has the property

k mj l
VS1,...5c € W(8A N\ A zij € Mr, (...(Mr,, (5))..) = \ u; € F?(Sh,...,5))

(‘I’——-) V'u] GFXJ(U PTl -(PT ({51311} LJP:)"1 . -(PTni'k({wi,k}))"'

1=1 i=1 =1

for any formula ® not containing S4,. .., Sx. Moreover, 7, = (2) implies §7, = (4). Hence
31 = (4). But then (Wp, Rr) |= (4), and also (Wr,,Rr) = L. QED.

3.4 Transferring properties of logics

Let L extend K in £(<{) with schemas { ; : ¢ € I'}. The minimal extension of L in L(<, D)
is DLy, plus the schemas ¢; read as schemas over £(<{, D). Gargov and Goranko [9]
formulate the following Transfer Problem: if L has property P does its minimal extension
have P? Here we will consider two of the many obvious properties one may study in this
context: completeness and incompleteness.

It is still open whether in general completeness is transferred. However, if ¢ is a Sahlqvist
formula in £(<), then the minimal extension of K + ¢ is complete by 3.13. To obtain
a more general result we adopt an argument from [9]. Recall that a logic L in £(<) is
canonical if its validity is preserved in passing from a descriptive general frame (cf. [4]) tc
its underlying full frame. From [8] we know that all complete and elementary (i.e first-
order definable) logics in £(<) are canonical. Hence by the Sahlqvist Theorem for £(<),
if ¢ € £(<) is a Sahlqvist formula then K + ¢ is canonical. (Since canonical logics need
not be elementary, they form a wider class then the ‘Sahlqvist logics’.)
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Proposition 3.14 If L C £(©) is canonical then its minimal extension L' in L(O, D) is
complete.

Proof. Let (W, R,V) be (an Rp-generated submodel of) the canonical model for L’ (as
in 3.4). Then § = (W,R,{V(p) : ¢ € L(O, D) }) is a descriptive general frame. Since
3 | L', we have ¥ |= L, thus by assumption (W, R) |= L, so (W,R) = L'. QED.

Incompleteness is an example of a property for which we always have transfer. By an
easy argument, if L’ is the minimal extension of a logic L in £(<), then L’ is conservative
over L. Therefore, if L is incomplete, so is L’. Hence all of the well-known incomplete logics
in £(<) re-occur as incomplete systems in £(<, D). (As an aside, new and fairly simple
incomplete logics occur as well: let X be DL, + (O — Do) + (OOp — Op) + (OO0 —
OOgp). Then X | L since O — Do defines irreflexivity of R; and given OOp — O,
OOCyp — OOy defines Vzy (Rzy — Vz (Ryz — z = y)). However, by a routine argument
involving general frames, X / 1.)

4 Definability

We first make a remark or two about definability of classes of frames. After that we give a
characterization of the L£y-formulas that are equivalent to a ¢, D-formula on models, and
apply this result to obtain a model-theoretic characterization of the definable classes of
models.

4.1 Definability of classes of frames

The study of definability of classes of frames in £(<, D) in the spirit of [11] has been
undertaken in [9] and [12]. For the sake of completeness we repeat the main definability
result from the latter papers.

A general ultraproduct of frames F; is an ultraproduct of the full general frames
(i 2. (CE. [4].)

Definition 4.1 F' is a collapse of the general frame § = (F, W) if F' is a subframe of
F and if there exists a subframe & of § such that (F')* = (&)t and for each z € W',
{y: Rzy} C [R'(z)]¢+, where [X]g+ is the least element of (&) containing X, and (-)*
is the mapping defined in [4, Chapter 4], that takes (general) frames to modal algebras.

Theorem 4.2 (Gargov and Goranko) A class of frames is definable in L(<, D) iff it
is closed under isomorphisms and collapses of general ultraproducts of frames.

Gargov and Goranko arrive at 4.2 by using an appropriate kind of modal algebras. For
an important special case a purely modal proof may be given:

Proposition 4.3 A class K of finite frames is definable in L(<, D) iff it is closed under
isomorphisms.

Proof. Let F be a finite frame with W = {wy,...,w, }, and F | The p(K). Assume
P1,...,Pn are different proposition letters. Define xr by

/\ Ep,'/\A( V (pi/\—le,')) /\A( /\ (pi — —|pj)) /\A( /\ (pi — Opj)),

1<i<n 1<i<n 1<i#j<n 1<i,j<n

15



where O = ¢ if Rw;w; holds, and O = - otherwise. Then for any frame G, there is
a valuation V' with (G,V) £ ~xr iff ¢ & F. In particular F £ -xr. Hence -xr ¢
The p(K). Thus for some G € K, G | ~xr. So F € K. QED.

4.2 Definability of classes of models

Standard modal formulas, when interpreted in models, are equivalent to a special kind of
first-order formulas. Adding the D-operator does not change this.

Definition 4.4 Let z be a fixed variable. The standard translation ST(¢) of a formula
¢ € L(O, D) is defined as follows: it commutes with the Boolean connectives, and ST'(p) =
Pz, ST(Op) = Jy(Rey A ST(P)[z = y]), and ST(DY) = Iy (z # y A ST(P)[z := y]),
where y is a variable not occurring in ST(%).

Since the equivalences M [ ¢[w] iff M = ST (p)[w], and M | ¢ iff M |= Vz ST(p)
hold, well-known facts about £; become applicable for £(<, D). £;-formulas of the form
ST(¢) for some ¢ € L(O, D) can be described independently in the following way:

Definition 4.5 The set of MD-formulas is the least set X of £;-formulas such that Pz €
X, for unary predicate symbols P and all variables z; if « € X then —a € X;ifa, B € X
have the same free variable, then a A € X; and if o € X, z, y are distinct variables, and
y is as free variable, then Jy (Rzy A o), Jy(z #y A a) € X.

The semantic characterization of MD-formulas we give generalizes a corresponding re-
sult for £(<) in [4]. However, whereas the proof given there uses an elementary chain
construction, the proof we present uses saturated models. Clearly, the characterization
will also be a characterization of the (translations of the) &, D-formulas in £;.

Definition 4.6 A binary relation Z is called a p-relation between two models M; and
M, if the following holds (for ¢ # j € {1,2}):

1. Zwv then w, v verify the same proposition letters,
2. if Zwv, w' € W; and R;ww' then Zw'v' for some v’ € W; with Rjvv’,
3. if Zwv, w' € W; and w # w' then Zw'v' for some v’ € W, with v # ',
4. dom(Z) = Wi, ran(Z) = Ws.
An £y-formula a(z1,...,z,) is invariant for p-relations if, for all models My, M,, all

p-relations Z between M; and My, and all wy,...,w, € Wy, wi,...,w!,, € Wy such that
1 n

Zwiwy, . . ., Zwpw),, we have My = afwy, ..., w,] iff M E afw],...,w)].
Theorem 4.7 An L,-formula containing ezactly one free variable = is equivalent to an
MD-formula iff it is invariant for p-relations.

Proof. A simple induction proves that every MD-formula is invariant for p-relations.
Conversely, assume that the £;-formula a has this property, and suppose z is as free
variable. Define M D(a) := {f : § is an MD-formula, « = 8, FV(B8) C {z} }. We will
prove that M D(a) = a. Then, by compactness, there is a 8 € M D(a) with E a « g.
Assume M = M D(o)[w]; we have to show that M |= a[w]. Introduce a new constant w
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to stand for the object w, and define £* = £; U {w}. Expand M to an £*-model M*
by interpreting w as w. In the remainder of this proof we use the following notation: if
B € L, then B* = B[z := w]; and if T is a set of £;-formulas then T* := {f*: € T }.

Let T := {B : M [ B[w],  is an MD-formula, FV(8) C {z }}. By compactness we
find an £*-model N* with N* = T* U { a* }. By [7, Theorem 6.6.1] there are w-saturated
elementary extensions M} =: (Wy, Ry, w1, V1) = M* and N} =: (Wy, Ry, we, V) = N*
such that both w; and w, realize T, and such that N} = o*.

Define a relation Z C W; x W, between (the £;-reducts of) M} and N} by putting
Zwo iff for all ¢ € L(O, D), (W1, R1, Vi) | plw] iff (W2, R2, V2) = ¢[v]. We verify that
Z is in fact a p-relation by checking the conditions of 4.6. Condition 1 is trivial. We only
check half of condition 2: assume that Ryww’ and Zwwv, with w, w' € W; and v € Ws.
We have to prove v’ € Wy (Rovv’' A Zwv'). Define ¥ := { ¢ € L(O, D) : MF | o[w] }.
Then ST(¥)U { Ruy} is finitely satisfiable in (Nf,v). Hence, by saturation (Nf,v)
ST(¥) U { Ruy }[v'], for some v € W,. But then we have Zw'v’. Condition 3 is similar to
condition 2, and condition 4 is immediate from condition 3 and the fact that Zw,ws.

Finally, by invariance for p-relations N} | o* yields M} | a*. Since M* < M it
follows that M* |= a*, and so M = a[w]. QED.

Next we apply 4.7 to obtain a definability result for classes of models. To this end
we find it convenient to take frames (F,w) with a distinguished world w (as in Kripke’s
original publications) as the basic notion of frame. Similarly, the basic notion of model is
taken to be (F,w, V).

Theorem 4.8 Let M be a class of models. Then M = {M (= (W,R,w,V)): M E
plw] }, for some ¢ € L(O, D) iff M is closed under p-relations and ultraproducts, while
its complement is closed under ultraproducts.

Proof. Introduce a new constant w to stand for the object w, and define £* := L U{w}.
As before we write 8* for f[z := w).

IEM={M(=(W,Rw,V)): M E ¢[w]}, for some ¢ € L(O, D), then M is closed
under p-relations and ultraproducts. The complement of M is defined by { ST (¢)*},
hence closed under ultraproducts.

For the other direction, suppose that M and its complement satisfy the stated con-
ditions. Since M is closed under p-relations, it and its complement are closed under
isomorphisms. So by [7, Corollary 6.1.16] there is an L*-sentence a* such that for all
L*-models M, M € M iff M | o*. From the fact that M is closed under p-relations
one easily derives that a is closed under p-relations between ‘ordinary’ models. Therefore,
by 4.7 a is equivalent to an MD-formula with the same free variable. Hence « is equivalent
to ST(¢p) for some formula ¢ € £($, D). QED.

Remark 4.9 In [16] Piet Rodenburg uses a proof similar to the one we gave for 4.7 to
characterize the definable classes of models of intuitionistic propositional logic. A reading
of this characterization led to 4.8.
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