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Abstract

We study several modal languages in which some (sets of) generalized quanti-
fiers can be represented; the main language we consider is suitable for defining any
first order definable quantifier, but we also consider a sublanguage thereof, as well as
a language for dealing with the modal counterparts of some higher order quantifiers.
These languages are studied both from a modal logic perspective and from a quantifier
perspective. Thus the issues addressed include normal forms, expressive power, com-
pleteness both of modal systems and of systems in the quantifier tradition, complexity
as well as syntactic characterizations of special semantic constraints. Throughout the
paper several techniques current in the theory of generalized quantifiers are used to
obtain results in modal logic, and conversely.

1 Introduction

This paper is motivated mainly by the following question: in the modal system S5 the box
(‘) and diamond (‘C’) may be interpreted as a universal and an existential quantifier,
respectively (cf. [7]); how can other quantifiers be represented within a modal language?

We will consider a number of modal languages, each designed to represent (a set of)
generalized quantifiers. The prime case is the language L(QU ANT) in which every first
order definable quantifier will turn out to be definable; a more modest language between
55 and L(QUANT) will also be studied. The third language we will consider contains
the modal counterpart of some higher order quantifiers.

This paper concentrates mainly on modal topics. Nevertheless, many issues addressed
below find their origin in the theory of generalized quantifiers; and even some of the
techniques used are current in the theory of generalized quantifiers rather than in modal
logic. On the other hand, we will also use our modal machinery to contribute some results
to the theory of generalized quantifiers.

To be more specific, this paper is organized as follows. In Section 2 we introduce
two modal languages L(QUANT) and L(QU ANTy) for dealing with (sets of) first order

*This author was supported by the Netherlands Organization for Scientific Research (NWO).



definable quantifiers; a quick normal form theorem for these languages is proved, after
which we compare them to other languages, both modal and classical. Section 3, then,
contains completeness and complexity results for systems in both languages. Next, in
Section 4, we ask some questions familiar from the theory of generalized quantifiers but now
in a modal setting. Also, using our modal apparatus we arrive at a complete axiomatization
of the set of quantifiers { more, : n € N}, where more, XY holds between X, Y if
|X NY| > n. Then, in Section 5, we move on to the realm of higher order quantifiers. A
complete axiomatization is given for a modal operator simulating the quantifier there are
at least as many Xs as Ys; after that some issues from earlier sections re-occur, and
we have an exploratory look at modal operators simulating other higher order quantifiers.
Section 6 rounds off this paper by formulating some conclusions and pointing at a number
of directions for further research.

We want to thank Edith Spaan for her kind permission to include a result of hers in
Section 3.3. We are also grateful to Johan van Benthem who fought several battles with
text-editors in order to send us his comments on an earlier version of this paper.

2 The systems QUANT and QUANT;

2.1 Basic definitions and examples

Definition 2.1 Let Prop be a set of proposition letters, and let Un and Bin be sets of
unary and binary modal operators, respectively. The set of well-formed formulas over
Prop and Un, Form(Prop,Un, Bin) is given by

proposition letters: p € Prop

unary modal operators: U € Un

binary modal operators: B € Bin

formulas: ¢ € Form(Prop,Un, Bin)

pu=p|L]lwoA @1 @ |Up|poBep:.

Our main concern below are formulas built up using the set of unary operators { M, L, :
n € N}. Here, we consider L,, to be an abbreviation for ‘- M,—’. We will sometimes also
use the following abbreviations: Mgy := = Mop, My 1= (Mu_19 A " Mup) (n > 0).
Instead of Form(Prop,{ My, L, :n € N},0) we write Form.

Definition 2.2 A model for the language just defined is a pair M = (W, V) with W a
non-empty set (called a frame), and V a function that assigns subsets of W to proposition
letters. Then, M, w |= ¢ is defined inductively: M,w = p, for p € Prop, if w € V(p);
the Boolean cases are standard, while M, w | M,p if |{v : M,v E ¢}| > n. Dually,
M,w = Ly if [{v : M,v [£ ¢}| < n. (So Lo is nothing but the usual modal box ‘0’
with the universal relation as its interpretation.)

M [ ¢ is short for: for all w € W, M,w |= ¢; W,w |= ¢ is short for: for all V,
(W, V), w |= ¢; and we write W |= ¢ for: for all w, W, w |= ¢.

Although this is not the first paper in which the operators M,,, L, are being discussed,
we believe that the above quantifier interpretation of these operators is in fact new. One
of the first people to study the operators M,,, L, was Kit Fine [5] in the early 1970s; he
gave the following interpretation to M,,: M,y is true at a world w in a model (W, R,V)



if at least n R-successors of w satisfy ¢. Our use of these operators is different from this
interpretation in two respects: we have replaced ‘at least »’ in the previous sentence by
‘more than n’, and we only consider the special case in which R is the universal relation.
In the mid 1980s Kit Fine’s operators were rediscovered by several Italian logicians, and
called graded modalities (cf. [4]).

Parallel to definition 2.2 we can define a translation of elements of Form into monadic
first order formulas. To be precise, let £ be the language of first order logic with identity;
Ly is Ly plus unary predicate letters Py, P, P, ... corresponding to the elements of Prop.

Definition 2.3 Let = be a fixed variable. The standard translation ST(¢) taking ¢ €
Form to an L£y-formula, is defined as follows: it maps a proposition letter p to Pz, and
commutes with the Boolean connectives, while

ST(Map) = 3y0...3yn( A (i # 45) A A\[1:/21ST (),
1#£3<n i<n
where the y;s are fresh variables.
Every model for £; can be viewed as a model for formulas in Form, and conversely.

A simple induction establishes that M, w |= ¢ iff M,w | ST(p), and M = ST(y) iff
M = VzST(p), for any ¢ € Form.

Let’s pause for a moment, and consider some examples. The binary quantifier all A
are B can be represented as Lo(A — B), while some A are B can be represented as
Mo(A A B). Using these representations one can easily express syllogistic inferences:

all Aare B Lo(A — B)
some C are not B My(C A -B)
some C are not A Mo(C A —-A).

Likewise, the generalized quantifier at least k A are B can be represented in our modal
language by My_1(A A B); this gives us the following simulation of so-called ‘numerical’
syllogisms (cf. [2]):

there are 10 As M' oA

at least 7 Bs are As Me(B A A)
at least 4 Cs are As M3(C A A)
at least 1 B1s C Mo(B A C).

The basic principles governing the deductive behavior of the operators M,, and L,, are
given in the following definition.

Definition 2.4 We define the modal logic QUANT. As rules of inference QUANT has
Modus Ponens (¢, — /%), Necessitation (¢/Loy), and Substitution. Besides those of
propositional logic, its axioms are the following:

Al Lop — ¢

A2 Mo — LoMypp

A3 LO(QO - 'd)) - (Mn(P — M,)

A4 Lo~(pAY) = (Mlao A Mlytp - Mlnym(@ V9))
A5 Mn+1‘P — M, .



It may amuse the reader to show that QUANT + Lo(¢ — %) — (Low — Lo%). Thus,
the fragment of QUANT with only Ly, My as its modal operators is precisely S5. For
this reason QU ANT has been called S5 (cf. [9]), or also S5n (cf. [5]).

It will appear below (cf. 2.18) that in the language of QUANT we can define all first
order definable quantifiers. Following a suggestion due to Valentin Shehtman we will also
consider a more modest system called QUANT} that is in between S5 and QUANT.
QU ANT}, has modal operators My, Ly and My, Ly, for a fixed ¥ > 0. The move from
S5 to QU ANT}. is motivated by a similar move in the literature on axiomatic theories
of specific quantifiers (cf. also Section 4.1), where pairs of dual quantifiers are not only
studied in isolation, but also on top of well understood quantifiers like all and some
(cf. [11]).

Let Formy abbreviate Form(Prop,{ Mo, Lo, My, L. },0).

Definition 2.5 Let £ > 0. The system QU ANT} has as inference rules Modus Ponens,
Necessitation and Substitution. Besides those of propositional logic, its axioms are the
following (for i € {0,k }):

Bl Lop — ¢
B2 M;p — LoM;yp
B3 Lo(p — %) — (Mip — M)

B4 No<jzn<k Lo (%5 A ¥n) = (ANo<jck Mo(¥; A ) — M)
B5 Myp — Mpp.

2.2 Normal forms

The question whether a modal axiom system allows for a reduction of the depth of nestings
of modal operators is well motivated in the literature on modal logic. In the present setting
this question receives additional motivation. Quantifiers express relations between subsets
of a given model; this is reflected in the standard notation QXY for ‘quantifier @ holds of
the sets X and Y. In a modal setting sets are typically represented by purely propositional
formulas. Hence, the proper arguments of the modal operators are the purely propositional
formulas, or in any case, those that are reducible to such formulas. In this section we will
prove a rather general normal forms theorem; from this we will be able to derive normal
form results for a number of modal languages.

Let £(O) be a modal language with a set of modal operators O such that Ly € O.
Elements of O can have arbitrary arity. Let O range over elements of O. An element of
L(0) is called a strict modal formula if it is of the form (-)O4.

Definition 2.6 A logic in the language £(O) is called neat if it extends propositional
logic, has a necessitation rule for Ly, while the following are theorems of that logic:

1. Lo(p — %) — (Lo — Lo¥);

2. 0@ & LyOg; . B

3. LO((/’ « (P/) « (O("/"y(p, 5(') « O(’l[), §0,$ 2))

For the remainder of this section we will assume that all operators under consideration
are in O, and that the logics under consideration are neat in £(0O).



Lemma 2.7 Let o be a strict modal formula. Then the following are derivable.
1. Loo — (O(¥,aV (BA0),X) © O(Y,aV B,X) No));
2. Lomo — (O(¢,aV(BA0),X) « O, a,X) A-0o)).

Proof. We only prove item 1. By propositional logic we have 0 — ((aV(BA0) & (aVp)).
Thus, since our logic is neat, we have Loo — (Lo(a V (B A o) & Lo(aV B)). By 2.6.(3)
this gives Loo — (O(z/;,a V(BAO)X) < 0(1/),04 V (3,%)). An application of 2.6.(2) now
yields Loo — (O(z,b,a V(BA0O),X) < O('ql), aVp,X)ANo). QED.

Lemma 2.8 Let o be a strict modal formula. Then O, aVv (BAa),X) « (0@, aV
B, X) Aa) Vv (0(¥,a,%) A 0)).

Proof. By propositional logic and 2.6.(2) we have Loo V Lo-o. Now apply 2.7. QED.

Definition 2.9 A formula ¢ in £(O) is in normal form (NF) if it is a disjunction of
conjunctions of the general form

§A(R)0181 A ... A (2)O0nb,,
where §, §; (1 < ¢ < n) are purely propositional (possibly L, T).

Lemma 2.10 If § is in NF and has some strict modal formula o as a subformula, then
o must be in NF, and there exist a, f in L(O) such that o, are in NF and § may be
assumed to have the form aV (B A o).

Theorem 2.11 In any neat logic in L(O) every formula § is equivalent to a formula in
NF.

Proof. Induction on §. The only interesting case is § = O('t,l_;, 0,X), where ¢ is in NF and
contains a strict modal formula o = O'(J’, ¢',x') in NF. Use 2.10 to write § as O(zﬁ,a \%
(BAo),X). Using 2.8 we see that § is equivalent to (O('LZ;, aVB,X)ANo)V (O(':Z, a,X)A\-o).
Repeating this argument we can remove all nested occurrences of modal operators from
. QED.

Corollary 2.12 Over QUANT every ¢ € Form is equivalent to a formula ¢ € Form
without nestings of modal operators.

Proof. Here O = { Lo, M, : n € N}. We leave it to the reader to check that QUANT is
neat. QED.

Corollary 2.13 Over QUANT} every ¢ € Formy, is equivalent to a formula 1 € Formy
without nestings of modal operators.

2.3 Connections with other formalisms

As far as definability of frames is concerned, the language of QUANT is equivalent to
the modal language £(D) which has one unary operator D, whose semantics is based on
the relation of inequality: M, w = D iff for some v # w we have M, v |= ¢ (cf. [10] for
more on £(D)). In £(D) we can define the auxiliary operators E, A, U: Ep := (¢ V Do)
(there exists a point at which ¢ holds), Ay := (¢ A = D-¢) (¢ holds at all points), and
Up:= E(¢ A ~Dyp) (¢ holds at unique point).



Proposition 2.14 Let K be a class of frames. Then K is definable by means of QUANT -
formulas iff it is definable by means of L(D)-formulas.

Proof. Assume K is definable by means of £(D)-formulas { ¢; : 2 € N }. Define a transla-
tion 7 of £(D)-formulas into Form as follows:

(p) = »p
T(mp) = -7(¢)
T(eAyp) = T(p)AT(Y)

(D) = Mor(p)A(T(p) = MiTy).

We leave it to the reader to check that for each ¢ € Form({D}), and for all frames F,
F E ¢ iff F |= 7(¢). Hence, K is defined by {7(p;): 7€ I}.

Conversely, let {¢; : ¢ € I} enumerate Form. Let Prop’ = { g0, ¢i1,¢iz,-.- : 1 € I } be
a set of proposition letters such that Prop N Prop’ = 0. The translation o(y;) of ¢; is
defined as follows: if ¢; = p; € Prop then o(¢;) = gio; if ¢; = 9 then o(y;) = —~o(¥); if
;i =P A x then o(p) = o(¥) A 0(x); and finally, if ¢; = M, then

(@)= N\ UtimA AN A-(@aAgim)N N\ Algim = o(¥)).
m<n 0<k<li<n m<n
Again, we leave it to the reader to check that for ¢; € Form(Prop’,{D}), and all F,
F E ¢i iff F = o(p;i). From this it follows that if K is a class of frames defined by
¥ C Form then K is defined by o[2] C Form(Prop’,{ D},0). QED.

Proposition 2.15 On frames every QU AN T-formula is equivalent to a sentence of first
order logic over identity.

Proof. All first order formulas over identity are equivalent to Boolean combinations of
formulas expressing the existence of at least a certain number of elements. These are
obviously definable by means of QU AN T-formulas. Conversely, using the ST-translation
QU ANT-formulas can be translated into equivalent closed second-order formulas contain-

ing only monadic predicate variables. These are equivalent to first order formulas over
identity (cf. [1]). QED.

We believe the natural setting for the system QU ANT to be the realm of models rather
than that of frames. For, one may understand (binary) quantifiers as expressing relations
between subsets of some given universe—hence the natural surrounding for quantifiers are
models of some monadic language, e.g., models for QUANT, or L(D), or for a monadic
first order language.

On models, the language of QU ANT is stronger than £(D): every model distinguishable
in £(D) is distinguishable in the language of QUANT, as is easily verified using the above
translation 7; the converse does not hold. Consider for example the following models:

M [ e ° ] My: [ e . ° |,

where all points have the same valuation; M; and M, verify the same £(D)-formulas,
but not the same QU AN T-formulas.

When interpreted on models QU AN T-formulas become equivalent to a special kind of
monadic first order formulas. The notion of equivalence involved here may be understood



in either a local or global sense: a first order formula a(z) € £, is locally equivalent to a
QU ANT-formula ¢ if for all M, and all w € M, we have M, w | ¢ < a(z); « € £ and
¢ are called globally equivalent if for all M, M = ¢ iff M | a. (Clearly, if ¢ is locally
equivalent to a(z), then it is globally equivalent to Vz a.)

From 2.13 we derive

Proposition 2.16 On models every ¢ € Form is (locally) equivalent to a Boolean com-
bination of £9-formulas, which has at most one free variable.

It’s the converse of this proposition that is more interesting: which monadic first order
formulas are equivalent to a QU AN T-formula on models? We can prove every £;-sentence
to be equivalent to (the ST-translation of) some QU AN T-formula by using a special case
of the Ehrenfeucht-Fraissé Theorem. For full details and a proof of this result we refer the
reader to [11, Section 1.7].

Definition 2.17 For the time being we fix a finite set of proposition letters Prop =
{Po---,Pk—1}. The monadic first order language into which the modal language with this
restricted set of proposition letters translates via the ST-translation, is denoted L;x; so
L1 only has k unary predicate letters Pp,..., Pr_;. If X C W, then X° = X, X! = W\ X;
if p is a formula, p° = ¢, ¢! = —¢. For s € 2%, we use P, to denote both the partition set
and the partition conjunction associated with s:

(k-1)

Pg(o) Nn...N P,:(_kl—l), and pg(o) Ao AP

{U; }1 <i<g2k 18 used both to enumerate all possible unions (including the empty one) of
partition sets, and to enumerate all possible disjunctions (including the empty one) of

partition conjunctions. We use P and L{,-M to denote the extensions of P, and U; in
some given model M.

Let M = (W, Py,...,Pr_1) and M’ = (W', Py,..., P{_;) be two Lyx-models. We write
M =, M’ if M and M’ satisfy the same L,;-sentences of quantifier rank at most n. For
two sets X,Y we write X ~, Y iff | X| = |Y| < n or |X|,|Y| > n; by extension we put
M ~, M iff for all s € 28, PM ~, PM,

The two notions =,, and ~,, are connected in the following way: for any two £;;-models
MM M=, M if M ~, M.

Theorem 2.18 On models every L,-sentence is equivalent to a formula ¢ € Form.

Proof. To simplify our argument, assume that o = a(F,..., Px) € £; contains only the
predicate letters indicated. Let n be the quantifier rank of a.

The number of ~,-equivalence classes is finite. Let M;,..., M, be representatives of
the ~,-classes that contain models of a. Let M = (W, Fy,...,Px) € { Mq,..., Mgz}
For each of the 2* partition sets P, write down the corresponding partition conjunction
preceded by the operator M!,, in case |PM| = m < n, or preceded by M,_; in case
|PM| > n. Let 1ppq be the conjunction of these 2% formulas. It follows that for any M,
MEaif ME ST(Ym, V...Vusm,). QED.

From the proof of 2.18 we can derive a semantically driven normal form for QUANT-
formulas and first order ones: each such formula ¢ is equivalent to a disjunction of con-
junctions of the form OP,, where O € { My, M,,_1 : k < n, n is the quantifier rank of

ST(p)}.



3 Completeness and complexity

3.1 Prerequisites

A completeness proof for the system QUANT may be found in [5]. There it is shown
that QUANT is complete with respect to all frames of the form (W, R), where R is an
equivalence relation that provides the interpretation for Lg; in this setting the operators
M,, L, mean: ‘more than n R-successors satisfy ...’ and ‘at most n R-successors falsify
... . However, since QU AN T-formulas are preserved under generated subframes of such
‘non-standard’ frames, we can derive from Fine’s completeness result that QUANT is
complete w.r.t. the standard models in which the modal operators receive their quantifier
interpretation.

In [9] the finite model property for QUANT is established; there, it is shown that the
size of the model needed to refute a non-theorem ¢ is bounded by g(¢p) - 2!¢l. Here, g(¢),
the grade of ¢, is defined inductively as follows: g(p) = 0, g(—¢) = g(¥), g(¢ A P) =
max(g(¢),g(¥)), and g(M,p) = max(n + 1,g(¢)). It turns out that we can do better:

Proposition 3.1 Let ¢ € Form. Then ¢ is satisfiable iff ¢ is satisfiable in a model with
at most 1 + || - g(yp) elements.

Proof. Let ¢ be satisfied in a QU ANT-model M = (W, V). We will use the subformulas of
@ as instructions for extracting a set of elements W’ from W that will serve as the domain
of the desired model. A function T is defined inductively on the instances of subformulas
of .

1. Choose some w € W with M, w |= ¢; put I'(p) = {w };

3. T(x1) = T(x2) = T(¥) if ¥ = xa1 A x2;

4.T(x) =T () if v = M,x and M, w £ 9;

5.if 9 = Mpx and M, w = 1, then choose n+ 1 points wy, . . ., Wy such that M, w; =
x (1<i<n+1),and put I'(x) = {wi,..., Wns1 }-

Define W’ to be the union of all T(¢), where 1 ranges over the subformulas of ¢. Put
Vi=V | W, and M' = (W', V'). Then |W'| < 1+ |¢|-g(p). Also, one may establish
inductively that for all subformulas ¥ of ¢, and all v € W N W', we have M,v = v iff
M v =9, QED.

By 2.18 the above proposition implies that properties of first order definable quantifiers
may be decided on finite models.
The method used in 3.1 may also be used to establish:

Proposition 3.2 Let ¢ € Formy, k € Nso. Then ¢ is satisfiable iff it is satisfiable in a
model with at most 1 + k - || elements.
3.2 Completeness of QUANT;}

We will prove the completeness of QU AN T}, via a Henkin-like construction. For a consis-
tent formula ¢ we will build a canonical model M, containing, for each maximal consistent
set A, at most k41 copies of A, together with a relation R, on M, to interpret the modal



operators. To obtain a model in which the modal operators receive their intended in-
terpretations, it will be sufficient to show that ¢ is true in a point in some part of the
canonical model on which R, is total.

Our completeness proof for QU ANT}, differs from Kit Fine’s completeness proof for
QUANT in the following respect. If we wanted to prove the completeness of QUANT
using the above method, we would have to construct a canonical model that may contain,
for each maximal consistent set A, infinitely many copies of A. Fine, on the other hand,
first introduces, for every k, an accessibility relation Ry to interpret M. In order to end
up with a standard model he then maps these relations onto a single one.

Definition 3.3 The canonical model M, for QU ANT, is a triple (W, R, V) such that
W, = {(T,7): T is maximal QU AN Tj-consistent, 0 < j < k };

(T,j)RAA,h)iff h=0and (§ € A = My§ €T),or1<h<kand(§ €A =
M6 € T);

Ve(p) ={(T,j):peT}.
Lemma 3.4 QUANT F (Mrp A ~Myp) — Mo(p A —).
Proof. We have

Myp —  ("Mo(p A1p) — Lo(p — %))
= (~Mo(p A %) = (Mrp — Myip)), B3
= (~Mo(p A ) — Mpy).

So Mo A " Mpip — Mo((,o A "n’l/)) QED.

Lemma 3.5 Let j,h,l € {0,...,k}. Then
1. (T, 1) Re( s, ) ifF (T, DRAAA, B);

2. (T, j)R(A, h) implies (T, j)R(A,0);

3. (T, 7)R(A, 1) implies (T, j)R(A, h).

Proof. By definition of R., R.-successors of (T',j) don’t depend on j—this proves item
1. To prove item 2, if A # 0, and (T',j)R.(A,h), then we have that § € A implies
M6 € T. So by axiom B5, Myé € T, but then (T, ) R,(A, 0) holds. Finally, to prove item
3, assume (T', ) R,(A,1). Then (T',j)R.(A,h) for any h € {1,...,k}, and by item 2 also
(T, j)Re(A,0).  QED.

Next comes our main lemma. In it we use a notion of truth |=, based on R, whose
important cluase is: (W,R,V),w =, M;p iff [{v : wRv and (W,R,V),v |, @} > 1
(i€ {0,k}).

Lemma 3.6 (Truth Lemma) Let ¢ € Formy, let T be a mazimal QU AN Ty-consistent
set, and assume j € {0,...,k}. Then M., (T',j) En @ iff p € T.

Proof. As usual the proof is by induction on ¢. The cases ¢ = p, ¥ = Y1 A @2, © = —py
are straightforward.

Assume ¢ = Moy, If M, (T, 7) En Mo, then for some (A, h) we have (T, j)R(A, h)
and, by the induction hypothesis, 1 € A. By 3.5.(2) it follows that (T',j)R.(A,0). But
then Moy € T.



Conversely, if My € T, then the set {9} U {7y : Loy € T'} can be extended to a
maximal QU AN Tg-consistent set A by standard modal arguments. Then (T, j)R.(A,0),
hence, by the induction hypothesis we have M, (T, 7) En Mo3.

Next, assume that ¢ = Mgy, and let M., (T,j) E, M. We distinguish two cases.
The first one is that for some A, 9 € A and (T, j)R,(A, k). Then, by definition of R,
My € T. The second case is that there is no A such that ¢ € A and (T, j)R.(A,k).
By 3.5.(2) and (3) this means that there is no single A containing % that occurs more
than once as the first component of an R.-successor of (I', 7). But then, there must be
pairwise different sets Ao, ..., Ay such that ¢ € A; and (T, 7) R(A;,0) (0 < ¢ < k). So
there are formulas &;, (0 < 7 # h < k) such that é;, € A; \ Ap. Putting

6 = /\ bin A /\ _‘6hi>

0<h<k 0<h<k
h#i h#i

we have §; € A;, and QUANT + Lo~(8; A 6p), for i # h. Also, since (T, j)R.(A;, 0) and
d; AN € A;, we have that My(d; A ) € T'. Using axiom B4 we find that My € T.

Conversely, if My € T, then, by axiom B1l, My € I'. Reasoning as in the case of
Moy € T we find a Ag such that 9 € Ag and (T, 7)R.(Ag,0). Now, if there is such
a A with the additional property that (T,7)R.(Ao,k), then we are done by 3.5 and
the induction hypothesis. Otherwise, there is some 8y € Ao with =My € T'. Hence,
by 3.4, My(%) A —6p) € T—but this implies the existence of a A; for which (T', j) R,(A4,0),
Ag # Ay, and ¥ A =8 € Ay. By assumption we don’t have (T',5)R.(A1,k). Repeating
this argument, we find pairwise different sets Ao, ..., Ax with (T', j)R(A;,0) and 9 € A,
(0 €1 < k). Hence, by the induction hypothesis, M., (T, j) En M. QED.

Lemma 3.7
1. R, is serial (i.e., it satisfies VeIyzRy)
2. R, is euclidean (i.e., it satisfiesVzyz(zRy AcRz — yRz)).

Proof. Item 1 is immediate: ¢ € I' implies Moy € T by axiom B1; hence (T, j)R(T,0).
To prove item 2, suppose (', j)R.(A,l) and (T, j)R(E, m). If m = 0 then o € ¥ implies
Moo € T which implies LoMyo € T (axiom B2), hence Moo € A. But then (A,l)R.(E,m).
If m # 0 then o € ¥ implies Mo € T, hence LoMyo € I'. Thus Mo € A, which means
that (A,I)R(E,m). QED.

To prove that a consistent formula ¢ has a model, it suffices to find a model M =
(W, R,V) such that for some w € W, M,w |, ¢, and such that R is total on M. Now,
a relation R that is euclidean and serial need not be total. However, for our purposes it
suffices that such an R is ‘almost total’ in the following sense: Vzyz (zR"yAzR™z — yRz).
The proof that any serial, euclidean relation is almost total is left to the reader.

Theorem 3.8 Let ¢ € Formy. Then QUANT, + ¢ iff QUANTY = .

Proof. Proving soundness is left to the reader. To show completeness, assume ¢ is
QU AN Ty-consistent. Then, by axiom B1, so is Myw. Thus for some maximal QU AN T}-
consistent set I' we have Myp € T'. Lemma 3.6 gives M., (T',0) , Mop. We may of
course assume that M, is R.-generated by (T, 0); by 3.7 M, is serial and euclidean.

M, (T,0) |En Mop implies that for some (A, ¢) we have (T', 0) R.(A, 2) and M., (A,7) =,
¢. Let M be the submodel R.-generated by (A,). Then M, (A7) =, ¢, and on M, R,
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is the universal relation, so the modal operators receive their intended interpretations in
M, ie, M, (Ai) = 9. QED.

Corollary 3.9 Letk > 0, and ¢ € Formy. Then QUANT F ¢ iff QUANT F .

3.3 Complexity

Proposition 3.10 The problem of determining whether a formula ¢ € Formy, k € Nso,
18 satisfiable is NP-complete.

Proof. It suffices to show that the problem is in NP. But this follows from 3.2. First guess
a model with at most 1+ k& - |p| elements. Then determine the validity of each subformula
in each element, starting with the proposition letters occurring in ¢. This can be done in
polynomial time. QED.

By 3.1 we know that ¢ € Form is satisfiable iff it is so in a model with at most 14 g(¢)-
lo| < 14 |¢| - 2!¢l worlds. So QU AN T-satisfiability is in NEXP. However, by an argument
due to Edith Spaan QU ANT-satisfiability is in fact in PSPACE. Below, an algorithm
is given that tests for QU AN T-satisfiability, and is in PSPACE. The main idea behind
this algorithm is that the truth-value of a QU ANT-formula (possibly containing modal
operators) in a model, is completely determined by Boolean combinations of proposition
letters, and the number of occurrences of such combinations in the model. This idea will
be implemented in our test for QU AN T-satisfiability as follows. Given a formula ¢ we
first consider certain propositional counterparts of ¢ and its subformulas; we then guess
valuations and a number indicating how often these propositional combinations will occur
in the resulting model; finally, we re-consider the original formula ¢, and show how its
truth-value is determined by its propositional counterpart.

We need some preliminary notions. Cl(¢) is the smallest set containing ¢ and closed
under subformulas. Let A be a new symbol. For ¢ € Form define strip(y) as follows:

e strip(p) := p, for p € Prop,
o strip(—1p) := if strip(y) = A then A
else —strip(),
o strip(1hy A pg) := if strip(y1) = A and strip(y) = A
then )\
else if strip(yy) = A
then strip(1);)
else if strip(13) = A then strip(i;)

else strip(vy) A strip(vs),
o strip(Mp) 1= .

Put STRIP(¢) = { strip(¢) : ¥ € Cl(¢) } \ { A }. Note that STRIP(¢) contains proposi-
tional formulas only.
Here’s the Algorithm:

1. Guess worlds < 1+ |¢p|- 2l¢!. the number of worlds in the model {w1,. .., Wworlds }-
2. For 1 € STRIP(p)U { T, L } put count(®) := 0;

for 7 :=1 to worlds do
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guess a propositional valuation V; for w;,
for all ¢ € STRIP(p)U{ T, L } if w; = % then count(y) := count(v) + 1.

3. We define a function f : Cl(¢) — STRIP(¢)U {T,L} such that count(yp) =
count(f(y)) for every 9 € Cl(p). (For 9 € Cl(y) count(t) is simply the num-
ber of worlds verifying ¢ in the model made up out of {wy,. .., Wyorids } and the
Vis.)

1. f(p) := p, for p € Prop,
2. f(=¢) :=-f(%) (with-T=L1,-L =T),
3. f(p A ) i=if f(¢) = T then f(1)
if f(¢) = L then L
if £() = T then f(p)
if f(¢) = L then L
else f(p) A f(4),
4. f(Mnv):= if count(f()) > n then T

else L.
4. If count(f(¢)) > 0 then ¢ is satisfiable.

Note first of all that part 3 of the algorithm is in P. Also, part 1 is in NP, and both the
guessing part of 2, and ‘verifying the propositional consistency of our guess’ are in NP.

Since we have an index ¢ running up to an exponential bound in 2, the entire algorithm is
in NPSPACE = PSPACE.

Theorem 3.11 The problem of determining whether a formula ¢ € Form is satisfiable
is in PSPACE.

Proof. Run the Algorithm on input ¢. QED.

It is still open whether or not QU AN T-satisfiability is also PSPACE-hard.

4 Semantic constraints and inferential patterns

In this section some topics familiar from generalized quantifier theory are addressed in

a modal setting; also, we give some applications are given of the systems QUANT and
QU ANT} to these topics.

4.1 Semantic constraints

In this subsection we consider some well-known semantic constraints on quantifiers, and
try to match them up with syntactic restrictions on modal formulas. On the way we
will give some examples of how our modal apparatus allows us to translate our semantic
(Boolean) intuitions into syntactic ones. Most results will be stated for QU AN T-formulas
only, but they have an immediate analogue for QU AN T}-formulas.

Let us fix some terminology first. Recall that a (binary) generalized quantifier is a
function assigning to every set M a binary relation Q x¢ between subsets of M, and that
the conditions imposed to obtain so-called logical quantifiers are

1. CONSERV QpPoP; iff QpPo(Py N Po);
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2. ISOM QmPo Py iff Q pq f[Po) f[P1] for all bijections f : M — M';
3. EXT if Po,Pl g M C M’ then QMP()P] ifFQMIPoPl.

A first order sentence a(Py, P;) satisfies the combined conditions CONSERV (for Fp)
and EXT iff it is logically equivalent to some sentence with all quantifiers Pp-restricted
(cf. [11, Theorem 3.2.3]). An obvious question here is whether a similar characterization
exists for QU ANT-formulas.

We say that a QU ANT-formula ¢ satisfies CONSERV if (W, Py, P1) | @ iff (W, Py, P1N
Py) = ¢; it satisfies EXT if Py, P, C W C W' implies (W, Py, P1) E ¢ if (W', Py, P1) |
. Note that we only consider global truth of QU ANT-formulas in this context; this
corresponds to the fact that quantifers are usuall defined using sentences rather then with
formulas that may contain free variables.

Define an £L(QU ANT)-formula ¢(po, p1) to be po-restricted if it is a Boolean combination
of formulas of the form M,,(po A ), where 1 is a purely propositional formula.

Proposition 4.1 A formula ¢(po,p1) € L(QU ANT) satisfies CONSERV and EXT iff it
s logically equivalent to a formula that is pg-restricted.

Proof. The ‘easy’ direction may be proved as follows. If ¢(po,p1) is po-restricted, then
ST(p) may be written as an £;-sentence in which all quantifiers are Pp-restricted. Thus
ST(¢) satisfies CONSERV and EXT by the result quoted above. But then the same holds
for ¢ itself.

To prove the ‘hard’ direction, assume that ¢(po, p1) satisfies CONSERV and EXT. By
our remarks following 2.18 ¢ has a ‘semantic’ normal form ¥ = 9oV ...V 9, For a
disjunct 7 in ¥, define 3’ to be 9 with the conjuncts in which py occurs negated left
out. Put ¥’ := g V...V 9;. Then, for any model M, M | ¢ iff M |= ¥’. Obviously,
M |= ¢ implies M |= ¥'. To prove the converse, assume M = (W, Py, Py) | 1}, for some
i. Now ; = ¥. A Opn(-po A p1) A OL(=po A —p1), where O,0" € { M, M!'}. Let M; be
M with |PSN Pl =m if O = M, and |P§{ N P;| = m + 1 otherwise. Let M4 be M; with
|P§ N Pf| =nif O' = M, and |P§ N P{| = n + 1 otherwise. Then My |= ;. But then
M = ¢. By EXT this implies M; |= ¢, which yields M = ¢ by CONSERV. QED.

An important condition on quantifiers that has figured prominently in the literature is
monotonicity. A binary quantifier Q is upward monotone in its left argument (or TMON)
if QM PoPy and Py C P§ imply Qs P{P1; the modal version is: a modal formula is MON
in po if (W, Py, ...) |E ¢ and Py C P} imply (W, P}, ...) |E ¢. As an application of the
Lyndon Theorem for first order logic we have that a first order sentence a(P) is TMON
(in P) iff it is equivalent to a sentence in which P occurs only positively (in the usual
syntactic sense). A similar result holds in L(QUANT), and can be read off from the
earlier semantically driven normal forms:

Theorem 4.2 A formula ¢(p) € LIQUANT) satisfies TMON in p iff it is equivalent to
a formula in which p occurs only positively.

Proof. To prove the direction from right to left we first introduce a local version of mono-
tonicity. Define a formula ¢ to be TLMON (|LMON) if (W, Py,...),z | ¢, Po C P;
(P§ C Po) implies (W, P§,...),z = ¢, for any model (W, P,...), and z € W. One can
prove by induction on ¢ that if all occurrences of pg in ¢ are positive (negative) then ¢ is
TLMON (/|LMON). This implies one half of the theorem.
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Let ¢(p) satisfy TMON. Rewrite the disjuncts in the semantic normal form & of ¢
according to the following recipe. Let N be the maximal number occurring as the index
of some modal operator in ®. Replace

Mn(pAD)AMy(-pAD)

by
MN(p A D) A M2N+1D,

where D is the remaining part of the partition conjunction. Then, rewrite conjuncts of
the form M (p A D) according to the definition of M!. The resulting conjuncts

Myi_1(p AD)A-My(pAD)AM_1(-pA D)A-M;(-pA D)
should be rewritten as
Mk_l(p A D) A Myyi-1D AN - My D A -M(-p A D).

Other combinations may be rewritten in a similar way. Let ® be the formula that arises
from @ by applying the above rewriting recipe. Then all occurrences of p in @’ are positive.
By elementary logic we have | & — ®'. To prove the converse, assume (W, V) |= 9’ where
9’ is a disjunct in ®’. Choose V’'(p) C V(p) minimal so as to still have (W, V') = ¥’
Then, in W, there are enough elements left to have (W,V’) |= ¢! But then, by TMON,
(W,V) | p—hence (W,V) E &. QED.

A related topic in the theory of generalized quantifiers is the relational behavior of
quantifiers. A typical result in this area is the following: on the finite sets the quantifier
all is the only logical quantifier that is both transitive (VXY Z (QXY AQY Z — QX Z))
and reflexive (VX (QX X)) (cf. [3, 3.1.4]). Here, we put our modal apparatus to work
to characterize the logical (first order) quantifiers that are symmetric, i.e., that satisfy
VXY (QXY — QY X).

Let a(Py, P;) be a first order sentence with quantifier rank ¢. From our remarks follow-
ing 2.18 we know that a(Pp, P;) has a semantic normal form (in L(QUANT)). Using this
normal form one can construct a set R, of 4-tuples describing the models of a. Let

Or(po A p1) A Oy(po A =p1) A O} (=po Ap1) A O (—po A —pr).

be a disjunct in the semantic normal form of . This disjunct gives rise to adding a 4-tuple
(a,b,c,d) to R, as follows

o if O = M! then a := k else O = M and k must equal ¢ — 1, and we put a := ¢;
e similarly for O’,0”,0" and b, ¢, and d respectively.

(Note that the highest number occurring in any 4-tuple in R, is ¢, the quantifier rank of a.)
A look at the semantic normal form of a may lead one to conjecture that a is symmetric
just in case we may swap the arguments of the second and third conjunct in any disjunct

in the semantic normal form of a, and still retain an equivalent of a. To see that this is
indeed the case, define for a given set R,, the set RX to be {(a,c,b,d): (a,b,c,d) € R, }.

Proposition 4.3 Let a(Py, Py) be an Ly-sentence. Then a is symmetric iff R, = R},
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Proof. We only prove the direction from right to left. Suppose R, = R}. Assume M |=
a(Pg, P;); we want to show that M = o(P;, Py). M is accounted for in R, by some tuple
(k,l,m,n); by assumption (k,m,l,n) € R,. Let M’ be a model for a(FPy, P;) witnessing
this:

P P P P!

T 75

M: n M n

We may assume that M and M’ have the same universe W. Choose a bijection f : M’ —
M that maps Pj N P{ to Py N Py, and P§ N P/° to P§N Pf, but PiN P° to P§N P, and
Py N P{ to PN P{. Then f[P]] = Py and f[P}] = P;. From this and M’ |= a(Po, P) it
follows that M |= a(Py, Pp). QED.

Theorem 4.4 Let a(Py, P1) define a logical first order quantifier. Then a is symmetric
iff a is equivalent to a disjunction of formulas of the form atleast k As are Bs, and
exzactly k As are Bs.

Proof. It is obvious that the listed forms are symmetric. So assume that o is symmetric,
and consider R,. Then (a,b,c,d) € R, iff (a,b,¢c,0) € R, (by EXT) iff (a,b,0,0) € R,
(by CONSERV) iff (a,0,b,0) € R, (by 4.3) iff (a,0,0,0) € R, (by CONSERV). So we
may assume that R, consists entirely of 4-tuples of the form (a,0,0,0)—but then a must
have the desired form. QED.

4.2 Inferential patterns

The inferential patterns satisfied by some fixed quantifier @ have been studied on at least
three levels of analysis. A purely relational (or syllogistic) level is the minimal one, where
the admissible formulas are Boolean combinations of formulas of the form QXY with XY
without any structure. A typical result here says that symmetry and quasi-reflexivity
(QXY/QX X) completely axiomatize the syllogistic theory of some (cf. [3, Thm. 3.3.5]).
On a second level of analysis one adds Boolean structure to the arguments X,Y of Q;
to give an example: the property CONSERV (QAB/QA(B N A) and QA(B N A)/QAB)
resides at this level, as well as irreflexivity (Q AA/L) (cf. [11, Section 4]). To express even
stronger properties of quantifiers one can move up to richer languages. For example, one
might add constants for all and some to the Boolean level, and analyze one’s favorite
quantifier on top of this enriched Boolean language. But, the modal approach of the
present paper also resides on this third level. We obviously allow for more ‘types’ of
formulas than those allowed for in the Boolean approach. However, since in principle
we can do without nestings of modal operators according to 2.18, the modal approach is
rather close to the Boolean one.

This close connection between the two approaches suggests at least two lines of investi-
gations as far as the inferential theory of specific quantifiers is concerned. For a start, we
can ask questions familiar from the Boolean approach, but now lifted to the modal level.
An example of such a question concerns the extent to which the syntactic behavior of a
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quantifier (or a set of quantifiers) determines its (their) semantic behavior. The complete-
ness results for QUANT and QU ANT} given in Section 3 fall under this heading; what
they amount to is that the respective sets of axioms say all one can say about the sets of op-
erators { M, :n >0} and { M, :n=0,k} in L(QUANT) and L(QUANT}). Note that
these sets of operators are not determined by their respective axiomatizations in the sense
of [11, Section 4.5]. For these axioms are also satisfied by the modal operators <,,, where
(W,R,...),v = Onp if there are more than n R-successors of v that satisfy ¢, where R is
an equivalence relation. Even if we restrict our attention to models for monadic first order
logic there is no determination of { M,, : n > 0} or { My, My } (k > 0) by their respective
axiomatizations; to see this one can adapt the arguments of [11, Corollary 4.5.10].

Another option suggested by the close connection between the Boolean and modal ap-
proach to quantifiers, is to try and solve questions from the Boolean level of analysis using
our modal intuitions and results. Along this line we will present a complete axiomatization
of the Boolean counterparts more, of our modal operators M,; so more,XY denotes
the quantifier | X NY| > n.

The language Lp is built up as follows. It has primitives (X,Y,...) built up from
unary predicate letters Py, P;, ... using (-)¢, N; below we will often pretend that primitives
are propositional formulas built up from the ‘proposition letters’ Py, Py,.... The atomic
formulas of Lp have the form more, XY, where n € N, and X,Y are primitives. From
these, formulas are built up in the usual way. Some useful abbreviations are allbut, XY :=
~more,XY°, and precisely, XY, which is defined as ~moreoXY if n = 0, and as
more,_1 XY A more,XY otherwise.

Loosely speaking, £p corresponds to a fragment of L(QU ANT') in which every formula
is a Boolean combination of formulas of the form M, ¢, where ¢ is purely propositional.
So given the fact that the axioms A1-A5 axiomatize the complete theory of the operators
M,,, an obvious conjecture for a complete set of axioms in Lp is arrived at by deleting
from the list of QU AN T-axioms those by which the number of nestings of operators may
be altered, i.e., leave out A1 and A2. Apart from one additional axiom governing the way
in which the operators more,, combine with Boolean operators inside their arguments,
this is in fact all we will need.

Definition 4.5 The logic B-QUANT (for the Boolean counterpart of QUANT) is de-
fined as follows. Its rules of inference are Modus Ponens, Substitution, and a restricted
version of Necessitation: if the primitive X (considered as a propositional formula) is
derivable in propositional logic, then allbutyTX is a theorem of B — QUANT. Besides
those of propositional logic its axioms are:

A3 allbuty XY — (more,TX — more,TY);

A4 allbuto XY — (precisely, TX A precisely,, TY — precisely,,,,T(X UY));
A5 more,1 XY — more, XY,

A6 more, XY — more,T(X NY).

Here’s a result we will need later on:

Proposition 4.6 Let n € N. Then:

1. B-QUANT \ ~more, XY — precisely, XY V...V precisely, XY ;

2. B-QUANT F allbut, T(X NY)° & allbut,XY° & allbut, Y X¢;

3. B-QUANT F allbut, XY® — (more,ZX A more,ZY — more,tm41Z(X UY)).
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Proof. We only prove item 1; item 2 is straightforward, and item 3 follows from item 1. By
definition we have ~precisely XY — moreoXY and —~precisely; XY — —~(more, XY A
-more; XY). Putting this together gives —precisely, XY — (-precisely,; XY —
more; XY). Continuing in this fashion, we end up with

-precisely, XY A ...A -precisely, XY — more, XY,

the contrapositive of which is item 1. (By applying axiom A5’ one can in fact show that
the disjunctions in the consequence of the formula in item 1 are ezclusive). QED.

Definition 4.7 The models for Lp are pairs M = (W, V) where W is as usual, and V is
a function assigning subsets of W to unary predicate letters, and thus, by extension, to
all primitives. The only interesting case in the truth definition is the atomic one:

M | more XY iff [V(X)NV(Y)| > n.
We say that ¢ is valid iff for all M, M = ¢.

As with QU ANT-formulas we can define a notion of grade for Lg-formulas: gr(y) =
1+ max{n : more,XY occurs in ¢ }. A formula ¢ € Lp is said to be in disjunctive
normal form (DNF) if it is a disjunction of literals (i.e., of (negated) atomic formulas).
Using the fact that every propositional formula has a DNF, we have that every ¢ € Lp
has a DNF.

To prove the completeness of B—QUANT we assume that ¢ € Lp is consistent, and
try to find a model for ¢. To this end it suffices to find a model for a disjunct % in the
DNF of ¢. For the time being we fix 9 to be such a conjunction of literals in Lp.

Let Py,...,Pr_1 be the proposition letters occurring in 7. Recall from Section 2.3
that P, (s € 2¥) denotes a partition set, and U; (1 < 7 < 22k) a (possibly empty) union of
partition sets. For the remainder of this section we write L for the empty union of partition
sets, and T for the union of all partition sets. Define MORE(%) = { (m)more, Uild; : 1 <
i,j < 22" n < gr(¥)}. So [MORE(p)| = 2 - gr(¢) - 22**". Define a subset ¥ of MORE(4)
as follows. First of all, it contains all conjuncts occurring in %, and secondly, it is maximal
consistent in MORE(%).

Definition 4.8 The canonical model M. = (W, V) is defined as follows. To each par-
tition set Py (s € 2’“) associate a set of primitives Il in such a way that P, € II,, and
II, is maximal consistent (in propositional logic, and in the fragment containing only the
‘proposition letters’ Py, ..., Pr_1).

W, is a set pairs (II,,n) such that (II,,n) € W, iff more, TP, € ¥; V. is defined by
putting (II,,n) € V.(P) iff P € I, (0 < n < gr(4), s € 2F).

Lemma 4.9 (Truth Lemma) Let x € MORE(v). Then x € ¥ iff M. [ x.

Proof. Assume x = more,U;U;. Then for some Py,...,P, we have - (U; NU;) & (P U
...UP,) in propositional logic.

Assume M, = more UlU;, ie., M. |E more,T(P1U...UP,), by the soundness of
axiom A6. Then there are nj,...,ns such that (II;,n;) € W, (1 < t < s), and ny +
-++4+ns = m > n. By the definition of W, we have more,, TP; € & (1 <t < s). Now
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obviously, if © # v then F (P4,AP,) < L in propositional logic; hence + allbutyP,(P,) in
B-QUANT. By repeated applications of 4.6.(3) this yields more, T(PyU...UP;) € ¥.
By axiom A5’ this gives more, T(P1U...UP,) € ¥; but then, more, U;U; € ¥, by the
maximal consistency of ¥.

For the converse we have to do a little more work. Suppose x € ¥. By A6 and
Substitution we have more, T(P; U...UP,) € ¥. We distinguish two possibilities.

1. For some t, 1 <t < s, more, TP; € ¥. Then, by axiom A5’, the fact that ¥ is
deductively closed, and the definition of W, we have (II;,0),...(Il;,n) € M,.. Hence,
M. = more, TP;; thus M, = more,T(P;U...UP,), and so M, = more UU;.

2.Fornot (1<t<s), more, TP, € ¥. Then, by 4.6.(1), we can conclude that there
are ny,...,Ns—1 such that preciselymT'Pt EV(1<t<Ls—1). Putm=mng+---+n,1.
If m > n, we are done. For then we have P; U...UP, occurring in n; copies of II; for each
te{1,...,s—1); this implies M, = more,T(P1U...UP,) and M. | more, Uil;. If,
on the other hand, m < n, then we argue as follows. We first show that over B—QUANT
we have that more,U;lU; implies

precisely, TP1A...A precisely,, TP, 1 — more,_n,TP,.

We reason ‘inside’ B—QUANT. Assume more,U;U; as well as precisely, TP, ..
precisely,, TP, ;. Note that by 4.6.(1) we have

*

(1) “more,_,m 1P, — precisely, TP, V...V precisely,_,. TP,.

Since u # v implies F allbutyP,(P,)°, axiom A4’ gives that for r € {0,...,n — m}, the
conjunction of precisely, TPy A...Aprecisely, TP, 1 and precisely, TP, implies
precisely,, . . T(P1U...UP,). Together with (1) and our assumptions this yields

more,_, TP, — precisely,, T(PL1U...UPs) V...V precisely, T(PU...UP;).

But the latter disjunction implies ~more,T(P,U...UP;), i.e., “more,U;U;—a contra-
diction. Hence, we have more,_,, TP; as required. It follows that more,_, TP, € V.
All in all we have P; U...U P, occurring in n, copies of I, (1 < t < s — 1); this gives
m elements of W, ‘verifying’ P; U ...U P,. The fact that more,_,, TP, € ¥ adds more
than n — m copies of II, to W, in each of which P; U...U P, occurs. This implies
M. = more, T(P1U...UP,), and hence, M. = more,U;iU;. QED.

Theorem 4.10 Let ¢ € Lg. Then B—-QUANT \ ¢ iff B-QUANT [ ¢.

Proof. As before, proving soundness is left to the reader. To prove completeness, assume
that B—QUANT lf ¢. So - is B—QU AN T-consistent. But then, some disjunct % in
the DNF of - has a model by 4.9. Hence, B—-QUANT |~ ¢. QED.

The method used to prove B—QUANT complete in 4.10 may also be used to give
an alternative completeness proof for QUANT or QU ANT).. We preferred to prove the
completeness of QUANT} the way we did it in Section 3.2, simply because the method
used there is somewhat closer to the modal tradition.

In a recent survey on generalized quantifiers Johan van Benthem asked for a complete
axiomatization of the Boolean theory of the set of quantifiers { some, : n € Nyo }. We
leave it to the reader to use Theorem 4.10 to answer this question.
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5 Beyond the first order boundary

In this section we will consider some higher order quantifiers as modal operators. The
leading character in this section will be the quantifier there are at least as many Xs
as Ys. The choice to consider this particular quantifier is motivated by the fact that we
can use an existing calculus to axiomatize the valid inference patterns that hold of this
quantifier. Also, using the quantifier there are at least as many Xs as Ys, anumber
of other higher order quantifiers can be defined and studied.

The plan for this section is as follows. We first introduce some notation and an axiom
system for a modal operator atleast(-,-). After that we prove a completeness theorem
for this system. Then, some themes from sections 2.2 and 4.1 re-emerge when we prove a
normal form theorem, characterize the Q M-formulas satisfying CONSERV and EXT, and
prove a (partial) Lyndon Theorem for the modal language with atleast. We complete
this section by taking an exploratory look at some modal operators representing other
higher order quantifiers.

5.1 Axioms and notation

First, let us set up our language. Let Formy abbreviate Form(Prop,0,{ atleast}). Here
are some useful abbreviations we will use:

Loy = atleast(p,T)
more(p,P) = atleast(p,)A ~atleast(y,p)
most(p,¥) = more(p AP, oA p)
equal(p,y) = atleast(p,9) A atleast(y, ).

Given that the intended reading of atleast(y,%) is: there are at least as many s as
s, the intended interpretations of the above abbreviations should be obvious from the
notation.

Before plunging into axiomatics, let us briefly answer two questions that may arise
at this point. First, is there are at least as many Xs as Ys indeed higher order?
Suppose it is not; then it has a first order definition «, say of quantifier rank n. Let
M = (W, P,...) be a model for monadic first order logic with |W| = 3n, |P| = n. Then
M £ there are at least as many Ps as - Ps, hence M £ a. Let M' = (W', P,.. )
with |W| = 4n, |P| = 2n. Then M ~,, M’ (for the restricted fragment containing only
the predicate letter P). But then M’ [£ o, by our remarks preceding Theorem 2.18, and
so M' [t there are at least as many Ps as - Ps—a contradiction.

Second, one might well wonder why we don’t use a unary modal operator to simulate
there are at least as many Xs as Ys,—just like we used the unary operator Ly to
simulate the quantifier all XY. An obvious candidate would be the operator O, with
O, true at a world in a model iff there are at least as many worlds that verify ¢ as there
are worlds verifying . But, although O, is certainly definable in terms of atleast, the
latter can not be defined in terms of the former; to see this one can adapt a result from
Barwise and Cooper saying that the binary quantifier most is not definable using the
Rescher quantifier Qg (cf. [11, Section 1.7]).

Definition 5.1 We define the logic Q M (for Qualitative Modalities). Like QUANT, QM
has Modus Ponens, Necessitation (¢/Loyp) and Substitution as rules of inference. Besides
those of propositional logic, its axioms are
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C1 Lo(p & @) A Lo(¢p & ') — (atleast(p, ) « atleast(y’,'))

C2 atleast(yp,?) V atleast(, p)

C3 atleast(p, L)

C4 more(T,1)

C5 Lo(p — P

C6 (atleast(p, ) & Loatleast(p,v)) A (matleast(p,) — Lonatleast(p,)))
D(m) for sequences of formulas ¢, ¥ both of length m + 1,

GEPY — (atleast(po,Po) A ... A atleast(om—1,Vm-1) — atleast(Pm, om)).

Here, for m € N, (/'58'95 expresses a kind of generalized equivalence. It is defined as follows.
For a sequence ¥ = (7o, . ..,Ym) of m + 1 formulas, let T;(¥) be a statement that is true iff
exactly 7 elements in ¥ are true. E.g. if ¥ = (po, p1) then T1(¥) = (po A =p1) V (mpo A p1),
and T2(¥) = (po A p1). Then

(2) GG :=Lo \| (Td&)ATi(H)).

0<i<m+1

Loosely speaking, when interpreted on a model, the right-hand side of (2) says that every
point of the model is balanced in the sense that 7 formulas from the sequence ¢ are true in
a point iff 7 formulas from the sequence 7 are true in that point (0 < i < m + 1). Hence,
what D(m) expresses is that if each point is balanced, and if, in addition, for each of the
first m components of ¢ we have that their extension is at least as big as the extension
of the corresponding components of z,zv',—then the extension of the last component of 1,1_;
should not be smaller than the extension of the last component of ¢. At least for finite
models D(m) is a perfectly sound principle; that it is not sound on infinite models is shown
in our remarks preceding 5.3.

Let’s see this system in action. We will derive a formula expressing additivity of
there are at least as many As as Bs: Lo~(¢Ax)A Lo~ (¥ Ax) — (atleast(p, ) —
atleast(o V x,9P V x)). (We use g€~ ) to denote @E with the operator Lg left out; PL
is short for propositional logic.)

L (po e @p) A A(pm = @) = {00y oy Pm)E (@0 - - s @)

2. (e AX)A(PAX) — XV (e AP AX),

3. X = (pe(eVvX)A(@VX) e ), PL
4. - (e VX)E (e VX, ¥), 3,1
5. = (e, VX)ET (Yo V X),

6. A=Y Ax — (AR VX)) A (P A(pVX)), PL
7. - Ti(e, (¥ VX)) AT (%, (2 VX)),

8. = (e, ¥y VX)E (¥, VX),

9. “(PAX)A=(BAX) = (Y VX)E (¥, 0V X), 2,5,8
10. Lo~(p AX)ALo~(¥ AXx) — (o, b VX)E@W, oV X),

11. — (atleast(cp, ¥Y) — atleast(p V x, ¥ V x)), D(2).

5.2 Completeness

In [6] a completeness result for QM is given with respect to a special class of so-called
probability models. Combining this result with a result from [8], we can derive a com-
pleteness result for Q M with respect to models in which atleast and Ly receive their
intended interpretations.
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To state these results, we need some definitions. Recall that a probability measure on a
set W is a function P : 2" — [0, 1] that satisfies (i) P(W) = 1, (ii) P() = 0, and (iii) if
for countable I, X; € 2, X; n X; = 0 whenever 1 # j, then P({U;e; Xi) = BierP(X;). A
probability model M is a tuple (W, F,V) where W and V are as usual, and where F is a
collection of probability measures { P, : w € W } on W. The interesting case in the truth
definition is

M,w [ atleast(e, %) & Pu(V(9)) > Pu(V(#)).
So, on probability models atleast is interpreted as ‘at least as likely as’. The following
result may be found in [6, Section V]:

Theorem 5.2 QM 1is complete w.r.t. the class of finite probability models in which all
probability measures satisfy Vz (P,({z }) > 0), and for all S C W, Vzy (P(S) = Py(S5)).

A qualitative model is a tuple M = (W, R, V) with W a finite set, V as usual, R C W2,
and in which atleast is interpreted as follows:

M, w = atleast(p, ) iff |{v: Rwv and M,v = ¢ }| > |[{v: Rwv and M,v = 9 }|.

In qualitative models W has to be finite to ensure the soundness of D(m). For, let
W be infinite, and pick w € W; put V(po) = W\ {w}, V(p1) = {w}, V() = W, and
V(q1) = 0. Then (W, WxW,V) = (po, p1)€{qo, 1) Aatleast(po, q), but (W, W XxW,V) |~
atleast(q;,p1), which refutes axiom D(1).

Our next aim is to prove the completeness of Q M with respect to models in which the
modal operators receive their intended interpretations. To do this it suffices to show that
QM is complete w.r.t. qualitative models in which R is an equivalence relation. For then,
QM t ¢ implies that for some qualitative model M in which R is an equivalence relation,
M, w £ ¢. Taking the submodel generated by w gives a model M’ in which ¢ is refuted,
and in which R is the universal relation. Hence, atleast and Lo receive their intended
interpretations in M.

Theorem 5.3 QM is complete w.r.t. finite qualitative models in which R is an equivalence
relation.

Proof. If QM V/ ¢ then by 5.2 there is a finite probabilistic model M, (= (W, F,V))
satisfying the conditions stated in 5.2, such that for some w € M, we have M, w [~
¢. By [8, Lemma 3.7] there is a finite qualitative model M, (= (W', R,V")), where
W' contains a number of copies w’ of certain w € W, such that Vz'y’ € W’ (Rz'y' &
Py({y}) > 0) and for each subformula 9 of ¢, My, w = ¥ iff Mg, w' = 1. Moreover,
using the above condition on R it can be seen that if M, satisfies Vz (P;({z }) > 0) and
for all s C W, Vzy (Py(s) = Py(s)), then in M, we have that R is an equivalence relation.
QED.

The proof of 5.3 is a special version of a rather complex argument used to prove the
completeness of @ M minus the axioms C5 and C6. It is still open whether 5.3 may be
proved in a simpler, more direct way, for example using some version of the method used
in 4.10. More specifically, is the infinite schema D(m) really neccessary, or is there some
finite axiomatization after all?

Although we do not want to discuss the complexity of @ M-satisfiability in this paper,
we feel that it may be shown to be in one or other complexity class in pretty much the
same way as QU AN T-satisfiability was shown to be in PSPACE in Section 3.3.
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5.3 Normal forms and semantic constraints

Using our general result on normal forms from Section 2.2 we give a quick proof for the
existence of syntactic normal forms for formulas in Formy. After that we determine ‘se-
mantic’ normal forms for such formulas, and use these to obtain syntactic characterizations
of various semantic constraints.

Definition 5.4 A formula ¢ € Formy is in normal form (NF) if it is a disjunction of
conjunctions of the general form

a Aatleast(ay, 1) A ... Aatleast(an, Bn) A ~atleast(y1,61) A ... A natleast(Vm, om),
where o, i, £i,7;,6; (1 <1< n,1< 5 < m) are purely propositional formulas.
Theorem 5.5 Over QM every x € Formy is equivalent to a formula in normal form.

Proof. Let O = { Log,atleast}. Prove that QM is neat, and apply 2.11. QED.

Our next aim is to find an Ehrenfeucht-Fraissé-like characterization for @ M-formulas,
and use this to find syntactic counterparts for a number of semantic constraints, as we did
in Section 4.1.

First, we have to give some definitions. To simplify things we assume that we are
working in a restricted language with proposition letters po,...,pr—1; the appropriate
models then have the form (W, P, ..., Pr_1). Recall from Section 2.3 that we use P; to
denote partition sets (or partition conjunctions), and U; to denote unions of partition sets
(or disjunctions of partition conjunctions). Define

M ~atleast M’ iff for all unions of partition sets U;, U; (,1 <1,7< 22k)
we have [UM] > U] iff M) > M

also,
M =at1east M’ iff M and M’ verify the same Q M-formulas in pg, p;.

Lemma 5.6 For any two models M, M’ we have M ~gtleast M’ iff M =atleast M.

Proof. Let L denote the empty disjunction of partition conjunctions, and T the disjunction
of all partition conjunctions. Assume M =gtleast M'. Then, if [UM| > |UJM|, we have
M E atleast(U;,U;). Thus M’ |= atleast(U;,U;), ie., UM'| > IUJM'|. Since the
converse may be proved similarly we have M ~gt1east M.

Conversely, assume M ~gtleast M’. For ¢ a formula, let [¢]a¢ abbreviate {z : M,z |=
¢}, and similarly for [¢]spr. To each formula ¢ (in po,...,pr—1) we will associate a
union of partition sets ; such that [p]a = UM, and [p]pe = UM'. Then, given the
assumption that M ~gtjeast M/, it follows that M =gat1east M’. For M = ¢ implies
o1l = [UM] > [[T]adl, 50, since M ~qutenst M, [[elac] = M| > [T]ae, which means
that M’ |= ¢.

With proposition letters we associate unions of partition sets as follows: let U; = P; U
... U Pgk-1, where Pq,...,Por-1 are all the proposition conjunctions in which p occurs
positively. Then [p]p = UM, and [p)ar = Ll,-M'. Next, assume [@]p = UM, and []pr =
UM'; then [~]pm = (UM)S, and [~p]apy = (UM')°. Using some standard procedure one
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can bring (U;)° into a ‘disjunctive’ normal form, consisting of disjunctions of conjunctions
of (=)po, ..., (7)pk—1—thus (U;)° = U;, for some j, and we are done. Next assume that
[plm = UM, [bIm = MJM, and [lpy = UM, [l = Z,{J'f"’l. As in the previous case
one can use a standard procedure to show that for some Uy, U; N U; = Uy; but then
[ Aplpm = UM and [p A Plae = Z,l;c’w. Finally, under the assumptions of the previous
case we have to associate a union of partition sets to atleast(y,?). We distinguish
two cases, the first one being M |= atleast(p,?). Then [UM| > IL{J'-MI, so [UM'| >
|UJM'|; hence, [atleast(p,?¥)]m = [T]m, and [atleast(y, ) s = [T]amr. The second
case is M £ atleast(p,%). Then |UM| # |UJM|, S0 IHZ-M'| ? [L{]M'L But then we have
[atleast(p,¥P)|m = [L]m, and [atleast(p,¥)|m = [Limr.  QED.

Corollary 5.7 Let [ > 0. Then the modal operator M, is not definable by means of
QM -formulas.

Proof. Let M = (W, V) be a model with |[V(p)| =1+ 1, and |[W| =2 (I + 1). Obviously,
M E Mip. Let M’ = (W', V') be a model with |W'| = 2, |V'(p)| = 1. Then M’ [£ M;p.
To show that there is no definition of M; by means of Q M-formulas, it is sufficient to prove
M =atleast M’ (w.r.t. the fragment over the single proposition leter p). To see this, it
suffices to show that M ~g¢jeast M’ (W.I.t. the same fragment), by 5.6. But this is simple,
since for all relevant unions of partition sets ;, we have |[UM| = n iff [UM'| = n/(l + 1).
QED.

Let ¢ be a formula in pg,...,px—1. The number of ~gtjeast-equivalence classes is fi-
nite; let My,..., M, be representatives of the ~atleast-classes that contain models of
p. For M € {My, ..., My} write down a conjunction 9 of formulas of the form
(-)atleast(U;,U;), depending on whether or not [UM| > IUJMI in M. (Note: for any M’,
M’ = Paqg iff M! ~atleast M.) This results in a semantic normal form for ¢ as follows:
for any M: M = @ iff M |=9a, V...V o,

Using these semantic normal forms one can try and find syntactic counterparts (in
Formy) of semantic constraints, just like we did in Section 4.1. However, the semantic
norm al forms for @ M-formulas are much more complex than those found for QUANT-
formulas in Section 2.3. (Indeed, the proof of the Ehrenfeucht-Fraissé Theorem for Q M
was already more complex than the corresponding result for QUANT, or first order logic
(cf. [11, Section 1.7]). Consequently, manipulations on semantic normal forms for QM
have to be more abstract and involved than they were in the proofs of e.g. 4.1 and 4.2, as
is witnessed below.

Call a formula in Formy po-restricted if it is a Boolean combination of formulas of the
form atleast(po A @, po A %), where @, are purely propositional.

Proposition 5.8 A formula ¢(po,p1) € Formy satisfies CONSERV and EXT iff it is
equivalent to a po-restricted formula.

Proof. The simple proof that all pg-restricted @ M-formulas satisfy CONSERV and EXT
is left to the reader. Assume ¢ satisfies CONSERV and EXT. Let ¥ =)oV ...Vy be a
semantic normal form for ¢. Since we are restricting ourselves to the fragment containing
only po, p1, the disjunctions U; occurring in the disjuncts o, ..., %, are disjunctions of
formulas of the form (=)poA(=)p1. Now, let % be a disjunct in ¥. Let 9’ be obtained from
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9 by deleting all conjuncts of the form —py A (=)p1. Let ¥’ be the result of substituting
i’ for ¢ in ¥. Hence, ¥’ is po-restricted. Our claim is that for any M, M E ¢ iff
M = ¥, To prove this we use the Figure displayed in the proof of 4.3. Assume first
that M | ¢, say M |= 1, where 9 is a disjunct in ¥. M |= ¢ means that a number
of inequalities involving k, !, m,n must be satisfied in M. By CONSERV and EXT these
inequalities are still satisfied if we leave out m and n. On the level of formulas this means
that M |= [L/=po A p1][L/=po A —~p1]¢. That is, M |= 9.

For the converse, assume M = 7', where 9’ is some disjunct in ¥’. This means that
certain inequalities involving only k and ! must be satisfied in M. Define M’ by putting
K =k, I' =1, and m' = n' = 0. Then M’ | ¢'. Since m' = n’ = 0 we can ‘plug in’
occurrences of m’ and n’ in the inequalities corresponding to 9, at any place we like. But
then we may assume that M’ = 9. Thus M’ £ ¢, and so, by CONSERV and EXT,
ME . QED.

To characterize the TMON formulas, we need to specify what it is for a proposition letter
to occur positively (or negatively) in a Q M-formula. The appropriate inductive defintion
has the usual clauses for proposition letters and the Boolean connectives, while a positive
(negative) occurrence of p in ¢ is a positive (negative) occurrence of p in atleast(yp, ),
and a positive (negative) occurrence of p in ¢ is a negative (positive) occurrence of p in
atleast(y, ).

Theorem 5.9 Let ¢(p) be a Q M -formula that is equivalent to a disjunction ¥ of formulas
of the form (-)atleast(x1,x2), where x1,x2 are purely propositional. Then ¢ is TMON
(in p) iff ¢ is equivalent to a formula in which all occurrences of p are positive.

Proof. The direction from right tot left is similar to the corresponding case in Theo-
rem 4.2. Assume ¢ is TMON, and let 9 be a disjunct in ¥, say ¢ = (-)atleast(x1,Xx2),
where x1,x2 are disjunctions of conjunctions of literals. Since | atleast(A,B) <
atleast(A A -B,-A A B), we may assume that X, x2 are mutually exlusive. Moreover,
using propositional logic, 7 can be brought into the form

(#) (n)atleast((p A D1) V (~p A D2),(pA D3) V (-p A D)),

where Dy, D3, D3, D4 are p-free, and both F (pAD1)A(pAD3)— L and F (mpA D2) A
(-p A D4) — L. Now, if 9 has the form atleast(xi, x2) define

(¥') atleast((p A Dy A-D3)V (DyA=Dy),(=pA =Dy A Dy)V (~Dy A=Dy A D3 A Dy)).
Otherwise, if 9 has the form —atleast(x:, x2) define
(¥") —atleast((—pA D2 A-Dy)V (D1 ADyA-DsA=Dy),(pA-DyADs)V(-DyA Ds3)).

Let ¥’ be the result of substituting v’ for ¥ in ¥ (for all ¢). Then all occurrences of p in
¥ are positive. Our claim is that for any M, M | ¢ iff M = ¥’. To prove this, we use
X1 to denote x; and x, to denote x;, for a formula x = atleast(x;,x2). One direction
of the claim is easy. Suppose M = ¢, say M |= 9, for some disjunct 9 in ¥. Assume
also that ) has the form atleast(x1,x2). Then, since F ¢y — 9] and F 9. — 1, we
immediately have M |= 1'. To prove the opposite direction we have to do some more
work. Assume (W,V’) = 4/, for some disjunct 9’ in ¥, and assume also that 1’ has
the form atleast(x1,x2). Given a valuation V on W we are interested in the number
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of worlds verifying formulas of the form (=)D; A (=)D3 A (=)D3 A (=)D4. Given such a
formula 6; (1 < 7 < 16) the number of worlds verifying p A ; is denoted by z;, and the
number of worlds verifying —p A 6; is denoted by ;.

#p I T1 T2 3 T4 T5 Tg Ty T L9 Ti10 Ti1 Ti2 Ti3 Ti4 Tis  Tie
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Dy | 0O 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0
1

1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1

#"PI Y1 Y2 Ys Y+ Ys Y Y7 Ys Yo Yo Yn Y12 Y1z Yia Y15 Yie

As is easily computed, % is true under some valuation V on W iff the following inequality
is satisfied in (W, V):

(3) To+Tio+ T3+ Tua+ys + Y7+ 13 + vis >
T3+ T4+ 27+ 2g+ Y2 + Y4 + Y10 + V12-

Consider the following inequality:

(4) To + 10 + 14 + (Z5 + ¥5) + (27 + y7) + (Z13 + v13) + (Z15 + Y15) >
y2 + (¢4 + y4) + v10 + V12-

We leave it to the reader to check that for any V on W, (W, V) |= ¢’ iff (W, V) satisfies
(4).

Let V be a valuation for 9’ on W such that V(p) C V’'(p) is minimal, while V(¢) = V'(q)
for ¢ # p. Then, in (W, V), we have that

(5) $3=$5:$7=$8:$13=$15=0.

This is trivial for z5, 27, 213, 215. Consider for example z5; if 5 > 0, transfer all elements
inV(pA-DyADyA-D3zA-Dy) toV(=pA-Dy; ADyA-D3A-Dy) to obtain V”. Then
zs + ys in (W, V") equals z5 + y5 in (W, V), while the other quantities z;,y; occurring
in (4) remain unchanged, i.e., (W, V") is also a model for 9’, while V”(p) C V(p)—a
contradiction. Next, z3, zg also equal 0 since neither z3,ys nor zg, yg occur in (4). So any
elements in the slot corresponding to z3 (zs) may be transferred to the slot corresponding
to y3 (ys) without changing the truth-value of (4).
Applying (5) to (4) we see that in (W, V) the following inequality must be satisfied:

To+ 10+ 213+ 214+ (04 9y5) + (0+y7) + (0+ v13) + (0 + v15) >
T3+ 24+ 27+ 28+ Y2+ +Y4 + Y10 + Y12.

Hence, (W,V) = 9. By the monotonicity of ¢ this implies (W, V') = ¢—as required.
QED.

We believe that there is a ‘full’ Lyndon Theorem for the language of Q@ M, stating that
a Q M-formula is TMON in p iff it is equivalent to a formula in which all occurrences of
p are positive. However, we doubt whether the method we used in 5.9 to prove a partial
Lyndon Theorem would be the most efficient way to obtain the more general result.
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5.4 Other higher order quantifiers

Just like the systems QUANT and QUANT} did not determine the sets of operators
{M, :n € N} and { My, My }, respectively, QM does not determine atleast; QM also
axiomatizes the complete modal theory of the operator there are at least as many
R-successors satisfying X as there are satisfying Y, where R is an equivalence
relation. And by 5.2, @ M also axiomatizes the modal theory of the probabilistic quantifier
‘X 18 at least as likely as Y’, where the underlying probability measure is not based
upon statistic bearings but interpreted ‘subjectively’ (cf. [6] for a brief explanation of how
the latter is accounted for by our axioms C5 and C6).

When added to first order logic the quantifiers most and more yield languages that
are not equivalent as far as their expressive power is concerned (cf. [11]). However, on top
of §5, the three quantifiers atleast, more, and most (considered as modal operators) all
yield the same language in this respect. Given the abbreviations introduced at the start
of section 5.1, to establish this claim it suffices to show that atleast can be defined in
terms of more (which can be done as follows: atleast(y,) « ~more(y,p)), and that
it can also be defined in terms of most. On finite models the latter is indeed possible; if
(W, V) is such a model, then

atleast(yp, ) V(o) > [V (¥)

(V)] > [V(e)l)
(V@ A =9)| > V(e A=9h))
“most(y & ¢, ),

where X @ Y is the symmetric difference of X and Y. This equivalence on finite mod-
els is in fact all we need. From the above observations it follows that we can extract
complete axiomatizations for the modal operators more and most from the complete
axiomatization we have given for atleast.

A natural extension of QM and its language arises when we consider atleast not in
isolation, but together with one or more operators atleast,, (n > 0), where atleast,(p, )
is interpreted as ‘there are at least n times as many s as 1s’. Here, we want to elaborate a
bit on a possible axiomatization @ M, for the modal language with atleast and atleast,.
Q M should at least contain the system QM (for atleast), an also axioms corresponding
to those in 2.6 to ensure that we have a decent normal form theorem. These normal forms
are disjunctions of conjunctions of the form

P A (-)atleast(Pr, x1) A ... A (=)atleast(Pn, xn) A

(m)atleasty(Pni1sXnt1) A ... A (D)atleasty(Yniymy Xntm),
where %, %;, x; are purely propositional. Such normal forms suggest a natural reduc-
tion of QMa,-provability to provability in QM. Replace each conjunct atleasty(v,x)
by (equal(p,x) A Lo-(p A x) A atleast(y,p V x)), where p is a proposition letter not
occurring in 1, x. Similarly, formulas of the form -atleast;(v,x) should be replaced
by —(atleast(-x,x) A (Lo-(p A x) A equal(p,x) — atleast(y,pV x))), where p is a
proposition letter not occurring in %, x. To get this reduction to work we should have
two additional derivation rules (either derived from the axioms, or explicitly added) that
amount to

111tz

(R*) if + (equal(p,x) A Lo—~(p A x) A atleast(tp,pV x)) — & for all proposition letters
p, then + atleasty(v,x) — 6,
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and

(R7) if 6 — (atleast(—x,x) A (Lo(p A x) A equal(q,x) — atleast(y,qV x))) for all
proposition letters p, then F § — atleasty (v, x).

All in all, assuming that Q M, contains Rt and R~ we get the following reduction of
provability in @ M, to provability in QM. Assume ¢ is consistent in QMs; we may
assume that ¢ is in NF. Thus, one of the disjuncts ¢’ in ¢ is consistent in Q@ M,. Using
Rt and R~ one can find a formula ¢” € Formy such that ¢” is consistent in QM iff ¢/
is consistent in Q M,. Now apply 5.3 to find a model for ¢”. It is easily verified that this
model is also a model for the original formula ¢.

6 Further directions; concluding remarks

This paper has brought a number of questions and techniques familiar from the theory of
generalized quantifiers to modal logic; this gave rise to several non-trivial results. Con-
versely, we have been able to use well-understood facts and tools from modal logic to
obtain some non-trivial results in generalized quantifier theory.

We think that two of the main features of the modal languages used in this paper are the
following. First, in these modal languages complex, non-constructive standard proofs can
be replaced by simple, effective manipulations of syntactic objects to obtain results like
e.g., a Lyndon Theorem (cf. 4.2, 5.9). Secondly, our semantic (Boolean) intuitions about
quantifiers translate more or less directly into syntactic intuitions about modal formulas;
as a result both old and new results connecting semantic constraints and special syntactic
forms can easily be obtained (cf. 4.1, 4.2, 4.4, 5.9).

Several specific open problems have already been stated in this paper. At this point we
want to suggest some general issues that we think are worth further investigations.

First, there are a lot of higher order quantifiers whose modal (or sometimes even
Boolean) theory is still pretty much terra incognita. Besides the ones mentioned in Section
5.4 these include probabilistic quantifiers like almost all, and cardinality quantifiers like
more than kK Xs are Ys (k > w).

With these and other quantifiers considered in earlier sections of this paper the precise
nature of the individuals constituting our universes of discourse is irrelevant. A natural
example of a sentence outside the scope of this extensional point of view is three boys eat
four apples. To give a modal analysis of the quantifier patterns involved here one may
have to move back to the more traditional approach to modal logic where the domain is
structured by some relation R. E.g., one way to handle the above sentence would be to add
to QUANT operators N,, interpreted as the original graded modalities,i.e., M, w | N,p
iff more than n R-successors of w satisfy ¢. In such a calculus the above sentence may
be represented as M!3(B A N!yA)—this representation has all the readings of the original
sentence.

Another reason why one may want to have structured universes of discourse arises when
one gives the operators considered in this paper a temporal interpretation as quantifiers
over temporal entities. In such an interpretation one could add operators to structure
the temporal domain to obtain one’s favorite ordering. This would allow one to express
such statements as ‘it will be the case at least twice that there have been exactly three
occasions at which ¢ held’.
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Finally, in [2] a complete, but very restricted system for talking about set containment
is studied. This system deals with statements of the form

(_')lellfh ceey (—')QanYn/(_‘)Qn+1Xn+lYn+l )

where Q; € {all,some } and the X;s and Y;s have no structure except maybe a negation
sign. Thus, given that we also have a syllogistic, Boolean and modal analysis of all and
some, there is a whole hierarchy of systems for dealing with these quantifiers. We think
it may be well worth the effort to study this hierarchy more systematically, and to set up
and study similar hierarchies for other pairs of dual quantifiers.
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