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Introduction 1

1. Introduction

If there is a problem about the Liar paradox, it is not so much the puzzle it presents,
but the vast number of solutions that have been proposed for it. In view of the extensive
literature on the Liar paradoxl, the problem is not to solve it, but how to solve it. The large
number of purported solutions might even lead to the contention that there is no real solution.2
Of course, between a particular philosophical puzzle and the opinion that there must be a
unique right solution there is a considerable amount of speculation, especially if a completely
satisfactory solution has not yet been found. And that seems to be the case for the Liar: there
are a number of reasonable proposals, but none of them is obviously the right one.

The present paper is an attempt to add another reasonable proposal to the list. I will not
argue that the present proposal is the right one. I will of course make a case for it. The theory
of this paper is an extension of Barwise and Etchemendy's Austinian account of truth and
circular propositions (Barwise and Etchemendy [1987]). The main ingredient of the present
proposal is a form of dynamic semantics.3 The idea that paradoxical sentences have a certain
‘context change potential' also derives from Barwise and Etchemendy. They take the view that
one of the lessons of the Austinian account is that the Liar shows that there is a "contextual
parameter, one corresponding to Austin's described situation, a parameter whose value
necessarily changes [my italics] with the utterance of, or reasoning about, a sentence like the
Liar." (BE 175)4 We will use update semantics for formalizing this idea (Veltman [1991]). Its
main ideas are explained in section 2 below.

The theory of this paper is an extension of Barwise and Etchemendy's Austinian
account in a very literal sense: we take over the ontology and the formal language, and devise
a dynamic semantics for that language. I will assume the reader to be familiar with the
Austinian account, as well as the theory of non-well-founded sets that is used to develop it.
Nevertheless I will give a short summary of the Austinian account, in the hope that this will
give the uninitiated reader a rough idea of its main aspects.d

The ontology of the Austinian account comprises four classes of entities: a class SOA
of states of affairs, a class SIT of situations, a class TYPE of types, and a class PROP of
propositions. States of affairs are of the form <H,a,c;i> (where H is a set theoretic atom, a is
Max or Claire, c is one of the standard cards, and i€ {0,1}), or of the form <Tr,p;i> for some
proposition pe PROP (where Tr is a set theoretic atom, i€ {0,1}). The latter states of affairs
are called semantical facts. Situations are sets of states of affairs. Types are of the form [c] for

some state of affairs G, or of the form [AX] or [vX] for some set of types X. Propositions are
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of the form {s;T} for some situation s and some type T.0
These objects are constructed in Aczel's theory of non-well-founded sets. As a
consequence there are propositions that are constituents of themselves. For example, there

exist a proposition p satisfying the identity

p={s;[Tr,p;1]}
But what is specifically 'Austinian' of these propositions is that they have two main
constituents, the situation the proposition is about and the type. Moreover, the situation the
proposition is about can also be a constituent of the type of the proposition, as in a proposition

q satisfying the identity
q={s;[Tr,{s;[Tr,q;11};11}

Notice that in Aczel's set theory p and q are actually identical.

The class of true propositions is defined as follows: a proposition of the form {s;[c]}
is true iff o€ s; {s;[AX]} is true iff {s;T} is true for all Te X; and {s;[vX]} is true iff {s;T} is
true for some Te X.

Next a class of situations of special interest is singled out: a possible situation is a
situation that is coherent (that is, if a state of affairs ¢ is in s then the dual of ¢ is not in s) and
respects its semantical facts (i.e., if <Tr,p;1>e s then p is true, and if <Tr,p;0>€ s then p is
not true).

The formal language has the following structure. The basic formulas are the form
(a Has ¢), where a is Max or Claire, c¢ is one of the standard cards; or of the form True(this),
where this is the primitive symbol called propositional reflexive; or of the form True(that;),
where i< and thatj is a primitive symbol called a propositional demonstrative. If ¢, \y are
formulas then so are True@, —@, (pAY), (pvy) and L. An occurrence of this is loose in @ if
it is not in the scope of the symbol "". A sentence is a formula without loose occurrences of
this.

The semantics for this language is developed in two steps. For each ¢ a parametric
proposition Val(@) is defined. Such a parametric proposition contains the situation

indeterminate s, and may contain the propositional indeterminates p and qj (i<w).

@) Val(a Has ¢)={s;[H,a,c;1]}

(i)  Val(True(thatj))={s;[Tr,qi;1]}
(ii)  Val(True(this))={s;[Tr,p;1]}
(iv)  Val(True y)={s;[Tr,Val(y);1]}
(v)  Val(=y)={s;Type(Val(y))*}
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(vi)  Valtyay)={s;[A{Type(Val(y)), Type(Val())}] }
(vii)  Val(yvy)=(s:[v{Type(Val(y)), Type(Val(X))}] }
(viii)  Val(dy)=p, where the parametric proposition p is the unique solution to the equation

p=Val(y)(p.q1....).

Here * is a negation operation on parametric types defined by: [6]*=[0'], where ¢’ is the dual
of o; [AX]*=[v{T*ITe X}]; [vX]*=[A{T*ITe X}]. Type(Val(®)) is the type constituent of the
parametric proposition Val(¢). Aczel's set theory includes a socalled Solution Lemma, which
guarantees that equations as in clause (viii) do indeed have unique solutions.

Finally, the parameters in the parametric proposition Val(¢) are filled in by the context.
On the Austinian account, propositions are the semantic counterparts of statements. A
statement is a triple <@,s,c>, where ¢ is a formula, s a situation, and ¢ an assignment (a
function of demonstratives to propositions). The proposition expressed by ¢ in context <s,c>,
notation Exp(Q,s,c), is defined as Val(¢)(s/s, q1/c(1@1),...,qi/c(Mi),...).7

For example, the Liar is rendered as the sentence d—True(this), where the scope
symbol "l" indicates that, in any occasion of use of the sentence, the occurrence of the
propositional reflexive this refers to the same proposition as the whole sentence. On the
Austinian account, if this sentence is used to make a statement about a situation s, it expresses

a circular proposition fg, which has the following form:
1) fs={s; [Tr,f50]}

So Exp(d—True(this),s)=fs (we will usually not mention the assignment ¢ when discussing
formulas that do not contain demonstratives). The Austinian proposition fg is true if the
semantical fact <Tr,f5;0> is a member of s. Since by definition a possible situation respects its
semantical facts, i.e. it only contains correct semantical information, the proposition fg is not
true if s is a possible situation. So suppose s is indeed a possible situation, and consider the

situation s':
2) s'=sU{<Tr,fs;0>}

Then s' will also be a possible situation, because the additional semantical fact is correct (i.e.
fs is not true). Moreover, s'#s since <Tr,f5;0>¢ s (again, because fg is not true). So possible
situations are incomplete in the following sense: although their Liar proposition will not be
true, the information that this is so cannot be reflected in the situation itself. But it can be
reflected in a larger situation: the situation s' is possible.

The procedure can be repeated ad infinitum: since s' is a possible situation, the Liar

proposition that is about s, i.e.
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(3)  fs' = {s} [Tr,fs;0]}
is not true, so the situation s" given by
4) s"=s'U{<Tr,fg;0>}

is a possible situation. And so on.

The analysis is attractive, because without contradiction the fact that a Liar proposition
is not true can be actual, although it cannot be a fact of the situation the proposition is about.
And the problem with the Liar always seemed to be that once you accept its not being true as a
fact, you wind up contradicting yourself. On the other hand, equations (1)-(4) above only
report some connections between some objects in Barwise and Etchemendy's ontology.
Although the Austinian semantics assigns the proposition in (1) to the Liar sentence if it is
used to make a statement about s, and the proposition in (3) if it is used to make a statement
about ', the 'context-shifts' in (2) and (4) are not in any way triggered by the semantics. If it
is really so important that the Liar brings about a change, then this 'context change potential'
deserves to be regarded as an aspect of the meaning of the Liar. Moreover, saying that an
utterance changes the described situation comes down to classifying the utterance as a
performative speech act. But in the case of the Liar that seems to be wrong. I would rather say
that an utterance of the Liar changes the information state of someone, than say that an
utterance changes the described situation. If it changes any situation at all, it changes the
discourse situation, or, more precisely, it changes the information of the participants of the
discourse.

In this paper we will show that these objections can be met quite easily. The objections
point in the direction of a dynamic, information oriented semantics. We will extend Barwise
and Etchemendy's semantics with a form of update semantics. Update semantics is precisely
what we need, since its central conception is that the meaning of a sentence is a relation
between information states. A theoretical pay-off of the extended semantics will be a

semantics for discourses with circular cross-references.

2. Basic ideas

In dynamic semantics, the meaning of a sentence is given by update conditions rather
than by truth conditions. Veltman uses the following slogan: "You know the meaning of a

sentence if you know the change it brings about in the information state of anyone who wants
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to incorporate the piece of news conveyed by it" (Veltman [1991]). One way of explicating
this is by taking the meaning of a sentence to be a relation between information states.

What are information states? Intuitively, an information state models the information
that a cognitive agent has of a real situation. This can be described by the set of situations that
the agent cannot distinguish from the actual situation. So a proper information state can be
seen as a set of situations. Under this perspective, there are two ways in which there can be
lack of information. First, a set of situations that is not a singleton is in some sense
'disjunctive', since for all the agent knows, the actual situation could be one of many she
thinks possible. Second, situations are partial, they do not settle all issues. Getting better
informed can thus be seen as a combination of two things: elimination of options and filling in
more detail of other options.8

In concreto, consider the sentence (Max Has 4 A), and let ¢ be a set of possible
situations. The update of ¢ with (Max Has & A) can now be explained thus:

5) [[Max Has aAJ] (o) = {t| Ise o: t=sU{(H,Max,aA;1)} and t is possible }

Those situations in ¢ that cannot be consistently extended with the fact that Max has the ace of
spades will be eliminated, and the remaining ones are extended with this fact. In general, the
meaning of a sentence in this set-up will be a function from sets of possible situations to sets
of possible situations.

Although this is the basic picture, in the implementation below we will follow a
different line. We will not define updates as functions on sets of situations, but as relations
between situations. It is clear that any binary relation R between situations determines a
unique function on the higher level, given by Fr(c)={t | Ise 6: sRt}. Conversely, if F is a
function on sets of situations that distributes over arbitrary unions, there is a unique binary
relation R on situations such that F=Fgr, namely R={<s,t>lte F({s})}. So the two approaches
are interchangeable as long as the functions on the higher level are distributive. But for the
fairly simple language we will devise a dynamic semantics for, this is the case.?

What kind of relations are we after? The slogan we started with gives the following
clue: two situations s and t stand in the update relation [@] of a sentence ¢ only if t contains the
information already in s and additionally covers the information presented by ¢. From a
semantical point of view, this will be the only respect in which t may differ from s: t is an
option that is minimal (w.r.t. ) in the set of all options that are stronger than s and cover the

information of ¢. These considerations give two global constraints on update relations:
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6) for all s and t, if s [¢] t then sct (Update)
@) for all s and t, if s [@] t then forno t', tc tand s [¢] t' (Minimality) 10

It may happen that for some particular option s an update doesn't change anything, that is,
s [@] s. Apparently, s already covered the information of ¢. In this case we say that s
supports .11 On the face of it, then, another reasonable constraint on update relations is

success. That is, if you are in state s and ¢ brings you to state t, then t supports Q.
) forallsandt,if s[¢]t then t[@]t (Success)

As a consequence of Barwise and Etchemendy's 'dynamic' analysis of the Liar, it turns out
that success cannot hold in general. That is, we take it that their analysis shows that it is
possible to 'incorporate the piece of news' of a statement with the Liar. If you are in state s,
then the piece of news of —True(this), if taken to be about s, is given by the semantical
information that the circular proposition about s that claims of itself that it is not true, is in fact
not true. If we equate this semantical information with the semantical fact <Tr,f5;0>, the

update relation of the Liar will satisfy:
) s [{-True(this)] t iff t=sU{<Tr,f5;0>}

If we demand that semantic information must be correct, the range of s and t in (9) must be
restricted to possible situations. Now the following rephrasal of Barwise and Etchemendy's
analysis results: you can always consistently extend your information with the message of the
Liar, but you can never wind up in an information state that supports the Liar. In fact, in the

semantics developed below the typical property of {—True(this) is expressed by
(10) forallsandt,if s[@]t then s#t (Anti-success)

The Liar could be called a Zeno tortoise: every attempt to catch up with it will fail, although
the attempt does change your position.12
For normal descriptive sentences success will still hold. However, consider the

following property:
(11) forallsandt,if s[@]t then s=t (Pre-conditional success)

Pre-conditional success implies Success.!3 But it is an awkward form of success, since what
(11) expresses is roughly "you can accept the information presented by ¢ only if you already
have this information". This is a rather strange property, since it expresses something very
close to question begging. As we will see below, pre-conditional success is a typical property
of the Truthteller { True(this) ("This proposition is true"). In terms of our earlier metaphor, a

sentence with this property is a dead tortoise: you can only catch up with it if you're already
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sitting on it.

We will now proceed to develop these semi-formal considerations in detail.

3 The dynamic semantics

Our informal discussion of update relations in section 2 gave us the following picture:
if t is an update of s with @, then t is a state stronger than s that covers the information of ¢;
moreover there is no state weaker than t with this property. One strategy for the
implementation would then run as follows: first we explain what we mean by "covering the
information of ¢", and then we define "t is an update of s with @" as "t is minimal with respect
to < in the class s+@={vl scv and v covers ¢}". This strategy is followed in Groeneveld
[1989]. In general, the class s+¢ will be proper, so some work has to be done in order to
show that these classes have minimal elements. The strategy we follow here avoids this extra
work, by using Barwise and Etchemendy's static semantics to estimate in advance the

possible updates of a given situation.

1 Definition Let s be a situation, and ¢ be an assignment of propositions to

propositional demonstratives. R(s,c), the set of relevant facts for s under c, is given by
R(s,c)={oe SOAI [6]=Type(Exp(¢,s,c)) for some simple formula ¢}

Here Type(Exp(9,s,c)) is the type constituent of the proposition Exp(¢,s,c). A formula is
simple if it has one of the following forms: (a Has ¢), —(a Has ¢), True(this),—True(this),
True@ or —Trueq.

The set of possible updates of s for c, is:

U(s,c) =def {tl sctcsUR(s,c)}

2 Definition If P is a set of situations then PP =def { se Pl =dte P: tC s}

3 Definition By simultaneous recursion we define, for any formula ¢, and any
assignment c, the positive update relation of ¢ and the negative update relation of ¢. In the
following, s ranges over situations, t over parametric situations. p is the indeterminate that is
used in the static semantics to fix the reference of the propositional reflexive this. t is an

additional situation indeterminate.



8 Dynamic Semantics and Circular Propositions

D s[aHasc]Et iff t=suU {<H,a,c;1>)
s[aHasclzt iff t=s U {<H,a,c;0>)}

(i) s [True(this)]¢ t iff t=sU{<Tr,p;1>}
s [True(this)]g t iff t=sU{<Tr,p;0>}

(i) s [True(that))]d t iff t=s{<Tr,c(thatj);1>}
s [True(thatj)]s t iff t=sU{<Tr,c(thatj),0>}

iv) s [Trueld t iff t=sU{<Tr,Exp(@,s,c);1>}
s [Trueo]c t iff t=sU{<Tr,Exp(9@,s,c);0>}

V)  s[=@lFt iff s[lct
s [-@lz t iff s[@]dt

(vi)  s[eaylft iff te p{ueU(s,c)l Ivcu: s [@lFv and vcu: s [y]iv}
s [oay]z t iff te p{ue U(s,c)l Ivcu: s [@]ev or Ivcu: s [ylov]

(vi)  s[ovylit iff te p{ueU(s,c)l Ivcu: s [@lEv or Ivcu: s [y]iv]
s [ovylc t iff te p{ue U(s,c)l dvcu: s [@]zv and dvcu: s [ylev)

(viii) s[d@lft iff thereisat such thats[@]F t', and t=F(t) for the
unique solution F of the system of equations:
t=t
p = Exp(9,s,c)
s[Lol;t iff thereisat such thats [@]; t, and t=F(t) for the
unique solution F of the system of equations:
t=t
P = Exp(.s.0)

Basically, the definition is a dynamic version of the double recursion that has become
usual in partial logic. We are mainly interested in the positive update relations, and the
negative relations are a technical device that is needed for negation. However, the negative
relations do have an intuitive meaning that resembles the meaning of the positive relations:
roughly, s[@]¢&t can be read as "t is the weakest extension of s that covers the information of
¢", and s[@]ct can be read as "t is the weakest extension of s that rejects the information of ¢".

Before we turn to a detailed discussion of the Liar and other sentences, we discuss

some general properties of the update relations. The constraints of Update and Minimality we
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discussed in the previous section are satisfied:

4 Lemma  Let ¢ be a sentence, s a situation, and ¢ an assignment for ¢. Then:
@ s[oltt = sct (Update)
(i) s[pl¥t = —Tu(scuct A s [@]Fu) (Minimality)

This can be shown with formula induction, where the the corresponding versions of
Update and Minimality for the negative relations [¢]; have to be proven simultaneously. We
will omit proofs as simple as this.

The most important non-properties are:

s[el¥t = tol¥t (Success)

s[elEsasct = tlelit (Persistence)

These properties fail for sentences that are context dependent in the following way. In an
update of s with True@, a semantical fact with s as a constituent will be added to s. But
t [True@]? t will only hold if the corresponding semantical fact with t instead of s is a member
of t. In fact, this form of context dependency can be seen as an instance of the following

connection with Barwise and Etchemendy's static set-up:
s[el¥t = {t; Type(Exp(@,s,c))} is true (Weak success)

So an output t of an update of s with ¢ will cover the information of ¢ about s, but not
necessarily the information of ¢ about t. For sentences like (a Has c) everything is 'normal’,
that is, they are successful and persistent.

Besides Weak success, there are some other important connections between the static
and the dynamic semantics. These are given by the next lemmata. The simple proofs are

omitted again.

5 Lemma  Let ¢ be a sentence, s a situation, and ¢ an assignment for ¢. Then:

) s [0]E s & Exp(@,s.c) is true , (Support)
(i1) s [plc s & Exp(—,s,c) is true (Refutation)
6 Proposition Statically indiscernible sentences have the same update relation. More

precisely, let ¢ and y be sentences, s and t situations, and ¢ an assignment defined for both ¢
and . Moreover, suppose Exp(¢,s,c) = Exp(y,s,c). Then s [@]F tiff s [W]¢ t, and s [@]g t
iff s [y]s t.
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4 Dynamic notions of paradoxality

In this section we will investigate the dynamic behaviour of paradoxical sentences.
The dynamic semantics of the previous section will only be interesting if we restrict the update
relations to possible situations. We want information to be 'consistent’ information, and we
are interested in those updates that bring us to information states that are 'consistent' too.

Let's introduce some terminology.

7 Definition A sentence is tangible if there are possible situations s and t and an
assignment ¢ such that s[@]&t; acceptable if there is a possible situation s and an assignment ¢

such that s[@]¢s.

By lemma 5(i), acceptability comes down to static consistency, whereas tangibility can
be seen as dynamic consistency.

Since the paradoxical sentences we deal with in this paper all involve truth, we start
our discussion by looking at sentences of the form True@ . Let s and t be possible situations, ¢
an assignment, and suppose s[True@]¢t. By definition 3, t=sU{<Tr,Exp(®,s,c);1>}. This
means that the information of s is extended with the information that the proposition expressed
by ¢ about s under c is true. Since by assumption t is a possible situation, its semantical
information must be correct, that is to say that Exp(@,s,c) is true. Conversely, suppose s is
possible and that Exp(@,s,c) is true. Then sU{<Tr,Exp(¢,s,c);1>} is a possible situation
since s is possible and the additional semantical information given by <Tr,Exp(@,s,c);1> is
correct. Summarizing, we see that the dynamic treatment of truth is connected with the static

treatment in the following way:

8 Proposition For all sentences @, possible situations s and assignments ¢ for ¢: there

is a possible situation t such that s[True]¢t if and only if Exp(¢,s,c) is true.

By lemma 5(i) this implies that Trueq is tangible if and only iff ¢ is acceptable.

On possible situations the update relation of True@ combines 'forward' and
'backward' aspects: the forward aspect is the addition of semantical information, the
backward aspect is the test for truth of @ in the antecedent of the update; these are combined in
the sense that the forward action can only be carried out if the backward test has a positive

outcome. Hence we can call ¢ a pre-condition of True.
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In the semantics we do not treat "True" in True¢ very differently from the relation
symbol "Has" in (Max Has 4 A): in an update of s with (Max Has 4 A) we simply add the
information given by the state of affairs <H,Max,a A;1> to s, and in an update of s with
True@ we add the semantic information <Tr,Exp(@,s,c);1> to s. The connection between @
and True is not a direct consequence of the connection between sentences and update
relations, but of the coherence conditions that must be observed by possible situations. In

definition 3, we could have taken a clause like
s [True@]? t iff t= sU{<Tr,Exp(Q,s,c);1>} and Exp(9,s,c) is true

as definition of the positive update relation of @, but in view of proposition § above, this gives
the same result for possible situations.
By some simple considerations similar to those above, it can be seen that sentences of

the form —True@ behave as follows:

9 Proposition For all ¢, possible situations s and assignments ¢ for ¢: there is a

possible situation t such that s[—True@]¢t if and only if Exp(,s,c) is not true.

We will now discuss some concrete examples.
The Truthteller: {True(this). Let s and t be situations. Definition 3 leads to the following
calculations. By 3(viii) we must find a t' such that s [True(this)]¢ t' and t'=F(t) for the
unique solution F of the equations

t=t'

p = Exp(True(this),s,c)
By 3(iv), t'=su{<Tr,p;1>}, and by the static semantics, Exp(True(this),s,c)= {s;[Tr,p;1]}.
So we have to solve the system of equations given by:

t =su{<Tr,p;1>}

p = {s;[Tr,p;11}
If F is the unique solution of these equations, then F(p) will be the Truthteller proposition #g

about s, i.e.
ts={s;[Tr,z5;1]}

By the static semantics ts=Exp(~L—-True(1mxs,c). So the t we are after is given by
=F(t)= sU{<Tr,Exp({ True(this),s,c); 1>} =sU{<Tr,5;1>}

If s and t are possible situations something peculiar happens. Since t is a possible situation,
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Exp(iTrue(this),s,c) is true, in which case <Tr,Exp(J«True(mi_§),s,c);1> € s. But then t=s!

10 Definition A sentence @ has the property of pre-conditional success if for all ¢

and all possible s,t: s[@]¢t implies s[@]Zs.

Other examples of sentences with this property are all sentences of the form

L(@ATrue(this)). It turns out that pre-conditional success has a simple characterization.

11 Proposition A sentence ¢ has pre-conditional success if and only if gA—True is
intangible.

Proof: straightforward.[]

The Liar: L —True(this). Calculations similar to those for the Truthteller give us
(*)  s[{—True(this)]¢t iff t=suU {<Tr,Exp(d—True(this),s,c);0>}

But can there be possible situations that stand in this update relation? The answer is a definite
YES. If s is a possible situation, then we know from the static semantics that the proposition
Exp({—True(this),s,c) is not true. But then the situation sU{<Tr,Exp({—True(this),s,c);0>)
is a possible situation, since s is possible and the additional semantic information is correct.
Since s was arbitrary, this means that every possible situation can be updated with the Liar.
Moreover, such an update must be insuccessful in the sense that it cannot bring you in a state t
such that t{{—True(this)]¢t, for this would imply by lemma 5(i) that Exp({—True(this),t,c) is
true, which cannot be if t is a possible situation. So no update with the Liar can bring you to a

state in which it is accepted.

12 Definition A sentence ¢ is anti-succesful if s[¢]&t implies not t[@]&t, for all

possible situations s,t and assignments c.

More in line with the terminology of definition 10 we can also call this property post-
conditional failure. Besides the Liar, all instances of the schemata ¢A—True¢ and
J,((pAﬁTme(m)) are anti-successful. There is a simple characterization of anti-success in

terms of static consistency.

13 Proposition ¢ is anti-succesful if and only if ¢ is unacceptable.

Proof: straightforward.[]
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The intrinsic sentence: next consider the sentence {(True(this)v—True(this)), the double wide

scope reading of
This proposition is true or this proposition is not true

Abbreviate the formula by 1. Barwise and Etchemendy's axiom 4 tells us that 1 is indiscernible

from True 1 v—True 1.14 The next proposition tells it all.

14 Proposition Every possible situation can be updated with every sentence of the
form (True@v—True@). However, depending on ¢, there need not be a situation in which
(Truegv—True®) is accepted.

Proof: The first claim follows from propositions 8 and 9. The last claim follows directly
from the fact that, by the static semantics, both the Liar and its negation are necessarily false;
moreover (writing A for !\ —True(this)) A is indiscernible from —TrueA, while =A is

indiscernible from TrueA.[J

So we can always have an update with the intrinsic sentence. Also, by the static
semantics, there are possible situations which accept it. In fact, for possible situations s,
Exp(1,s) is true if and only if Exp(True 1,s) is true, which, by the observed indiscernibility of
tand (True 1 v—True 1), implies that —True 1 is necessarily false. There is no such preference
for the first disjunct of (True 1v—True 1) in the dynamic case: in any situation that contains no
semantical information, 1 is not true, hence an update with —True 1 is possible. The choice is
not open, however, and is fully determined by the input of the update: if 1 is true of s then the
update of s with 1 is the update of s with True 1, and if 1 is not true of s the update will
'choose’ —True 1. As far as the negation —1 is concerned, it is both unacceptable and

intangible, which follows from the fact that —1 is indiscernible from True 1 A—True t.

Contingent paradoxes: Suppose ¢ is a closed sentence. Then the sentence of the form
L (@A—True(this)) behaves much like the Liar, since it is anti-successful. It is tangible if and
only if ¢ is tangible and @ does not have the property of preconditional success. The
difference with the Liar is that, depending on ¢, it need not be the case that every possible
situation has an update, for if —@ is acceptable, a state that accepts —¢ cannot have an update
with {(@A—True(this)).

Sentences of the form i((pv—.True(m_ig)) can also have Liar-like effects. Let o be

l(@v—True(this)). By the static semantics, o is indiscernible form @v—Truea. If @ is
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intangible, then both ¢ and o are unacceptable. From this it easily follows that o is anti-
successful, and that every possible situation has an update with o (which will be an update
with the 'disjunct' —Truec). If @ is tangible the behaviour is as follows. If @ is true in s, then
s[@]s, in which case s[a]s and by update and minimality s will be the only output. If —¢ is
true in s, the only output for an update of s with a is sU{<Tr,Exp(c.,s);0>}. If neither ¢ nor

—@ is true in s, then an update of s with o can 'choose’ any of the disjuncts.

We conclude this section with some logical issues. Technical details and proofs can be
found in the appendix. In what follows, we consider the language without demonstratives, so
assignments are irrelevant. Barwise and Etchemendy give a deductive characterization of the

following relation of indiscernibility:
@ for all s, Exp(®,s) = Exp(y,s)

They construct a deductive system that is sound and complete with respect to indiscernibility;
moreover indiscernibility is shown to be a decidable relation.!5 Notice that indiscernibility can
be seen as an 'intensional’ relation, since sentences with the same truth conditions need not
express the same proposition. So, another interesting relation is the relation of static

equivalence given by
S) for all possible situations s, Exp(,s) is true iff Exp(y,s) is true

Moreover, the dynamic semantics naturally gives rise to the following relation of dynamic

equivalence:
(D) for all possible situations s,t, s[@] Tt iff s[y]*t

It is possible to give sound and complete proof theoretic characterizations of both (S) and (D).
Moreover, both relations are decidable (see appendix). The three notions of equivalence are

interrelated as follows:
IcDcS

All inclusions are proper: @AQ and ¢ are not indiscernible, but dynamically equivalent; the
Liar and its negation are statically equivalent, but not dynamically. The decidability of static
and dynamic equivalence has some interesting corollaries, for it turns out that many semantic
properties we have discussed above are decidable. That is, the following properties of

sentences are all decidable:

¢ is tangible ¢ is anti-successful

¢ is acceptable ¢ has pre-conditional success
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This can be seen as follows. Let L be short for (Max Has 4 A)A—(Max Has & A). Then ¢ is

tangible if and only if ¢ is not dynamically equivalent with L; and the latter is decidable. ¢ is
acceptable if and only if @ is not statically equivalent with L. Decidability of anti-success now
follows from proposition 13 and the decidability of acceptability. Decidability of pre-
conditional success follows from proposition 11 and the decidability of tangibility. Whether

success is also a decidable property is still open (the conjecture being: decidable).

5 Discourses

One of the main achievements of dynamic semantics, if not its ‘raison d'etre’, has
been its ability to account for the semantic structure of discourses, in particular anaphoric
structure. In this section we develop a semantics for texts with "propositional anaphors'. We
conceive of a discourse as a sequence of sentences, and develop a conception of a reading of a
discourse, in such a way that the propositional demonstratives thatj of our formal language get
the force of "the proposition expressed by the i-th sentence of this sequence”. Our main

objective for doing so is to be able to give a description of texts with circular cross-reference.

15 Definition A discourse is a finite sequence of sentences. Notation: D=@71;...;¢n

Our notion of a reading of a discourse is governed by the following idea. Reflecting
on what happens if someone reads a story, we can say that the result of reading is a sequence
of pictures. The next-picture relation corresponds with the effect of processing a sentence of
the text. So we can concieve of a reading of a discourse as a sequence of situations produced
by a sequence of updates.

We will exploit the fact that the formal language we are working with contains
propositional demonstratives by allowing these demonstratives to be linked to sentences in the
discourse. This is for the same reason why Barwise and Etchemendy included them in the
language, namely in order to be able to analyze those semantical paradoxes that consist of

several sentences that refer to each other.

16 Definition A discourse D=01;...;@n is closed if i<n for all thatj occurring in D.
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17 Definition A reading of a closed discourse D=¢1;...;¢p consists of a sequence of
contexts <s1,C1>;...;<Sn+1,Cn+1> such that:

1) all sj are possible situations, for 1<i<n

(i)  siloilcisi+1, for 1<i<n

(i)  ci(thatj)=Exp(@j,si,ci), for all 1<i,j<n

Clauses (ii) reflects the sequential nature of a reading of a discourse. Clause (iii) fixes
the interpretation of propositional demonstratives in a discourse. The idea behind the clause is
that the interpretation of demonstratives is governed by 'paging' through the text. Suppose
you are in state s§ and and you are about to read @g, but @g turns out to have an occurrence of
thaty3. Clause (iii) tells you that you that you must interpret that13 as Q13 in your current state.
This proposal seems to give a correct account of what happens when you read a text and hit
upon an expression of the form "the 13-th sentence of this text".16

One of the consequences of this procedure is that the interpretation of a demonstrative
in a discourse will not be uniform, since different occurrences of the demonstrative may refer
to different propositions. But in this respect demonstratives do not behave differently from
sentences, because multiple occurrences of context-dependent sentences will also express
different propositions.

Of course the condition of clause (iii) is circular, but, as always in Aczel's set theory,

the Solution Lemma comes to the rescue.

18 Lemma If D=¢1;...;¢n is a closed discourse and s a situation, then there is an
assignment ¢ such that c(thatj)=Exp(¢j,s,c) for all 1<i<n . This assignment is unique in its
values relevant for demonstratives in D, that is: if d(thatj)=Exp(¢i,s,d) for all 1<i<n, then
c(thatj)=d(that;) for all 1<i<n.

Proof: Use the solution lemma to obtain the unique solution of the following system of
equations in the indeterminates q1,...,qn:

q1=Val(¢1)(s,q1,....qn)

qn=Val(¢n)(s,q1,...,9n)
Let F be the solution, and define ¢ by c(thatj)=F(qj) for 1<i<n, and undefined otherwise.
Then c(thati) = F(qj) = Val(¢i)(s,F(q1).....,F(qn)) = Val(¢i)(s,c(that1),....c(thatn)) =
Exp(@i,s,c), where the last identity follows from the fact that @j can contain no other

demonstratives than the ones shown, since D is closed. Now any assignment d satisfying
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d(that;)=Exp(¢j,s,d) for all 1<i<n determines a solution of the above system of equations. By
the solution lemma, solutions are unique, so for the relevant values we must have

c(thati)=d(thatj).[]

What happens if some ¢j in D contains thatj, for example in the case that @j is
—|True(th_atj)? Then for any i, ci(t_hitj) = Exp(—wTrue(mz_iLj),si,ci) = {si; [Tr,ci(mitj);O]}, ie.
ci(thatj) is the Liar proposition fg; about sj! So in this case we could substitute l—True(this)
for ¢ without changing the reading of the discourse.

What does the semantics of discourses have to say about Liar cycles, for example the

discourse
(LC1) True(thatp); —True(that;)

Does it have any readings? If a sequence of contexts <s1,c1>;<s2,c2>;<s3,c3> is a reading,
then by definition 17, the following conditions must obtain:

@ s2=s1U{<Trcq(thaty);1>}

(i)  s3=s20(<Tr,c2(that1);0>}

(i)  c1(that;) = Exp(True(that?),s1,c1) = {s1;[Tr,c1(that);1]}

(iv)  ci(thatp) = Exp(—True(thaty),s1,c1) = {s1;[Tr,c1(that;);0]}

(v)  c2(thaty) = Exp(True(thato),s2,c2) = {s2;[Tr,c2(thato); 11}

(vi)  c2(thatp) = Exp(—True(thaty),s2,c2) = {s2;[Tr,c2(that);0]}

Moreover, s1, s2 and s3 all have to be possible situations. So we must have:

(vii)  <Tr,c1(that);0> € s1 by (i) and (iv)
(viii) <Tr,c1(thatp);1> ¢ s1 by (vii) and (iii)
(ix)  <Tr,c2(thatp);1> ¢ s2 by (ii) and (v)

With the help of the Solution Lemma it is not hard to construct possible situations that meet
these conditions. So the discourse has readings.

But what do the conditions mean? Condition (vii) means that in any successful reading
of the cycle, your initial information s1 must already contain the semantic information that the
proposition expressed by the first sentence is not true. So suppose s is a possible situation
satisfying (vii). By combining (iii) and (iv) we see that the first sentence expresses that it is

true that the first sentence expresses a proposition that is not true:
c1(thaty) = {s1;[Tr,{s1;[Tr,c1(that1);01};11}

But since you already believe c](that;) (i.e. the proposition expressed by the first sentence

about s1) not to be true, you can consistently add this additional semantic information. Hence
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s2 (as in (1)) is also a possible situation. Now the second sentence claims that in your current
state (i.e. s2) the first sentence still expresses a proposition that is not true. Intuitively, this is
correct, since this is what you initially believed and has been acknowledged by the first
sentence. Formally, there is an itch: it might be so that in s; you believe that the first sentence
expresses a false proposition of s1, but you also believe that once you will be in s the first

sentence will be true. This predicament is described by
(x)  <Tr,Exp(True(that),s2,c2);1> € s1

But given that s; and s are possible situations, you cannot have this information, since by (v)
and (vi), (x) implies that Exp(True(that?),s2,c2) is not true.

Summarizing, we see that a possible situation s is the initial state of a reading of the
Liar Cycle if and only if it contains the semantical information that the proposition expressed
by the first sentence of the cycle is not true. So although the cycle has readings, it has no
unbiased reading, since the initial state of a reading must contain the 'semantic prejudice’ that
the first sentence is not true.

In Barwise and Etchemendy's treatment of the Liar Cycle the formulas True(that,) and
—True(that,) are used to make statements about the same situation s, and that, is taken to refer
to Exp(—True(that,),s) and vice versa. The results are: Exp(True(that,),s) is not true if s is a
possible situation; there are possible situations s such that Exp(—True(that,),s) is true, but if s
is T-closed for expressible propositions, then Exp(—True(that,),s) is not true.17 The important
difference with our analysis of the Liar cycle is not so much the result as the fact that we treat
it as a sequence. The problem described by Barwise and Etchemendy involves two speakers
who both make a claim about the same situation; the problem described here involves a text
and the changes of information it induces upon the reader. These are different problems, so a
comparison of the outcomes seems rather senseless (but see below).

As a second example we take a contingent Liar cycle:
Max Has a A; True(thatz); —True(that;) v—True(thatp)

This discourse has readings. We will not spell out all details, but give the main steps.
Suppose you are in state s1, and (a) you do not have the information that Max does not have
the ace of spades (<H,Max,a A;0>¢ s1); moreover (b) you believe in s1 that once you have
processed the first sentence (and are in the state sp=s1\U{<H,Max,a A;1>}), the proposition
expressed by the second sentence about s, is not true (i.e.
<Tr,Exp(True(that3),s2,c2);0>€ s1).
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Step 1: By (a) it is possible to carry out the update of s; with (Max Has a4 A) and
arrive in s».
Step 2: So suppose you are in s3. Now the second sentence asserts that the third

sentence expresses a true proposition about sp. The first disjunct of the third sentence is out,
for it expresses the proposition that the first sentence is not true of sy, but
<H,Max,a A;1>€ s3. On the other hand, the second disjunct of the third sentence expresses a
proposition about sy that is true: Exp(—True(thaty),s2,c2) is true since thaty refers to
Exp(True(thats),s2,c2) and by (b), <Tr,Exp(True(thats),s2,c2);0>€ s2. Hence we can add the
semantical information that the third sentence is true to s2. So we arrive in
s3=spU{ <Tr,Exp(—True(that;) v—True(thaty)),s2,c2);1>}.

Step 3: As before the first disjunct of the third sentence is still out, so the question is
whether or not s4=s3U{<Tr,Exp(True(that3),s3,c3);0>} is a possible situation. Suppose not;
then Exp(True(thats),s3,c3) is true, so <Tr,c3(that3);1>e s3. Then c3(that3) is true, but
c3(thats) is Exp(—True(that;) v—True(thaty),s3,c3); since the first disjunct is out it follows
that Exp(—True(thaty),s3,c3) is true, so <Tr,c3(thats);0>€ s3. So c3(thatp) is not true, but
c3(thaty) is Exp(True(thats),s3,c3), so <Tr,c3(that3);1>¢ s3, hence Exp(True(thats),s3,c3) is
not true which contradicts our initial assumption. So s3U{<Tr,Exp(True(thats),s3,c3);0>} is a
possible situation.

Both examples have no unbiased readings, that is, the initial state of a reading cannot
be the empty situation. In this respect, readings of discourses are comparable to updates of
single sentences, since the input of an update of True¢ cannot be the empty situation either.
There are more similarities. For example, we can call a discourse acceptable if it has a reading
in which the first and the last (hence all) situations are the same. For example, the Liar cycle is
unacceptable. This follows immediately from Barwise and Etchemendy's static analysis of the
cycle. In effect, a discourse is acceptable if and only if it is consistent in the static analysis. So
in a sense the static versions are special cases of the dynamic versions.

The final part of this section deals with manipulations of demonstratives in a
discourse. In the informal discussion on the concept of a reading of a discourse, we decided
to treat a demonstrative that; in a discourse as having the force of "the i-th sentence of this
text". We show that our formalization is correct in this respect: substitution of the i-th sentence
of a discourse for some occurrence of thatj doesn't change the descriptive content of the

discourse.
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19 Definition If <s51,€1>5...;<8p+1,Cn+1> is a reading of the discourse @1;...;Qp, then
S1;...;Sn+1 is a trace of @1,...,Qn. Two discourses are strongly equivalent if they have the

same traces.

So we abstract from the contribution of the demonstratives, and focus on the
descriptive content of a discourse, which can be seen as a labeled graph in logical space.
Several weaker notions of equivalence are of interest; for example, we could also abstract
from the 'stylistic' features of the discourse and only consider the input-output behaviour of

the discourse as a whole. But we will not pursue this here.

20 Citation principle Let D=@1;...;¢n be a discourse in which some ¢j has an
occurrence of thatj, where j<n. Let the discourse E be the result of substituting @j(¢j/that;) for
¢j in D, where (pi((pj/Latj) is the result of substituting ?j for one or more occurrences of _t_hg;j
in ¢i. Then D and E are strongly equivalent.

Proof: let <s1,c1>;...;<sn+1,cn+1> be a reading of D. Use the fact that
ci(thatj)=Exp(@j,si,ci) to prove with induction on the complexity of @j that
Exp(01i,8i,¢i)=Exp(@i(@j/thatj),si,ci). Conclude that <s1,c1>;...;<sn+1,Cn+1> is also a

reading of E. Use the same argument for the converse. [J
We can even do better: in some cases, we can eliminate demonstratives altogether.

21 Definition A discourse D=71;...;¢n is well-founded if its referential structure is
well-founded (that is, the relation Rp defined as

{<i,j>! i,j<n and thatj occurs in ¢i} is conversely well-founded).

22 Elimination principle Every closed and well-founded discourse is strongly equivalent
with a discourse that doesn't contain demonstratives.

Proof: since the referential structure Rp is conversely well-founded, there is a pair
<i,j>e RD such that for no k, <j,k>e RD. What this means is that thatj occurs in @j, and that
@j doesn't contain demonstratives. We now substitute ¢j for every occurrence of thatj in the
discourse. By the citation principle we obtain a strongly equivalent discourse D'. Moreover,
D' has no occurrences of thatj anymore, and it is still a well-founded and closed discourse. By

repeating this procedure we can get rid of all demonstratives.[]
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Well-foundedness is not a necessary condition. In some cases we can replace circular
reference via propositional demonstratives with circular reference via a propositional reflexive.

The following proposition is a generalization of the remarks immediately following lemma 18.

23 Non-well-founded elimination Suppose D=¢1;...;pn is a discourse, and for
some i (1<i<n), (a) all occurrences of thatj in ¢j are not within the scope of any L or(b) 0j is
of the form »LW and ¥ has no occurrences of 1. Define (pi'=i«(pi(ms_/t_h_a_ti) if (a) holds,
(pi'=~l«\][(_tl'lJi/t_thi) if (b) holds. The discourse obtained by substitution of @j' for ¢j in D is
strongly equivalent with D.

Proof: omitted.[]18

In general, citation and elimination will increase the average length of the sentences in

the discourse. This can be illustrated by the Contingent Liar cycle:

Max Has aA; True(that3); —True(that]) v —True(that2)

Two applications of the citation principle, followed by one application of non-well-founded

elimination and one more citation, give the strongly equivalent discourse: 19

Max Has aA; True(d(—True(Max Has 4 A) v —True(True(this)))):
L(=True(Max Has 4 A) v —True(True(this)))

The moral to be drawn is a platitude: cross-references in a text allow for a more concise
presentation. The effect of citation and elimination is that global computational procedures
(‘paging' back and forth in order to link demonstratives to sentences) are replaced by longer

local procedures (increase of sentence length).

6 Problems and prospects

As it stands, the approach developed in this paper is an extension of Barwise and
Etchemendy's Austinian framework. The dynamic semantics formalizes the idea that
propositions expressed by sentences like the Liar bring about a change of information. A
theoretical pay-off was that we were able to construct a semantics for texts with circular cross-
reference. Of course, the Austinian semantics deserves credit for providing the background in
which the dynamic semantics could be developed. On the other hand the dependence has two

disadvantages. First, it makes the dynamic approach vulnerable to criticism that might be
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launched against the Austinian set-up. Second, it is not clear to which extent the results
depend on the static semantics and the ontology, rather than on the dynamic semantics that is
built on top of it; thus it is hard to estimate the value of the dynamic approach. Here I will not
attempt to treat these two issues in full detail, but instead I will briefly discuss some important

questions and problems.

(1) The logic is too weak. One argument against Barwise and Etchemendy's implementation
of the Austinian approach is that the logic is too weak. The reason for this is the fact that the
Austinian propositions have too much syntactical structure. For example, a sentence of the
form (xA) has the same truth conditions as & but expresses a different proposition. Hence
True(oAc) and Trueow do not have the same truth conditions. By contrast, @Ay and
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