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The Lambek calculus [10, 2], which underlies a flexible version of categorial grammar,
is a special kind of implicational logic, with its slashes (/, \) corresponding to logical
implication. Viewed from this perspective, it makes sense to add other connectives to it,
for example, those corresponding to conjunction and disjunction in more standard logics.
The present paper investigates some of the formal properties of this enrichment, especially
with respect to the recognizing power of the resulting extended categorial grammars.

§1. Preliminaries
1.1. The Lambek calculus: the logic underlying flexible categorial grammar

A prominent feature of the recent revival of categorial grammar is its ‘flexible’ character.
In addition to the functional application of the classical categorial grammar of Ajdukiewicz
and Bar-Hillel, various other modes of type combination are employed. An example of an
additional mode of combination is functional composition:

c/b, b/a = c/a, a\b, b\e¢ = a\ec.

A different way of looking at this is in terms of type change, whereby ¢/b and b\c change
to (¢/a)/(b/a) and (a\b)\(a\c), respectively. Another example of type change scheme fre-
quently employed is type raising:

a = (b/a)\b, a = b/(a\b),

which allows the functor and the argument to switch roles.

As early as back in 1958, Lambek [10] proposed a certain deductive system, called
the Lambek calculus, which derives all of the above schemes (and more) as theorems. A
perspicuous presentation of the (product-free) Lambek calculus L(/,\) can be given in the
form of a sequent calculus. Its formulas are atomic ones plus those built up from them using
/ and \. Formulas are also called types. Expressions of the form a,...,a, = b, where each
a; and b are formulas, are sequents. Their intuitive meaning is: types a;,...,a, combine

*I would like to thank Professor Johan van Benthem for much encouragement and a number of helpful
suggestions. Thanks are also due to Dirk Roorda, who commented on an earlier draft of the paper, and to
my advisor Professor Stanley Peters.




in this order to yield type b. A sequent is derivable if it can be obtained from axiomatic
sequents by (repeated) applications of rules of inference.!

Azioms: a=a

Rules of Inference:

(/=) X=a Y, b,Z=c : (= /) X,a=b
Y,b/a,X,Z = ¢ X =>b/a
X=>a Y, b,Z=>c a,X =>b

A=)~V xawzoe SO a=eny>
X=a Y,a,Z=b

Cut: Y,X,Z5b

In (= /)and (= \), X must not be empty, so that all derivable sequents will have non-empty
antecedents. There are no structural rules other than Cut. Moreover, Cut is eliminable,
which can be proved by means of the standard technique [10].

The idea of the Lambek calculus is based on a certain natural semantics in terms of
sets of expressions [10, 11, 2]. A language model L assings to each basic type a a set L, of
expressions over a fixed finite alphabet. (Members of L, are expressions of type a.) On the
basis of this, sets of expressions are assigned to complex types of the form b/a or a\b in the
following way:

Ly = Ly/Ly = {y | Vz € L, yx € Ly},
Loy = Lo\Ly = {y | V2 € L, zy € Lp}.

(That is, y is an expression of type b/a if for all expressions z of type a, yz is an expression
of type b.) A sequent ay,...,a, = b is valid iff for all language models L, if z; is an
expression in Ly, (1 < ¢ < n), then zy...2, is in Ly (i.e., Ly, o --- 0 L, C L;, where
e stands for concatenation). Buszkowski [3] proves the completeness of the product-free
Lambek calculus with respect to language models. Thus, the Lambek calculus provides a
natural metatheory for categorial grammars.

1.2. Categorial grammars

A Lambek categorial grammar (L(/,\)-grammar) consists of an assignment of a finite set
of types to each symbol in the alphabet, and one distinguished type (analogous to the start
symbol in context-free grammars), where types are formulas of L(/,\). A L(/,\)-grammar
G recognizes a string of symbols s; . ..s, if there is a matching sequence of types ay,...,a,
that derives the distinguished type t of G in L(/,\) (i.e., @1,...,a, = t is a derivable
sequent in L(/,\)), such that each a; is a type assigned to s; by G. A L(/,\)-grammar G
recognizes a language L if L is the set of strings that G recognizes (L(G)). We say that
L(/,\) recognizes a language L if there is a L(/,\)-grammar that recognizes L.

It is known that L(/,\) recognizes all context-free languages.? The question whether the
converse holds—whether all L(/,\)-recognizable languages are context-free—has not been
settled so far, although it has been conjectured that it does, and Buszkowski [4, 5, 6] has

1Tn what follows, we assume familiarity with the basic methods and terminology of Gentzen-style proof

theory.
2Throughout the paper, we use ‘context-free languages’ to mean context-free languages without € (the

empty string).




obtained some partial results. Therefore, the exact recognizing power of L(/,\)—exactly
where it lies in the Chomsky hierarchy—remains an open question.

It is sometimes convenient to think of languages over an alphabet consisting of types.
Define L(T,b) to be {X € T* | X = b is derivable}. Then L(G) is obtained from L(T,t)
by substitution, where T is the set of types assigned to some symbol by G and ¢ is the
distinguished type of G. Properties of the ‘type language’ L(T,t) may be transferred to the
‘symbol language’ L(G). For example, if L(T,t) is context-free, so is L(G).

1.3. Variation of the underlying logic

Its naturalness notwithstanding, the original Lambek calculus is by no means the only
calculus that can sensibly serve as the underlying calculus of categorial grammars. From
a logical point of view, extensions and modifications of the Lambek calculus are worth
considering, especially because the Lambek calculus is an extremely impoverished system,
as compared to more standard logics. By varying the underlying calculus, we obtain a
generalized conception of categorial grammars. All notions defined in the previous section
allow straightforward generalization in this respect. For example, calculus K recognizes
language L if there is a K-grammar G that recognizes L, where the derivability mentioned
in the definition of recognition of strings is derivability in K.

One striking feature of the Lambek calculus is its complete lack of structural rules
(except for Cut, which is eliminable). Standard sequent systems employ structural rules
like the following:

X,a,b,Y = ¢

P: X.h,a,Y > c (Permutation)
X,a,a,Y = b .
C: X.aY 50 (Contraction)
X=b .
M: —‘X—,_;J,_;b— (Monotomczty)

By adding one or more of these structural rules to the Lambek calculus, we obtain stronger
logics. Adding Permutation to the Lambek calculus (call the resulting system LP) results
in a fragment of Linear Logic. Addition of Permutation and Contraction (LPC) gives a
fragment of Relevant Logic. If all three of the above structural rules are assumed (LPCM),
a fragment of Intuitionistic Logic is obtained.

Van Benthem [1, 2] studies the effect of the presence of structural rules on the recog-
nizing power. His results include the following: LP recognizes all permutation closures of
context-free languages (and probably no more); the class of LPC-recognizable languages is
precisely the class of ‘first-order’ regular languages (see the above reference for definition);
LC recognizes only regular languages. Thus, addition of structural rules generally leads to
the weakening of recognizing power.

There is a different dimension in which the underlying calculus can be varied, namely
the selection of connectives. The slashes in the Lambek calculus correspond to implication
in more standard logics. Indeed, in LP, the two slashes collapse into a single connective, and
in LPCM it becomes precisely the intuitionistic implication. Viewed from this perspective,
it makes sense to add other kinds of connectives to the Lambek calculus, for example,
analogues of conjunction and disjunction.

It turns out that there are two natural candidates for conjunction in the Lambek calculus
[2]. One is product conjunction, which obeys the following rules:

3




X,a,b,Y = ¢ X=>a Y=>0b

=) X e voe &) xvSaes

The other is intersective conjunction, with the fbllowing rules ((N =) means two rules):

X,a,Y = ¢ X=>a X=0
N=) X antvose & Xona¥se =0 ——%=2ns

In the presence of Monotonicity and Contraction, these two sets of rules turn out to be

merely two ways of defining the same connective. However, in the Lambek calculus, which

lacks structural rules, product conjunction and intersective conjunction are two separate

connectives with different properties. As a matter of fact, Lambek’s original calculus in [10]

included product conjunction, and intersective conjunction was already considered in [11].
The following rules define disjunction in the Lambek calculus:

(U=) X,a,Y=>¢c X,b,Y=c (= V) X=a
X,aUbY =>c¢ X=>aUb & X=bUa

Employment of one or more of these additional connectives results in a conservative
extension of the Lambek calculus, which still enjoys cut-elimination. Therefore, we do not
expect a weakening of recognizing power with additional connectives; to recognize a lan-
guage recognizable in the old calculus, the same type assignment works in the conservative
extension.

We use an obvious notation to distinguish among various Lambek calculi® with different
sets of connectives. Thus, L(/,\,e) is the calculus with three connectives /, \, and e with
their associated rules of inference (with no structural rules except Cut), etc.

Although logically unnatural, it is also possible to consider calculi which have only one
or the other of the two kinds of introduction rules associated with certain connectives.
Cut-elimination still holds in such systems. We use L(...,C~,...) (resp. L(...,C™*,...)) to
denote a Lambek calculus which has only the left (resp. right) introduction rule (C' =) (resp.
(= C)) for the connective C. In fact, the calculus for the classical categorial grammar of
Ajdukiewicz and Bar-Hillel is an example of such a halfway system, namely L(/~,\ ™). In the
penultimate section of the paper, we will have an occasion to consider calculi L(...,n~,u™).

In the sections to follow, we investigate some of the formal properties of intersective
conjunction and disjunction in the Lambek calculus. To keep matters simple, we consider
them one by one, deferring discussion of disjunction until intersective conjunction has been
fully treated. Our main result is that intersective conjunction brings about a rather dramatic
increase of the recognizing power.*

§2. The Lambek calculus with intersective conjunction: increased recog-
nizing power

THEOREM 1. The Lambek calculus with intersective conjunction added (L(/,\,N)) recognizes
any finite intersection of L(/,\)-recognizable languages.

Since all context-free languages are L(/, \)-recognizable, it follows that L(/,\, N) recognizes
any finite intersection of context-free languages. The fact that the context-free languages
are not closed under intersection gives us

3Henceforth, the term ‘Lambek calculus’ may be used as a generic name for calculi with no structural

rules (except Cut).
4Tt is not known whether product conjunction leads to any increase in the recognizing power.
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CoOROLLARY. L(/,\,N) recognizes some non-contezt-free languages.

Proof of the Theorem. We take the case of intersection of two L(/, \ )-recognizable languages.
The general case is similar. Let L; and Ly be languages recognized by L(/,\)-grammars
G and Gj, with distinguished types t; and %;, respectively. The types used in the two
grammars can be assumed to be distinct. We define a new L(/,\,N)-grammar G; N G; in
the following way:

G1 N G assigns type a N b to symbol s if and only if G; assigns a to s and G2
assigns b to s.

We discard any symbols which do not appear in both of Gy and G3. The distinguished type
of Gl n G2 is tl N tz.
That L(G1 N G3) = L1 N La, hence the theorem, is proved if we show:

Claim. Let aq,...,a, be (conjunction-free) Gy-types, and by, ..., b, (conjunction-free) G-
types. Then '
a1Nby,...,a, Nb, =11 N1y

is derivable in L(/,\,N) if and only if
( A1y...,0p >
and
bl,.. .,bn = 19
are both derivable in L(/,\).

Proof of the Claim.
If. Tt is obvious from the following derivation:

Al,...,0n => 11 b],...,bn:>t2
alﬂbl,az,...,an:>t1 alﬂbl,bg,...,bnitz

a1Nby,...,a, Nb, =ty a1 Nby,...,6, Nby = 19
alﬂbl,...,anﬂbn¢t10t2

Only if. Take any cut-free derivation of a; N by,...,a, Nb, = t; Nty in L(/,\,N). First,
we note that a sequent of the form a Nd = a N b can never appear in the derivation,
except as the endsequent. If it appeared in a premise of some rule, the conclusion would
necessarily involve a type which is not a subtype of any type appearing in the endsequent
of the derivation, which contradicts the subformula property of cut-free derivations. In case
the endsequent is of the form aNbd = aNb, a = t; and b = t3, and trivially, if ¢; Nty = 1Nt
is derivable in L(/,\,N), t; = t; and t2 = t; are derivable in L(/,\). Disregarding this
case, we can assume axioms of the form a N b = a N b are never used in the derivation, and
all occurrences of N in the endsequent are introduced by one of the N-introduction rules at
some stage of the derivation.

It can be shown that we can ‘delay’ the applications of N-introduction as much as
possible, producing a cut-free derivation of the same endsequent in which no N-introductions
are followed by any /- or \-introductions. This is done by transforming a derivation in which
a /- or \-introduction immediately follows a N-introduction to one in which they are applied
in the reverse order. The following are the representative cases where a /-introduction
immediately follows a N-introduction:




(1) (n=) followed by (/ =)

X,a,Y > ¢ X,a,Y=>c¢c Z,d,V=>e
a. X,anbY=>c Z,d,V=>e ~~» Z,d/e,X,a,Y,V=>e
Z,d/e,X,anb, Y,V =>e Z,d/e,X,and, Y,V =>e
Y,b,Z,e,V = e X=>a Y, bZc,V=>e
b. X=>a Y,b,Z,cNd,V=>e ~ Ybla,X,Z,c,V=>e
Y,b/a,X,Z,cNd,V = ¢ Y,b/a,X,Z,cNd,V = e
Y,b,Z = d ;

c. X=>a Y,bNe,Z=d does not occur because of the subformula property.
Y,(bne)/a,X,Z = d

(2) (n=) followed by (= /)

X,a,Y,c=>d X,a,Y,c=>d
a. X,anbY,e=>d ~ X,a,Y =d/c
X,anbY =d/c X,anbY =>d/c
X,a=c¢
b. X,anb=c¢ does not occur because of the subformula property.
X = c¢/(anb)
(3) (= n) followed by (/ =)
X=>a X=b
a. X=>anbd Y,c,Z = d does not occur because of the subformula property.

Y,e/(and),X,Z=>d

Y,b,Z=>c¢ Y,b,Z=>d
b. X=a Y, b,Z=>cNd
Y,b/a,X,Z=cNd

X=2>a Y,0,Z=>c X=>a Y,b,Z=d
~ Y, b/a,X,Z=c Y,b/a,X,Z = d
Y,b/a,X,Z = cNd

(4) (= n) followed by (= /)

X,a=>b X,a=c
X,a=bNc does not occur because of the subformula property.

X=(0nc)/a

The cases where a \-introduction immediately follows a N-introduction are treated symmet-
rically.

It should be clear that, by performing these operations repeatedly, we can eventually
obtain a cut-free derivation in which all N-introductions follow all other rules. Case (3b)
increases the number of branches in the derivation, hence possibly the number of inference
pairs that need to be interchanged, but the process eventually terminates. There can be
at most one application of (=> N) throughout the process, hence the number of times the
interchange in Case (3b) is performed is bounded by the height of (= N) in the original
derivation, for the other cases of interchange do not increase the number of inference pairs
that need to be interchanged. Therefore, the proof tree will not ‘grow’ indefinitely. (In fact,
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Case (3b) never happens in the first place. This can be easily seen using the technique of
numerical models described later.)
The output of this process must be a derivation with a final part that looks like the

following;:

Cly.vesCp=> 1 di,...,d, = to

€ly...y6p > 11 €1y....6n = 19

€1y...5€6n => 11 NI
alﬂbl,...,anﬂbn =11 Nig

Here, each ¢; and d; are either a; or b;, and each e; is a;, b;, or a; N b;. e1,...,e, = 1
and ey,...,e, = t; are obtained from ¢y,...,¢, = t; and d,,...,d, = t2, respectively, by
a number of (possibly zero) applications of (N =). ej,...,e, = t; N i3 is obtained from

€1,...,6n = t1 and e1,...,e, = t2 by (= N). Then additional (possibly zero) applications
of (N =) lead to the endsequent. Note that the derivations of c¢;,...,¢, = t; and of
di,...,d, = t3, which occur as parts of this derivation, are derivations in L(/,)\), as well
asin L(/,\,N).

Now it is easy to see that it must be that ¢; = a; and d; = b;, given the following (cf.
(2], p. 100):

Inseparability: Let R be a relation on types such that ¢ Rd iff ¢ and d share at least
one basic type. Then, a;,...,a,, = b is derivable in one of the categorial calculi without
Monotonicity only if R restricted to {ai,...,amn,b} is connected (i.e., (RN({@1,...,an,b} X
{a1,...,am,0}))* = {a1,...,am,b} X {a1, ..., am,b}).

The proof is by straightforward induction on cut-free derivations. The axioms obviously
has the required property. All (normal) introduction rules preserve this property as well.
(The only two of the usual structural rules that do not preserve this property are Cut and
Monotonicity; thus, Inseparability holds of a wide range of so-called ‘substructural’ logics.)

(The fact that ¢; = a; and d; = b; implies that e; = a; N b;, so that (= N) is the final
rule in the above derivation.)

Thus, we have been able to show that, if a; N by,...,a, Nb, = t; Nty is derivable in
L(/,\,N), then a1,...,a, = t; and by,...,b, = t3 are both derivable in L(/,\), which was
the ‘only-if’ direction of the claim.

This concludes the proof of the theorem.

The above proof assumes cut-elimination in L(/,\,N), which can be proved by the
standard method.

The above result does not quite answer the question about the effect of added inter-
sective conjunction on the bidirectional Lambek calculus, since the exact limitation of the
recognizing power of L(/,\) is not known; we do not yet know that the L(/,\)-recognizable
languages are not closed under intersection. However, we can see that a definite increase
of the recognizing power arises when we add intersective conjunction to a unidirectional
Lambek calculus (L(/) or L(\)), thanks to the result obtained by Buszkowski [4], which says
that L(/) (or L(\)) recognizes precisely the context-free languages. It is clear that the above
theorem retains its validity when L(/,\) is replaced by L(/) (or L(\)); thus we have




THEOREM Ja. L(/,N) and L(\,N) recognize any finite intersection of contert-free languages,
hence some non-contezt-free languages.

Ezample. By Theorems I and Ia, L = {a"b"c” | n > 1} = {a"®"c™ | n > 1,m >
1} n{a™b™c™ | m > 1,n > 1} is recognized by L(/,\,N), L(/,N), and L(\,N), but not by

L(/) or L(\).

Theorem I can be strengthened to the following form:
THEOREM II. The L(/,\,N)-recognizable languages are closed under intersection.

Proof. The same method used in Theorem I can be used here. The theorem follows from
the strengthened version of the Claim in the proof of Theorem I:

Claim. Let ay,...,an,t; and bq,...,b,,t2 be two sequences of L(/,\,N)-types based on
disjoint sets A and B of basic types, respectively. Then

ayNby,...,a, Nb, =t Nty
is derivable in L(/,\,N) if and only if
A1y...ylp = 1

and
b1,...,bn=>t2

are both derivable in L(/,\,N).

To prove the above claim, what we do is to construct, given a cut-free derivation of
aiNby,...,a,Nb, = t;Nty, one in which all applications of N-introduction which correspond
to the main connectives of the formulas in the endsequent follow all other rule applications.
(The bulk of the present proof consists in replacing ‘applications of N-introduction rules’
in the proof of Theorem I by ‘applications of N-introduction rules which introduce the
main connectives of the formulas of the endsequent’.) Interchange of N-introduction and
introduction of one of the slashes is possible in the precise same way as before. In particular,
those cases ruled out by the subformula property still remain to be so ruled out, since now we
are trying to ‘delay’ only those applications of N-rules which introduce the main connectives
of the formulas in the endsequent, which cannot lie within the scope of any connectives in
the course of a cut-free derivation. However, we now have some new cases to deal with as
well:

(5) (N =) followed by (N =)

X,a,Y,c,Z=>¢ X,a,Y,c,Z=>e
X,anb,Y,c,Z=e ~ X,a,Y,cNd,Z = e
X,anb,Y,cNnd,Z = e X,anb,Y,cNd,Z = e

(6) (= n) followed by (N =)

X,a,Y =>c X,a,Y =>d X,a,Y = ¢ X,a,Y = d
X,a,Y =>cnd ~ X,anbY =>c X,anb,Y = d
X,anbY =>cnd X,anb,Y =>cnd




(7) (= n) followed by (= nN)

X=>a X=0b
X=anb X = ¢ need not be treated because of the subformula property.
X=(anb)ne

In addition, there is one non-permutable case:

(8) (N =) followed by (= N)

X,a,Y =c
X,anbd,Y=>c X,anbY =>d
X,anbY =>cnd

Thus, the present theorem requires a more delicate argument than Theorem I. We pro-
ceed in the following fashion. First, we try to delay the introduction of the main connectives
of the formulas in the endsequent as much as possible, by performing the operations of in-
terchange in (1)~(7) (plus those other cases which are essentially the same) to the given
derivation repeatedly, until no more such operation is possible. We look at the resulting
derivation. Call a situation like (8) where aNbd = a; N b; and cNd # t; Ntz an unpermuted
situation. If no unpermuted situation obtains in the resulting derivation, we are done. If
there are such situations, we take a highest one. We suppose this looks exactly like (8), for
illustration. No formula in the endsequent originates in an axiom, except when the end-
sequent itself is an axiom, because of the subformula property and the given condition on
the distribution of basic types in the endsequent. Hence the occurrence of a N b in the right
premise (as well as that in the left) must be introduced by an application of (N =>). There
can be no rule applications between that application of (0 =) and the application of (= N)
in (8), except possibly some applications of (N =) which introduce the main connectives
of the endsequent, since otherwise the required kind of interchange would be possible or
there would be an unpermuted situation above the one chosen (¢; N t2 cannot have been
introduced above). In any case, an adjacent pair of applications of (N =) can always be
interchanged according to (5), so we can bring it about that the right premise in (8) is itself
the conclusion of the application of (N =) which introduces @ N b. Therefore, we have a
situation that looks like one of the following:

X,a,Y = ¢ X,a,Y = d X,a,Y > ¢ X,0,Y=>d
(a) X,anbd,Y=c X,anbdY = d (b) X,anbY =>c X,anbY =>d
X,anbY =>cnd X,anbdbY =>cnd

The first case is permutable:

X,a,Y = ¢ X,a,Y > d
X,a,Y =>cNnd
X,anbY =>cnd

After this permutation, the whole process is repeated. As for the second case, we can
conclude that it cannot obtain, since we are led to a contradiction from the fact that cnd
is either a pure A-type or a pure B-type. Suppose ¢Nd is a pure A-type, the other case
being symmetric. Then d is a pure A-type and the sequent X,b,Y = d can be shown
to be underivable. If all types in X and Y are either pure A-types or pure B-types,
then the sequent is shown to be underivable by Inseparability Lemma. If X, Y contains
some formulas from the endsequent, then the main connectives of all those formulas must




be introduced immediately above, because we are looking at a highest non-permutable
situation involving an application of (N =) that introduces one of the main connectives
in the endsequent. (Note that #; N ¢; cannot have been introduced above.) Therefore,
there must be a sequent X’,b,Y’ = d above X,b,Y = d such that all formulas in X’ and
Y’ are either pure A-types or pure B-types. Then this sequent must be underivable by
Inseparability.

The rest of the proof runs exactly the same as the proof of Theorem I.

Clearly, from the proof of Theorem II, we also have

THEOREM Ila. The L(/,N)-recognizable languages and the L(\,N)-recognizable languages
are closed under intersection.

It can also be generalized to the case where product conjunction is present as well.®
THEOREM IIb. The L(/,\, e,N)-recognizable languages are closed under intersection.
Proof. Exactly as before, noting the following new cases of interchange:

(9) (N =) followed by (e =)

X,a,Y,c,d,Z = e X,a,Y,¢c,d,Z = e
X,anb,Y,c,d,Z=>e ~ X,a,Y,ced,Z=>c¢
X,anb,Y,ced,Z = ¢ X,anb,Y,ced,Z = ¢

(10) (N =) followed by (= )

X,a,Y = ¢ X,a,Y =>¢c Z=d
X,anbY=>¢c Z=>d ~ X,a,Y,Z=>ced
X,anbY,Z=ced X,anb,Y,Z=ced

(11) (= n) followed by (e =)

X,a,b,Y = ¢ X,a,b,Y =>d X,a,b,Y = ¢ X,a,b,Y = d
X,a,b,Y = cnd ~ X,aeb,Y = c X,a0bY = d
X,aebY = cnNd X,a0b,Y = cnd

(The cases excluded by the subformula property are omitted.)

Remark. The method of proof of Theorems I, II, and IIb is reminiscent of Curry’s [7] and
Kleene’s [9] results about the permutability of inferences in the classical and intuitionistic
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