Institute for Language, Logic and Information

MODAL LOGIC AND
ATTRIBUTE VALUE STRUCTURES

Patrick Blackburn

ITLI Prepublication Series
for Logic, Semantics and Philosophy of Language LP-92-02

University of Amsterdam

X
&
%



| Instituut voor Taal, Logica en Informatie
Institute for Language, Logic and Information

Faculteit der Wiskunde en Informatica Faculteit der Wijsbegeerte
(Department of Mathematics and Computer Science) (Department of Philosophy)
Plantage Muidergracht 24 Nieuwe Doelenstraat 15
1018TV Amsterdam 1012CP Amsterdam

MODAL LOGIC AND
ATTRIBUTE VALUE STRUCTURES

Patrick Blackbum

Department of Mathematics and Computer Science
University of Amsterdam

ITLI Prepublications
for Logic, Semantics and Philosophy of Language
ISSN 0924-2082

Received March 1992






Modal Logic and Attribute Value Structures

Patrick Blackburn Faculteit der Wiskunde en Informatica
Universiteit van Amsterdam
Plantage Muidergracht 24, 1018 TV Amsterdam.
patrick@fwi.uva.nl

This paper examines the relationship between various languages of modal logic and an
approach to the specification and processing of natural language grammars currently popular
in computational linguistics. This approach is the use of Attribute Value formalisms, and the
main aims of the paper are to show that the most common Attribute Value formalisms are
nothing but languages of propositional modal logic, and to establish the basic logical theory
of the languages concerned.

The first section is an overview of the main ideas of the Attribute Value approach to
grammar. We discuss the concepts of attributes, values and unification — first in terms of
Attribute Value Matrices, and then in terms of certain labeled decorated graphs — and from
this discussion it emerges that Attribute Value Structures are essentially a certain type of
Kripke model. Thus Attribute Value Structures can be described using propositional modal
logic; the key assertion of this paper is that this is what computational linguists actually do.

The demonstration begins in the second section. We note that Attribute Value Matrices
directly correspond to wifs of the language L, the simplest modal language for talking about
Attribute Value Structures. We then sketch some of the basic logical properties of L, and
outline the technique for establishing decidability that will be used throughout the paper.

In the third section we consider the lingua franca of Attribute Value formalisms: Attribute
Value Matrices augmented by ‘boxlabels’. These turn out to amount to wifs in the modal
language LV, which is L augmented by nominals. Some results concerning L? are noted.

In the fourth section we consider the interface language of the PATR-II system, and
show how the modal language LEK® can be abstracted from it. In fact LKE — the language
of Kasper Rounds logic — has been considered before in the Attribute Value literature.
Intriguingly, however, it’s passed largely unremarked that it really is a modal language (and
a very beautiful one at that), and its logical theory has hardly been explored. This section
to some extent rectifies the omission.

We close the paper with some brief remarks concerning further work.

1 Attribute Value Structures

During the mid 1970s a number of theories of generative grammar were developed that broke
with the dominant Chomskyan paradigm. At around the same time, computational linguists



began to seek more principled ways of representing and processing linguistic information.
These two research currents came to exert considerable mutual influence, and something like
a consensus began to emerge. The consensus was this: Attribute Value Structures are a
valuable way of representing linguistic information, and the unification of such structures is
a fundamental part of the parsing process. Insofar as current computational linguistics has
stable orthodoxies, something along these lines ranks as one.

So what are Attribute Value Structures, or Feature Value Structures as they are sometimes
called? One of the most common ways of thinking about them is in terms of Attribute Value
Matrices (AVMs). The computational linguist working with some linguistic theory is thought
to have at his or her disposal a collection of atomic entities (or constants) and a collection
of attributes (or features). The choice of atomic entities and attributes varies widely from
theory to theory, but typical of the atomic entities a syntactician might use are 3rd, 2nd, 1st,
singular, plural and nominative, and the same person might employ a collection of attributes
that included PERSON, NUMBER, TENSE, CASE, and AGREEMENT. Using these entities the
computational linguist builds up AVMs as follows. First, any atomic entity taken alone is
an AVM. Such AVMs are called atomic AVMs, and there are no other atomic AVMs than
these. For example, the simple specification Ist is an atomic AVM. Second, any attribute
and any atomic AVM can be enclosed in that order between square brackets and the result is
another AVM. We say that the constituent attribute has the value (or takes the value) of the
atomic entity concerned in the new AVM. For example, we can combine the attribute PERSON
with the atomic AVM 1st to form the AVM [PERSON Ist], and in this AVM we say that the
attribute PERSON takes the value 1st. Third, any attribute and any AVM can be enclosed
in that order between square brackets, and the result is another AVM. In short, attributes
can take complex values. For example, [AGREEMENT [NUMBER plural]] is an AVM where
the attribute AGREEMENT takes the complex value [NUMBER plural]. Finally, given a finite
collection of non-atomic AVMs, a new AVM may be formed by enclosing the collection in
square brackets, and then erasing the outermost brackets of the enclosed AVMs. For example,
from the AVMs [AGREEMENT [PERSONst]] and [CASE nominative] we can form the AVM

AGREEMENT [PERSON s
CASE nominative

As this example shows, when this last rule of combination is used the convention is to list the
combined AVMs vertically rather than horizontally. Note that this last mode of combination
is restricted to non-atomic AVMs. For example, we cannot stack 3rd on top of plural to
form a new AVM (to do so would be to fall foul of what computational linguists call the
‘constant-constant clash’), nor can we stack plural on top of [CASE nom] (here we’d be falling
prey to a ‘constant-compound clash’). We’ll meet these restrictions again shortly in a new
guise, however more immediately pressing is the fact that there is an interesting restriction
on this last mode of combination that hasn’t yet been stated. It is this: if any two distinct
elements in the collection are pairs whose first component is the same attribute, we cannot
form a new AVM out of the collection. For example, from [PERSON 1st] and [PERSON 2nd| we



cannot form
[ PERSON 1Ist ]

PERSON 2nd

These four rules are the only way to build AVMs, thus AVMs are a fairly simple kind
of inductively defined structure. But what is the intuition underlying them? Essentially it’s
that of partial functional dependency between attributes and possibly complex values. It is
this interpretation that motivates the interesting restriction on the fourth construction rule:
the restriction is essentially a functionality requirement. Moreover it is precisely this notion
of capturing partial functional dependencies between attributes and values that makes AVMs
(and their various cousins) so attractive to grammar writers: the whole business of writing
grammars for natural languages can be construed in these terms, and it turns out that this
construal can yield perspicuous analyses.

Now that we know what AVMs are, and something of the intuitions they attempt to
capture, we must consider how they are used. The key concept here is unification. Unifying
two AVMs means forming another AVM that combines all the information about partial
functional dependencies embodied in the two constituents. For example, writing U for the
unification process, we have that:

PER Ist
CASE nominative

[AGR [NUM plural] U AGR [PER Isf] ]: AGR l

NUM plural]
CASE nominative

There is a clear sense in which the AVM on the right hand side embodies all the information in
the two constituent structures; it is the result of unifying these structures. Note that it is not
always possible to unify two AVMs, as the information they embody may be incompatible.
In effect we have already seen a simple example of this: we cannot unify [PERSON 2nd] and
[PERSON 1si], for there is no AVM that embodies these (conflicting) claims.

Unification is another reason why many computational linguists find Attribute Value
approaches to grammar so attractive: parsing such a grammar essentially boils down to
unification. This gives a very natural picture of what the business of natural language parsing
is all about — it is ‘the coherent merging of underspecified information’ — a picture that
becomes positively addictive when attempts are made to move beyond the realms of pure
syntax and integrate semantic, morphological and phonological information.

Now the discussion of AVMs has revealed some of the reasons why thinking in terms of
attributes, values and unification is so popular in computational linguistics, but it hasn’t ex-
plicitly brought out two key ideas about Attribute Value Structures that most computational
linguists share: that Attribute Value Structures are certain kinds of decorated labeled graphs,
and that unification is the partial operation of coherently merging these structures. Let’s
consider some simple examples which show how AVMs give rise to such graphs, and what
unification means in graphical terms.



°
Y'AGR AGR CASE AGR CASE

[
® PER L ° [ ° °
1st nom nom
° PER NUM PER NUM
1st
® [ ) [ ] ®
1st pl 1st pl

Q) @) (ii) (iv) (v)

The first graph, consisting of a single node decorated with the atomic information 1st,
corresponds to the atomic AVM 1st. More generally, atomic AVMs correspond to decorations
of nodes, and in particular to decorations of terminal nodes. The second graph corresponds to
the AVM [PERSON Isf]. Note that the atomic AVM 1st decorates a terminal node. Moreover
note that the attribute PERSON labels a transition. Again this is perfectly general: attributes
correspond to transition labels. Next consider the third graph. This corresponds to the AVM
[AGREEMENT [PERSON Isf]]. Note that once more attributes correspond to transition labels,
and further note that complex values (here [PERSON 1s#]) correspond to generated subgraphs.
Next consider the fourth graph. This corresponds to the AVM

AGREEMENT [NUMBER plural]
CASE nominative

As this example indicates, AVMs built using the fourth rule of AVM construction correspond
to multiple branching nodes, with each attribute corresponding to a different branch label.
Finally, the fifth graph is the result of unifying the third and fourth graph; clearly it’s the
natural merger of its two constituents.

For reasons that will shortly be clear, it is this idea of thinking about attributes and values
in terms of labeled decorated graphs that has come to be seen as fundamental, and a number
of definitions of Attribute Value Structure have been given that attempt to pin it down. I'm
now going to present my own definition. It’s a particularly simple one, and as we shall see it
has other virtues.

Let £ and A be non-empty sets. We think of these as the set of labels and the set of
atomic information respectively, and in what follows we assume that both £ and A are either
finite or countably infinite. An Attribute Value Structure (AVS) of signature (£, A) is a triple
(N,{Ri}ticc,{Qu}acA), where N is a non-empty set called the set of nodes; for all I € £, R;
is a binary relation on N that is a partial function; and for all @ € A, @, is unary relation
on N.



This is the concept of Attribute Value Structure we will work with throughout the paper.
Let’s consider a concrete example. Suppose while working with some linguistic theory we
specify a signature (£, .4) where £ includes such items as PERSON, NUMBER, CASE, AGREE-
MENT and so on, and A includes such items as 8rd, 2nd, 1st, plural and nominative. Then any
graph whose decorated nodes are all decorated by items drawn from .4, and whose transitions
are all uniquely labeled by items drawn from £, with no two distinct transitions from the
same node labeled the same way, is an AVS of such a signature. The five graphs given earlier
are examples of such AVSs.

The definition subsumes the better known definitions of Attribute Value Structures found
in the literature, and in particular those of Gazdar et al [10] [9], Johnson [12], and Kasper and
Rounds [14]. Moreover it’s not too liberal. There are only two reasonably common further
restrictions on the binary relations that it does not impose. The first of these is acyclicity,
which means that it is never possible to return to a node n by following some sequence of
R; transitions from n. The second is that AVSs must be point generated. That is, there is
always some starting node ng € N such that every distinct node n € N is reachable via some
sequence of transitions from ng. Now both the classes of acyclic AVSs and point generated
AVSs are of interest in their own right, and they’ll both crop up in the work that follows, but
neither the concept of acyclicity nor that of point generation seems to intrinsically belong to
the notion of partial functional dependencies between attributes and values — at most they
seem to be optional extras — and so we follow what seems to be the prevailing trend and
don’t insist upon them.

There are also three constraints computational linguists commonly place on node deco-
ration which my definition ignores. The constraints are these. First, for all n € N and all
a,B € A, if n € Qq and a # B then n € Q. That is, no node can be decorated with distinct
pieces of atomic information; ‘constant-constant clashes’ are forbidden. Second, foralln € N,
n is in Q4 for some o € A iff n is a terminal node. In short, this is the graphical analog
of the edict forbidding ‘constant-compound clashes’. Third, for all n,n’ € N, if n € Q, and
n' € Q4 then n =n'.

The main reason for ignoring these demands is that by doing so we accommodate a
generalisation that is beginning to emerge in computational linguistics, namely the use of
sorts[19]. Sorts are essentially pieces of atomic information that need not obey these three
restrictions. It seems sensible to define basic notions in a manner that covers such natural
generalisations, and this my definition does. Nonetheless, because the three restrictions listed
above are still quite common, we shall pay particular attention to them in what follows, and
I will call any AVS satisfying them a naive AVS. Note that the five graphs given earlier are
all naive AVSs.

Having defined AVSs, it might seem natural to immediately define the unification of such
structures. In fact I'm not going to do this at all. Following recent practice we are (eventually)
going to consider unification not as a partial operation on AVSs, but as a partial operation
on AVS descriptions. A short historical interlude is needed to motivate this.

Up until this point in the essay we’ve treated AVMs and AVSs as if they were pretty
much the same thing. We’ve seen that AVMs give rise to graphs — indeed that each AVM
can simply be regarded as a graph — and that AVSs are just the natural generalisation of



this class of graphs. In short, I’ve implicitly treated the relationship between the two kinds
of structure as if it were that of identity. I’ve presented the relationship in this way because
it reflects a historical fact: working computational linguists did tend to view matters thus.
However in the 1980s this view led to difficulties.

The problems were first observed when computational linguists began extending AVM
style formalisms.! One extension was to write AVMs expressing disjunctive partial depen-
dencies. The following AVM is a typical example:

NUMBER plural
CASE {nominative, genitive, accusative}

In this AVM the attribute CASE takes one of the values nominative, genitive, or accusative,
but it’s not specified which. Another extension was to state negative partial dependencies:

NUMBER plural
CASE [— dative]

In this AVM it’s specified that CASE does not take the value dative. Now, it’s certainly natural
to demand full Boolean expressivity, and arguably it’s linguistically useful to do so — but even
this relatively modest demand led to conceptual difficulties: the ‘AVMs are graphs’ intuition
no longer seemed tenable. The point is this. Computational linguists tend to think in very
concrete terms about AVMs and AVSs. An AVM simply is a graph, a graph that can be
manipulated by a parser. (And of course, given what is going on in the computer, this can be
a very helpful intuition.) But now consider what happens in the extended formalisms. The
concrete graphs simply vanish. If negated AVMs are some sort of graph, then presumably
they are a ‘negated graph’. But what is a ‘negated graph’? And what is a ‘disjunctive graph’?
Whatever they might be they’re certainly not the stuff of robust intuitions. In short, natural
demands of expressivity led to conceptual difficulties.

The solution to these problems was to draw a distinction that is a stock-in-trade of logic:
it was to regard AVMs (and kindred formalisms) as languages for talking about labeled
decorated graphs, not as the graphs themselves. That is, AVMs came to be regarded as
syntactic entities, with AVSs supplying their interpretation: the relation of identity gave way
to that of satisfiability. Note how the conceptual difficulties dissolve once this distinction
is drawn: no longer does one have to think about a negative AVM as being some kind of
bizarre ‘negative graph’: it’s simply a way of denoting all those decorated graphs on which
the condition in question does not obtain.?

This insight rapidly led to a stream of papers on the semantics of unification grammar
formalisms and associated logical matters. New languages for talking about AVSs were de-
vised, and attempts were made to find appropriate first order languages of AVSs. This paper
belongs to that tradition. What makes it rather unusual is that it claims a privileged role for
modal languages.

!The following examples are taken from [13]. .
2Pereira and Shieber [18] seem to have been the first to note the usefulness of this distinction in the study
of unification formalisms. The later work of Kasper and Rounds [14] was also very influential.



Note that AVSs as I have defined them are Kripke models. Consider the definition. If
(N,{Ritiec,{Qa}ac) is an AVS then the first two components (N, {R;}ic.) are an £ indexed
multiframe, while {Q,}ac.4 supplies the interpretation of propositional variables. In short,
a modal language with a £ indexed collection of modalities and an .4 indexed collection of
propositional variables is a suitable language for describing AVSs. Now this is a very trivial
claim: of course modal languages can describe Kripke structures! Moreover it seems a rather
dull claim to make: there’s a huge choice of languages with which we can describe these AVSs
— first order languages, second order languages, infinitary languages — so why all the fuss
about finding yet another? The interest rises from the following observation: Unbeknownst
to themselves, computational linguists have been using propositional modal logic all along.
Whether they work with ordinary AVMs, AVMs augmented with bozlabels, or with the path
equations of PATR-II, they have been describing linguistic structure in modal languages, and
their unification algorithms are essentially modal satisfaction algorithms. The rest of the
paper is devoted to justifying this claim and exploring the various languages concerned.

2 Modal logic

The language L of signature (£,.4) has the following alphabet. First, it contains some A in-
dexed set of symbols. These symbols are called propositional variables, though we sometimes
call them pieces of atomic information, or something similar. In stating some definitions and
theorems it can be useful to write propositional variables with their subscripts explicitly dis-
played, and when doing this we use the notation p,, where a € A. However whenever possible
we suppress the subscripts, and when we do this we typically represent our propositional vari-
ables by p, g, and r. Second, we have at our disposal some £ indexed set of modal operators;
this set is assumed to be disjoint from the set of propositional variables. We typically write
the elements of £ as f, g, h and so on, thus our modal operators usually look like (f), (g), (h)
etc. Finally we have at our disposal some truth functionally adequate collection of Boolean
connectives (in what follows we choose = and A), and the punctuation symbols ) and (.

We build the well formed formulas (wffs) or sentences of L out of this stock of symbols as
follows. First, all propositional variables are wifs. Second, if ¢ and v are wifs then so are (—¢)
and (¢ Av). Third, if (f) is a modality and ¢ is a wif then ((f)¢) is a wiff. Finally, nothing is
a wif unless it can be constructed using only the previous three rules. When writing wifs we
make free use of standard logical conventions. In particular, for all [ € £ we use the notation
[l]¢ for —=(l)—¢p; we define V, —, <>, L and T in the usual manner; and we drop brackets in
accordance with the standard conventions.

As has already been noted, AVSs are simply Kripke models. Suppose we have fixed some
signature (£, A). Let M = (N,{Ri}icc,{Qa}aca) be any AVS of this signature. Then we
can interpret the language L (of the same signature) on M in the usual manner:

M = po[n] iff n € Qq, forall a € A

M k= —¢[n] iff M}~ ¢[n]

M = 6 A gln] it M = é[n] & M = pln]

M E ()¢[n] iff In'(nRin' & M = ¢[n']), forall l € £



If M = ¢[n] then we say that ¢ is true in the model M at n, or that M satisfies ¢
at n. If N = (N,{Ri}icc) is a multiframe then an L model based on N is any AVS
(N, {Ri}1c,{Qa}taca). We say that a wif ¢ is valid on a multiframe N iff for all n € N
and all models M based on N, M |= ¢[n].

Let’s now consider some concrete examples of the relationship between AVMs and wffs of
L. In what follows we’ll work in a language of signatures (£, .A) where £ contains such items
as PERSON, AGREEMENT, CASE, and NUMBER, and A contains such items as 1st, plural, nom-
inative, dative and genitive. One notational convention will aid perspicuity: we’ll represent
the propositional variables by their subscripts. For example, instead of writing p,,,iminative
and p 7,4ipe We'll write nominative and dative respectively.

Unsurprisingly, the atomic AVM 15t corresponds to the propositional variable 1st. The
AVM [PERSON 1st] corresponds to the wif (PERSON) Ist. The AVM [AGREEMENT [PERSON 1s{]]
corresponds to (AGREEMENT)(PERSON) Ist. In short, attributes are modalities and values are
wits. Next consider the AVM

AGREEMENT [PERSON Ist]
CASE nominative

This corresponds to
(AGREEMENT)(PERSON) Ist
A (CASE)nominative

In short, vertical stacking corresponds to conjunction.

Now one could spell out formally the translation from AVM notation into an appropriate
language of L, but as should be clear from these examples, this is an entirely trivial matter.
The relationship between the two notations is not some baroque encoding, it is transparent:
L allows a straightforward linearisation of AVMs. Moreover this correspondence extends —
just as trivially — to AVMs with full Boolean expressivity. For example corresponding to the
disjunctive AVM

NUMBER plural
CASE {nominative, genitive, accusative}

we have the wif
(NUMBER) plural A (CASE)(nominativeV genitiveV accusative);
while corresponding to the negative AVM

NUMBER plural
CASE [— dative]

we have
(NUMBER)plural A (CASE)—dative.

Let’s turn next to the subject of unification. Once the distinction between AVSs and their
descriptions has been drawn there is a very natural way to think about this. Intuitively unifi-
cation is about combining the (partial) information we have about Attribute Value Structures,



so let’s say that two AVS descriptions are unifiable iff their combined information describes
at least one possible Attribute Value Structure. Now, our AVS descriptions are L wifs, and
in terms of L wifs this intuition cashes out as the following definition: two L wffs ¢ and
are unifiable iff their conjunction ¢ A1 is satisfiable.

This definition means that questions concerning L’s satisfaction relation are the most
pressing logical questions as far as computational linguistics is concerned. In the remainder
of the section I'm going to sketch a number of basic results about this relation. First I'll give
some completeness results, and then some finite model property results. Together these results
show that satisfaction is decidable in the cases of interest to computational linguists. For L,
of course, these results are rather obvious. What is important is that they will extend to
the more powerful languages we’ll consider later, thus showing that satisfaction — and hence
unification — is decidable in these richer description languages. Unfortunately, however, it
is not possible in the space available to discuss particular satisfaction algorithms, and I’ll
merely remark that perspicuous tableaux methods for building satisfying models exist. The
complexity of the satisfiability problem for various Attribute Value logics (including L, LY
and LX®) has been analysed by Blackburn and Spaan [4].

The logics in L of interest in computational linguistics are rather simple to axiomatise.®
Let’s first deal with minimal AV logic, that is, the logic of the class of all AVSs. As axioms
we take some complete axiomatisation of propositional calculus and in addition all instances
of the following two modal schemas:

(Ka) [(¢ — +) — ([l — []¢)
(Pfunc) (1)¢ — [l]g,

and as rules of proof we take modus ponens* and, for all I € £, the rule of necessitation.?
Call this system K4y .

K 4v is sound and strongly complete with respect to the class of all AV structures. Sound-
ness is trivial. Completeness is not much harder. We can make a model for any K 4y consistent
set of sentences ¥ as follows. Consider the natural model on the Henkin multiframe M# 6
The only reason it could fail to be an AV structure is if for some | € L, RIH was not par-
tial functional. But, because K4y has all instances of (I)¢ — [l]¢ as axioms, it follows by
standard modal reasoning that this is not possible, hence M is an AV structure. But for
any consistent set of I wifs &, and any MCS T extending £, M¥ |= T[=*]. (This is
just an instance of the Fundamental Theorem concerning Henkin models.) Thus the strong
completeness result follows.

%In the discussion that follows I assume familiarity with formal proofs, formal provability (here denoted by
F), maximal consistent sets of sentences (MCSs), and some very basic results of modal completeness theory.
All the required material can be found in [11].

“From F ¢ — 1 and I ¢ deduce 9.

5From F ¢ deduce I [I]¢.

$The Henkin multiframe (of signature (C,.4)) is the pair H = (H,{R{ }icc), where H is the set of all
maximal consistent sets of sentences in L; and for all € £, and all h, &' € N, hR{ ' iff for all wifs ¢, [[]¢ € b
implies ¢ € A'. The natural model on the Henkin frame is (H, {Qu}ac), Where for all « € A, and all h € H,
we have that h € Q. iff p, € h. We frequently call the natural model on the Henkin frame the Henkin model.



This result can be improved. It is easy to see that K4y is also complete with respect to
the class of point generated AV structures. For, given a consistent set of sentences ¥ for which
we seek a model, extend it to an MCS £, and then take the submodel of M generated by
3%, Trivially this submodel is an AV structure; by definition it is point generated; and as
modal truth transfers to generated submodels, this new model satisfies 3 at ¥*°. So we have
a new completeness result, and thus the logics in L of the class of all AV structures, and of
point generated AV structures coincide.

In fact K4y also axiomatises the class of acyclic AV structures. I’m not going to prove
this here — it requires a more delicate model building process such as that we will use when
dealing with Kasper Rounds logic — but it’s worth noting why this is so. Essentially it reflects
the fact that L is blind to some interesting aspects of relational structure; in particular it
can’t see cycles. Both of the stronger languages LV and LXF we shall later consider can see
this structure, and in these languages the logic of acyclic frames does not coincide with the
minimal logic.

Let’s now consider what happens if we impose the three restrictions on the distribution
of atomic information that many computational linguists make. First, if we want to forbid
constant-constant clashes we add all instances of:

(Cec) pa — —pg, for all a,f € A such that o # 3.

The addition of these axioms obviously rules out constant-constant clashes in the Henkin
model, and thus we have another completeness result.

Second, to insist that atomic information is only instantiated at terminal nodes, we add
as axioms all instances of:

(Term) po— ()T, foralla € A, and all l € L.

Again the required completeness result is immediate.

Insisting that atomic information is instantiated at a unique node is rather more inter-
esting. Let (F') and (G) be metavariables over sequences of primitive modalities, and v be a
metavariable over propositional variables. Then we add all instances of the following schema:

(Nomy) (F)(vA¢)A(G)(wAY) = (F)vApAY)

We’ll meet this schema again in the next section, and I’ll defer discussing the intuition under-
lying it till then. Here I'll merely note that the effect its inclusion has on the Henkin model
is to force each propositional variable to occur in at most one MCS in each point generated
submodel. Hence by taking such a submodel we can verify any consistent set of sentences
on a model satisfying the third constraint, and so we have another extended completeness
result. These completeness results are all additive. In particular, note that the logic of naive
attribute value structures is axiomatised by K4y + Ccc + Term + Nom.

These logics all have the finite model property and are decidable. Establishing the finite
model property is delightfully simple; here is a sketch of the argument. Suppose that some
wif ¢ is satisfied in a model M at a point n. Then we can build a finite model M’ out

10



of M that also satisfies ¢ at n. We do this as follows. First, let the natural number k be
the maximum depth of nesting of modalities in ¢. Second, let £? be the subset of £ that
contains precisely the indexes of those modalities that actually occur in ¢. Note that £? is
finite. Now the key point to observe is that nodes more than k steps away from n, and nodes
linked to n only by some sequence of steps involving a relation whose index in not in £?, are
irrelevant to the truth value of ¢. In short, we can chuck all these nodes out. So, let M’ be
the structure that arises by generating in M from n, but only generating on those relations
indexed by £%, and only generating out k steps. I'll call this process selective generation.
Now it’s a standard exercise to show that M’ is an AVS satisfying ¢ at n, but in fact we
have something more: M’ must also be finite. This follows from the fact that we’re working
with partial functional relations: any node can have at most one R; successor for each [ € L.
Thus we have satisfied ¢ on a finite model. As all the classes of AVSs axiomatised above
are closed under selective generation, the logics in L of these classes all have the finite model
property. The decidability of these logics follows at once: the respective axiom systems give
us a method of enumerating theorems, search through the appropriate finite models gives
us a way of enumerating non-theorems, thus theoremhood in all these systems is a recursive
concept.

I’ll close this section with some historical comments. Given the degree of current interest
in Attribute Value logics, surprisingly few publications have even spotted the connection
between AVM style notations and modal logic, and (apart from this paper) only a handful
seem to take it seriously. The earliest papers I know of that deliberately use a modal language
for dealing with natural language syntax are two papers due to Gazdar et al [10] [9]. In fact
the language used is just L augmented by an extra modal operator 0. Intriguingly, however,
the authors seem to regard their language as modal only because of the presence of O: they
don’t seem to have made the connection between attributes and modalities outlined above.
However their features are, syntactically, just modal operators; and the semantics they give
to these features is just an ordinary Kripke semantics. The first statement of the link between
attributes and modalities seems to have been made by Kracht [16]. In this elegant paper he
makes the link explicit and then explores issues of completeness and decidability for Gazdar
et al’s language.

3 Modal logic with nominals

If there was no more to AVM notation than we have met so far, our investigation would
be complete and we could conclude that computational linguists have been working with
L all along. However there is a widely used aspect of AVM notation that hasn’t yet been
introduced: the use of bozlabels. Consider the following AVM:

AGR  foo
PRED bar

COMP [SUBJ ]

SUBJ

11



The boxlabel is the entity III Note that this occurs in two places. One of these occurrences
is an ordinary value, but the other is something new: it is a superscript on the complex value
taken by sUBJ. What this notation means (and what it does not mean) is explained by the

following graphs:
SUBJ COMP %BJ NMP
1 ® ® 1 ® 4= — — = — — - - L )
- | . SUBJ
|
AGR \ED |ISUBJ AGR \ED
}
[ ] [ ]
foo bar

() (i)

The first graph is the result of treating simply as ordinary atomic information, but
this is not what is intended. Rather, is a name: it must pick out precisely one node, and
thus the required graph is the second one. The crucial difference is that as is a name, the
dashed SUBJ transition is forced to re-enter the graph at the named node.

The ability to enforce re-entrancy plays an important role in the design of attribute value
grammars. Moreover there is a clear computational intuition underlying re-entrancy: a notion
of structure sharing has been introduced. If modal languages are to be taken seriously as
languages of linguistic description we must find a way to deal with this aspect of AVMs. In
fact this can be done quite straightforwardly by making use of a referential modal language.

The key idea involved in making propositional modal languages referential can be traced
back to early work by Arthur Prior and Robert Bull: it is to introduce a second sort of atomic
symbol, symbols constrained to be true at exactly one node.” These new symbols — in this
paper they are called nominals — in effect name the unique node they are true at. As we
shall see, AVM boxlabels correspond to nominals.

Let’s make this precise. We extend the language L (of signature (£, .A)) to the language
with nominals LV (of signature (£,.A U B)) as follows. Augment the symbols of L with
a denumerably infinite set of new symbols, and let these symbols be indexed by some set
B distinct from both £ and .A. These new symbols are called nominals, and we typically
represent them by ¢, j, and k. The only addition we need make to the formation rules of L
is to stipulate that all nominals are wils; wifs are to be built up in the usual way from any
mixture of nominals and variables.

We interpet LY on AVSs of signature (£, AU B) that satisfy the following requirement:
for all & € B, Q, is a singleton. That is, we only interpret LYY on those AVSs where nominals
act as names. If M = (N, {Ri}icc, {Qa}ac.auB) is an AVS satisfying this constraint then we

"For Prior’s work consult [20], for Bull’s work [5]. For recent results on the subject see [7], [8], 2] or [3].

12



say it is an LY model. The truth definition for LY is that for L augmented by the following
clause:

M = iq[n] iff n € Qq, for all a € B.

Finally, we say that a wif ¢ of LY is valid on an £ indexed multiframe N iff for all LY models
M = (N, {Qa}acaus) and all n € N, M |= ¢[n].

Nominals correspond to boxlabels quite straightforwardly. Consider once more the fol-

lowing AVM:
]

AGR  foo
PRED bar

COMP [SUBJ ]

This corresponds to the following LY wif:

SUBJ

(suBJ)(Z A (AGR) foo A (PRED) bar)
A (COMP)(SUBJ)i

In short, the nominal  is doing the work that |1 | does in the AVM, and more generally, using
a boxlabel superscript amounts to conjoining a nominal. Thus L¥ allows a straightforward
linearisation of those AVMs that utilise boxlabels, and indeed it seems natural to say that
such AVMs simply are LV wifs.

Quite a lot is known about modal languages with nominals; I'll sketch here some results
that will prove useful. Moving from L to LY has resulted in a genuine gain in expressive
power. It’s well known that ordinary modal languages (such as L) are blind to some simple
aspects of frame structure. For example, there is no I wif which is valid on precisely the
irreflexive multiframes; L can’t define irreflexivity. Neither can L define antisymmetry, nor
intransitivity. However all these conditions can be defined in LY. It’s a simple exercise to
check that i — —(f)i is valid on precisely those multiframes in which Ry is irreflexive; that
i — [f]({(f)i — 1) is valid on precisely those multiframes in which Ry is antisymmetric; and
that (f)(f)i — —(f)i is valid on precisely those multiframes in which Ry is intransitive.
Moreover LY, unlike L, can ‘see cycles’, and thus can forbid their presence. Define Acyc to
be

{i > ~(F)i: (F) is a non-null sequence of primitive modalities}.

It is easy to to show that for any multiframe N, N |= Acyc iff N is acyclic.

This increase in expressive power has some immediate model theoretic consequences: tak-
ing p-morphic images and forming disjoint unions are not validity preserving operations (they
are for L), and unraveling is no longer a method that will produce equivalent models. On
the other hand, forming generated subframes is a validity preserving operation for LYV, and
ultrafilter extension formation back preserves in the usual manner the validity of LY wifs.

Axiomatising the LY logics of the various classes of AVSs of interest in computational
linguistics is routine. In fact these logics are straightforward extensions of the corresponding
logics in L. A key role in these extensions is played by a schema called Nomy, a nominal
form of the Nomy schema we met in the last section. Let’s begin by considering the logic in

13



LY of the class of all AVSs. We axiomatise this minimal logic as follows. Take as axioms all
LY instances of the K 4y schemas and rules, and in addition, add as axioms all instances of
the following schema:

(Nomy) (F)(nA¢) A(GYnAY) = (F)(nAdAYp)

In this schema both (F') and (G) are metavariables over sequences of primitive modalities,
and n is a metavariable over nominals.

As I remarked in the last section, the effect the inclusion of such Nom style axioms has
on Henkin models is to ensure that in any point generated submodel no nominal occurs in
two distinct MCSs. This is the crucial technical point, but it’s just as important to grasp the
underlying intuition. To see what this is, consider the following instance of Nomy:

(PR EAP) A{g)(g)(E A g) = (FMg){(FYR)EADPAg).

This wff can be paraphrased as follows. Suppose we are at some node » in an AVS, and
suppose that by making the series of transitions Ry followed by R,, Ry and R; we get to a
node n; labelled by 7 and bearing the information p. Further, suppose that by making from
n the transition sequence R, followed by R, we get to a node ny labelled by 7 and bearing
the information ¢q. But since nominals label ezactly one node, ny is just ny. That is, both
paths have taken us to the same node, thus this node must bear both the information p and
the information q.

Kv + Nompy captures the minimal logic. The completeness result is straightforward.
Given a consistent set of sentences ¥ for which we seek a model, expand it to an MCS X
and take the subframe of the Henkin multiframe generated by £°°. Now, defining for all
a € AUB the Q, in the natural way may not produce an LY model, but in fact the resulting
structure can only fail to be one for a rather trivial reason: there may be some nominals
that are not true anywhere. It is easy to deal with such ‘unused nominals’: simply add a
brand new node n* to the Henkin model, leave the relations unchanged, and let the unused
nominals be true at this new node. The resulting structure is an L" model that satisfies &
at X

Improving this result is easy: K4y 4+ Nomy is also complete with respect to the point
generated AV structures. To see this, follow the procedure just described but with one
addition: choose some f € £ and insist that nTRyEX®. It is clear that the resulting model is
point generated by nt and thus we have our improved completeness result.

The LY logic of the acyclic AVSs differs from the minimal logic. In fact this logic is
axiomatised by K4y + Nompy + Acyc, where Acyc is as defined above. I won’t prove this
here; as with the corresponding result for L a more sensitive model building procedure is
required. The three conditions on atomic information distribution popular in computational
linguistics are captured by adding all LY instances of Ccc, Term, and Nomy respectively.
As with L, these results are additive, thus the L? logic of naive AVSs is axiomatised by
Ky + Nompy + Ccc+ Term+ Nomy. Using the method of selective generation discussed in
the previous section, it is clear that all these logics have the finite model property. Thus by
the usual argument all these logics are decidable.

14



There are only three papers which make use of modal languages with nominals for dealing
with linguistic structure. Bird and Blackburn [1] use a modal language with nominals for
talking about phonological information. The twist in this paper is that a number of different
AVSs are pictured as being strung out along a time axis, and additional tense operators are
introduced to cope with the temporal structure. That is, the language is an attempt to
capture Attribute Value style reasoning and temporal reasoning in a single framework. As in
LY, the nominals are used to name nodes and enforce re-entrancy.

Reape [21] uses a language similar to LV for talking about syntactic information. This
language is then extended to a larger language containing polyadic modal operators to enable
the set valued features and functional dependencies of such linguistic theories as HPSG to be
dealt with. This is a significant achievement. Reape’s work reveals the inherent simplicity and
elegance of the ideas underlying HPSG, and shows that even this formalism hasn’t outstripped
the resources of simple propositional modal languages. There is an important difference,
however, betweens L and Reape’s basic language: L contains both propositional variables
and nominals, whereas Reape’s language only contains nominals. Not only are nominals used
to force re-entrancy, they are also used to represent ordinary atomic information. This is
odd. It means that not only is the naive interpretation of atomic information enforced, but
that in addition, in every AVS every piece of atomic information must be realised somewhere.
This last condition clearly violates the ‘partial information’ intuition underlying much work
in Attribute Value grammar. Moreover, many reasonable looking structures are ruled out as
AVSs: note, for example, that none of the graphs drawn in this paper are AVSs under this
definition, for in none of them is the atomic information 8rd realised anywhere.

Finally, a chapter of Ruhrberg’s thesis [24] examines modal languages with nominals.

4 Kasper Rounds logic

As we have seen, multimodal languages with nominals correspond neatly to the AVM notation
actually used by computational linguists. However AVM notation, though widely used, is by
no means the only notation computational linguists use when working with AV structures:
another important notation is that provided by the PATR-II system. In this section we’ll
briefly examine the PATR-II notation and abstract one of its key devices, its mechanism for
enforcing re-entrancy. This mechanism is very different from the ‘boxlabels’ used in AVM
notation. In fact the PATR-II mechanism doesn’t work by labeling nodes at all. Rather,
it’s a mechanism for directly equating two sequences of transitions. We’ll add this simple
mechanism to L forming the language LXZ, the language of Kasper Rounds logic, and then
answer some of the more obvious questions about it: has the new mechanism led to genuine
expressive gains? How does it relate to LY ? Can we give sound and complete axiomatisations
of the logics of the various classes of AV structures of interest to the computational linguist,
and are these logics decidable?

Before proceeding, a historical note. As the term ‘Kasper Rounds logic’ indicates, this
language (or rather a certain notational variant of it) has been discussed before. In fact the
work of Kasper and Rounds [14] on this language did a great deal to arouse the interest com-

15



putational linguists are currently showing in Attribute Value logics, for it made it very clear
that the distinction logicians draw between a language and its semantics was a fruitful way
of looking at puzzles involving disjunctive feature structures. However Kasper and Rounds
proved relatively few results about LXE. They give some near the end of [22], but the bulk
of this paper is devoted to defining the relevant languages and proving a completeness result
for the negation free fragment of L. Incidentally, most of the results Kasper and Rounds
give are not obtained using modal techniques; although they spotted the similarity between
modal operators and their labels, they don’t seem to have attached any importance to it, and
in particular don’t make use of any of the standard tools and results of modal logic. In fact
the only other logical investigation of LXE seems to be that of Moss [17]. This paper takes
an essentially (Kripke) model theoretic stance towards LXF (and some other Attribute Value
logics) and should be of interest to the readers of this paper.

So, what is PATR-II? Basically it’s an ‘implemented grammar formalism’. That is, it’s a
program which provides a high level interface language tailored to the needs of the working
linguist, together with a parser. The linguist writes a grammar in the interface language and
then hands it over to the parser, which will cheerfully chew away at any sentence fed to it to
see if it meets the grammatical specification. PATR-II is used by computational linguists to
develop and test grammars.

Now, what is of interest for the present discussion is the high level interface language. The
essential core of this is a notation for describing AV structures. The user specifies these by
writing path equations. There are essentially two types of path equations the user can write,
and we’ll consider each in turn.

The first type of path equation equates a list of attributes with a value. For example, a
user may write:

(VP VERB HEAD NUM) = sing.

The item between the angle brackets are attributes, and the item on the right hand side of
the equality symbol is an atomic value. The meaning of this first type of path equation is
that by making the sequence of transitions encoded by the list on the left, one will arrive at
at a node bearing the atomic information sing. In short, this path equation bears the same
information as the L wif

(VP)(VERB)(HEAD)(NUM) sing,

and more generally, this first type of path equation can be represented by means of L wifs.
It is in the second type of path equation that we meet something new. In this second type
of equation two lists of attributes are equated. For example, the user might specify that

(VP HEAD) = (VP VERB HEAD).

What this specification means is that making the sequence of transitions encoded by the list
on the left takes one to the same node as if one had made the sequence of transitions encoded
by the list on the right. Briefly, both transition sequences lead to the same node. Thus the
second type of path equation allows the user to specify re-entrancy.

This specification mechanism certainly looks different from anything we’ve seen before;
can we tease it apart from its PATR-II setting and add it to L? We can, and rather easily.

16



First, as we’ve already seen from our discussion of the first type of path equation, PATR-II’s
attribute lists correspond to sequences of L modalities. So, in terms of the syntax of L, what
the second type of path equation amounts to is a mechanism for equating two sequences of
modalities. Let’s enrich L by adding a new primitive, a primitive we will write as =. The
purpose of this new symbol will be to allow a new kind of wif to be formed, wifs such as

(VP)(HEAD) ~ (VP)(VERB)(HEAD),

and we will define the semantics of these new wifs so that they do capture the meaning of
the second sort of PATR-II path equation.

It’s important to note that this is the only way we’re going to use our new symbol ~.
We’re not going to use it to encode the first type of PATR-II path equation. For example we
won’t represent (VP VERB HEAD NUM) = sing, by (VP VERB HEAD NUM) = sing, in fact this
last sequence of symbols won’t even be a well formed expression of our enriched language.
Nor do we need such expressions; as we’ve already seen we can capture the meaning of the
PATR-II expression by means of (VvP)(VERB)(HEAD)(NUM) sing. Thus the new device will only
be used to mimic the second type of PATR-II path equation, and from now on whenever we
talk of ‘path equations’ we’ll mean equations of this type.

One final matter before we turn to the details. In addition to ~ we’re going to add a
second new primitive symbol, 0. This will act as a name for the null transition. Having this
symbol will enable us to write such path equations as (g){(f) =~ 0 and 0 =~ (g)(f){g). For
example the first equation means that making an R, transition followed by an Ry transition
is the same as making the null transition. That is, the path RyRs terminates at its starting
point. Similarly, the second equation means that the path RgRsR, terminates at its starting
point.

Enough motivation, let’s define the language of signature (£, . 4). We take as primitive
symbols all the symbols of L (of signature (L, .A)), and in addition two new symbols &~ and 0.
That is, we have at our disposal some .4 indexed set of propositional variables, some £ indexed
set of modalities, the Boolean connectives, brackets, ~ and 0. As a first step towards defining
the LXE wffs we define the set of path equations of LEE. So let (f,)--( fg) and (fy) -+ {fs)
be non-null sequences of LX® modalities.Then 0 = 0, 0 = (fa) - - {fa), (fa) - (fs) ~ 0 and
(fa) -+~ {(fs) = (fy)--(fs) are all and only the path equations of LKE. With this notion to
hand we can now define the LER wffs. Firstly, all propositional variables are wifs. Secondly,
all path equations are wifs. Lastly, the set of wifs is closed under the Boolean operations and
the application of modal operators. In short, we have a language that is syntactically like L
save that as well as the ordinary atomic symbols we have (so to speak) the ‘composite atomic’
symbols that are the path equations.

Suppose that we’ve fixed the signature we’re working with. Then the models for LX® are
just the ordinary L models of that signature. If M is an LXF model we interpret LXF wifs in
M as follows. Firstly, propositional variables, Boolean combinations and modal applications
are interpreted just as before. As for the path equations, these are interpreted as follows:

LKR

17



MEO=On] foraln e N

M =0 & (fa) - - (fg)[n] iff nRq... Rgn

M E (fa) -+ (fs) = O[n] iff nR,...Rgn

M E (fa) - (fa) = {fy) -+ {f5)[n] iff In'(nRq ... Rgn' & nR,...Rsn')

We say that an LEE wff ¢ is true in M at a node n iff M |= ¢[n]. Validity is defined as for L.
It is important that the reader understands the shorthand used in the above clauses. For
example, nR, ...Rgn is really an abbreviation of

dng,...,np(nReny & --- & npRgn),
while In'(nR, ... Rgn’ & nR, ... Rsn') is short for
In',ng,...,nk,m1,...,mj(nReny & --- & npRgn' & nRymy & -+ & m;jRsn').

That is, all but the first clause contains a statement concerning path existence. Note, by the
way, that the truth definition makes sense even if we drop the requirement that the R; are
partial functional. In fact using LX® on non partial functional structures may be useful for
various other applications (for example in phonology or knowledge representation), though a
discussion of this point is not possible here.

LXR is not quite the language Kasper and Rounds discuss. There are two differences.
First, their language lacks negation. Second, their notation for enforcing path equalities is
rather different. Their language has a device | | which combines with k lists of labels (for
any k > 1)) to assert that the transition sequences named by the k lists are coterminous. For
example, [(f),(gh), (gg)] is true at a node n iff the three paths Ry, RyR; and RyR, all lead
from n to the same node. In LE® we would express-this particular path equality by means
of (f) = (g)(h) A (g){h) ~ (g){(g), and more generally the expressive equivalence of the two
notations is transparent. In spite of these differences I'll continue to call LXE the language
of Kasper Rounds logic.

It’s also worth remarking that there is another way to formulate , namely to treat
0 as a ‘dummy modality’. To be more precise, instead of introducing 0 in the manner we
did above, we could instead introduce it as a special modality (0). The advantage of this
variant — let’s call it LKE — js that it makes possible a simpler statement of the syntax
and semantics of path equations. First we define the modalities of LKE to be the usual £
indexed modalities together with (0), and then we state that if (fo)---(fg) and (fy) - (fs)
are non-null sequences of LXE modalities, then (f,) - - - ( fg) = (fy) - - (fs) is a path equation.
In short, we have only one type of path equation instead of the four of LXE, Next, we add
to the formation rules of L the following two clauses: all path equations are wifs; and if ¢ is
a wif then so is (0)¢. To interpet LEKF' we associate (0) with the identity relation on nodes,
that is, with the ‘null transition’. So instead of having to add four semantic clauses for path
equations, we need only the following;:

M k= (fo) -+ {fa) = (fy) - - - (f5)[n] iff In'(nRq ... Rgn' & nR, ... Rsn').

LKR

18



Note that because (0) is associated with the identity relation on nodes, the following holds:

M E ()] if M | gff].

It is clear that LER and LXE are expressively equivalent — indeed LEE is essentially a
sublanguage of LEX® in which all the path equations are in a certain normal form. In this
paper we work with LXE because, for the purposes of this paper, it is slightly simpler:
although the initial definitions are more cumbersome we avoid some rather dull work when
proving completeness. For other purposes LK E might well be the more natural choice.

Let’s begin our logical examination of LXE, This language is indeed more expressive
than L: using path equations we can define conditions on multiframes not definable in L.
For example, it is straightforward to verify that for any multiframe N = (N, {R;};cc) and
any f € L, N | =(0 = (f)) iff Ry is irreflexive; N |= (f)(f) ® 0 — (f) = 0 iff Ry is
antisymmetric; and N |= —((f) ~ (f)(f)) iff Ry is intransitive. Note further that in LXK we
can pin down the concept of acyclicity, something that cannot be done in L. Define Acyc to
be:

{—=(0 = (F)) : (F) is a non-null sequence of primitive modalities}.

Then for any multiframe N, N = Acyc iff N is acyclic. The proof is straightforward.

These results have some immediate (negative) model theoretic corollaries. Because we
can define intransitivity, unraveling is not a truth preserving operation on models. Because
we can define irreflexivity, p-morphisms do not preserve frame validity. On the other hand,
the following positive model theoretic results are more or less immediate. The forming of
generated subframes and disjoint unions are not only truth preserving operations on models,
they are also validity preserving operations on frames. Moreover one can give a natural defini-
tion of a validity preserving morphism for LX® — essentially one strengthens the backwards
clause of the p-morphism definition to fit the requirements of ~.

What is the relationship between LZE and the nominal language LV ? Let’s compare the
respective powers of the two languages for defining conditions on multiframes.

First, LV is not weaker than or equal to LXE in such expressive power. To see this, note
that LY is strong enough to define the universal relation: for any multiframe N, N |= (f)i
iff Rf = N x N. However LEE can’t define this condition, for disjointly sticking together
two multiframes results in a multiframe that is not universally related, and LX® validity is
preserved under disjoint union formation. Thus there is at least one condition on multiframes
definable in LV that is not definable using LK%,

However we also have that LKE is not weaker than or equal to LY in expressive power.
This result hinges on the following observation: L*F validity is not back preserved under
the formation of ultrafilter extensions. To see this, note that in LXK we can define the
class of multiframes such that every node n f-precedes a node n’' that is f-reflexive (that
is, Vnan/(nRgn' A n'Rgn')), for (f)((f) ~ 0) picks out precisely such multiframes. Now, the
ultrafilter extension of the natural numbers in their usual order satisfies this condition, but
clearly the natural numbers themselves don’t, thus the familiar ultrafilter preservation result
doesn’t hold for LXE, But we’ve already noted that the result does hold for LV, so LV cannot
define Vn3n'(nRsn' A n'Rgn’). Thus there is at least one condition on multiframes definable

19



in LXE that is not definable using LY. In short, the two languages are incomparable in
expressive power if this is measured in terms of multiframe defining power.

It’s worth noting, however, that LY can simulate all path equations and negations of
path equations. First, we can simulate path equations of the form 0 =~ (F'), (or equivalently,
(F) ~ 0), where (F) is a sequence of primitive modalities. It is straightforward to verify that
for any multiframe IN:

N0~ (F) iff N=i— (F)i.

Second, LV can simulate the negations of all such path equations. For any multiframe N we
have that:
NE-(0x (F)) if NEi— ~(F).

Third, LV can simulate the effect of negations of path equations of the form (F) ~ (G where
both (F) and (G) are sequences of primitive modalities, for it is easy to show that for all
multiframes N:

N £ ~((F) = (@) if N = (F)T A (G)T) = ((F)i — ~(G)i).

However matters appear to be more subtle when it comes to path equations of the form
(F) = (G). It seems to make a difference whether our working restriction to partial functional
multiframes is in force or not. If it is — that is, if we are only considering those multiframes
that could form the relational skeleton of an AVS — then we can define such path equations.
For any partial functional multiframe IN we have that

N = (F) = (G) iff M = ((F)i o (G)i)AFTA(G)T.

On the other hand, if we drop this working restriction and consider the class of all multiframes
U, it doesn’t seem that LY can define all the conditions that LEK® can. Let’s consider a
concrete LXE wff, say (f) ~ (g). This is valid on a multiframe N iff for all n € N there is an
n' € N such that nRsn' and nRyn'. That is, from every node there is a node accessible by
both Rf and R, transitions. It doesn’t seem that LY can define this condition over /. An
obvious attempt to do so is (f)i — (g)7, but this doesn’t work: while this wif is valid on all
multiframes satisfying the condition, it’s not valid on only such multiframes. For example,
it’s valid on all multiframes whose Ry relation is empty. A second attempt might be to
use the wif that defines this condition on the class of all partial functional frames, namely
(F)e = (g)1) A{(f)T A{g)T, but as a simple check shows, this doesn’t work either. Now, I
don’t believe that this condition is definable over & by any LY wff, but I don’t know how to
prove it. This would be an interesting matter to investigate further.®

There are other differences between LER and LY. For example, let & be the class of all
multiframes. Then U = [fo]p1 V...V [fgl¢n iff U |= ¢4 for some &, (1 < k < n), where all
the ¢, are wifs of LKE, That is, LKE has the disjunction property. On the other hand,

8 As the referee of this paper pointed out, if we work in a tensed version of L™ — that is, in a language
in which for each forward looking modality (f) there is a corresponding backward looking modality (f)~* —
then we can express (f) & (g) over U by means of i — (f)(g)~'i. On the other hand, even with this extension
it doesn’t seem that (f)((f) = (g)) is definable.

20



it’s straightforward to show that this cannot be the case for LY. The model theoretic fact
underlying these observations is that whereas when we ‘root’ two or more LXE models we
obtain another LXF models, rooting even two LY models is not a process guaranteed to yield
an LY model.?

Handling LEE proof theoretically takes rather more effort than with L or LY. The basic
result, which will take us some pages to establish, is as follows: the minimal logic of AV
structures in LX® is axiomatised by adding as axioms all wifs which are instances of the
following schemas to K4y :

KR1 0=0

KR2 (F)=~(G)— (G) =~ (F)

KR3 (F)=~ (G)A(G)=~ (H) — (F) ~ (H)
KR4 (F)¢ — (F) ~ (F)

KR5 (F) = (G) — (F)T

KR6 (F)((G) = (H)) < (F)(G) = (F)(H)

Q

KR7 (F)~ (G)\(F)¢ — (G)¢
(F)=O0A(F)¢ — ¢
0%(0)/\46—*(@)45

KR8 (F) = (G) A (F)(H)¢ — (F)(H) =~ (G)(H)
(F) =~ OA(F)(H)¢ — (F)(H) =~ (H)
0~ (G) A (H)p — (H) = (G)(H)

KR9 (F) = (E) A (E)(G) = (H) — (F)(G) = (H)
(F) x 0A(G) = (H) — (F{G) =~ (H)
0~ (E)AN(E)(G)=~ (H) — (G) = (H)

In these schemas ¢ is a metavariable over arbitrary wifs and (E), (F), (G) and (H) are
metavariables over sequences made up from modalities and 0. Note that the schemas divide
into two groups. Instances of KR1, KR2, KR4, KR5 and of the left to right implication in
KR6 would be valid even if we dropped the partial functional restriction we have imposed on
AVSs, whereas instances of KR3, KR7-KR9 and the right to left implication in KR6 depend
on this restriction for their validity.

Proving soundness for the resulting system is straightforward. But how can we prove
completeness? For a start, note that merely taking a generated subframe of the Henkin
multiframe is not going to yield a model. To see what goes wrong consider a simple path
equation, say (f) =~ (g). For the Henkin method to work in the familiar straightforward
manner we would certainly have to be able to prove that for any node h in the Henkin model
M¥ we have that:

(fy=(g) eh it M7 k= (f) = (9)[h].
Unfortunately this is false. It’s easy to show (using KR5, KR7 and standard modal reasoning)
that the left to right implication holds, and indeed that it must hold for any path equation

®Briefly, given a non-empty set of models {M; : k € K}, we root this collection by taking its disjoint union,
and then adding a new node 1 such that n. Rin, for all n in the disjoint union, but for any such = it is not
the case that nRin.. For a general discussion of rooting and the disjunction property see [11, pages 96-100];
for a discussion of these topics in languages with nominals see [3, pages 67 — 68] or [2, page 11].

21



whatsoever. However the converse fails: we can arrive at a counterexample by considering
the following simple model. The underlying multiframe of the model consists of three distinct
points n, n; and ny, such that nRsn; and nRygny. (Thus we have a simple ‘V’ shaped
multiframe with n at the vertex.) Decorate nodes n; and np with exactly the same atomic
information: as they are both ‘dead ends’ this means they make precisely the same formulas
true. To put matters another way, it means that both n; and ng, although distinct, are
associated with the same MCS, namely the set of formulas both make true. Call this MCS
h'. Next consider node n. As n; and ny are distinct points that n is appropriately related to,
we have that =((f) ~ (g)) is true at n. Further, for all ¢ such that ¢ € k', our little model
verifies both (f)¢ and (g)¢ at n. Let h be the MCS consisting of all the wffs true in our
little model at n. But both &' and h are nodes in the Henkin model M¥, and when we think
about what’s happening in the Henkin model we have our counterexample. By construction
we have that in the Henkin model ARsh' and hRyh', thus we have that M = (f) = (g)[h].
But =((f) ~ (g)) € h, and as h is an MCS this means (f) ~ (g) & h.

Thus the straightforward Henkin method won’t work, so we’ll need to be more delicate.
In the following pages I'll show in some detail how a method used by Burgess [6] for various
tense logics can be adapted to fit LXE. The method is an inductive process which builds
something called a chronicle. As we shall see, given a chronicle with certain properties a
suitable LK® model lies to hand. It’s worth remarking that we’re not forced into this chronicle
construction method: Moss [17] gives an alternative ‘Segerberg style’ construction in which
the faulty Henkin frame is massaged into shape.

The following conventions will prove extremely useful. Suppose we are working with some
multiframe N or some model M on N. Then if P is a path in N, by (P) is meant the sequence
of modalities that corresponds to P. For example, if P is the path nRyn;Ryn', then (P) is
(f){g). On the other hand, given a sequence of modalities (F) and some n € N, by F is
meant the path in N starting at n, if this path exists. We only use this latter convention
when we know the relevant path exists.

Definition 4.1 If N is a multiframe, a chronicle C on N is a function C from N into the
Henkin multiframe. C 1is coherent on N iff C is an order preserving morphism into the
Henkin multiframe. C is perfect on N iff (f)¢ € C(n) implies that there is an n' € N such
that nRgn' and ¢ € C(n'). C is attesting on N iff for all ny,ne € N, and all paths P, Q
in N, n1Pny and n1Qny implies (P) =~ (Q) € C(ny). C is fulfilled on N iff for all ny, na
n3 € N, if (F) = (G) € C(n1), F and G ezist in N, n1Fny and n1Gns, then ny = n3. m]

The terminology of chronicles, coherent chronicles and perfect chronicles is Burgess’s.
Beyond noting that a chronicle C on N is coherent iff for all n, n’ € N, for all wifs ¢,
nRyn' and ¢ € C(n') implies (f)¢ € C(n), I won’t discuss this machinery here — the ideas
underlying it are standard in modal logic. Attesting chronicles and fulfilled chronicles are
new. In a sense they are analogs of coherency and perfection for dealing with path equations:
their role will become clearer as we proceed.

Definition 4.2 If C is a chronicle on a multiframe N, the LXE model induced by C is
(N, {Qa}aéA)y where Qq = {n ‘Pa € C(n)} =

22



Lemma 4.1 (Truth Lemma) Let C be a coherent, perfect, attesting and fulfilled chronicle
on a multiframe N. Let M be the model induced by C. Then Mc = ¢[n] iff € C(n).

Proof:

By induction on the structure of ¢. The case involving propositional variables, and those
involving the Booleans are trivial. The fact that C' is coherent and perfect drives through the
modal application case. The fact that C is coherent, attesting and fulfilled, together with the
fact (which follows from KR5) that (F) =~ (G) € C(n) implies that both (F)T and (G) T are
in C(IV), handles the path equation case. o

Thus model building has been reduced to chronicle construction. In order to prove the
completeness theorem we can proceed by building a chronicle with the four desirable properties
listed in the previous lemma, and then use the induced model. This is what we’ll now do,
using an inductive construction.

The bric-a-brac underlying the construction is as follows. We fix a denumerably infinite
set A. Let A be the set of all pairs (N, C) such that N is a partial functional multiframe
(N,{Ri}ticc), N C N, and C is a coherent chronicle on N. Given two elements A = (N, C)
and X = (N',C'") of A, we say X eztends X iff N is a subframe of N’ and C C C'. Let ¢ be
any wif and n € A. Then the pair (n, (f)¢) is called a requirement. Given any A = (N, C),
we say the requirement (n,(f)¢) is alive for A iff n is a node in N, (f)¢ € C(n), and there
is no node n’ of N such that nRsn’ and ¢ € C(n'). We say that the requirement (n, (f)¢) is
dead for X iff n is a node in N, (f)¢ € C(n) and there is some node n’ of N such that nR¢n/
and ¢ € C(n'). Note that if a requirement is dead for ) then it is dead in any extension of );
death is monotonically increasing.

We are now ready for the lemma that lies at the heart of this method. Our ultimate
goal is to build a chronicle having the four properties listed in the truth lemma, and we’re
going to use the elements of A for this purpose. Typically, however, the chronicles present
in members of A won’t be perfect. To put it another way, there’ll typically be requirements
alive for elements A of A. The next lemma shows how to ‘kill off’ these requirements —
thus coming closer to achieving a perfect chronicle — while retaining the pleasant properties
already achieved:

Lemma 4.2 (Killing Lemma) Let A = (N,{Ri}icc,C) be an element of A such that N 1is
generated by some point ng € N, and C is both attesting and fulfilled on N. Then for any
requirement {n,v) which is alive for X there ezists a triple ' = (N',{Rj}icc,C’) in A such
that X' is an extension of A\, N is generated by ng, C' is both attesting and fulfilled on N',
and the requirement (n,v) is dead for .

Proof:

Suppose the requirement is (n, (f)@). Let X be any path from ng to n; at least one must
exist as N is generated by ng. As C is coherent on N (X)(f)¢ € C(ng). Now there are two
possibilities. Either for some path X such that noXn there exists a path W starting at no
such that (W) =~ (X){f) € C(ng) or there are no such pairs of paths X and W. We consider

each case separately.

23



Case 1. Assume there are no such pairs of paths X and W in N. Let n’ € A'\NV and
X ={6:[f]0 € C(n)}. Define:

N = NuU{n'}

Ry = RyU{(n,n)}

R, = Ry, forall g € L such that g # f.
C' = CuU{(n,z®)}

Let X = (N',{Ri}icc,C").

Trivially for all g € £ such that g # f, Ry is partial functional. Moreover R} must be
partial functional as well, for if it were not then for some m € N, nRym. But as C is coherent
on N this is impossible, for it would mean that the requirement (n, (f)¢#) was already dead in
A, contradicting our original assumption. Moreover by our choice of ¥ it follows by standard
modal logical arguments that C’ is coherent on N'. Thus X' € A and indeed ) is an extension
of A. It is clear that N’ is generated by ng, and by construction the requirement (n, (f)®) is
dead in X'. Thus it only remains to show that C’ is both attesting and fulfilled on N'.

Suppose C’ is not attesting on N’. Then there are points n;, ny € N’ and paths P and
Q in N’ such that n;Pny and n1Qny and (P) = (Q) ¢ C'(n1). Now P and Q cannot be
paths in N as C is attesting on N, therefore at least one of the two paths must contain n’.
But by construction a path in N’ can contain n' iff it terminates at n’, hence as both P and
Q terminate at the same place, both of them terminate at n’ and ns must be n’. Next note
that n; cannot equal n’ for 0 = 0 is an axiom and hence is in C(n1), so this degenerate case
cannot have been where attestation failed. This means that n; € N and thus both P and
Q are non-null paths. So we can write P as P’R}, where n;P'n and nR}n’, and Q as Q' R}
where n1Q'n and anfn’. Note that both P’ and Q' are paths in N. Not both of them can be
null, for as (f)¢ € C(n) then by KR4 (f) = (f) € C(n), but this wff is just (P) = (Q) given
that both P’ and Q' are null, and we have contradicted our assumption of attestation failure.
So suppose without loss of generality that P’ is a non-null path. Now as C is attesting on
N, then as n; P'n and n;Q'n then (P') = (Q') € C(n1). As C is coherent (P'){(f)¢ € C(n1).
So by KR8, (P'){(f) = (Q)(f) € C(n1). That is, (P) = (Q) € C(n1), contradicting our
assumption. Hence C' is attesting on N'.

Suppose C’ is not fulfilled on N’. Then there is an ny € N such that (F) = (G) € C(n1),
F and G exist in N, nyFny and n1Gng and ng # n3. First we observe that this is impossible
if n; = n’, hence n; € N. Second, observe that since C is fulfilled on N at least one of F' or G
contains n/. However a path in N’ contains 7’ iff it terminates there. As by assumption F' and
G terminate at different nodes, exactly one of them must terminate at n’. Suppose without
loss of generality that it is G that terminates at n', that is ng = n’. Then we can express G
as G'R'; where n1G'n and nRn/, and G’ is a path in N. Now as F' does not terminate at n'
it is a path in N. By assumption (F) ~ (G) € C(n1). That is (F) = (G')(f) € C(n1). Let
X be a path in N from ng to n;. As C is coherent (X)((F) = (G')(f)) € C(no). So by KR6
(X)(F) = (X){(G"Y{f) € C(n1). But as XG' is a path in IV from ng to n we have contradicted
the assumption underlying case 1 and thus C' must be fulfilled on N'.

Case 2. Suppose that for at least one path X such that noXn there is a path W in N
starting at ng such that (W) = (X)(f) € C(no). Fix the choice of some such X and let m

24



be the endpoint of path W. First we observe that if W’ is any other path in N such that
(W' = (X)(f) € C(ng) and ngW'm’ then m = m/. For it follows from KR2 and KR3 that
(W) = (W') € C(nyg), thus as C is fulfilled on N, m = m'. Define:

N' = N

Ry = RpU{{n,m)}

R, = Ry, forall g € £ such that g # f
¢ = C

Let X be (N',{Ri}1cc,C").

It is clear that for all g € £ R; is partial functional. Moreover C’ is coherent on N'.
To show this we need merely show that for all ¢ € C(m), (f)¥ € C(n), as by hypothesis
C is coherent on N. So let ¢ € C(m). By the coherency of C on N, (W)y € C(ng). By
assumption (W) =~ (X)(f) € C(ng), so by KR7 (X)(f)¥ € C(no). Because all instances of
(X)¢ — [X]¢ are provable, this means [X](f)9 € C(ng). Now if (f)3p ¢ C(n) then by the
coherency of C on N, (X)—-(f)¢ € C(ng). That is, =[X](f)¥ € C(ng) and we have that
C(no) is inconsistent which is not possible. Thus (f)3 € C(n) and C' is coherent on N'.

So X' € A, and in fact )\ is an extension of A\. Moreover it is clear by construction that
N’ is generated by ng and the requirement (n, (f)¢) is dead in )'. Thus it only remains to
show that C' is attesting and fulfilled on N'. In order to make further progress, the following
sublemma is required:

Detour Lemma: If D is a path in N’ such that nDm, then (D) =~ (f) € C(n).

We will now prove this sublemma by induction on the number of links nR¢m in D. Note
that the inductive step must start on the assumption that there are at least two such links in
D, thus two base cases must be established. M

So first suppose that D contains no such links, that is, D is a path in N. As XD and W
are both paths in N from ny to m then as C is attesting on N, (W) ~ (X)(D) € C(ng). By
assumption (W) = (X)(f) € C(ng), so by KR2 and KR3 we have that (X)(D) ~ (X)(f) €
C(ng). So by KR6 (X)((I)) =~ (f)) € C(ng) and thus by the coherency of C on N (D) =
(f) € C(n).

Next suppose that D contains precisely one link nR’fm. Then we can express D as SR}T
where nSn, mTm and both S and T are paths in N. We need to show that (S)(f)(T) =
(f) € C(n). Now as W and WT are both paths in N from ng to m, then as C is attesting on
N (W)(T) = (W) € C(ngp). By the case 2 assumption (W) =~ (X)(f) € C(ng), so by two uses
of KR9 (together with uses of KR2 and KR3), we have that (X)(f)(T) = (X)(f) € C(nq).
But as X and XS are both paths in N leading from ng to n, (X){(S) =~ (X) € C(ng) as C
is attesting on IN. So by another use of KR9 we have that (X)(S)(f)(T) = (X)(f) € C(no).
It then follows using KR6 and the coherency of C on N that (S){f)(T) = (f) € C(n) as
required.

So suppose the result holds for all paths D' from n to m such that D’ contains less than
r occurrences of nR'fm, where 2 < 7. Let D be a path from n to m containing exactly r
occurrences of nR'fm. First we express D as SBT where nSm, mBn and nT'm where S and

25



T each contain at least one occurrence of the link nR’,m and B contains no such occurrences.
Note that both S and T satisfy the inductive hypothesis (hereafter IH) and that B is a path
in N.

By IH, (T) ~ {f) € €(n). Hence using KR6 and the coherency of C on N, (X)(T) =
(X){f) € C(ng). As WB and X are both paths in N from ng to n, then as C is attesting on N,
(W)(B) ~ (X) € C(ng). So using KR9 we have that (W)(B){T) ~ (X){f) € C(ng); call this
statement *. It also holds by IH that (S) = (f) € C(n), hence using the coherency of C on N
together with KR6 we have that (X)(S) = (X)(f) € C(ng). But the case 2 assumption is that
(W) = (X)(f) € C(ng), so using KR2 and KR3 we have that (X)(S) ~ (W) € C(ng). But
using this fact together with * just above and KR9 yields (X)(S)(B){T) = (X)(f) € C(no).
It then follows using KR6 and the coherency of C on N that (S)(B)(T') = (f) € C(n) which
is what we require. This establishes the inductive step. Thus the truth of the Detour Lemma
follows by induction on 7.

With the help of this sublemma it is relatively straightforward (though tedious) to estab-
lish by a reductio-ad-absurdum argument that C’ is both attesting and fulfilled on N’, and
we now turn to these tasks. Both tasks split naturally into two subtasks.

C' is attesting on N’. For suppose it is not. Then there are n;, no € N’ and paths Q and
Q' in N’ such that n;Qns and n1Q'ns and (Q) ~ (Q') € C(n1). Now as C is attesting on N
this is only possible if at least one of Q and Q' contains an occurrence of nR’;m.

First suppose that both Q and Q' contain such a link. Express Q as SDT such that n;Sn,
nDm and mTny where both S and T are paths in N. In analogous fashion express Q' as
S'D'T'. Now as T' and T" are both paths in N, and as C is attesting on N, (T') = (T") € C(m).
By the coherency of C' on N, (f)({(T) = (T")) € C(n). But by the detour lemma we have
that (D) = (f) € C(n), so by KR7 we have that (D)((T) ~ (IT")) € C(n), and thus by
KR6 (D)(T) =~ (D)(T") € C(n). By another application.of the Detour Lemma we have that
(D" = (f) € C(n); as (D) ~ (f) € C(n) then using KR3 we have that (D) ~ (D') € C(n).
Thus using KR9 yields (D)(T) ~ (D')(T") € C(n). Now as C is coherent on N, (S)({(D)(T) =
(D)Y(T)") € C(n1), so by KR6 (S){D)(T) ~ (S)(D"Y(T") € C(n;). But as S and S’ are both
paths in N from ng to n then as C is attesting on N we have that (S) ~ (S') € C(n), so by
KR9 we have that (S)(D)(T) =~ (S')(D'){T") € C(n). That is, (Q) ~ (Q') € C(n) and we
have a contradiction.

So the only possibility remaining if attestation is to fail is that exactly one of Q or Q'
contains a link nR’fm. Suppose without loss of generality that only @ contains such a link.
Express @ as SDT where n;Sn, nDm and mTny and both S and T are paths in N. As
WT is a path in N from ng to ny then as C is attesting on N (W)(T) =~ (W)(T') € C(no).
But then as the case 2 assumption is that (W) = (X)(f) € C(np) we have, using KR9,
that (W)(T) = (X)(f){T) € C(ng). Now by the Detour Lemma (f) =~ (D) € C(n), thus
(X)(f) = (X)(D) € C(ng) by KR6 and the coherency of C on N. So again using KR9 we have
that (W)(T) = (X)(D)(T) € C(ng). Now let P be any path in N from ng to n;. Then as X
and PS are both paths in N from ng to n than as C is attesting on N, (X) = (P)(S) € C(nq).
So again by KR9 (W){T) ~ (P){S){D){T) € C(ng). Now WT and XQ' are both paths in N
from ng to ma, so again using the fact that C is attesting on N, (W)(T") = (P){(Q') € C(no).

26



Hence (P)(Q') =~ (P)(S)(D)(T) € C(ng). Thus by KR6 and the coherency of of C on N,
(Q") = (S)(D)T) € C(n1), that is, (Q') =~ (Q) € C(n1) and we have another contradiction.
Thus there is no possible way that attestation can fail and so C' must be attesting on N'.

Finally, C’ is fulfilled on N'. For suppose it is not. That is, suppose there are n;, nz and
ng € N' such that (F) =~ (G) € C(n1), F and G exist in N, n1Fny, n1Gnz and na # n3. As
C is fulfilled on N this can only happen if at least one of F' or G contains a link nR}m.

First suppose that both F' and G contain such a link. Express F' as SDT where n;Sn,
nDm, mTns and both S and T are paths in N. In similar fashion express G as S'D'T’.
Now as WT and WT' are paths in N leading from ng to ny and n3 respectively, then as
ny # n3 and C is fulfilled on N we have =((W)(T) = (W)(T")) € C(no); call this statement
*. By the Detour Lemma (f) ~ (D) and (f) ~ (D') are both in C(n), so by KR6 and
the coherency of C on N, both (X)(f) = (X)(D) and (X)(f) =~ (X)(D') € C(ng). By
assumption (W) =~ (X)(f) € C(ng), so (W) =~ (X)(D) and (W) ~ (X)(D') are both in
C(no). But then using KR9 and * twice we have —=({(X)(D)(T) ~ (X){(D'{T")) € C(no).
Now let P be any path in N from ng to n;. As X, PS and PS' are all paths in N from ng
to n then as C is attesting on N, (X) = (P)(S) and (X) ~ (P)(S’) are both in C(ng). Again
using KR9 we have that —((P)(S)(D)(T) =~ (P){(S"Y{D'){T")) € C(ng)). But this means
that —((S)(D)(T) =~ (S")(D')(T")) € C(ny). That is, =((F) = (G)) € C(n1) and we have a
contradiction.

So only one of F or G can contain the link nR}m. Suppose without loss of generality that it
is F' that contains it. As in the previous case express F as SDT. Let P be any path in N from
ng to n;. As WT and PG are both paths in IN leading from ng to ny and n3 respectively,
then as ng # n3 and C is fulfilled on N we have that =((W)}(T) ~ (P)}{G)) € C(np);
call this statement *. The case 2 assumption is that (W) = (X)(f) € C(no). Using the
Detour Lemma, the coherency of C on N and KR6 we have that (X)(f) = (X)(D) € C(np).
Hence (W) =~ (X)(D) € C(ng). Using this fact together with KR9 and * we have that
((X)HDXT) = (P)(@)) € C(ng). By the attestation of C on N (X) =~ (P){S) € C(no).
Therefore =({P)(S)(D)(T) ~ (P){G)) € C(ng). Therefore =(S)(D){T) =~ (S) € C(n1). In
short, =({F) =~ (@)) € C(n1) and we have another contradiction. Thus C’ is fulfilled on N’.

So we have established all we set out to do and the Killing Lemma is proved. O

Establishing this result required some effort. It’s worth remarking that from the point of
view of tableaux theorem proving, the effort was not expended in vain: the (constructively
flavoured) details of the proof are quite revealing. In particular, deciding whether a Case
1 type extension or a Case 2 type extension is called for is one of the fundamental control
decisions that would have to be built into such systems. However, axiomatisations are our
present concern, and from an axiomatic perspective what the Killing Lemma leads to is:

Theorem 4.1 (Completeness Theorem) Every consistent set of sentences has a model.
Proof:

Suppose we have fixed A and defined A as discussed earlier. Enumerate the requirements
so that in the sequel it makes sense to talk of ‘the least requirement alive for A’. Given

27



a consistent set of sentences X, form £®°. Choose an arbitrary ng € N. Define A0 to be
(N9 {R}Vier, CO), where NO = {no}; for all I € £ RY = {(ng,no)} iff (I) ® 0 € ¥, and
equals () otherwise; and C° = {{ng, £®)}. It is easy to see that A’ € A and that C is attesting
and fulfilled on N°.

Suppose A* has been defined. Either some requirement is alive for A*, or all requirements
are dead for A*. In the first case define M*t1 to be the result of killing off the least such
live requirement as shown in the Killing Lemma, otherwise define A\**1 to be A*. Finally,
define At to be (N*+,{R] }iec,CF) where Nt = Upe, N¥; for all | € £ R = Upe, RY;
and Ct = e, C*¥. N7 is a partial functional multiframe, for if it were not then for some
k € w N* would not be partial functional, which is impossible. Clearly C* is a chronicle on
N*. By construction it is perfect. It is also coherent, attesting and fulfilled — for if it were
not we would have lost these properties at some finite stage, which is impossible. Hence C'*
satisfies the conditions of the Truth Lemma and thus the model it induces on N1 verifies
every sentence in X at np. O

Extending this completeness result to the other classes of AV structures used in com-
putational linguistics is very easy. For example, to axiomatise those AVSs satisfying the
constant-constant clash, we add as axioms all LE® instances of Ccc, and to axiomatise those
AVSs satisfying the constant-compound clash we add all LXK instances of Term. To insist
that each particular piece of atomic information is instantiated at a unique node we add all
instances of (F)pay A (G)pa — (F) = (G). Less trivially, to axiomatise the class of acyclic AV
structures we add all instances of —(0 ~ (F')). Proving that these various additions suffice
merely involves making extra checks in the proof of the Killing Lemma. These results are ad-
ditive, so we have the usual menu of logical options concerning AV structures at our disposal
in LKE,

Finally, it should be clear that the method of selective generation proves that the basic
logic, and all the extensions just mentioned, have the finite model property. It then follows
by the usual arguments that these logics are all decidable.

5 Concluding remarks

In L, LXE and LV we have a group of modal languages which mirror the most common
Attribute Value formalisms devised by computational linguists. Given the particularly direct
nature of the correspondences involved, it seems reasonable to claim that propositional modal
languages are the working languages of much computational linguistics.

It seems possible to build on these correspondences. First, there are other Attribute Value
formalisms in the literature which seem amenable to modal analysis. Second, with the link
between attribute value formalisms and modal languages established, it becomes possible to
investigate ideas from modal logic with a view to applying them in computational linguistics,
and in fact there are several modally natural extensions of L, LXE and LV (for example,
adding a universal modality) that seem to be linguistically useful. Third, propositional dy-
namic logic — modal logic’s big brother — beckons, and indeed those computational linguists

28



who use functional uncertainty have already heeded the call [15]. However an adequate dis-
cussion of these topics is not possible here, and so I'll close the paper on a more general
note.

This investigation has shown that modal languages can arise quite naturally when one
tries to formulate simple constraint languages for talking about information systems. It is
easy to see why. Many types of information systems are fairly simple graphical structures, and
modal languages are the simplest languages for talking about graphs. Given that this is so, it
seems natural to investigate whether existing constraint languages from other domains can be
usefully examined from the modal perspective. Intriguingly, at least two common knowledge
representation formalisms — the frames of Artificial Intelligence, and the ¢sa hierarchies of
cognitive psychology — seem open to a modal treatment. Only further work can establish
whether this is a good way of looking at these formalisms, but the idea seems a natural one
and may be worth pursuing.

Acknowledgements I would like to thank Bob Carpenter, Claire Gardent, Gerald Gazdar,
Valentin Goranko, Bob Kasper, Marcus Kracht, Larry Moss, Carl Pollard, Maarten de Rijke,
Jerry Seligman, Edith Spaan and the referee for their comments on this paper and much useful
discussion besides. I am also grateful for the hospitality of the Faculteit der Wiskunde en
Informatica, Universiteit van Amsterdam, where this paper was written, and for the financial
support of the SERC, the Science and Engineering Research Council of the United Kingdom.

References

(1] S.Bird and P. Blackburn, 1991, A Logical Approach to Arabic Phonology, in Proceedings
of the 5th Conference of the European Chapter of the Association for Computational
Linguistics, Berlin.

[2] P. Blackburn, 1989, Nominal Tense Logic, ITLI Prepublication Series LP-90-05, Ams-
terdam.

(3] P.Blackburn, 1990, Nominal Tense Logic and other Sorted Intensional Frameworks, PhD
Thesis, Centre for Cognitive Science, University of Edinburgh, Scotland.

[4] P. Blackburn and E. Spaan, 1991, On the Complexity of Attribute Value Logics, to
appear in Proceedings of the Eighth Amsterdam Colloquium.

[5] R. Bull, 1968, An Approach to Tense Logic, Theoria, 12, pages 171-182.

[6] J. Burgess, 1984, Basic Tense Logic, in Handbook of Philosophical Logic, volume 2, edited
by D. Gabbay and F. Guenthner, Reidel.

[7] G.Gargov, S. Passy and T. Tinchev, 1987, Modal Environment for Boolean Speculations,
in Mathematical Logic and its Applications, edited by D. Skordev, Proceedings of the 1986
Godel Summer School and Conference, Bulgaria, Plenum Press.

29



(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
(21]

G. Gargov and V. Goranko, 1989, Modal Logic with Names I, To appear in Journal of
Philosophical Logic.

G. Gazdar and G. Pullum, 1987, A logic for Category Definition, Cognitive Science,
Research Paper CSRP 072, University of Sussex, United Kingdom.

G. Gazdar, G. Pullum, R. Carpenter, E. Klein, T. Hukari and R. Levine, 1988, Category
Structures, Computational Linguistics, 14, pages 1-19.

G. Hughes and M. Cresswell, 1984, A Companion to Modal Logic, Methuen & Co. Ltd.,

London.

M. Johnson, 1988, Attribute-Value Logic and the Theory of Grammar, CSLI Lecture
Notes Series, University of Chicago Press.

L. Karttunen, 1984, Features and Values, in Proceedings of the 10th International Con-
ference on Computational Linguistics and the 22nd Annual Meeting of the Association
for Computational Linguistics, Stanford, California, pages 28-33.

R. Kasper and W. Rounds, 1986, A logical semantics for feature structures, in Proceedings
of the 24th Annual Meeting of the Association for Computational Linguistics, Columbia
University, New York, pages 257-266.

B. Keller, 1991, Feature Logics, Infinitary Descriptions and The Logical Treatment of
Grammar, PhD thesis, School of Cognitive and Computing Sciences, University of Sussex,
United Kingdom.

M. Kracht, 1989, On the Logic of Category Definition, Computational Linguistics, 15,
pages 111-113.

L. Moss, 1991, Completeness Theorems for Logics of Feature Structures, Indiana Uni-
versity Logic Group Preprint No. IULG-91-2, to appear in Proceedings of the MSRI
Workshop on Logic From Computer Science, edited by Yiannis N. Moschovakis, Springer
Verlag.

F. Pereira, and S. Shieber, 1984, The semantics of grammar formalisms seen as computer
languages, in Proceedings of the 10th International Conference on Computational Lin-
guistics and the 22nd Annual Meeting of the Association for Computational Linguistics,
Stanford, California, pages 123-129.

C. Pollard, Forthcoming, Sorts in unification-based grammar and what they mean, to
appear in Unification in Linguistic Analysis, edited by M. Pinkal and B. Gregor.

A. Prior, 1967, Past, Present and Future, Oxford University Press.

M. Reape, 1991, An Introduction to the Semantics of Unification-Based Grammar For-
malisms, DYANA deliverable R3.2.A, Centre for Cognitive Science, University of Edin-
burgh, Scotland.

30



[22] W. Rounds and R. Kasper, 1986, A Complete Logical Calculus for Record Structures
Representing Linguistic Information, in Proceedings of the 15th Annual Symposium on
Logic in Computer Science, Cambridge, Massachussets.

[23] W. Rounds aﬁd R. Ké,sper, 1990, The Logic of Unification in Grammar, Linguistics and
Philosophy, 13, pages 33-58.

[24] P. Ruhrberg, 1991, Semantic Considerations for Constraint Based Grammar Formalisms,
Thesis, University of Bielefeld, Germany.

31






The ITLI Prepublication Series

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella Sequences with Simple Initial Segments . .
ML-90-06 Jaap van Oosten  Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a Problem of F. Richman
ML-90-07 Maarten de Rijke A Note on the Inte(g%':tabﬂity Logic of Finitely Axiomatized Theories

ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jon%n. Duccio Pianigiani  Solution of a Problem of David Guaspari

ML-90-10 Michiel van Lambalgen Randomness in Set Theory

ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

CT-90-01 John Tromp, Peter van Emde Boas  Computation and Complexity Theory - pgociative Storage Modification Machines

CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

CT-90-03 Ricard Gavalda, Leen Torenvliet, Osamu Watanabe, José L. Balcdzar Generalized Kolmogorov Complexity in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet ~ Bounded Reductions .

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint ssions

CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial

CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs . .

CT-90-08 Fred de Geus, Emest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas Physiological Modelling using RL

CT-90-09 Roel de Vrijer Uni(g}e Normal Forms for Combinatory Logic with Parallel Conditional, a case study in conditional rewriting
X-90-01 A.S. Troelstra Other Prepublications  Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version

X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic

X-90-03 L.D. Beklemishev On the Complexit§ of Arithmetical Interpretations of Modal Formulae

X-90-04 . Annual Report 1989 .

X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic

X-90-06 Valentin Goranko, Solomon Passy ~ Using the Universal Modality: Gains and Questions

X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable

X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Arithmetical Theories

X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate

X-90-10 Sieger van Denneheuvel, Peter van Emde Boas _ An Overview of the Rule Language RL/1

X-90-11 Alessandra Carbone Provable Fixed points in IAy+Q;, revised version

X-90-12 Maarten de Rijke Bi-Unary Int etabi]it{(l;ogic

X-90-13 K.N. Ignatiev Dzhaparidze's Polymodal Cgic: Arithmetical Completeness, Fixed Point Property, Craig's Property
X-90-14 L.A. va Undecidable Problems in Correspondence Theory

X-90-15 A.S. Troelstra Lectures on Li L'gg'i'c. .

1991 LP-91-01 Wiebe van der Hoek, Maarten de Rijke L08iC, Semantics and Philosophy of Langauge Generalized Quantifiers and Modal Logic
LP-91-02 Frank Veltman Defaults in Update Semantics

LP-91-03 Willem Groeneveld ’ll)h?rpamic Semantics and Circular Propositions

LP-91-04 Makoto Kanazawa Lambek Calculus enriched with additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief Dependence Framework
LP-91-06 Zhisheng Huang, Peter van Emde Boas Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, Jaap van der Does ~ The Semantics of Plural Noun Phrases

LP-91-08 Victor Sénchez Valencia Categorial Grammar and Natural Reasoning

LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic

LP-91-10 Johan van Benthem . . Logic and the Flow of Information

ML-91-01 Yde Venema Mathematical Logic and Foundations Cylindric Modal Logic

ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories
ML-91-03 Domenico Zambella the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 ond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders

ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century
ML-91-06 Inge Bethke Finite Structures within Combinatory Algebras
ML-91-07 Yde Venema Modal Derivation Rules

ML-91-08 Inge Bethke Going Stable in Graph Models

ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF

ML-91-10 Maarten de Rijke, Yde Venema Sahl%vist's Theorem for Boolean Algebras with Operators
ML-91-11 Rineke Verbrugge Feasible Interpretability

ML-91-12 Johan van Benthem Modal Frame Classes, revisited

CT-91-01 Ming Li, Paul M.B. Vitﬁsf'i Computation and Complexity Theory Kolmogorov Complexity Arguments in Combinatorics
CT-91-02 Ming Li, John Tromp, Paul M.B. Vitdnyi How to Share Concurrent Wait-Free Variables

CT-91-03 Ming Li, Paul M.B. Vitdnyi Average Case Complexity under the Universal Distribution Equals Worst Case Complexity
CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak ivalence

CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Equivalence for Constraint Sets

CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis X
CT-91-09 Ming Li, Paul M.B. Vitdnyi Combinatorial Properties of Finite Sequences with hi%h Kolmosgorov Complexity
CT-91-10 John Tromp, Paul Vitdnyi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set

CT-91-11 Lane A. Hemachandra, Edith Spaan  Quasi-Injective Reductions

CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

CL-91-01 J.C. Scholtes Computational Linguistics  Kohonen Feature Maqg in Natural Language Processing
CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van den Berg A Formal Discourse Grammar tackling Verb Phrase Anaphora

X-91-01 Alexander Chagrov, Michael Zakharyaschev Other Prepublications The Disjunction Property of Intermediate Hezﬁgtsiﬁond Logics

X-91-02 Alexander ov, Michael Zakharyaschev On the Undecidabihﬂ the Di’si]'hunction Property of Intermediate Propositional Logics
X-91-03 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic

X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics

X-91-05 Johan van Benthem Temporal Logic

X-91-06 Annual Report 1990

X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement

X-91-08 Giorgie Dzhaparidze Logic of Tolerance . . . . . .
X-91-09 L.D. Beklemishev On Bimodal Provability Logics for II;-axiomatized Extensions of Arithmetical Theories
X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice

X-91-11 Michael Zakharyaschev Canonical Formulas for K4. Part I: Basic Results .

X-91-12 Herman Hendriks Flexibele Categoriale Syntaxis en Semantiek: de proefschriften van Frans Zwarts en Michael Moortgat
X-91-13 Max I. Kanovich The lﬂtiglri;:ative Fra%_x'nent of Linear Logic is NP-Complete

X-91-14 Max 1. Kanovich The Homn ent of Linear LAOIEE is NP-Complete | . . . .
X-91-15 V. Yu. Shavrukov Subalgebras °§m iagonalizable Algebras of Theories containing Arithmetic, revised version
X-91-16 V.G. Kanovei Undecidable Hypotheses in Edward Nelson's Internal Set Tl .

X-91-17 Michiel van Lambalgen Independence, omness and the Axiom of Choice, Revised Version .
X-91-18 Giovanna Cepparello New Semantics for Predicate Modal Logic: an Analysis from a standard point of view
X-91-19 Papers presented at the Provability Interpretability Arithmetic Conference, 24-31 Aug. 1991, Dept. of Phil., Utrecht University
1992 LP-92-01 Victor Sdnchez Valencia Lambek : an Information-based Categorial Grammar

LP-92-02 Patrick Blackburn Modal Logic and Attribute Value Structures . .

ML-92-01 A.S. Troelstra Comparing the theory of Rle;i)resentatwns and Constructive Mathematics

CT-92-01 Erik de Haas, Peter van Emde Boas Object Oriented Application Flow Graphs and their Semantics

X-92-01 Heinrich Wansing e Logic of Information Structures

X-91-02 Konstantin N. Ignatiev The Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic of X;-conservativity



The ITLI Prepublication Series

1986 86-01 The Institute of Language, Logic and Information
86-02 Peter van Emde Boas A Semantical Model for Integration and Modularization of Rules
86-03 Johan van Benthem Categorial Grammar and Lambda Calculus
86-04 Reinhard Muskens A Relational Formulation of the Th of Types . .
86-05 Kenneth A. Bowen, Dick de Jongh Some Complete Logics for Branched Time, Part I Well-founded Time, Forward looking Operators
%6—06 ohan van Benthem Logical Syntax .
987 87-01 Jeroen Groenendijk, Martin Stokhof ~ Type shifting Rules and the Semantics of Interrogatives
87-02 Renate Bartsch Frame Representations and Discourse Representations .
87-03 Jan Willem Klop, Roel de Vrijer Unique Normal Forms for Lambda Calculus with Surjective Pairing
87-04 Johan van Benthem Polyadic;lganliﬁers
87-05 Victor Sénchez Valencia Traditional Logicians and de Mor%an's Example
87-06 Eleonore Oversteegen Temporal Adverbials in the Two Track Theory of Time
87-07 Johan van Benthem Categorial Grammar and Type Theory
87-08 Renate Bartsch The Construction of Properties under P tives .
87-09 Herman Hendriks . Type Change in Semantics: The Scope of Quantification and Coordination
1988 LP-88-01 Michiel van Lambalgen Logic, Semantics and Philosophy of Language:  Ajgorithmic Information Theory
LP-88-02 Yde Venema Expressiveness and Completeness of an Interval Tense Logic
LP-88-03 Year Report 1987
LP-88-04 Reinhard Muskens Going partial in Montague Grammar
LP-88-05 Johan van Benthem Logical Constants across Varying Types
LP-88-06 Johan van Benthem Semantic Parallels in Natural Languaﬁsznd Computation
LP-88-07 Renate Bartsch Tenses, Aspects, and their Scopes in Discourse
LP-88-08 Jeroen Groenendijk, Martin Stokhof Context and Information in D ic Semantics
LP-88-09 Theo M.V. Janssen A mathematical model for the CAT framework of Eurotra
LP-88-10 Anneke Kleppe . . A Blissymbolics Translation Program
ML-88-01 Jaap van Qosten Mathematical Logic and Foundations: 1 ifschitz' Realizabiility
ML-88-02 M.D.G. Swaen The Arithmetical Fragment of Martin L6f's Type Theories with weak Y-elimination
ML-88-03 Dick de Jongh, Frank Veltman Provability LOI-E:S for Relative Interpretability
ML-88-04 A.S. Troelstra On the Early History of Intuitionistic Logic
ML-88-05 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics
CT-88-01 Ming L, Paul M.B.Vitanyi Computation and Complexity Theory: Ty Decades of Applied Kolmogorov Complexity
CT-88-02 Michiel HM. Smid General Lower Bounds for the Partitioning of Range Trees

CT-88-03 Michiel H.M. Smid, Mark H. Overmars, Leen Torenvliet, Peter van Emde Boas X
. M’amtaxmndﬁ Multiple Representations of Dynamic Data Structures
CT-88-04 Dick de Jongh, Lex Hendriks, Gerard R. Renardel de Lavalette Computations in Fragments of Intuitionistic Propositional Logic

CT-88-05 Peter van Emde Boas Machine Models and Simulations (revised version)

CT-88-06 Michiel H.M. Smid A Data Structure for the Union-find Problem having good Single-Operation Complexity
CT-88-07 Johan van Benthem Time, Logic and Computation

CT-88-08 Michiel HM. Smid, Mark H. Overmars, Leen Torenvliet, Peter van Emde Boas Multiple Representations of Dynamic Data Structures
CT-88-09 Theo M.V. Janssen Towards a Universal Parsing Algorithm for Functional Grammar

CT-88-10 Edith Spaan, Leen Torenvliet, Peter van Emde Boas Nondeterminism, Fairness and a Fundamental Analogy
CT-88-11 Sieger van Denneheuvel, Peter van Emde Boas Towards implementing RL
X-88-01 Marc Jumelet Other prepublications:  On Solovay's Completeness Theorem

1989 1.P-89-01 Johan van Bentheml08ic, Semantics and Philosophy of Language:The Fine-Structure of Categorial Semantics
LP-89-02 Jeroen Groenendijk, Martin Stokhof Dynamic Predicate Logic, towards a compositional, non-replgesentauona] semantics of discourse
‘em,

LP-89-03 Yde Venema Two-dimensional Modal Logics for Relation Algebras and poral Logic of Intervals
LP-89-04 Johan van Benthem Lan, e in Action

LP-89-05 Johan van Benthem M ic as a Theory of Information

LP-89-06 Andreja Prijatelj Intensional Lambek Calculi: Theory and Application

LP-89-07 Heinrich Wansin, The 'y Problem for S?uential Propositional Logic

LP-89-08 Victor Sdnchez Valencia Peirce's Propositional Logic: From Algebra to Graphs

LP-89-09 Zhisheng Huang Dependency of Belief in Distributed Systems

ML-89-01 Dick de Jongh, Albert Visser Mathematical Logic and Foundations: Explicit Fixed Points for Interpretability Logic
ML-~89-02 Roel de Vrijer Extending the Lambda Calculus with Surjective Pairing is conservative

ML-89-03 Dick de Jongh, Franco Montagna ~ Rosser Orderings and Free Variables

ML-89-04 Dick de Jongh, Marc Jumelet, Franco Monta, On the Proof of Solovay's Theorem

ML-89-05 Rineke Verbrugge Z-completeness and Bounded Arithmetic

ML-89-06 Michiel van Lambalgen The Axiomatization of Randomness

ML-89-07 Dirk Roorda Elementary Inductive Definitions in HA: from Strictly Positive towards Monotone
MIL-89-08 Dirk Roorda Investifatlons into Classical Linear Logic

ML-89-09 Alessandra Carbone . Provable Fixed 1points in TAg+€21

CT-89-01 Michiel HM. Smid  Computation and Complexity Theory: ic Deferred Data Structures

CT-89-02 Peter van Emde Boas Machine Models and Simulations

CT-89-03 Ming Li, Herman Neuféglise, Leen Torenvliet, Peter van Emde Boas  On Space Efficient Simulations
CT-89-04 Harry Buhrman, Leen Torenvliet A Comparison of Reductions on Nondeterministic Space . .
CT-89-05 Pieter H. Hartel, Michiel H.M. Smid, Leen Torenvliet, Willem G. Vree A Parallel Functional Implementation of Range Queries

CT-89-06 H.W. Lenstra, Jr. Finding Isomorphisms between Finite Fields o
CT-89-07 Ming Li, Paul M.B. Vitanyi A Theory of Learmnf Sim;tzle Concepts under Snpgle‘ Distributions and

Average Case Complexity Tor the Universal Distribution (Prel. Version) | .
CT-89-08 Harry Buhrman, Steven Homer, Leen Torenvliet Honest Reductions, Completeness and Nondeterminstic Complexity Classes
CT-89-09 Buhrman, Edith Spaan, Leen Torenvliet On Adaptive Resource Bounded Computations
CT-89-10 Sieger van Denneheuvel The Rule Language RL/1

CT-89-11 Zhisheng Huang, Sieger van Denneheuvel, Peter van Emde Boas Towards Functional Classification of Recursive Query Processing
X-89-01 Marianne Kalsbeek ~ Other Prepublications:  An Orey Sentence for Predicative Arithmetic

X-89-02 G. Wagemakers New Foundations: a Survey of Quine's Set Theory

X-89-03 A.S. Troelstra Index of the Heyting Nachlass

X-89-04 Jeroen Groenendijk, Martin Stokhof %mmic Montague Grammar, a first sketch

X-89-05 Maarten de Rijke e Modal of In ty .
X-89-06 Peter van Emde Boas Een Relationele Semantiek voor Conceptueel Modelleren: Het RL-project
199(0 Logic, Semantics and Philosophy of Language

LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives

LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar .

LP-90-03 Renate Bartsch Concept Formation and Concept Composition

LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar

LP-90-05 Patrick Blackburn Nominal Tense Logic .

LP-90-06 Gennaro Chierchia The Variabli(tiy of Impersonal Subjects

LP-90-07 Gennaro Chierchia hora an c Logic

LP-90-08 Herman Hendriks Flexible Moutﬁgue Grammar ) .
LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a flexible dynamic Montague grammar
LP-90-10 Theo M.V. Janssen Models for Discourse Markers

LP-90-11 Johan van Benthem General Dynamics . . .

LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic

LP-90-13 Zhisheng Huang Logics for Belief Dependence .

LP-90-14 Jeroen nendijk, Martin Stokhof Two Theories of ]()%namlc Semantics

LP-90-15 Maarten de Rijke The Modal Logic ¢ Inug:ahty .

LP-90-16 Zhisheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience . .
LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

ML-90-01 Harold Schellinx Mathematical Logic and Foundations  [somorphisms and Non-Isomorphisms of Graph Models



