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Abstract. The problem whether Lambek Calculus is complete w.r.t. Relational Semantics was
raised several times, cf. [vB88] and [vB91]. In this paper, we show that the answer is in the
affirmative. More precisely, we will prove that that version of the Lambek Calculus which
does not use the empty sequence is strongly complete w.r.t. those relational Kripke models
where the set of possible worlds, W, is a transitive binary relation, while that version of the
Lambek Calculus where we admit the empty sequence as the antecedent of a sequent is strongly
complete w.r.t. those relational models where W = U x U for some set U. We will also look
into extendability of this completeness result to various fragments of Girard’s Linear Logic as
suggested in [vB91, p.235], and investigate the connection between the Lambek Calculus and
language models.

In [vB88], Johan van Benthem introduces Relational Semantics (RelSem for short), and states
Soundness Theorem for Lambek Calculus (LC) w.r.t. RelSem. After doing this, he writes: “it
would be very interesting to have the converse too”, i.e., to have Completeness Theorem. The
same question is in [vB91, p.235]. In the following, we give proofs for Strong Completeness
Theorems for different versions of LC.

First of all, let us define the language of LC. Given a denumerable set P of primitive symbols,
we let the set of formulae Formy,c be the smallest set containing every primitive symbol and
closed under ‘\’, ‘/’, and ‘o’, i.e., if A, B € Formy,c, then A\B,A/B, A ¢ B € Formy,c. The
set of sequents is the set of all expressions of the form A;,..., A, = Ay where n is a positive
integer and A; € Formj,c for each ¢ < n.

LC is given by the following axiom and rules of inference, where A, B, C stand for formulae
and z,y, z stand for finite sequences of formulae including the empty sequence & unless the
contrary is asserted.

Axiom:

0) A= A.

Special thanks to Hajnal Andréka, thanks to Ildiké Sain and Andrds Simon. Research supported by Hungarian
National Foundation for Scientific Research grant No. 1911.



Rules of inference:

t=>A y,B,z=C Az= B
(1\) 7. A\B.z = C z non-empty (2\) z > A\B z non-empty
r=A y,B,z=C z,A= B
1 - - -
(1/) v.B/Az,75C T non-empty (2/) z> BJA z non-empty
=>4 y:>B 37,A,B,y=>C
(3) 2.y Ae B T,y non-empty (4) VY FEY:
(5) r=A A=1B .
n-empty.
7> B T no pty

A theorem of LC is a sequent deducible in LC (Fy¢), i.e., by the usual recursive definition, a
sequent is a theorem iff it is an instance of (0), or it is given by some rule of inference from

some theorem(s). More generally, let T" be a set of sequents and ¢ be a sequent. We say that
¢ i1s LC-deducible from T iff

(i) p€T or
(i1) ¢ is an instance of (0) or
(iii) there is a set of sequents A each of its elements is LC-deducible from I' and there is
an inference rule such that % is an instance of this rule.

REMARK: If the set of primitive symbols is the set of basic types, then the formulae are
types and, roughly speaking, ‘=’ of LC corresponds to the derivability relation of Categorial
Grammar. On the other hand, if P is considered as a set of propositional variables, then LC
is a Gentzen-type inference system, and hence it is a fragment of Linear Logic.

We give a Kripke-style semantics for LC, where we restrict the class of ordinary Kripke
models with ternary accessibility relation to the class of models where the set of possible
worlds consists of ordered pairs.

DEFINITION OF RELATIONAL SEMANTICS: By a relational (Kripke) model for LC we mean
an ordered triple (W, C,v) which is a Kripke model in the usual sense (i.e., W is a set of
possible worlds, C' is a (ternary) accessibility relation, and v is an evaluation of expressions)
and for which the following hold. W is a transitive binary relation on some set U, and
C C W x W x W such that, for every z,y,z € W, Czyz holds iff {z} = {z} o {y}, i.e, iff
there are a,b,c € U such that = (a,b), y = (b,¢) and z = (a, c). Moreover, let

Ezxp def {Ay,..., A, : A; € Formyc,1 <i <n, for some n}U {¢: ¢ is a sequent}

and let v : Exp — P(W) be such that, for every A, B € Formj,c and sequence z of formulae,
v(z,A) =v(z e A) and
v(AeB) ¥ {z € W:(3z € v(A))(Iy € v(B))Cryz}

v(A\B) & {y € W : (V& € v(A)V2(Czyz — z € v(B))}

v(BJA) ¥ {z € W : (Vy € v(A)Vz(Czyz — z € v(B))}
v(z = A) o (W~ v(z)) Uv(A).

We say that a sequent ¢ of LC is true in @ model (W,C,v), in symbols (W,C,v) E ¢, iff
v(p) = W, or, equivalently, the sequent Ay,..., A, = Ag is true in the model above iff

v(Aj)o---ov(An) C v(Aop).
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A formula is valid with respect to RelSem iff it is true in every model. We denote this by
ERrR ¢. We say that ¢ is a (RelSem) consequence of T, in symbols I' =R ¢, iff, for every
model (2, v), if (A,v) E T, then (A, v) = ¢, where (A, v) = T' abbreviates that, for every
Ypel, (Av) .

REMARK: In the above definition, Ezp can be thought of as the set of formulae of a modal
logic with three binary modalities: ‘®’, ¢\’, ‘/’. Then C is the accessibility relation corre-
sponding to the possibility-type modality ‘e’, and the residuations are, in a certain sense,
dual modalities of ‘o’. (Indeed, the modality ‘\’ is related to the modality ‘@’ in a similar
fashion as the temporal modality ‘Always in the past’, denoted as ‘[P]’, is related to ‘Some-
time in the future’, denoted as ‘(F)’, in, e.g., [ANS91] and [Go87]. In [ANS91], ¢(P)’ is called
the conjugate of ‘(F)’ and ‘[P]’ is the dual of ‘(P)’. So ‘\’ is a dual of a conjugate of ‘e’
(=(A\ — B) = A1 ¢ B). 1t is instructive to meditate over the two steps leading to ¢\’ from
‘e’. The obvious dual of ‘e’ is given by

v(A™'\B) = {z : (Vz € v(4))(Jy € v(B))Czyz}.
A conjugate of this is defined as
v(A\B) = {2z : (Vz € v(A))(Jy € v(B))Czzy}.
Another conjugate of the same modality is defined by
v(B/A) = {z : (Vz € v(A))(Jy € v(B))Czzy}.)

Further, ‘=’ is considered as classical implication. We can extend the relation (W, C,v) | ¢

for ¢ € Ezp in the usual way, i.e., it holds iff v(yp) = W.

Now, we can formulate the main theorem (which was first presented in [Mi91]) of this section.

THEOREM 0. (Strong Completeness Theorem for LC w.r.t. RelSem) For any set I' of sequents,
and for any sequent ¢,

Frice if  Tlkre.
REMARK: In the case of I' = ), we have Weak Completeness Theorem w.r.t. RelSem.

COROLLARY 0. (Compactness Theorem) For any set I' of sequents and sequent ¢, if I =R ¢,
then there is a finite A C T" such that A =R ¢.

PROOF OF COROLLARY 0: By Theorem 0 it is enough to show that if I' Fy,¢ ¢, then A Fic ¢
for some finite subset A of I'. And this is straightforward by the definition of LC-deduction. i

We will prove Theorem 0 using Theorems 1 and 2 below, but we need some lemmas and
definitions before formulating them.

LEMMA 0. For any set I' of sequents (including the empty set 0),
F'trc A, (A\B) = B and I'tpLec (B/A), A = B.

PROOF: Let 2 = A, C = B and y = z = © the empty sequence. Then apply (1\) and (1/),
respectively. i



LEMMA 1. For any set T' of sequents, if ' Fpc A = C, then T k¢ C\B = A\B and
r I_LC B/C = B/A.

PROOF: Assume I' b c A = C. Then, by (0) and (3), I FLc A,(C\B) = C ¢ (C\B).
Applying (4) to the result of Lemma 0 we have I' F,c C o (C\B) = B. Then, by (5),
I'Fue A,(C\B) = B, so, by (2\), I'Fre C\B = A\B

Using (2/) instead of (2\) we get I ki,c B/C = B/A too. 1

LEMMA 2. For any set I' of sequents, if I' F,c B = D, then T b c A\B = A\D and

PRroOOF: By Lemma 0 we have I' k¢ A,(A\B) = B, so, by the assumption and by (5),
T Fic A,(A\B) = D. Thus, by (2\), T Frc A\B = A\D.
Again, use (2/) for the other case. B

LEMMA 3. For any set I" of sequents,

PbcC=A\B if ThrrcAC=DB and
T'tcC=BJ/A iff ThrycC,A= B.

PRrOOF: The ‘if’ direction is given by (2\) and (2/), respectively.

So assume I' ¢ C = A\B. Then, by (3), ' Fc A,C = A ¢ (A\B). By Lemma 0 and
(4) T FLc Ae(A\B) = B, so, by (5), I' FLc A,C = B.

The proof is similar for ‘/°. 1

b

Now we define the relations ‘<p’ and ‘=p’ on Formy,g, for any set I" of sequents. We let, for

every A, B € Formj,

A<r B iff 'rLc A= B and
A =r B iff (A Sl" B and B SI‘ A)

Let ¥ be the formula algebra of LC, i.e.,

T L (Formrc, \, /, o)

where ‘\’, ¢/’ and ‘e’ denote the obvious operations on Formj,c.

LEMMA 4. For any set I' of sequents, ‘=r’ is a congruence relation on ¥ and, for any
A,B,C,D such that A =r B and C =r D, we have

A< C iff B <r D.

PROOF: By (0) and (5) it is an equivalence relation.

Assume that A =p B and C =r D. Then (3) and (4) imply A e C =r B e D. Using
Lemmas 1, 2 one easily shows that A\C =r B\D and A/C =r B/D. Now, we assume that
A <r C holds too, i.e., we have I F;,c A = C as well. Then, since I' F,c B = A, we have,
by (5), ' Frc B = C. Since I' Fc C = D, using (5) again, we get I' F,c B = D. The

proof for the other direction is similar. §

Let £r be the factor structure of T by ‘=r’, i.e.,

Lp CLS{ (Lv \’/7.7 _<..F>
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where L is the set of equivalence classes, i.e., L = {A: A € Formy,c} where A = {B: A =p
B}, and A\B = A\B, A/B=A/B,AeB =AeB and A <r B iff A <r B. Note that this
last definition is correct by Lemma 4.

DEFINITION OF RELATIONAL STRUCTURE (RS):
A€RS ff A=(4,\,/,0,5)

where A is a non-empty set, ‘\’, ¢/’ and ‘@’ are arbitrary binary operations on A, and ‘<’ is
a binary relation on A.
Clearly, £r € RS for arbitrary set I" of sequents.

Let ¥ be the following set of formulae (in the first-order language with equality of RS)
where z,y, z, u are variables:

(Al) z <z

(A2) (zey)ez<uze(yez) (A3) ze(yez)<(zey)ez
(44) we(z\y) <y (45) (y/z)ez <y

(46) zoy<z—y<a\s (A7) zey<z—oa<zfy

(A8) z<yAy<z—oa<z
(A9) z<yAz<u—zez<yeu
(A10) z<yAy<z—oz=y.

These axioms say that an 2 € RS satisfying them is an ordered semigroup, where ‘<’ is a
partial ordering, ‘e’ is the semigroup operation, which is monotonic w.r.t. ‘<’; and z\y is the
greatest element such that z e (z\y) < y and similarly for y/z.

Now we are ready to formulate Theorem 1, which we will prove a little later.

THEOREM 1. For any set I' of sequents,
grEX

where L£r is the factor structure and ¥ is the set of formulae above.

DEFINITION OF REPRESENTABLE RELATIONAL STRUCTURE (RRS):
2 € fullRRS it  ™A=(A4,\,/,0,Q)

where A = P(W), the power set of W, for some fixed transitive binary relation W and the
operations of 2 are left and right residuations relativized to W and relational composition,
respectively, i.e., for any binary relations on U,

a\b def {{z,y) € W :Vz((z,2) € a — (z,y) € b)}

b/a def {{(z,y) e W :Vz({y,2) € a — (z,2) € b)}
aob® {(z,y) € W:32((z,2) € an(z,y) € b}

Let RRS = SfullRRS, i.e., RRS consists of the substructures of every fullRRS.

5



We say that a sequent Ai,...,A, = Ap is true in a RRS U under the valuation v, in
symbols (2, v) E A1,..., A, = Ao, iff

v(A1)o---0v(An) Cv(A4og)

where v(4;) (¢ < n) is given by the natural extension of v from P to Formyc, i.e., for any
formulae A, B,

v(A\B) = v(A)\v(B) v(B/A) =v(B)/v(A) v(AeB)=v(A)ouv(B).

In other words, v is a homomorphism from the formula algebra given above into an 2 € RRS
(here we disregard ‘C’, of course).

The main step in the proof of Theorem 0 is the following representation theorem, where IRRS
denotes the collection of isomorphic copies of all elements of RRS.

THEOREM 2. For every A € RS,
AL if A e€IRRS.

Now we can prove Theorem 0 applying Theorems 1 and 2.

PROOF OF THEOREM 0: Soundness is easy to check.
For the other direction we need the following.

LEMMA 5. Let 2 be a RRS with universe A and v be a valuation. Then there is a relational
(Kripke) model (W,C,v) with W = | J A such that

(A, v) = iff (W,C,v) E o
for each sequent . The other direction holds as well.

PrOOF OF LEMMA 5: Easy by the definitions. |l

Now, assume I' ¥pc A;,...,An = B. We will show that I" kg Ay,...,A, = B. Let
A=Aje---0A, By (0)and (3) we have I ¢ A1,..., A = A1 e---0 A, so, by (5),
I ¥ic Ay,...,A, = BimpliesT ¥ ,c A= B, ie., A £r B in £r. By Theorems 1 and 2 £1
is isomorphic to a RRS £, so let h : £ — £ be an isomorphism. Let v be a map such that
v(p) = p for every p € P. Then it is easy to see that v can be extended such that v(C) = C
for every C' € Formyc. Then (£r,v) is isomorphic, in the obvious sense, to (£f,v'), where
v'(D) = h(v(D)) for every D € Formc. By Z$F§ we have (£, v') ¥ Ay,..., A, = B, so,
by Lemma 5, (W,C,v') & Ay,..., A, = B for a (Kripke) model (W,C,v'). Since I is true
in (£,v'), so is it in (W,C,v'). So we have I" jg A4,..., A, = B. 1

To make the proof above complete we prove Theorems 1 and 2.

PROOF OF THEOREM 1: (Al) is given by (0). (A2) and (A3) are true in £r because ‘,
and so ‘e’ are associative. (A4) and (A5) are guaranteed by Lemma 0. (A6) and (A7) are
true by (2\) and (2/), respectively. (A8) holds by (5), and (3) and (4) imply (A9). Finally,
(A10) is true because of the following. If A <p B, then I' Fyc A = B and if B <r A, then
I'tLc B= A. So A=r B, ie., A= B, the two equivalence classes are the same. [

The next proof will be similar to the proof of Lemma 3 in [An91].
PROOF OF THEOREM 2: It is easy to check that ¥ is valid in every RRS.

6



For the other direction, let us assume that 2 € RS and 2 |= . Step by step we will build
a directed graph G = (U, E, {) the edges (E) of which will be labelled (¢) by the elements of
our structure . We will use this graph to define a representation function ‘rep’, which will
be an isomorphism from 2 to a structure of binary relations on U.

In each step a, we will define a directed graph G4 = (Uq, Eqa,%a), where U, is the set of
nodes, E, C U, X U, is the set of edges, £o : E, — A is the labelling function (A is the
universe of 2) such that

(I) Eq is irreflexive and transitive

(D) (z,y),(y,2) € Eq imply £q (2, 2) < Lo (z,y) 0 La (y,2).
Choose an infinite cardinal « such that |A| < k. Let V be a set of cardinality «, and let
o:k— 34 x 2V x 3 be such that

(V{a,b,c,z,y,i) €*Ax 2V x3)(VA < k)Fv < k) A <vAa(v+1) = (a,b,ec,z,y,i).

To see that there is such a function o, let f : k — 34 x 2V x 3 x k be a bijection. If
we fix a,b,c,z,y,1, then, for x many ordinals v, f(vy) = (a,b,¢,z,y,1,6) for some § < k.
So, for each A < &, there is v > A such that f(v) = (a,b,¢,z,y,7,8') for some §' < k. Let
g:3Ax?2V x3xk = 3Ax?V x3 with g (a,b,¢,z,y,1,A) = (a,b,¢c,z,y,1) for each A < x. If we
define o(v + 1) = ¢g(f(v)) and o(v) arbitrary for limit v < x, then o meets the requirements.

Oth step. For each element c of A, we choose two different elements from V', say u. and
ve. Let Uy = {ug,v.: ¢ € A}. We can assume that |V \ Uy| = k. Let Ey = {{u,v.) : c € A}
and £y (u.,v.) = c. Clearly, (I) and (II) hold.

a + 1st step. Let o(a+1) = (c,a,b,z,y,1). If £y (z,y) # ¢, then go to a + 2nd step.
Otherwise we have three subcases according to the value of ¢.

¢ = 0. Choose an element from V \ U,, say, u. Let

Uo,_|_1 = UQ, U {’LL}

Ea+1 = Ea ) {(u,p) : (iE,p) € Ea} U {<u’x)}
lat1 = La U{((u,p),a 0Ly (z,p)): (z,p) € Ea} U {((v,2),0a)}.

u
a ///\\
7 °
v / \ch
7
- /e N
X / > |
/
¥a-d
d ¥ /
/
/
p v
Figure 1.

¢ = 1. Choose an element from V' \ U,, say, v. Let

Ua+1 = UQU{’U}
Eat1=EaU{{g,v) : (¢,9) € Ea} U {(y,0)}
lat1 = La U {{{g,v) ,la (g,y) ® @) : (¢,y) € Ea} U {({y,v),a)}.
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Figure 2.

i =2.If ¢ £ aeb, then go to next step. Otherwise let z € V \ U, and

Uat+1 = Ua U {2}
Eot1=E,U{(r,z) : (r,z) € Eo} U{(z,s): (y,s) € Ea} U {(z,2),(z,y)}
lay1 = La U{{(z,2),0a),((2,y),b)}U
{{(r,2) ,La (r,z) 0 a) : (r,z) € Ea} U {((2,5),b 0 La(y,s)) : (y,5) € Ea}.

z
N
/// \\\ b
‘7, \ A
Ve \ ~
e / ¢ N
\
"’{doa
d / b'eM e
/ \
r S
Figure 3.

It is easy to check that property (I) is preserved in the a + 1st step.

We also have to prove that the new transitive triangles constructed in the a+ 1st step have
property (II). We have three cases according to the value of ¢ above.

1 = 0. We have to show that as < a4 @ ag. By induction we have a; < ay ® a3, so, using
(Al), (A3) and (A9), as = aeay; < aea; eaz = ag®as, hence, by (Al) and (A8), a5 < aqeas.

Y
a
x Y%
\» 05
04 A 01
Qs
Figure 4.



t = 1. We want as < a3 e ag. By induction hypothesis a; < a3 @ a1, so as = az ea <
a3 ea; ea = az ® a4.

v
a
qy i
Qg A
az N Q‘
a3
4y > G2
Figure 5.

t = 2. We show that a; < as @ ag. By induction hypothesis a3 < a4 @ a3 and a4 < a; @ c.
Soaz <agsea; <ayecea; <ajeaebea; =aseas.

r3
a b

c

X > 5

ag ay
(*N] /# E Y @2

Qs

r > S

Figure 6.

Thus Go41 satisfies (II) as well.
Limit step. If o is a limit ordinal, then let Uy = gy Ugs Ea = Upcq Ep and £y =

Ug<a 5
Let G = Gy, ie.,

U=|JUs, E=|JE, and =[]/

a<lK a<lkK a<lk

Clearly, G satisfies (I) and (II).
Now, we are ready to define the representation function ‘rep’. For every c € A, let

rep(c) = {(u,v) : £{u,v) < c}.

We have to show that ‘rep’ is an isomorphism from 2 to a structure whose elements are
binary relations on the set of nodes of our graph.
We prove that ‘rep’ preserves ‘<’, i.e.,

if  a<y, then  rep(a) C rep(b).
Indeed, if £ (u,v) < a, then, by (A8), £(u,v) < b, so (u,v) € rep(a) implies (u,v) € rep(d).

9



Now we show that ‘rep’ is one-one, i.e.,

if  a#b, then rep(a) # rep(b).

Indeed, if rep(a) C rep(b), then for every (u,v) € E, if £(u,v) < a, then £(u,v) < b. Since
£{uq,v,) = a (see the Oth step), we have a < b. By symmetry b < a whenever rep(b) C rep(a).
Thus, by (A10), a = b.

We check that ‘rep’ preserves the operations too.

rep(a @ b) = {{u,v) : £ {u,v) < aeb} O (u,v) : Fz(L(u,z) <aAl(z,v) <b)} =
= {{u,z) : £{u,z) < a}o{(z,v): £(z,v) < b} =
= rep(a) o rep(b).
(i) (C): Let ¢ = £(u,v). Then, for some a + 1, o(a + 1) = (¢, a,b,u,v,2). So in the

a + 1st step we put a z into the graph such that £ (u,z) = a and ¢ (z,v) = b.
(2): By properties (I) and (II), and by the transitivity of ‘<’.

rep(a\b) = {(u, ) : £ (u,) < a\b} L {{u,v): a o £ {u,v) < b} &

= {{u,v) : Va(£ (,0) S a = £{z,u) o £ {u,0) S B} 2
= {{u,v) : V2(£ (z,u) < a— £(z,v) <b)} =
= rep(a)\rep(b).

(i1) c < a\biff aec < b The proof is essentially the same as that of Lemma 3.
(iii) (€): By monotonicity of ‘e’.
(2): The following triangle is in the graph.

¢

z
Q. q'l(“u")
L<u 0>
u > U
Figure 7.

(iv) (©): By properties (I) and (II).
(2): The figure above is in G, so if £(z,u) < a, then £(z,u) @ £(u,v) < ae l(u,v) =
(' u) @l (u,v) =L(z',v) <b.

rep(b/a) = {(u,v) : £ (u,v) < b/a} &

= {(u,v) : V2(€(v,2) < a— £(u,v) o £(v, 2
:{< ) > ( <7Z>Sa_’€<u’z)gb)}:
= rep(b)/rep(a).

(v) By the “translation” of Lemma 3.
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(vi) (€): By monotonicity of ‘e’.
(2): The following picture is in G.

VA
LLuu>eq. a
<u,
U > U
Figure 8.

(vii) (C): By properties (I) and (II).

(2): By the picture above £ (u,v) @ a < b.

Thus ‘rep’ is the desired isomorphism, since the image of %, ({rep(a) : a € A}, \,/,0,C),
is in RRS. So Theorem 2 is proved. i
REMARK: If, in the definition of Relational Semantics, we require that W = U x U for some
set U, then (Weak) Completeness Theorem fails. Indeed, the sequent y = y e (y\y) is valid
in those RRS’s in which W has the form U x U, because v(y\y) 2 Id N (U x U), i.e., the
value of y\y contains the identity relation. On the other hand, let W = {(0,0),(0,1)} and
consider P(W) € RRS. Let a = {(0,1)}. Then a\a = {(0,0),(0,1)} and ao (a\a) = 0, so
a £ ao(a\a). Thus the sequent y = y ¢ (y\y) is not valid in RRS and, therefore, it is not
derivable in LC. See also [D090)].

Theorems 9 and 10 investigate this U x U-type semantics and state strong completeness
of certain versions of LC w.r.t. it.

Let LCD be LC plus the following two rules:

t=A =B (7) z=AMNB
r=ANB xr=>A z=B

(6)
Let © be ¥ plus the following two formulae:
(A10) z<zAz<y—-z<ally (All) z<zNMy—z<zAz<y.
THEOREM 3. For each sequent ¢ of the language of LCD and set I of sequents,

T }—LCD (%2 iff T t:R’ "2

where in the definition of the consequence relation ‘=g’ we further require that v(AM B) =
v(A) Nv(B).

PROOF: Soundness is easy to check.
For the other direction, since the other modifications are obvious, we show that the above
representation function remains isomorphism. Indeed, by (A10) and (A11),

rep(amb) = {(u,v) : £ {u,v) <alb} = {(u,v): €(u,v) <a}N{{u,v):l{u,v) <b} =
= rep(a) Nrep(d).
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COROLLARY 1. If we add the axiom
A B=BeA

to LC (or to LCD), then we have Strong Completeness Theorem w.r.t. Symmetric RelSem,
i.e., we consider only those models (W,C,v) for which v(A ¢ B) = v(B e A) for all formulae
A, B. Moreover, we have Compactness Theorem too.

PRrROOF: We add the formula
aeb<bea

to ¥ (or to ©). Then

rep(a) o rep(b) = rep(a @ b) = rep(b e a) = rep(bd) o rep(a),

so ‘rep’ is an isomorphism again. Compactness can be proved as in Corollary 0. I

REMARK: As in the case of Theorem 0, we have also Weak Completeness Theorem, i.e., a
sequent Aj,..., A, = B is derivable in the above version of LC iff v(A;)o0---0v(A,) C v(B)
for every symmetric representable relational structure and valuation v.

Now we prove that strong completeness fails if we add ‘L)’ to the set of operations of LC.
DEFINITION: Let {U,N,0} C M C {U,N,0,—, ~1,0,1d,\,/}. Then R(M) is the class of all

algebras (isomorphic to ones) whose elements are binary relations and whose operations are
the members of M.

THEOREM 4. R(M) is a quasi-variety which is not finitely axiomatizable.

PROOF: R(M) is a quasi-variety because it is closed under I, P, Pu and S and contains
the trivial algebra, since the class of all representable relational algebras, RRA, has these
properties.

In the proof of Theorem 4, in [An91], Hajnal Andréka defines algebras A,, whose operations
are the members of a fixed M’ which satisfies {I,U,e} C M' C {M,,e,—, 0,1}, and whose
‘M, U, o’-reducts are not representable while their ultraproduct is representable.

If we add ‘\” and ‘/’ to the operations of A,, then the ‘M,L, o’-reducts are still not repre-
sentable, and the ultraproduct of these algebras is representable, since ‘\’ and ¢/’ are term
definable. Indeed, a\b = —(a'e(—b)) and b/a = —((—b) ® @). Thus the above mentioned proof

of Andréka works in our case as well. |

Let Qe(R(M)) denote the class of all quasi-equations that hold in R(M).
COROLLARY 2. Qe(R(M)) is not axiomatizable by finitely many quasi-equations.

PRrROOF: Since R(M) is a quasi-variety, it is axiomatized by the quasi-equations that hold in
it. Soif ¥ = Qe(R(M)) (and X is valid in R(M)), then Mod(X) = R(M). Thus ¥ cannot be
finite. I

THEOREM 5. The Relational Semantics with a set of connectives M has no strongly complete
and sound inference system.

PROOF: For the sake of simplicity, we will prove the M = {N,U, o} case.
Assume that there is a sound and strongly complete inference system, say L. Let ‘tr’ be a
function translating the sequent schemes and rules to equations and quasi-equations of the
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language of R(M ), respectively, and satisfying the following. We assume that there are so
many formula variables (X;) as algebraic variables (z;) and they are enumerated. Let

tr(X;) =z tr(A N B) = tr(A) N tr(B) tr(AU B) = tr(A) U tr(B)
tr(A, B) = tr(A e B) = tr(A) o tr(B) tr(A = B) = (tr(A) C tr(B))

for formula schemes A, B. Moreover, let
(FER) = (tx(oa) A+ A taln)) — trlo)

for sequent schemes gy, ..., o,.

Let = be the translation of L. Then, since R(M) cannot be finitely axiomatized, there is
a quasi-equality e such that R(M) = e and = [~ e. We can assume that e and the elements
of = are closed formulae, so there is an algebra B such that B = = and B [~ e. Let
e=((eg A+ ANey) — ep).

Now, we extend the translation function, ‘tr’, to the set of sequents in the following way.
For any sequent A,..., A, = A, let

tr(Ay, ..., Ay = Ag) = (tr(Ai(pj : Xj)) o otr(An(p; : X;)) C tr(Ao(p; : Xj)))
where A;(p; : X;) denotes the formula scheme given by substituting the jth formula variable
(X;) for the jth element (p;) of the set of basic symbols P.

LEMMA 6. Let, for 1 <i < n, ¢} = (1; = i), ¢? = (0; = 7i), and (tr(r;) = tr(0;)) = €.
Assume that
{¢1, @1, --s my PR} FL @0

Then, for every ‘B,

if  BEEZ, then BE(ey A Nep) — tr(1o = 0p).

PROOF: Assume that {ol, ¢, ..., ¢}, 2} FL @5 and B is such that B = =. We use
induction on the derivation of (.
Base step. 05 = x(Xj : 6;) is an axiom, i.e., it is given by substituting formulae (6;)

for variables (X;) in an axiom scheme (x). Then tr(x) € E.

Now, let k : {z; : j € J} — B be arbitrary, and let k'(z;) = tr(X;)[k'] = (tr(6;))[k].
Since y does not contain any p; (so x(X; : (8;(pi : X3))) = (x(X; : 6;))(p;i : X;))) and
(t2(8,))[K] = (62(6; (s : X:)))[K], we have

(tr(9))[k] = (tr(spp(pi + X:)))[k] = (tr((x (X : 6;))(pi : X3)))[k] =
(tr(x(X; : 8;(pi = X:))))[k] = (tr(x))[K'].

Since B |= tr(), we also have B | tr(p}).
Induction step. There are 1, ...,%,, such that, for each 1 <1 < m,

{Lp%, (19?’ sy (foiw ‘P?z} }_L "1[)1'

and %’1 is a rule instance, i.e., ¥; = x;(X; : 6;) and ¢§ = x(Xj : 6;), and X‘—XX& is a rule
0
of L.
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Assume we know the lemma for ¥1,...,%n,. Again, let k: {z; : j € J} — B be arbitrary,
and let k'(2;) = (tr(6;))[k]. Since tr(*=:X=) € E, we have

B (1) A+ A tr(xm) = () K],

Assume
B = (e1 A+ Aey)lk],
Le., B | (tr(p;))[k] and B |= (tr(p?))[k] for 1 < j < n. Then, by hypothesis, for 1 < i <m,

B = ()l ien B ()] Then B b (00)K], de. B b (r(ed)lk] o
esired. I

Then, since, for the above B and e, B [~ (e A---Aey) — e, le,, B (e A---Nep) —
tr(ro = oo) or B f= (e1 A -+ Aen) — tr(og = 7o), by Lemma 6, either

{99%7 (19%7 SRR (P:w 99121} FL 90(1) or {(pia (P%, RN 99111’ 90121} L Sog

On the other hand, R(M) = e means that, for every A € R(M), 2 = e. Thus, for every
valuation k, if % = e;[k] for 1 <7 < n, then A = eg[k], i.e.,

for k = 1,2, where ‘f=r(p)’ is defined in the obvious way. Contradiction. i

Now we prove that LC is not (weakly) complete w.r.t. language models (LM) and that there
is no extension of LC which is sound w.r.t. U x U-type Relational Semantics and is strongly
complete w.r.t. LM. First, we recall the definition of language models from [vB91, p.189].
DEFINITION OF LANGUAGE MODEL: A family of languages is a set {L; : ¢ € I'}, where L; is
a set of finite sequences (words) over a finite alphabet.

A language model is a family of languages enriched with the following operations.

La.Lbdéf{xy:xeLa’ yELb}

Lo\Ls & {2 : (Vy € Lo)yz € Ly}

Ly/L, def {z : (Vy € Lyo)zy € L }.

A sequent Ay,..., A, = Ap is true in a language model if
v(Aj)e---ev(A,) Cv(A4y)
where v is the valuation function defined in the obvious way. The consequence relation ‘= ,,’
is the usual as well.
THEOREM 6. LC is not (weakly) complete w.r.t. language models.

PROOF: By the definition of ‘\’ the empty sequence (6) is in L\ L for every language L. Thus
z = z o (z\z) is valid in every language model.

On the other hand, if W = a = {(0,1)}, then a € a o (a\a) in the RRS with universe W,
so, by Theorem 0, @ = 2 ¢ (2\z) is not deducible in LC. (See also the Remark after the proof
of Theorem 2.) I

Let ‘i=g+’ be that semantic consequence relation which is determined by those relational

Kripke models where W = U x U.
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THEOREM 7. There is no calculus containing LC which is sound w.r.t. U X U-type Relational
Semantics and strongly complete w.r.t. language models.

PROOF: We will show that there are a set I' of sequents and a sequent ¢ such that T" g+ ¢

but I' Epm -

Let u = v abbreviate that ¥ = v and v = u. It is easy to check that {z =z ez, y =
yoy, z =yeozr, y = x.y} béR'f‘ y=z (let rep(w) = {<1’0>, (Oa O>} and rep(y) = {(07 1)’ (]-v 1)})

On the other hand, {r =z ez, y=yey, c =yez, y==zey} EFLMm y = = because
of the following. Let ‘rep’ be a function representing z and y as languages. If rep(z) = 0,
then rep(y) = 0 e rep(y) = (). So we can assume that rep(z) # 0. Let a € rep(z). Then,
since rep(z) = rep(z) e rep(z), there are z1,y; € rep(z) such that a = z,y;. By the same
argument, for each number 7, there are z;4+1,yi+1 € rep(z) with z; = 2;+1yi+1. Sooner or
later, since a is finite, either z; or y; is the empty sequence (6). So © € rep(z). Then, since
rep(z) = rep(y) e rep(z), b = b € rep(z) for every b € rep(y), i.e., rep(y) C rep(z). Mutatis
mutandis, rep(z) C rep(y), hence rep(z) = rep(y). §

COROLLARY 3. LC°, that version of the Lambek Calculus where we admit sequents with
empty antecedent, is not strongly complete w.r.t. LM.

ProoF: LC° contains LC. |

* * *

Now we turn to investigating the connection between U x U-type Relational Semantics and
(various versions of ) the Lambek Calculus. The main results are Theorems 9 and 10, but, as
before, the piths of the proofs are two representation theorems (Theorems 8 and 11).

Let ©F be T plus the following four formulae.

z<y—z<ze(z\y) z<y—z<(z\y)ez
z<y—z<ze(y/z) z<y—z<(y/z)ez

Let RRS™ be the class of those 20 € RRS, where there is a B € fullRRS such that B = P(U xU)

for some set U, and % is a substructure of B.

THEOREM 8. (Andréka-Mikulds) For every U € RS,
A=t if AcIRRST.

PRrROOF: The ‘if’ part is easy and omitted.

Assume that 2 = 2%, Then we will construct, as in the case of Theorem 2, a directed and
labelled graph, and we will define the representation function using this graph.

Let G = (V,E,{), where V is the set of nodes, E = V x V is the set of edges and
¢: E — P(A) is the labelling function. G will have the following five propeties.

(I) (Vu,v,w € V)(Va,b)(a € £ {u,w) ANb€ L{w,v) = Ic(c<aebAcel(u,v)))

I) (Vu,v e V)(Va,b,c€ A)(a<becAa€l{u,v)— (FweV)bel({uw)Acel{w,v))
II) (Vu € V)(Va € A)Jw(a € L{w,u) A (Vv € VIu#v — £{w,v) ={aeh:h€ L{u,v)})
; (VvEV))(‘anE)A)EIw(aEﬁ(v ydWYANMu € Viu#v = L (u,w) ={hea:hel{u,v)})

(1
(1
(I

(V) (Vue V)
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where I = {a\b:a < b}U {b/a:a < b}.

We will define G by recursion. Let « and ¢ be as in the proof of Theorem 2. We will use

the following notation. If X, Y C A, thenlet X oY ={zey:z € X, y e Y}

0th step. Let Vo = {uq,v, : a € A}, By = Vo xVp and W = {(uq,va) , (ta, Ua) ; (Vas Va) :
a € A}. Moreover, let £y (uq,v,) = {a} and £y (ua,ua) = £o (va,va) = I, and let £y (u,v) =0

if (u,v) € Vo x Vo N W.
(I) holds because of the new formulae in £t, and (V) is satisfied as well.

a + 1st step. Let o(a + 1) = {(a,b,c,z,y,t). We have three subcases according to the

value of ¢.
i = 0. Let z be a new point (z € V), and let

Vo,+1 = Va U {Z}
Eqr1 = Voy1 X Voq
Loy = L U{((2,2),1I), {{z,2), {a} ey (z,z) U {a}>}U

{{{(z,p),{a} @l (z,p)) :p EVa Ap # 2} U{({p,2),0) : p € Vu}.

Vvl
<</
™o
T~ -
fajufals g Xy | ~ ok <%, »
v ~
I ~
~N
| B xip? ~ -
zi(x.x> x . @'&(<Pt P>
Figure 9.

1 = 1. Let 2z be a new point, and let

Va1 =V U {Z}

Eotr1 = Va1 X Vopa

bor1 = Lo U{{(z,2),1), ((y,2) o {y,y) @ {a} U{a})}U
{((g,2) s La (g,y) @ {a}) : g € Va Ag# y}U{{{2,9),0) : g € Vo }.

/7N
vl
\ /
17
-
7~ - l
. |
e‘<q'\g> {a} P T /}\fq} u¢d<5‘!>.{°}
- |
~ - I
e > q’ - ,¢d<?.y> |
< >
(T F @ By 9>
Figure 10.
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i=2. IfaLbec ora¢gly(z,y), then go to a+2nd step. Otherwise let z be a new point,
and let

Vat1 = Va U {z}
Eor1 = Vag1 X Vaga
lav1 = Lo U{{(z,2),{c} ol (y,z) o {b} UI)}U
{{{(z, 2) , Lo (z,z) @« {B} U {B}) U {((r,2) , Lo (r,z) @ {b}) : 1 € Vu AT # 2}U
{{{z,9), {c} o La(y,y) U{ch} U{((2,5) ,{c} 0 La (y,5)) : s € Va A's # y}.
(T ¥ Gegeypobul
\\ z_//
_ AN
ko] 3 ity

A By <ri x> «{b} \
{c}oqgs> Y Gyis>
\

v Ng
Figure 11.
Limit step. If o is a limit ordinal, then let

Va=J Vs, Ea=|JEs ta=Jts

B<a B<a B<a
Let G = G,. G satisfies (I) and (II), since in each step these properties were preserved (it
is a mechanical and tiresome calculation). Moreover, (II), (III) and (IV) are realized by the

construction.
Let, for every a € A,

rep(a) = {{u,v) : (3h € £{u,v))h < a}.

Then ‘rep’ clearly preserves ‘<’, and is one-one because of the Oth step in the construction.
Now we show that ‘rep’ is a homomorphism. First we show that

rep(a) o rep(b) = rep(a o b).
Indeed, if (u,v) € rep(a) o rep(b), then
Jw((3he € £ (u,w))hs < a A (3hy € £(w,v))hy < b)
and, by (I),
Fw(3h € € (u,v))(3h, € €(u,w))(3hy € L{w,v))h < hgohy < aeb,
ie., (u,v) € rep(a @ b). The other direction is a straightforward consequence of (II).
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We also have
rep(a\b) C rep(a)\rep(d),
since if (u,v) € rep(a\b), then (3h € £ (u,v))h < a\b, so, by (I),

Yw((3he € £{w,u))hy < a— (3h' € £{w,v))h' < ae(a\b) <b),

i.e., Yw (w, u) € rep(a) — (w,v) € rep(b) whence (u,v) € rep(a)\rep(b).
To show that
rep(a)\rep(b) C rep(a\b)

we have to distinguish two cases. In the first case, we assume that u # v and (u,v) €
rep(a)\rep(b). Then

Vu((w,u) € rep(a) = (w,v) € rep(b)),

le.,

Vw((3h, € C{w,u))h, < a— (Fhy € £{w,v))hy < D),

so, by (III),
v () Jw((3h € £(u,v))(Ihp € £ {w,v))a e h = hy <Db).

Thus (3h € £ (u,v))a e h < b, so (Fh € £(u,v))h < a\b, i.e., (u,v) € rep(a\bd).
Now we assume that u = v, i.e., (u,u) € rep(a)\rep(d). By the construction Jw(l(w,u) =
{a} e {{u,u) U {a}), so we conclude that

Jw(a < bV (Ih € £(u,u))(Ihy € L{w,u))aeh = hy <Db).

Then, by (V), and because ¢(u,u) C I, (3h € £(u,u))h < a\b, i.e., (u,u) € rep(a\bd).

Similar argument, using (IV), shows that

rep(a/b) = rep(a)/rep(b).

Since the ‘rep’-image of 2 is a representable structure, we are done. i
Let LCY be LC plus the following four rules.

A= B A= B
C = Ce(A\B) C=(A\B)eC
A= B A= B

C=Ce(B/A) C= (BJ/A)eC

As before, let ‘f=g+’ be that semantic consequence relation which is determined by those
relational Kripke models where W = U x U.

THEOREM 9. (Andréka-Mikulds) (Strong Completeness Theorem for LCT w.r.t. RelSem)
For any set I' of sequents and sequent ¢,

Phrer ¢ it T Egt o

PROOF: As before, one can prove that the factor structure of the formula algebra of LCT
(by the congruence relation ‘=r’, defined as before) satisfies 1. Then Theorem 8 gives the
proof, as Theorem 2 did in the case of Theorem 0. 1
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Now, we turn to showing that if we allow empty sequence to be antecedent of sequents in
the Lambek Calculus, then it will become strongly complete w.r.t. U x U-type Relational
Semantics.

Let the language of LC® be defined as that of LC except that we do not exclude the sequents
Ay,..., A, = Ao where n = 0, i.e., we allow sequents with empty sequence as antecedent.
These sequents will be denoted as = Ay or 6 = Ay.

Let LC® be given by the axiom (0) and rules (1\),...,(5) without any restriction, i.e., any
sequence of sequents (denoted as z, y or z) can be empty. Let ‘=g+’ be as above. Then the
following theorem holds.

THEOREM 10. (Andréka-Mikulds) (Strong Completeness Theorem for LC® w.r.t. RelSem)
Let T U {p} be a set of sequents in the language of LC°. Then

F |_LC° @ lﬂ. F *=R+ @.

Before proving Theorem 10, we will prove a representation theorem. To do this we need the
following definitions.

DEFINITION OF RRS’:
2 € fullRRS®  if A= (4,\,/,0,C,Idy, )
where A = P(U x U) for some set U, and (4, \,/,0,C) € RRS. Further, Idy = {(u,u) : u €

U}, and the empty set, @, is considered as a binary relation.

Let RRS® = SfullRRS®.
DEFINITION OF RS°:

Ae RS iff A= (4,\,/,e,<,¢,0)

where (A4,\,/,¢,<) € RS and ¢,0 € A.
Let £° be ¥ plus the following formulae

cer=xee=2= Oez=200=0 0< .
Let A be the set of the following formulae
zey=0—(z=0VvVy=0)
rey<e+«— (z=0Vy=0Vaz=y=ce).

Note that A is not valid in RRS® (while £ is). That is why, in the following theorem, only
one direction is stated.

THEOREM 11. (Andréka-Mikulds) For every 2 € RS,
if  AET0UuA, then A e IRRS.

PROOF: We make essentially the same construction as in the proof of Theorem 8 with some
modifications.

We will construct a directed and labelled graph, G = (V, E, £), satisfying the following six
properties. Properties (I), (II) and (V) will be the same as in the proof of Theorem 8. We
require properties (III) and (IV) only for a € A\ {e,0}. The graph will have this feature too:

(VI) (V(u,v) € E)0 ¢ £{u,v) A (e € £{u,v) = u=n0).
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Let o and « be as before. We define the graph by recursion using the original construction
in the proof of Theorem 8.

Oth step. This is the same as before, we just choose v, and u, for a € A\ {e,0} only.

a + 1st step. Let o(a 4+ 1) = (a,b,¢,z,y,t). We have three subcases according to the
value of ¢ again.

t =0 or ¢=1. Do the original construction.

t=2 Ifagbec, oraé¢l,(z,y), then go to next step. Otherwise, by property (VI), we
have that 0 ¢ {b,c}. If b = € or ¢ = e, then go to next step. Otherwise, by A, b £ e and
¢ £ e. In this case, do the original construction.

Limat step. Take the union as before.

Let G = G,. Then properties (I)-(V) can be checked as before. (VI) is clearly preserved
in each step.

Let

rep(a) = {(u,v) : (3~ € £{u,v))h < a}.

One can check, in the usual way, that ‘rep’ is an isomorphism. I
Now we are ready to prove the completeness theorem.
PROOF OF THEOREM 10: Let T’ be an arbitrary set of sequents of LC°. We begin the proof

by defining an analogue, £, of the factor structure of LC, £r.
Let €,0,1 be three new elements not in Formy,c, and let 7' = Formy,c U {e,0,1}. Let

Z: (T’\,/a.,sr‘,ea())

where the definitions of the operations and the relation ‘<p’ go as follows. On Formj,c these
are defined as before. For every z € T and A € Formy,c, let 0 <r 2 <r 1 and e <r e, and let
e<r Aiff Thco 8= A Let ez =ze0=0and eez =zxee =2z, and if z # 0, then
let lex =axel1 =1 Let O\z =1 and e\z = z, and if z # 0, then let z\0 = 0. Moreover,
if ¢ {e,0}, then let \e = 0 and z\1 = 1. Finally, if  # 1, then let 1\e = 0. The other

slash, ¢/’, can be defined in a similar way. Let
z=ry iff (z2<ry and y<raz),

and let £ = (T/=r).

LEMMA 7.

L ESTUA.
PROOF: It is easy to check, using the definition above, that ‘<p’ is a partial ordering, and
that ‘e’ is an associative operation which is monotonic w.r.t. ‘<p’. It is not difficult to show,
by case distinction, that if @ <r b and ¢ <r d, then a e ¢ <r be d. The rest of =7 is easy, by
the definitions of the slashes, and A holds, by the definition of ‘e’, as well. i

By the lemma above and Theorem 11 £ € IRRS®.

From now on, the proof of Theorem 10 proceeds as the proof of Theorem 0. In more detail,
let ¢ be a sequent of LC” and assume that T' Fco . Let ¢ be A;,..., 4, = B. Now,
assume that n = 0, i.e., ¢ is © = B. Then, as in the proof Lemma 4, it can be verified, by
the definition of ‘<p’, that € £r B in £r. Then we have a relational Kripke model (with a
set of possible worlds of the form U x U) which falsifies ¢ and satisfies I'. That is, I' g+ ¢.
The case n > 0 is analogous to the previous proof. Thus Theorem 10 is proved. i
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