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A System of Dynamic Modal Logic*

Maarten de Rijke’

Abstract

In certain areas of logic dealing with information there is a need to make statements
not only about cognitive states, but also about transitions between such states. In
this paper a modal logic designed with this purpose in mind is analyzed. On top
of an abstract informational ordering on states it has instructions to move forward
or backward along this ordering, to states where a certain assertion holds or fails,
while also allowing the combination of such instructions by means of the standard
operations from relational algebra. In addition, the logic has devices for expressing
whether or not in a given state a certain instruction can be carried out, and whether
or not that state can be arrived at by carrying out a certain instruction.

This paper deals mainly with technical aspects of this dynamic modal language.
It gives a precise description of the expressive power of this language. It also contains
results on decidability for the language with ‘arbitrary’ structures and for the special
case with a restricted class of admissible structures. In addition a complete axioma-
tization is given of the validities over arbitrary structures as well as of the validities
over this restricted class of structures. The paper concludes with a remark about
modal algebras appropriate for the language studied here, plus some speculations and
suggestions for further work.

Although the paper contains some minor examples showing how the logic can
be used to capture situations of dynamic interest, far more detailed applications are
given in a companion to this paper.

Key words: dynamics of information, modal logic, axiomatic completeness, expres-
siveness, bisimulations, decidability.

1 Introduction

Over the last 10 or 15 years logicians have paid more and more attention to dynamic
aspects of reasoning. Motivated by examples taken from such diverse disciplines as the

*The investigations were supported by the Foundation for Philosophical Research (SWON), which is
subsidized by the Netherlands Organization for Scientific Research (NWO).

$Department of Mathematics and Computer Science, University of Amsterdam, Plantage Muidergracht
24,1018 TV Amsterdam, The Netherlands.



semantics of natural language, linguistic analysis of discourse, the philosophy of science, a
multitude of logical systems have been proposed, each of them equipped with the predicate
“dynamic”. In Van Benthem [3] a general perspective on dynamic matters is put forward,
and a somewhat informal description is given of a dynamic modal language designed
for reasoning about the processes of expanding and contracting with a given piece of
information. This language is not meant as just another device for reasoning about
information and its dynamics, but rather as a more general framework in which other
proposals can be described and compared.

Quite a number of such descriptions and comparisons have been given in Van Ben-
them [2, 3]. They include an analysis within our logic of various dynamic styles of in-
ference, and it is also shown there how a number of dynamic connectives that have been
proposed in the literature can be formulated in our logic. Furthermore, in a companion
to the present paper I show, among other things, how several sets of postulates govern-

ing contractions that have been proposed in the literature, fare in our language (cf. De
Rijke [27], or §3 below for a short sketch).

The dynamic modal language of this paper derives its generality from the following obser-
vation. What most dynamic proposals have in common is a notion of states and a notion
of transitions between those states; of course, what these states and transitions are may
differ from one particular proposal to another. Now, our modal language has the right
means to deal with these two notions. To be precise, it is a two sorted language in that
it not only has the usual Boolean part, i.e. propositions with the usual connectives to
talk about states, but also a relational part containing procedures that may be combined
using the relation algebra operations N, ;, —, and ¥ to talk about transitions. In addition
these two realms are connected via modes and projections as depicted in Figure 1.

modes

propositions procedures

(BA) ~ (RA)

projections

Figure 1: Propositions and procedures.

The choice of the projections and modes may depend on the particular application one has
in mind. Here, I will choose a very basic, and rather natural set of modes and projections,
one that is suggested in [3]. Let me motivate this choice somewhat. The underlying
idea is that we have some abstract informational structure about whose static aspects we
reason using the Boolean component of the language, while the procedural part is to be
used to reason about its dynamic aspects. The minimal requirements such structures are
usually supposed to satisfy in the literature are those of a pre-order. Of course, pre-orders



have a long tradition as informational structures, viz. their use as models for intuitionistic
logic. The elements of our informational structures may intuitively be thought of as the
cognitive states an agent passes through searching for knowledge.

Following Katsuno and Mendelzon [19] I use the term update to refer to any change
to an agent’s cognitive state.! As an agent’s perception of the world as it is encoded
by his current cognitive state changes, his cognitive state will be updated. Several kinds
of updates may be distinguished. If we simply acquire additional knowledge about the
world, and the new knowledge does not conflict with the current beliefs, we can ezpand
with the additional information. A different change occurs when a sentence previously
believed becomes questionable and has to be given up; such an operation is called con-
traction. The basic updates an agent is able to perform in my set up are expansion
with a formula ¢ (moving along the informational ordering to state where ¢ holds) and
contraction with a formula (moving backwards along the ordering to a state where ¢ no
longer holds). In addition there are tests to see whether a given formula holds. Using
these three ‘basic procedures’ (expansions, contractions and tests), additional procedures
may be defined using the standard operations from relational algebra. Some examples of
compound procedures will be given in §3 below.

Going from procedures to propositions I will consider projections that return, given
a procedure « as input, its domain, range and fiz points. Given our interest in dynamic
matters they are a natural choice, expressing, for instance, whether or not in a given state
a certain transition is at all possible.

So much for an introduction. The main purpose of this paper is to study the above modal
language and its logical properties in precise and formal detail. After some initial defini-
tions in §2, I give some quick examples of the use of the language in §3. Then, in §4, the
expressive power of our modal language is studied; a precise syntactic description is given
of its first-order counterparts, as well as a semantic characterization by means of an ap-
propriate kind of bisimulations. In §5 I establish (un-)decidability results for satisfiability
in this language, both when interpreted on arbitrary structures and when interpreted on
a restricted class of structures only. In §6 complete axiomatizations are given for valid-
ity on arbitrary structures, and, again, for validity over this special frame class. Some
quick remarks about the kind of modal algebras appropriate for the language studied
here are made in §7, and, finally, §8 contains some concluding remarks, speculations, and
suggestions for further work.

1A technical distinction between update and revision is sometimes made in the literature (cf. Katsuno
and Mendelzon [18]); here I will ignore that distinction.



2 Some definitions

Although I will use a slightly different version of the language, here’s the version that
appears in [3]:

Atomic formulas: p € @,
Formulas: ¢ € Form(®),
Procedures: a € Proc(®).

pu=p|L|T[e1— ¢2|do(a)]|ra(a) |fix(a),
o ::= exp(p) | con(p) | p-exp(p) | p-con(p) |1 Nz |ag; 02| — | a”| .

I will refer to elements of Form(®) U Proc(®) as ezpressions.

The intended interpretation of the above connectives and mappings is the following.
A formula do(a) (ra(a)) is true at a state z iff z is in the domain (range) of «, and fix(a)
is true at z if ¢ is a fixed point of &. The interpretation of exp(y) (read: expand with
¢) in a model M is the set of all moves along the “informational ordering” in M that
take you to a state where ¢ holds; the interpretation of con(y) (read: contract with ¢)
consists of all moves backwards along the ordering to states where ¢ fails. The modes
p-exp and p-con are minimal versions of exp and con, respectively: the interpretation of
p-exp(¢p) consists of all moves (z, y) along the ordering such that y satisfies ¢, while there
is no point in between z and y that also satisfies ¢; the interpretation of u-con is defined
likewise. As usual, ¢? is the “test-for-p” relation, while the intended interpretation of the
operators left unexplained should be clear.

The models for this language are structures of the form 9m = (W,C,[-], V), where
C C W2 is transitive and reflexive (the informational ordering), [-] : Proc(®) — 2W*W,
and V : & — 2%, The interpretation of the projections in our modal language is the
following:

M,z =do(a) iff Ty ((z,y) € []),
Mz =ra(e) it Jy((y,2) € [o]),
M,z = fix(a) ff (z,z) € [o].

A model 971 is called standard if the relational part of our language is interpreted as follows
in 9



[exp(p)] = Azy.(zCyAM,yf=o),
[con(p)] = Azy.(z JyADy = o),
[p-exp(p)] = Azy.(zCyAMylEeA-T2(eCzCyAM,z =),
[p-con(p)] = Azy.(zTyAMyFEeA-Tz(zTzayAM, 2z =),
[ang] = [ofn[8],
[o;8] = [ed;[5],
I[_a]] = —[[Ol]],
[l = {(z,9):(y,2) €[]},

[l = {(z,2): Mz}

Note that the minimal procedures p-exp(-) and p-con(-) are definable using exp(:) (or
con(+)) and N, — and ; as follows:

(z,y) € [u-exp(p)] iff (z,9y) € [exp(v) N —(exp(ep); (exp(T) N —=(T))I,

and similarly for u-con(p). Consequently, I will leave out the ‘minimal’ versions of exp(-)
and con(-) from the official definition of the language.

Of course, ra and fix are definable using the other operators, however, for conceptual
and notational convenience they will be part of the official definition of the language.

As a second change to the original definition I will add a modal operator to the
language. But before I do this, note that if « is some procedure, then the modal operator
(a) whose semantics is based on a, may be defined as (a)¢p := do(a;¢?). The additional
operator I will add below will be defined in this way. Thus, this addition is only a
cosmetic one that will facilitate direct reference at the Boolean level to a procedure that
is available at the relational level anyway. Note that we can define the diagonal relation
6 ={(z,y) : 2=y} as § :== T?7. Hence the inequality relation is definable as —§. The
operator I want to add to the language is the so-called D operator, whose semantics is
given by AP.3Jy(z # y A P(y)) (cf. De Rijke [25]). Using the D operator some other
useful operators may be defined as well: Ay := ¢ A D=y (p holds at all points), and
Ep := ¢ V D¢ (there exists a point at which ¢ holds). The main reason for adding the
D operator is that it will greatly simplify my completeness proofs in §6.

Here, finally, is the full language; I will refer to this language as the DML-language,
and in more official parts of this paper also as DML(®), where @ is the set of proposition
letters.

@ u=p|L|T]|p1— p2|do(a) |ra(a)|fix(a) | Dy,
a = exp(p) |con(p) | a1 Naz|ag; | —a|a”|p?.

(Here, p € ®, ¢ € Form(®) and a € Proc(®), as before.)

There are obvious connections between DML and propositional dynamic logic (PDL,



cf. Harel [16]). For a start, as pointed out above, the ‘old diamonds’ (@) from PDL
can be simulated in DML by putting (a)¢ := do(a;¢?). And conversely, the expansion
and contraction operators are definable in a particular mutation of PDL where taking
converses of program relations is allowed and a.name for the informational ordering is
available: [exp(¢)] = [C; ¢?] and [con(¢)] = [C *;—¢?]. The domain operator do(c)
can be simulated in standard PDL by oT. An obvious difference between DML and PDL
is that (at least in it’s more traditional mutations) PDL only has the regular program
operations U, ; and *, while DML has the full relational repertoire U, —,” and ;, but not
the Kleene star. Another difference is not a technical difference, but one in emphasis;
whereas in PDL the Boolean part of the language clearly is the primary component of the
language, in DML some effort is made to give the relational part the status of a first-class
citizen as well by shifting the notation towards one that more clearly reflects the aspects
of relations which we usually consider to be important.

A related formalism whose relational apparatus is more alike that of DML is the
Boolean modal logic (BML) studied by Gargov and Passy [12]. This system has atomic
relations pj, p2, ..., a constant for the cartesian product W x W of the underlying domain
W, and relation-forming operators N,U and —. Relations are referred to within the BML-
language by means of the PDL-like diamonds (). Since BML does not allow either ; or ~
as operators on relations, it is a strict subsystem of DML(®) with multiple base relations

{p1,p2,...}.

3 Some examples

It is high time for an example or two. Here’s a simple-minded one. Suppose you're sitting
in a room, waiting for the start of a talk by a famous logician who is known for his lively
presentation, and who has done a lot of work on non-monotonic logic. So, after some time
the lights are dimmed and logician comes in (I). You can see that he’s carrying a birds
cage with a bird in it, although you can not see what kind of bird it is. Having read the
relevant literature you conclude that the bird must be a penguin (p) called Tweety ().
However, the first thing the speaker says, while holding up the cage and pointing at the
bird in it, is: “This bird is not called Tweety”. In that case, you think, it’s probably not
a penguin either. The speaker continues: “I want to do a little experiment with you. I
want you to think of a name for this bird; any name will do, as long as it’s not Tweety”.
Being a cooperative member of the audience you think of a name other than Tweety, say
Bob (b) ... Some of the changes brought about in your initial informational state during
this story may schematically be represented as

exp(1); (exp(p) Nexp(t)); con(t); con(p); (exp(b) N —exp(t)),



where ; is the usual relational composition.

Here’s another, more serious example having to do with Theory Change or Belief
Revision. Assuming the so-called Levi identity (cf. Gardenfors [11]), revisions, that is,
operations to somehow resolve conflicts that arise when new knowledge is acquired that
is inconsistent with the old beliefs, such revisions are usually explained as “contract with
-, and then expand with ¢, while changing as little as possible from the old theory.”
In [27] this idea is implemented by defining a revision operator [*p]i (“3 belongs to every
theory that results from revising by ¢”) as

[*¢]9 == p-con(=p); p-exp(¢p).

It can be shown that for many sets of postulates that have been proposed for theory
change, this revision operator satisfies nearly all of the individual postulates in such a set.

Further formalisms to which DML has been linked include conditionals and other
systems that somehow involve a notion of change. But, whereas the applications to
Theory Change and conditionals do not require the states in DML-models to have any
particular structure, others do. For example, one version of Frank Veltman’s update
semantics [28] may be seen as a formalism for reasoning about models of the modal
system S§5 and certain transitions between such models. By imposing the structure of §5-
models on the individual states in a DML-model, the latter becomes a class of S5-models
in which the DML-apparatus can be used to reason about global transitions between S5-
models, while the language of §5 can be used to reason about the local structure of the
states. When used in this way DML becomes a super-system of one particular brand
of Veltman’s update semantics. Other brands of update semantics can be interpreted
as being formalisms for reasoning about certain bi-modal, or even poly-modal models;
following the strategy sketched above these formalisms too can be can be interpreted in
a version of DML with appropriately structured states. Further applications given in [27]
in which the states need to be equipped with some kind of structure include discourse
representation and minimization.

Many of the dynamic operators that have been proposed in the literature can be defined
in DML. The underlying reason for this is that most dynamic proposals have some kind
of two-dimensional structures in common as their underlying models, and that the DML-
language is strong enough to define all the standard operations on binary relations, and
many more besides. For instance, the residuals of Vaughan Pratt’s action logic [22] can
be defined in the DML-language:

a=p = {(zy):V2((z,2) €la] = (5,9) €[} = —(a7-p),
ae=f = {(z,9):V2((,2) €le] = (z,2) € [B])} = —(=B;a?).

As pointed out in [3] the test negation proposed in Groenendijk and Stokhof [13] becomes



~ao= {(g,2): "y ((z,9) €le]} = §N—(esT7).

A logical system can be dubbed dynamic for a number of reasons: because it has
dynamic connectives of some sort (as in the above examples), or because it has a dynamic
notion of inference. Quite often these too can be simulated in the DML-language. Here
are some examples taken from [3]. The standard notion of inference =1 (“every state that
models all of the premises, should also model the conclusion”) may be represented as

PiN...ANpn 1Y M fix(p1?) N . N Aix(pa?) — fix(¥?).

A more dynamic notion [=2 taken from [13], which may be paraphrased as “process all
premises consecutively, then you should be able to reach a state where the conclusion
holds”, has the following transcription in the DML-language:

PLA- Aol i ra(exp(pn);.-;exp(pn)) = do(exp(¥)).

A third notion of inference, }=3, found for example in Van Eijck and de Vries [7] which
reads “whenever it is possible to consecutively expand with all premises, then it should
be possible to expand with the conclusion”, can be given the following representation:

P1IA..Apn 3y iff dO(exp(sol); cos ;exp(son)) — do(exp(9)).

4 The connection with classical logic

When interpreted on models ordinary modal formulas are equivalent to a special kind
of first order formulas. To be precise, these first order translations form a restricted
2-variable fragment of the full first order language, one that can easily be described
syntactically, and for which a semantic characterization can be given in terms of so-called
p-relations or bisimulations (cf. Van Benthem [1] for details). Likewise, the first order
transcriptions of modal formalisms used to reason about relation algebras live in a 3-
variable fragment of the full first order language; they too can be given precise syntactic
and semantic descriptions (cf. De Rijke [26]).

Of course, the above two are special cases of a much more general phenomenon, namely
the relation between patterns or important features of structures and bisimulations that
precisely preserve these patterns on the one hand, and (extended) modal formulas whose
validity is invariant under such bisimulations on the other hand (again, cf. [26]). In the
present case of the DML-language it is also possible to give a precise syntactic description
of its first order transcriptions (this will be done in §4.1), and the notion of bisimulation
can be adapted to obtain a semantic characterization of these first order transcriptions
(in §4.2).



4.1 Translation into first order logic

The usual translation (-)* taking modal formulas to first order ones (over a vocabulary
{R,P1,P,,...}) can be extended to the full DML-language without too much trouble
(cf. [1] for the standard modal case). However, whereas standard modal formulas translate
into formulas having one free variable in a two-variable fragment, expressions in the DML-
language translate into formulas of a three-variable fragment that may contain up to two
free variables.

My approach will be a bit more general than the one suggested by the truth definition
given in §2; instead of C I will use an abstract binary relation symbol R to translate the
modal operators and the ‘dynamic’ constructs.

Definition 4.1 Let 7 be the (first order) vocabulary { R, P;, P,,...}, with R a binary
relation symbol, and the P;’s unary relation symbols. Let L(7) be the set of all first
order formulas over 7 (with identity). Define a translation (-)* taking DML-formulas to
formulas in L(7) as in Table 1.

Ty = (e=2) @) = P
(-150)* = -—p* (‘P A ’l,b)* = @*AY*
De)* = 3Fy(z#yAly/z]e") (do(e))* = 3y(a)
(ra(e))* = 3Fyly/z,z/y)(e") (fix(a))* = [2/y](a”)
6 = (z=y) (—)* = =(a*)
(anp)* = a*ApB* (s8)* = 3z([z/y]la* A[z/z]B*)
() = [y/z,z/y]e (7)) = (z=y)Ag*
(exp(p))* = (aRy) Aly/z]e* (con(p))* = (yRz)A-[y/z]e*

Table 1: The standard translation.

Proposition 4.2 Let 0 be an expression in DML(®). Then, for any A, and for any z,y €
A, we have A,z |= 0 iff A = 6*[z], if 0 € Form(®), and (z,y) € [0]« iff A = 6*[z, y], in
case 0 € Proc(®).

The (-)*-translations of DML-formulas can be described exactly using the following
definition.

Definition 4.3 Fix individual variables z;, 22, z3 as before, and let 7 = { R, P1, Pa,...}
be as before. Let z, y range over { 2, zp }, with the understanding that ¢ # y. The set of
first order formulas (with identity) L;’Z(T) is the smallest set X such that



.o =a,P; € X;

. if p(z1),%(z1) € X, then so are thelr conjunction, disjunction, and negations;

. R$1$2)(x1 = 272) € Xa

. if p(z,y),%(z,y) € X, then so are their conjunction, disjunction, and negations;
.if p(z,y) € X, then so is ¢(y, z);

. if p(z,y) € X, then so is Tz p(z, y);

-if (,0((8, y))1/)(za y) €X, then so is Jz3 (()D(za $3) N ¢($3a y)))

if (2, 4),%(a1) € X, then so is ¢ (2, ) A p(z2).

00 ~J O O W N

Proposition 4.4 Every expression in the DML-language translates into a formula in
L;’Z(T) via (-)*. And conversely, for every ¢ € L;;’Z(T) there is an expression 6 € DML(®)
such that |= 0* & o.

Proof. One may use an inductive argument to see that every expression in DML(®) trans-
lates into a formula in L_:lj’2 () via the mapping (-)*. For the converse, define a mapping

()T : L;,’z(T) — DML(®) as follows:

(& = o)1 P
(@) Ap(@)T = o(an)T Ag(a)T (@) V()T = o(a)tvay(a)t
(e(@)l = —p(a)l (Rmz)T = exp(T)
(Rzpzy)T = con(l) (m=az) = T2
(e(2,9) A2, 9) = o, y)Tmp(z,y)T (e(@ ) = —p(e,y)l
(¢(2,y) V(o)) = o(z,)! u¢(z,y)T 3z p(e1,2))T = do(p(ar,)1)
@z (2, m))T = f(‘P(whzz))
(3a5 (¢(a, 35) Ao, y)] = o(e9) T (2, )1
(¢(2,9) Ap(a))T ol (T70 ((21)12)).

Then, for all ¢ € L:li’z('r), and all 9, Z, we have M, Z = ¢ if M,z = (pT. -

Let X be a set of (first order) formulas, and let K be a class of models. Then the
DML-language is called exzpressively complete with respect to X over K if for all x € X
there is a DML-expression ¢ such that K |= ¢* « x. If K is the class of all models I will
suppress ‘over K’.

The two-variable fragment La(7) is the set of all first order formulas over 7 using only
two variables.

Corollary 4.5 The DML-language is expressively complete with respect to the two-variable
fragment Ly(7) of first order logic over { R, P1,...} with identity.
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Proof. This is immediate from 4.4: since the two-variable fragment Ly(7) over { R, P1,...}
(with identity) is contained in L;’z (1), it follows that DML(®) is expressively complete
for that fragment.

Alternatively, one can give an explicit algorithm for transforming Lo(7) in DML-
expressions. Since this would take up too much space here without yielding additional
insights, I will only give an illustrative example. Consider

z # y AVzdy (zRy AVz (yRz — —Pz)) A (-Qz — Vy (Qy — —Ryz)).

Abbreviating exp(T) by R, this formula may be given the following modal transcription:
—~6N [Ado(R;~do(R; p?)?)?; sU —5] N —[~g? N do(R%; ?)7;6U —5] . A

What about expressive completeness of the DML-language with respect to the full first
order language? It may amuse the reader to check that the temporal operator UNTIL,
whose truth definition is

M,z |= UNTIL(p, q) iff Ty (zRy A Py A =3z (zRzRy A\ z # y A =Qz)),

can be defined by
do(exp(p) N —[exp(=q); (R N —6))).
(And similarly for SINCE, the backward-looking version of UNTIL.) Hence, by Kamp’s
Theorem (cf. Kamp [17]), the DML-language is expressively complete with respect to the
full first order language over continuous linear orders.
An obvious question here is whether the Stavi connectives SINCE' and UNTIL' are
definable in the DML-language, and, thus, by a result of J. Stavi, whether the DML-

language is expressively complete with respect to the language of first order logic over all
linear orders (cf. Gabbay [9]). Here, UNTIL (p, q) is defined by

(1) dy (zRy AVz(zRzRy — Qz)) A
(2) Yy (:cRy AVz (zRzRy — Qz) — (Qy A3z (yRz AVz (yRzRz — Qz)))) A
(3) dy (a:Ry A=Qy A Py AVz (zRzRy A y (zRyRz A - Qy) — Pz)) .

Of course SINCE'(p, q) is the ‘backward-looking’ version of UNTIL'(p, q). In the DML-
language the operator UNTIL/(p, q) can be defined as follows:

) do( BN ~[exp(~g); B]) A
(5) -wdo(R N —[exp(—q); R] N — [exp(q) N do(R N —[exp(—q); R]) ‘7]) A
(6) do (exp(ﬂq Ap)N— [(exp(ﬁp) N (exp(—q); R)) ; R] )

11



I leave it as an exercise to check that (1), (2) and (3) are defined by the DMIL-formulas
(4), (5) and (6), respectively.

4.2 Bisimulations

I will now characterize L:I,,’z('r), and hence, by 4.4, the DML-language, semantically. The
key notion here will be an appropriate kind of bisimulations, generalizing the so-called
p-relations of [1, Theorem 3.9] and [25, Theorem 4.7].

A 2-partial isomorphism f from 9M to 91 is simply an isomorphism f : Mgy = Ny, where
Mo, Mo are substructures of M and N, respectively, whose domains have cardinality at
most 2. A set I of 2-partial isomorphisms from 9t into N has the back and forth property
if

for every f € I with |f| < 1, and every ¢ € 9 (or y € N) there is a g € I with
f C g and z € domain(g) (or y € range(g)).

I write I : 9 =25 N if I is a non-empty set of 2-partial isomorphisms and I has the back
and forth property.

By 4.5 the full 2-variable fragment of L(7) is contained in the DML-language. Hence
any relation between models that is to preserve truth of DML-formulas should ‘act’ like
a (partial) isomorphism on sequences of length at most 2. Indeed, modulo one additional
requirement the latter completely characterizes the DML-language (cf. 4.11).

Definition 4.6 A bisimulation between 90t; and 9, is a relation B C ( Wy x Wa)U (W x
W2) such that

B#0,

ZBYy implies 1h(Z) = lh(%), where 1h(Z) is the length of Z,

if 21z By y2 then ¢ By; and zBys,

if z; 2By, y2 and z3 € M then thereis a y3 € Mo such that z; 23By; y3 and 23z Bysya,
and similarly in the opposite direction,

5. for I={0}U{(Z,9): 2By} we have I : My =5 M;.

o=

Example 4.7 The conditions in Definition 4.6 are rather strong, as is witnessed, for
instance, by the fact that two finite linear models are isomorphic iff they are bisimular.
in the sense of 4.6. The truth of this claim may be seen as follows: any two finite linear
models that have the same first order theory are isomorphic, and on linear models the two
notions of first order equivalence and of being equivalent for all DMi-formulas coincide,
by my remarks in §4.1; furthermore, by Proposition 4.10 two models that are bisimular
verify the same DML-formulas.
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However, on the class of all finite models bisimilarity and isomorphism do not coincide.
Here are two models establishing this claim:

m L o (D)) o3 oy l iml: ' @y (DY o3/ |,

where for all points (in 9% and ') have the same valuation. Define B C(Wx WHhu
(W2 x W') by putting

B = {(,i):1<i=4¢<3}u{(4,i):1<i/ <3}
U{(#,i'j"):1<i=4¢<3,1<j=5 <3}
U{(:4,5'k"), (41,5'k") : 1 <i <3,1 <5 #k <3}
U{(44,/4):1 < <3}.

The reader may verify that this is indeed a bisimulation between 9 and 9'; hence,
bisimulations and isomorphisms do not coincide on all finite models.

Example 4.8 Given two finite models 91,9y with Z € My, § € My such that for all
¢ € L(1), M,Z = ¢ iff My, = ¢, one may define a ‘canonical’ bisimulation between
My and My that connects Z and §, by putting

iB7Y iff for all ¢ € DML(®), M1, 4 = ¢ iff My, ¥ = .

(That this does indeed define a bisimulation is essentially because 9t; and 9y, being
finite, are saturated, cf. the proof of 4.11.) It follows that two finite DML-models are
bisimular iff they satisfy the same formulas.

Proposition 4.9 Let B be a bisimulation between 9 and N. Then

1. domain(B) = M, range(B) = N
2. ifz €M, y €N, By and =’ € M, then there is a y' € N with zz'Byy', and similarly
in the opposite direction.

An L(7)-formula (%) is invariant for bistmulations if for all models My, My and all
bisimulations B between 9; and My, and all Z € Wy,y§ € Wy such that ZB7, we have

My, 3 = g iff M, § = .
Proposition 4.10 Lzl,,’z(r)-formulas are invariant for bisimulations.

Proof. By induction on DMl-expressions plus an application of 4.4. Here are some cases
in the inductive proof. Let B be a bisimulation between 9 and N.
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do(a). Suppose zBy. Then

M,z =do(a) = for some 2’ ((z,2) € [a]m),
=> 3y (ax'Byy’ A (v,9') € [o]w), by 4.9(2) and IH,
= M,y = do(a).

exp(p). Suppose zz'Byy'. Then

(m,z’) € |[eXP(<P)]|mt = (32,:1,") € Rim |= Rzy and 9)?, 2)’ l'_‘ ®,
= (y,¥') € Ry and 9,3’ |= ¢ by 4.6(5) and IH,
= (3,9 € [exp(¢)]n.

a; 3. Suppose zz'Byy'. Then

(z,2') € [a; Blon = for some z" ((z,2") € [a]or and (z",z") € [B]m),
= y" (z2"Byy" A 2"2'By"y A (3,9") € [edm A (3", 9) € [Blw),
by 4.6(4) and IH,
= (3,9 € [&; ).

It’s the converse of 4.10 that is more interesting:

Theorem 4.11 A first order formula ¢(Z) in L(T) is equivalent to an L;’Z(T)-formula
only if it is invariant for bistmulations.

Proof. The proof is an extension of [25, Theorem 4.7]. Define

E(p)={v € Ly’(r) : ¢ = and FV(3) C FV(p)}.

We show that E(p) = . Then, by compactness the result follows.

So assume M, W = E(yp). Introduce new constants @ to stand for the objects .
Set L*(r) = L(r) U{@}, and expand 9% to an L*(r)-model in the obvious way. For
{¥v}U T C L(r), ¢* and T* have the obvious meaning.

Define T = {¢ € Lg},’z(T) M, @ =, FV(¢) C FV(p)}. By compactness there is
an L*(r)-model 9¢* such that 9* = T* U {¢*}. By standard model theory there are
w-saturated extensions M} = (W1,..., #) > M* and N} = (W, ..., W) > N such that
@y and Wy both realize T, and N} = ™.

Define a relation B C (W x W) U (WE x W2) between (the L(7)-reducts of) 9 and
N7, by putting

@By iff for all %(z) € L3*(r), and My, 2 |= o iff My, 31 = 9, and
soByys iff for all ¥(z,y) € Ly2(r), My, 21,22 = 9 iff N1, y1, 92 | 9.
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I claim that B is in fact a bisimulation between 9t; and 9%;. To see this, let us check that
the conditions of 4.6 hold. Firstly, we have B # () because @; Bu holds. For, suppose that
P(F) € L;’Z(T'); then ¢ € T, hence M, Wy = 9; and similarly in the opposite direction.

Conditions 2 and 3 are trivial,.and to see that 4 is fulfilled, assume that zjz:Byiy2
and z3 € M;. What I need to show is: Jys (z123By1y3 A z322B8y392). To this end set

‘I’(z? y) = {’l,b(:l}, y) € Lé,z(T) :9)‘(’{,:1:1,:1:3 ‘= ¢})
E(r,9) = {¥(z,y) € L3"(r) : M, a5, = 9}

Then ¥(y,,y) U E(y,y,) is finitely satisfiable in (0%,y,,¥,). Hence, since N is w-
saturated, it is satisfiable in (9], y,,y,). But this means that for some y; € W2, z123By193
and z3zBysyo, as required. The other half of Condition 4 may be established in a similar
way.

Next, we have to check that for I = {0 }U{(Z,¥) : ZBY } we have I : IM; =5 N;. Now
obviously, since each of (=)P;z,(=)z = y,(—)Rzy and (—=)Ryz is in L;’Z(T), any f € I
must be a 2-partial isomorphism. So all we have left to do, is show that I has the back
and forth property. But this may done along the lines of the proof that Condition 4 is
satisfied.

To conclude, B is a bisimulation between 9t; and ;. So, by invariance for bisim-
ulations 9] = ¢* implies M} = ©. Since M} > M* it follows that IM* = ¢*, and so
Mmoo E=ep. A

Using 4.11 some results about definability of classes of DML-models can easily be
derived. For an elegant formulation of these results it is convenient to consider so-called
pointed models as our fundamental structures (as in Kripke’s original publications). Here,
a pointed model is a structure of the form (W,C,[-], V,w), where (W,C,[-], V) is an
ordinary DML-model, and w € W.

Corollary 4.12 Let M be a class of pointed models. Then M is definable by means of a
DML-formula iff it is closed under bistmulations and ultraproducts, while its complement
is closed under ultraproducts.

Proof. Similar to [25, Theorem 4.8].

5 Decidability

In the preceding sections I have given several examples demonstrating that the DML-
language is a powerful one as far as expressiveness is concerned. Of course, this power
does not come without a price: I will show that satisfiability in the DML-language is not
decidable. After that I show that decidability may be restored either by restricting the
language, or by restricting the class of structures used to interpret the DML-language.
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5.1 The full language interpreted on pre-orders

As alanguage, DML is somewhere in between the language of S4;, the temporal analogue
of the modal system §4, and full relational algebra. It is well-known that the latter
is undecidable. ‘Since in the intermediate case of DML we only have the operations of
relation algebra on top of a single relation, it may be hoped that we are closer to S4;
than to relational algebra, and hence that DML is decidable.

But here is already an important difference between the two: S4; enjoys the finite
model property, while DML does not. To see this, define

e R:=exp(T),
e 0o :=-Edo((RN—-6§)NR).

Then, since oo forces the absence of loops, the formula Ado(R N —§) A oo is satisfiable
only on infinite DML-models. And in fact we have the following result:

Theorem 5.1 Satisfiability in DML is I13-hard.

Proof. This is a reduction of a known II}-complete problem, a so-called unbounded tiling
problem (UTP), to satisfiability in DML. The version of the UTP that I will use here is
given by the following data. Given a set of tiles T' = { dyp,...,dn }, each having 4 sides
whose colors are in C = { ¢p,..., ¢t }, is there a tiling of N X N? The rules of the tiling
game are

1. every point in the grid is associated with a single tile,

2. adjacent edges have the same color.
Now, the version of the UTP presented here is known to be II{-complete (cf. Harel [15]).
So to prove the theorem it suffices to define, for a given set of tiles 7', a formula 7 in
the DML-language such that

1. its models look like grids,
2. it says that every point is covered by a tile from T,
3. and that colors match right and above neighbors,

and show that @7 is satisfiable iff T can tile N x N. Let’s get to work now. To make a
grid, define

e LEAVE(yp) := (¢7; R),
e ONE := (RN =6)N—[(RN =46); (RN —6)]; then, for all M, and for all z,y € M,

(z,y) € [ONE]oy iff sRyAz# yA—-Jz(zRzAz #zAzRyA z # y),
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Figure 2: The unbounded tiling problem.

e UP := [ONE NLEAVE(p A ¢q) Nexp(p A =q)]
U[ONE NLEAVE(p A —~q) Nexp(p A q)]
U [ONE NLEAVE(—p A q) Nexp(—p A g)]
U [ONE NLEAVE(—p A =q) Nexp(—p A q)],

RIGHT := [ONE N LEAVE(p A q) Nexp(—p A ¢)]
U [ONE NLEAVE(—p A q) Nexp(p A q)]
U[ONE NLEAVE(p A —q) Nexp(-p A ﬁq)]
U [ONE N LEAVE(=p A =q) Nexp(p A =q)],

EQUAL(a, ) := -Edo(anN —B) A =Edo(B8N —a),

CR := EQUAL ((UP; RIGHT), (RIGHT; UP)) .
Here, finally, is the formula that will force our models to contain a copy of N x N:
e GRID := (p A g) A Ado(UP) A Ado(RIGHT) A CR A oo.

Next we have to define formulas that force 2 and 3. Let T = { dp,...,dn } and C =
{ coy...,cr } be given. For each color ¢; € C introduce four proposition letters, sugges-
tively denoted by up = c;, right = ¢;, down = c;, left = c¢;. Identifying each tile d € T
with its four sides I assume that each tile d is represented as

(up = ¢;; A right = ¢, A down = ¢;y A left = ¢;)
A( /\ —up=cA... A /\ =left = ¢).

ceT\{c; } c€T\{c;, }
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Then, put

e COVER:=A \/ 4,
deT

and

e MATCH := A( /\ (up = ¢ — [UP]down = ¢)
ceC
A N (right = ¢ — [RIGHT]left = c)).
ceC

Put o7 := GRID A COVER A MATCH. Then ¢7 is satisfiable in an DML-model iff T
can tile N x N. The if-direction is trivial, since if a tiling exists ¢ is satisfiable in N x N,
simply by verifying (pA¢) in (0,0), switching the truth values of p and ¢ while going right
and up through the grid, respectively, while the tiling will tell you how to satisfy COVER
and MATCH. Conversely, the domain of any DML-model in which ¢ 7 is satisfied in some
point z, must contain a copy of N X N with z as its origin; as COVER and MATCH are
satisfied in z there must be a tiling of this copy of Nx N. -

Corollary 5.2 Satisfiability in DML is 113 -hard.

One may get a reduction of the UTP to DML-satisfiability with somewhat less than
what I have used in the proof of 5.1. For instance, it is not necessary to actually have a
real grid inside models satisfying the ‘reduction formula’ ¢ 7; instead it suffices to have
structures satisfying a Church-Rosser like property like Vyz (RzyA Rzz — Ju (RyuARzu)).

5.2 Fragments and special frame classes

A natural move at this point is to try and find reasonably large fragments of the DML-
language that are decidable. To this end, let’s step back a second and see what made
the proof of 5.1 work. Essentially, we were able to build a grid there, thanks to the
availability of ;, N and —. Thus, when looking for reasonably large decidable fragments
of the DML-language, giving up some of these three might get us results. Indeed, giving
up ; (and ¥, by the way) restricts DML to the Boolean modal logic of Gargov and Passy
as mentioned in §2, and this is a decidable system (cf. [12]). Alternatively, giving up —
again yields decidability by Danecki [6]. Of course, in these fragments some of the more
complex operators like D and p-exp(-), u-con(-) will no longer be definable, thus it remains
to be seen whether adding any of these to the above fragments preserves decidability.
Another approach towards obtaining decidability is not to restrict the Language, but
to restrict the structures used to interpret the language. As an example I will consider the
class of all trees. Just to be precise, by a tree is a meant a structure ( W,C) with C C W2
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a transitive, asymmetric relation such that for each z € W the set of C-predecessors of z
is linearly ordered by LC.

Let Thppr(TREES) denote the set of DML-formulas valid on the class TREES of all
trees. In §6.3 I will axiomatize Thpys,(TREES), but for the moment all we need to know
about it, is that it lacks the finite model property. (To see this simply consider the formula
Ado(R)Aoco from §5.1.) Thus, to establish decidability of this theory some other tools will
have to be employed. Of course, one obvious candidate is Rabin’s Theorem [24]; to apply
this result the semantics of Thpy (TREES) has to be embedded in SwS, the monadic
second order theory of infinitely many successor functions. Here, I will take an easier
way out by appealing to a result by Gurevich and Shelah [14]. Let Lgs be the language
of monadic second order with additional unary predicates, i.e. it has individual variables
and unary predicate variables (ranging over branches) as well as a binary relation symbol
< and unary predicate constants Py, Py,.... And let Thgs(TREES) be the set of Lgs
formulas valid on all trees. Then obviously, the question whether a given DML formulas
¢ is valid on all trees, boils down to the question whether its standard translation ¢* is
a theorem of Thgs(TREES). But by [14] the latter question is decidable.

Theorem 5.3 Given a DML formula ¢, the question “Is Thpyr(TREES)U{ ¢ } satisfi-
able?” is decidable.

Several variations on the above, variations, moreover, that will still yield decidable
theories, are quite natural and worth considering. They include, for example, the set
of DML formulas valid on all trees of finite depth, or the DML formulas valid on all
well-founded trees.

6 Completeness

Before presenting a complete calculus DML for the DML-language in §6.2, I will sketch
a construction for a completeness proof involving the D operator; this construction is
presented in more detail in Venema [29], and generalizes some constructions that may be
found in Gabbay and Hodkinson [10]. Then, in §6.3, this construction will be used to prove
DML complete; §6.3 also contains a finite axiomatization for the set Thpp,(TREES)U{ ¢ }
of DML formulas valid on all trees.

6.1 How to use the D operator
Let me first present the logic governing the D operator:
Definition 6.1 Let D abbreviate -D-. Besides the classical tautologies DL has the

following axioms
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(D1) D(p— ¢) — (Dp — Dy),
(D2) p— DDp,
(D3) DDp — pV Dg.

Its rules of inference are:

(MP) ¢ = 1,0/,
(UGy) ¢/Dy,
(IRp) pA-Dp — ¢/, provided p does not occur in ¢.

Let O ={D}U{01,02,...,01%,<27,...} be a collection of unary modal operators.
I will write O; for the dual —=O;— of ©;, and I suppose that for every & € O we have its
converse OV available in O (the converse of D is D itself). For the time being I assume
the language does not contain any operators like do, ra, or fix.

Let A be a logic which contains the axioms of DL plus O;(¢ — ) — (Oip — 0;%),
p — 0,070, ¢ — 0,700, and O — ¢ V Dy, for every ©; € O, and which has MP,
UGp;, IRp, and SUB as its rules of inference.

Definition 6.2 Let A be alogic as specified above. A theory A is A-consistent if A Iy L.
Let & be a collection of proposition letters. A theory A is called a ®-theory if all
proposition letters occurring in formulas in A are elements of ®. A is called a complete
®-theory if ¢ € A or ~p € A, for all formulas built up using proposition letters in ®.
A is a distinguishing ®-theory if (i) for some proposition letter p, p A=Dp € A, and
(ii) whenever O1(p1 A Oa(pa A... AOme@m)...) € A, then for some proposition letter p,
C1(p1 A C2(p2 A . . A O (em Ap A-Dp))...) € A.

Lemma 6.3 Let ¥ be a consistent theory in A, and let p be a proposition letter not
occurring in any formula in X. Suppose p1 A O1(p2 AC2(.. . AOm—190m)...) € B. Then
the union of ¥ and { o1 A O1(p2 A O2(... AOm_i1[om Ap A=Dpl)...) } is consistent.

Proof. Cf. [10, Corollary 2.2.3]. -

Lemma 6.4 (Extension Lemma) Let ¥ be a A-consistent ®-theory. Let &' O ® be an
extension of ® by a countably infinite set of proposition letters. Then there ts a complete,
A-consistent, distinguishing ®' -theory A containing .

Proof. This is similar to the proof of [10, Theorem 2.3.1] or [29, Lemma 4.6]. Nevertheless,
it is short enough to be included here.

Define A = J,, ., An, where each A, is a consistent ®'-theory, satisfying |A,\A;| < w,
for all n. To define these Ays, let p € '\ ®. Then, by 6.3, ZU{ pA—Dp } is A-consistent.
Set Ay =XU{pA-Dp}.
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Let (2, ¢3,... be an enumeration of all &-formulas, and suppose that A, has been
defined and has the properties cited. Define A, 1 = A, U E,, where

(*) E,={-p,},if A, U{¢n} is not A-consistent,

() E, ={¢n},if ApU{ @, }is A-consistent, and ¢ is not of the form &1 (11 A
OS2 Aot A OpYm) ...,

€223 if ¢, does have this form, then, since |A, \ A;| < w, there are proposition
letters p1,...,pm € ® \ @ that do not occur in A,. Set

E, = {@n,ol("'bl Ap1A-Dpi A <>2(' AN <>m("»bm A Pm A "'me)) - ) }

It is obvious that A,;; is A-consistent if it has been defined according to (¥) or (¥*).
But, by repeated applications of 6.3 it is also consistent when defined according to ().
I leave it to the reader to check that A is complete, A-consistent and distinguishing. -

Definition 6.5 Let ® be a countably infinite set of proposition letters. Let W, be the
set of all complete, A-consistent, distinguishing ®-theories. On W, we define relations
R.o, for & € O, by putting Aj R.cAg iff for all $-formulas ¢, if Op € A, then ¢ € Ag
(or equivalently: if ¢ € Ay then Op € Ay, or equivalently: if 0@ € As then ¢ € Aj).

I use R.p to denote the relation defined using the D operator.

Lemma 6.6 (Successor Lemma) Let Ay € W,.. Assume O;0 € Ay. Then there is a
Ay € W, with AchQiAz and @ € As.

Proof. Cf. [10, Proposition 2.3.2] or [29, Lemma 4.7].

I now turn to defining a model in which the interpretation of the D operator is real
inequality.

Define A ~p Az if A; = Ag or AjR,pAz. By [25, Theorem 3.2] or [29, Lemma 4.9]
~7p is an equivalence relation. A subset of W, is called connected if it is a ~p-equivalence
class. By an easy argument one can show that R.p is real inequality when restricted to
a connected subset of W, (cf. [25, Theorem 3.2] or [29, Lemma 4.11]). Also, since A
contains the axioms O;¢ — ¢ V Dy, any connected subset of W, must be closed under
Reo,.

Definition 6.7 A d-canonical frame for A is a tuple 3 = (Wy,{ Ryo : O € O }), where
Wy is a connected subset of W, and Rgo = Reo [ (W, X W,).

A d-canonical model for A is a tuple My = (Fq4, Va), where g is d-canonical frame,
and Vj is given by A € Vy(p) iff p € A.
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Lemma 6.8 (Truth Lemma) For all formulas ¢ in the language containing the modal
operators in O, and all A € My, we have My, A = ¢ iff p € A.

Proof. 1 argue by induction on ¢, and only treat the case p = O¢. If My, A1 E O,
then there is a Ay € Wy with AjRz0A2 and My, Az = 9. By the induction hypothesis
1 € As. Since A1 Rgo Ao this implies O € Ajy.

Conversely, by the Successor Lemma and the remarks preceding Definition 6.7 09 €
A; implies that for some Ag € Wy, A1R3oA2 and 9 € Ag. By the induction hypothesis
this gives MMy, A |= 9, and hence My, A1 = O,

6.2 Axioms

We may as well start with a definition:

Definition 6.9 Let (a)¢ abbreviate do(a; ¢?), let [a]p = ~(a)—¢, and let (C)p be short
for (exp(T))y. Besides enough classical tautologies, and the axioms of DL (taken as
axioms over DML(®)) the system DML has the following axioms:

(D4)  Dp < do(—6;p?),

(A1) [a](p — g) = ([o]p — [o]9),
(A2)  (a)p — pV Dp,

(A3) (E)(C)p — (B)p,

(A4) p— (D)p,

(A5)  do(exp(p)) < (C)p,
(A6)  do(con(p)) < (J)p,
(A7) ra(exp(p)) < p,
(A8)  ra(con(p)) & —p,
(A9) fix(exp(p)) « p,
(A10) fix(con(p)) « —p,

(A11) (anp)p — (a)p A (B)p,

(A12) E(pA-Dp) — ({a)p A (B)p — (N B)p),
(A13) do(anp) « (NPT,

(Al4) ra(anpB) < (@nB))T,

(A15) pA-Dp — (fix(anpB) « (aNB)p)

(A16) (o;8)p « (a)(B)p,

(A17) do(e;B) & (@)(B)T,

(A18) ra(a;B) & (B7)(a)T,

(A19) pA-Dp — (fix(a; B) < (@)(B)p),
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(A20) E(pA-Dp) = ({o)p & ~(-0a)p),
(A21) do(—a) « (—a)T,

(A22) ra(-a) & ((-a))T,

(A23) pA-Dp — (fix(—a) < (-a)p),

(A24) p — [of{a)p,

(A25) p — [aa)p,

(A26) do(a”) « ()T,

(A27) ra(a”) « ()T,

(A28) pA-Dp — (fix(a)  (a)p),

(A29) (p7 g (pA9),
(A30) do(p?) « p,
(A31) ra(p?) & p,
(A32) fix(p?) & p.

Besides those of DL, the rules of inference of DML are:
(UGa) ¢/[a]p, for a € Proc(®).

Remark 6.10 Obviously there are various redundancies and dependencies in the above
list of axioms. For instance, as pointed out earlier, the modes ra and fix are definable via
ra(a) < do(a”) and fix(a) < do(aN §). Hence, all axioms involving ra and fix can be left
out when these axioms are added. But I am not after the most economic set of axioms
here.

Note by the way how the above list is organized. Apart from some initial bookkeeping
axioms and axioms ensuring that the canonical structure will be transitive and reflexive,
there are, for every relational connective e, one or two axioms to make sure that the
interpretation of e in the canonical model is the intended one, plus three more axioms to
make the Truth Lemma work for e.

Definition 6.11 The system DML is defined as the extension of DML with the following
axioms. Let (C)¢ abbreviate do(exp(T) N —8;¢?), and let [C] be the dual of (C). (And
similarly for () and [J].)

(T1) pA-Dp —[C][T]-p,
(T2) () (pA-Dp) — [3](C)p V p V{C)p)-

Axiom T1 will make sure that in the canonical model the relation C is asymmetric,
while axiom T2 will guarantee that sets of predecessors in the canonical model are linearly
ordered by C.
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6.3 Theorems

Theorem 6.12 The system DML is sound and complete with respect to its standard
models.

Proof. Proving soundness is left to the reader. To prove completeness, define O to be
the union of {D,(C),(d)} and {{(a) : @ € Proc(®')}, where (C) and (J) abbreviate
do(exp(T);-) and do(con(L);"), and repeat the construction of §6.1.

Define 9 = (Wy,C,[], V4), where Wy, V; are as in 6.7, C denotes Ryy, and for
a € Proc(®'), [] = Ry(a)- Then, by axioms A3 and A4 C is both transitive and reflexive.

First I check that 90 is a standard model. Checking that 90 is standard as far as exp
and con is concerned, is left to the reader (use A5-A10).

A useful thing to note for dealing with the relational operators of DML is that, by 6.4
for any A € 9 there is a (unique) proposition letter pa such that pao A -Dpa € A.
Let’s first consider [a N B]. By A1l [an ] C [a] N [B]. To prove the converse, assume
(A1,A2) € [e] N [B]- Let p be a proposition letter such that p A =Dp € A,. Then
E(p A —=Dp),{a)p,(B)p € A;. Hence, by A12, (a N B)p € A;. But this is possible only if
(A1,A2) € [an ], as required.

It is easily verified that [a; 3] = [o]; [8], by using A16. To prove that [—a] = —[o]
argue as follows. Assume that (A;,Az) € [—a]. Let p be a proposition letter such
that p A—-Dp € Az. Then E(p A =Dp), (—a)p € A;. Ergo, =(a)p € A1, by A20. Hence
(A1,A2) ¢ [a]. This establishes [—a] C —[a]. The converse inclusion may be established
in a similar way.

I leave it to the reader to use A24 and A25 to verify that (-)” does indeed act as the
converse operator. The final case we have to check, [¢7?], is easy: simply use A31.

We are now in a position to prove a Truth Lemma: for all formulas ¢ € DML(®'),
and all A € M, we have M, A = ¢ iff ¢ € A. Of course the proof is by induction on
¢, and the only interesting cases are D¢ (but this case is covered by the construction
in §6.1), and xx(exp(¢),xx(con(¢),xx(a: N B), xx(a; B), xx(—ar), xx(a”) and xx(¢?), where
xx € {do,ra,fix}.

Here we go: the cases xx(exp(¢) and xx(con(y) (for xx € {do,ra,fix}) can either be
established by standard modal arguments, or are immediate from axioms A5-A10.

By A13 do(anp) € Aiff (aNPB)T € A. By the Extension Lemma and the definition
of [-] this is equivalent to 3A; ((A, A1) € [ N B]), which is the case iff M, A |= do(aNP).
Next, by a similar argument, using A14 plus the fact that 91 is standard, we have that
ra(anNB) € A iff M, A |=ra(a N B). Furthermore, let p be a proposition letter such that
p A—=Dp € A; then fix(aNB) € A iff (anNB)p € A (by Al5) iff (A,A) € [ang] iff
Mm, A = fix(a N B).
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The next procedure operator to consider is ;. But this one may be treated completely
analogous to N, using A17-A19. We move on to ‘—’. By A21 we have do(—a) € A iff
(—a)T € A iff for some Ay, (A, A1) € [—a] (by the Extension Lemma and the definition
of [-]) iff M, A | do(—a). The case ra(—«) is entirely analogous and uses A22, while
the case fix(—a) is similar to the earlier ‘fix-cases’ (use A23). A similar line of reasoning
(using A26-A28) establishes all cases for the converse operator (-), so I'll skip that one,
leaving only procedures of the form ¢? to consider. But here one may use the induction
hypothesis together with axioms A30-A32.

Of course, from the Truth Lemma the completeness of DML follows by a standard
argument.

Theorem 6.13 Thpy (TREES), the set of DML formulas valid on all trees, is azioma-
tized by DML7.

Proof. Obviously, if Fpar, ¢ then ¢ € Thpyyr(TREES). To prove the converse, assume
¥pmLy . Repeat the construction used in the proof of 6.12, and let 9 = (W,C,[.], V)
be a d-canonical structure such that for some A € M, ¢ ¢ A. All we have to do to
complete the proof of the theorem, is show that (W,C) is a tree.

First, C is obviously transitive, and it is asymmetric by axiom T1. To see that C-
predecessors are linearly ordered by C, use T2: let A, As C A. By construction there is
a proposition letter p such that p A—-Dp € A;. By T2 this yields (C)pV p V (2)p € Ay,
implying that either Ay C Ay, Az = Aj or A; C Ag, as required. -

7 Which algebras?

In this section I will define modal algebras appropriate for the DML-language. I will need
one or two preliminary definitions. First, a Boolean module is a structure 9 = (B, R, ¢),
where % is a Boolean algebra, R is a relation algebra and ¢ is a mapping R X B — B
such that

M1 o(r,a+b) =9(r,a)+o(r,b),
M2 o(r+s,a) =o(r,a) +9(s, a),
M3 o(r,o(s,a)) = ol(r;s), a),
M4 o(6,a) = a,

M5 <(0,a) =0,

M6 o(r,o(r,a)") < a'.

Just as Boolean algebras formalize reasoning about sets, and relation algebras formalize
reasoning about relations, Boolean modules formalizes reasoning about sets interacting
with relations through o. In the full Boolean module M(U) = (B(U),R(U), o) over a set
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U # 0 the operation ¢ is defined by
o(R, A) = (R)A = {2 :3y((s,4) € RAy € A) }.

(See Brink [4] for a formal definition of Boolean modules and some examples.)

Now, Boolean modules are almost, but not quite, the modal algebras of the DML-
language. To obtain a perfect match, what we need in addition to the sef forming oper-
ation or projection ¢, is an operation that forms new relations, i.e., a mode. This brings
us to the notion of a Peirce algebra, which is a two-sorted algebra P = (B,%R,, ¢) with
(%B,R,0) a Boolean module, and ()¢ : B — R a mapping, called (left) cylindrification,
such that for every a € B, r € R we have

e o(a%1) = a, and

o o(r,1)¢=r;1.
In the full Peirce algebra B(U) over a set U # 0, () is defined as A° = {(z,y):z € A}.
The algebraic apparatus of Peirce algebras has been used as an inference mechanism in

terminological representation (cf. Brink and Schmidt [5]).
The precise connection between the DML-language and Peirce algebras is:

the modal algebras for the DML-language DML(®) are the Peirce algebras
generated by a single relation R and the ‘propositions’ ®.

To see this, it suffices to show that ¢ and © are definable in the DML-language, and that
do, ra, fix and exp,con,? are definable in Peirce algebras generated by R and ®:

ola,p) = {z:Fy((z,9) €ElemAMyEp)} = do(a;9?),
p° = {(z,y): Mz =} = (U9,
and
do(a) = o(a,1), exp(p) = RN,
ra(@) = ofa’1), con(p) = R'N(-p),
fix(a) = o((and),1), e? = 6Np°.

Given Theorem 6.12, the connection between DML and Peirce algebras established here
may be interpreted as saying that (the obvious algebraic counterpart of) DML completely
axiomatizes the identities valid in all representable Peirce algebras over a single relation
R.

Of course, as DML is closely related to propositional dynamic logic PDL (cf. §2),
its modal algebras for DML are closely related to the dynamic algebras ® = (B, §,©)
of Kozen [20], Pratt [23]. These too are structures that serve to interpret a two-sorted
language: propositions are represented in a Boolean algebra B as in our case, but relations
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(or programs) are represented in a Kleenean algebra & = (K,U,;,0,*), where * is the
Kleene star. However Kleenean algebras need not be Boolean ones, and in most definitions
they don’t include a converse operation ~. Like Boolean modules dynamic algebras have a
projection ¢ : & X B — B; but in most definitions they are not equipped with any modes.

8 What’s next?

Here are some afterthoughts and suggestions for further work.

As I mentioned in §§2, 7, there is a close connection between the DML-language and
dynamic algebras/logic, with an obvious difference being the absence of the Kleene star
* in the DML-language. Adding the * to the DML-language seems a natural move, but
as a corollary to a result of Gargov’s (cf. [21]) this will bring up the undecidability to (at
least) =}.

Of course, another possible extension of the DML-language would be to have multiple
‘base’ relations in the procedural component. This would bring the system closer to the
‘general’ Peircean algebras of §7 based on multiple relations, and it would also allow us
to analyze the interaction between expansions and contractions ‘performed’ by different
agents, and it might even be of some use in modeling the ezchange of information.

And finally, as pointed out in §3, for some application it may be necessary to be
more precise about the structure of the states in DML-models, rather than treating them
as some kind of ‘black boxes’. Using a result by Finger and Gabbay [8], if we have a
complete ‘local’ logic governing what happens inside these boxes, this local system can be
amalgamated with the DML-language as a global system on top of it—while preserving
such properties as completeness. In a similar fashion it may be useful to add (more)
structure to the transitions or changes as well. One can think of formalisms involving
intricate plans or processes here as an area where this could be of use. Although at this
stage I have no clear idea on how this should be implemented, I do think that interesting
applications and technical questions will arise from implementations of this idea, and that
results similar to the Finger and Gabbay result should be aimed for.
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