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1 From Special Semantic Properties to General Phenomena

The basic generalized quantifiers live in the special semantic type ((e—t)—((e—~t)-t)) of
linguistic determiners, being binary relations between properties of individuals according to
their standard theory. Much of their behaviour has been studied in this special domain,
including possible inferential 'syllogistic patterns' such as Transitivity and Symmetry, as
well as various 'denotational constraints' like Conservativity and Monotonicity. Standard
expositions of the results achieved in this manner may be found in van Benthem 1986 or
Westerstihl 1989. Our purpose in this Note is not to investigate further more delicate forms
of quantification, but rather to put another item on the agenda, namely the interaction
between the existing notions and their more general linguistic and logical environment.
After all, quantification does not take place in isolation: generalized quantifiers function
within wider languages, whether natural or artificial, which come with a full universe of all
types that can be constructed over, at least, the two basic types e ('individuals’) and t
(‘truth values'). Thus, the question arises how such inferential behaviour or such
denotational constraints fare within this more general typed environment. For instance,
inference is really a general process across an entire language, and the question becomes
how quantifiers contribute systematically to this broader 'natural logic' (cf. Sdnchez
Valencia 1990). This will involve a move from specific denotational conditions in one type
to general semantic phenomena across all types. As another illustration of this same shift,
the specific constraint of Conservativity for individual quantifiers becomes one local
instance of a global dynamic process of 'domain restriction' across arbitrary types of
linguistic expression. This general cross-categorial behaviour is not confined to quantifiers:
it also occurs with Boolean particles in natural language, as has been demonstrated and
investigated at length in Keenan & Faltz 1985. Indeed, many denotational constraints for
quantifiers involve some form of interaction with Boolean operators. We shall investigate a
few logical aspects of the above issues, showing how they lead to non-trivial questions
concerning the range of existing generalized quantifier techniques in a wider setting.
Moreover, we hope that the general emphasis on logico-linguistic 'mechanisms’, as
opposed to specific linguistic constructions, will prove of independent value.

2 Generalized Quantifiers in Lambda Calculus
A most convenient technical formalism for achieving type-theoretic generality in the

description of natural or formal languages is that of a Typed Lambda Calculus. The latter
system provides the 'logical glue' for constructing linguistic meanings from those for



component expressions. This composition may be achieved in the Montagovian style, be it
that recent research has come to insist on proper regard for denotational 'fine-structure’,
using various fragments of the full lambda calculus machinery to achieve 'expressive fine-
tuning'. In principle, one could even ascend to a full Type Theory, manipulating explicit
identities (cf. Gallin 1975), but this seems unnecessary in practice. Therefore, the technical
question becomes how properties of quantifiers occurring in larger expressions interact
with a lambda calculus machinery, in order to contribute to the inferential or denotational
behaviour of the whole. Several examples of what happens here may be found in van
Benthem 1991 (chapters 10, 11), which shows how a categorial analysis of linguistic
expressions, with grammatical derivations corresponding to typed lambda terms via the
Curry-Howard isomorphism ('formulas-as-types'), automatically imports much special
quantificational behaviour into the meaning of general expressions. Here are two key cases.

Example From Conservativity to General Domain Restriction on Argument Roles.
Conservativity for single quantifiers has the form

Q AB iff Q ABMA),
which restricts the argument of the predicate B to A-objects. Combining this with the
general mechanism of categorial derivation, appropriate argument restrictions may be
‘computed for binary predicates in transitive sentences having multiple quantifiers:

QiA TV Q2B iff Q1 A (TVN(AxB)) Q2B.
But the procedure also covers such more complex linguistic contexts as, say, adverbial or
prepositional phrases. Here is a categorial derivation of the types for the verb phrase
"walk to every city" , whose common noun "city" restricts the individual argument of the
preposition "to" :

n "

to
"walk" el (ex((et)o(e=0))) Mp
(e=t) ((eot)—(e-) Mmp
e2 (e wp every” “city"
-t COND, withdrawing 1 ((eot)=((e=)—=t)  (e—t)
€21)  restrict to CITY ((e>1)—>1)) mp

—L_ COND, withdrawing 2
(e-t)

Its corresponding lambda term may be computed in Curry-Howard style as follows:



Xo TO(e—((e-t)—5(e—t))

Yo TOXWALK)
TOYWALK)(y)
Axee TOX)(WALK)(y) EVERY CITY ((e)-5t)
EVERY CITY ((es)->t) (AXee TOGHWALK)(¥))
AYe# (EVERY CITY (¢ s¢)-s) (AXes TOX)(WALK)(y))) .

Here, by ordinary Conservativity, the last three lines may replace their part

Axee TOX)(WALK)(y) by Axee (TO(X)(WALK)(y) A CITY(x)) .
Along the lines of this 'restriction marking', a systematic calculus of argument restriction
may be developed, showing how common nouns serve to restrict argument positions for
individuals in event-type 'frames of predication' set up by verbal expressions. |

Example From Monotonicity to General Predicate Replacement.
Generalized quantifiers may display monotonicity in both their arguments, witness the case
of ALL which is 'left downward' and 'right upward'":

A'€A QAB BEB' imply Q A'B'.
But again, monotonicity also makes sense for general expressions. For instance, the above
prepositional phrase "walk to every city" is upward in "walk" , and downward in "city" .
Again, this may be computed directly from the above categorial analysis, either by means
of 'monotonicity marking' on the grammatical derivation tree, or directly on its
corresponding lambda term. The idea is that lexical items can have special monotonicity
behaviour, which may be encoded in their types, and then gets passed on through
categorial combination according to certain rules:

"

"to
"walk" el (e=((e=t)ro(e=t)) + pp
(est) + (es)*=s(emD) + pp
e? (e=t) + mp "every" "city"
—t + CcOND, withdrawing 1 (e =((e=2 =) +_(e—t) —
(e=t) + ((eot)* o) + ypp

-t + COND, withdrawing 2
(e—t)



Here, monotonicity behaviour at the surface gets explained by calculating strings of + or
— markers down to the root. E.g., "walk" has an unbroken string + + + + + which
explains its positive occurrence, whereas "city" has -+ + . Essentially the same result
may also be computed on the associated lambda term
Ayes (EVERY CITY (o)) (Axee TONWALK)(yY))) ,

using monotonicity behaviour of its parameters for their arguments together with two
general 'rules of passage’: in function applications, the function head is always positive,
while in lambda abstractions, the body is always positive. n

Thus, annotated categorial derivations, or adorned lambda terms, are a convenient medium
for transferring the properties of quantifiers to a general linguistic environment. Again,
there is often further fine-structure here, in the form of restrictions on the kind of lambda
term that is actually needed. For instance, the main calculus for categorial combination in
the literature is not the full Lambda Calculus, but rather something like its linear fragment'
having only those terms in which each lambda operator binds exactly one free occurrence
of its index variable. This is the semantic counterpart of the well-known 'Lambek Calculus'
in the proof theory of Categorial Grammar. The complete picture is therefore rather one of a
landscape of fragments of the full lambda machinery. Nevertheless, the latter system still
provides a reasonable limit to semantic combination, and hence, some natural logical
questions emerge about the power of this mechanism.

3 First-Order Predicate Logic as a Point of Departure

Quantificational patterns of inference or denotational constraints already arise in the core
system of first-order predicate logic. The latter may be viewed as a small fragment of our
full typed system, and some natural logical questions arising in the above are most easily
demonstrated starting from this base. First, from a general categorial point of view, first-
order predicate logic has variables of types e (individuals) as well as (e—t) (one-place
predicates), (e—(e—t)) (two-place predicates), etcetera. Then, it also has a number of
special constants, namely Booleans — (type (t—t))and A, v (type (t—=(t—t)) ) as well
as quantifiers V , 3 intype ((e—t)-t). All further combinatorics is supplied by general
lambda calculus, witness a standard formula like Vx (Ax v Jy (By A Rxy)) which will
now amount to
V (Axe v (AX)) @ Ay* A B(y) RE)(Y)))) -

Thus, predicate-logical formulas become terms of the truth value type t. 1 Moreover,
statements of logical consequence from a sequence of premises 01, ..., ¢p to a conclusion



y may be rendered by the validity of the associated Boolean identity ¢1 A .. APp A Y =
¢1 A ... A Op : 'adding the conclusion has no effect after processing of the premises'. 2
Henceforth, we shall assume that the individual type e refers to some arbitrary non-empty
base domain, whereas the type t refers to the standard domain of two truth values. 3

Now, for a start, inferential behaviour in first-order logic is completely described
by some well-known principles concerning these logical constants, combining basically the
axioms of Boolean Algebra with some suitable quantifier postulates. Moreover, by Godel's
Completeness Theorem, the resulting set of proof-theoretic principles is ‘complete’, in that
it derives all valid inferences. But of course, we can now do 'predicate logic' even within
more complex terms of the lambda calculus, for instance, replacing equivalents at
appropriate spots inside possibly higher-order syntactic environments. Thus, our first
obvious question now becomes this (cf. Section 4 for further precisation):

Are the usual first-order principles of deduction, together with the standard rules of

the typed lambda calculus, sufficient for deriving all valid inferences in the above

logical constants for general typed lambda terms?
Next, the earlier denotational constraints also occur naturally inside first-order logic. For
instance, Conservativity rests essentially on the following simple equivalence (see Sdnchez
Valencia 1990 for its historical origin with C. S. Peirce):

AX A (... ... ) & AxA(... AxXA ...),

provided that X be free for substitution in this context.
This is an inferential principle too, but at a higher level of generality than the postulates
found in the above-mentioned axiomatizations of first-order logic, as it operates on more
complex linguistic patterns. Another important example which already figures in predicate
logic (again with a Peircean ancestry) is Monotonicity. A predicate-logical sentence ¢ (P)
is semantically monotone in the predicate P if its truth remains unaffected in any model by
merely enlarging the extension of the predicate interpreting P . There is a number of

“interesting variants of this notion, restricting attention to specific occurrences of P, or to

specific models for ¢ , but the present one will do here. On the syntactic side, positive
occurrence of a predicate P in a formula is defined as occurrence under an even number of
negations. What is easy to see now is that a formula having only positive occurrences of a
predicate P is monotone in it: the syntactic test of positive occurrence is 'sound' for
semantic monotonicity. The converse is a less obvious statement of ‘completeness' known
as 'Lyndon's Preservation Theorem':

If a first-order sentence is monotone in the predicate P, then it is logically

equivalent to one all of whose occurrences of P are positive.
And again, we have an obvious question:



Is there a similar ‘preservation theorem’ for monotonicity, supplying a complete
syntactic format for this phenomenon in our general typed lambda calculus ?
In more practical terms, this amounts to the following concern. The above computations on
categorial derivations gave us a means of spotting syntactically 'positive' positions,
reflecting inferentially sensitive locations in a linguistic expression. But can we be sure that
this mechanism in our natural logic really detects all such positions?

4 Axiomatizing Inference

The pure lambda calculus is a universal theory of function application and abstraction. Its
typed variant arises when these functions are thought of as coming in hierarchical layers.
Henceforth, we shall be thinking of 'standard models', consisting of function hierarchies
over base domains including a non-empty set De of individual objects and a truth value
domain D . Universal validity of identities M=N between terms of the typed lambda
calculus may be explained semantically as their truth under all variable assignments in such
structures. One basic result in the field is then 'Friedman's Completeness Theorem':
Universal validity is axiomatized by the Extensional Typed Lambda Calculus A,
having the usual axioms and rules for identity, lambda conversion as well as
extensionality of functions.
This result does not extend from universal validity to the case of consequence from
premises, and hence there is no easy way of adapting it to obtain complete axiomatizations
for a lambda calculus with additional constants, such as the above — , A, 3 with their
usual theory. Nevertheless, it turns out possible to obtain an axiomatization for the logical

constants of predicate logic in a full typed lambda calculus, using the following analysis in
van Benthem 1991 (chapter 2). The idea is to first introduce a new calculus A.* of

'sequents'’ A - o=P,with A any finite set of identities. 'Semantic validity' for these
sequents says that " in all standard models, any assignment verifying all identities in A
also verifies o= " . The resulting valid principles are obvious generalizations of those
for A; . For instance, 'Replacement of Identicals' returns in two axioms and one rule:

a=pF ya)y=vP), a=BF ay)=p

if A ao=p (where X doesnotoccurfreein A), then A - Axe ot =Axe .
Moreover, Extensionality assumes the following form:

if A o(x)=B(x) (where X doesnotoccurin A, a,B),then AF a=p.
Finally, the usual structural rules hold for these sequents, such as Reflexivity,
Monotonicity and Cut. A general completeness theorem for sequent-based lambda calculus
may be proven at this stage, by modifying the usual arguments concerning term models.



Next, an enriched calculus A;*B arises by adding all Boolean axioms as identities, together
with the following rule of Bivalence:

if A,oiy=1Foa=p and A, o,=0F a=PB,then A a=p.
Moreover, for technical reasons, identity predicates =g@—e—t)) are to be added for each
ground domain e, requiring also principles of Individual Identity:

(O =(e—>(e—t)) Be)=1F 0e=B, 0g=Pek (0 Z(e—>(e~t) Be) =1
The system kt*B is obviously sound for its intended semantic interpretation, over

4

standard models with D; = {0, 1} . And even the following stronger result holds:

Proposition  Anidentity @  a.=p is provablein A;*B if and only if
it is valid in all standard models having ground domain D; = {0, 1} .

Proof Sketch  Starting from a non-derivable sequent @ F o =3, one constructs some
consistent set A which does not derive o =3, but which progressively decides all terms
of the truth value type t (here the Bivalence Rule is crucial), making sure that non-identical
functions shall differ on at least one tuple of fresh arguments (this requires Extensionality
plus the new ground identity predicates). Then, a canonical term model may be defined
verifying A while keeping o, B distinct, whose domain D; has just two truth values
0, 1. Now the Friedman construction for a 'partial surjective homomorphism' from the
standard model over the same ground domains still works, and it even maps the 'real’
Boolean operators to their counterparts in the term model. Thus, the counterexample to
o =P in the term model may be transferred to one in a standard model. |

The crucial feature of Booleans underlying the preceding outcome is their 'first-orderness’
in the hierarchy of types. And in fact, a similar analysis may be given for all of first-order
predicate logic with a lambda calculus superstructure, in which the Booleans are
supplemented with one more constant, namely the binary existential quantifier some in the
earlier determiner type, interpreted as set overlap. Then, our final axiomatization is reached:

Proposition  The valid identities on standard models are axiomatized by A;*B

together with the following quantifier principles:

. some of = some Bo Symmetry
some ofy = some o(pAo) Conservativity
some ofy < some o(BvYy) Monotonicity
some 00 = 0 Non-Triviality



. some oy =0 F o(x)AB(X) =0, for all variables X
if A F o(u)AB(u)=0, with u not occurringin A, o, B,
then A b some af3 =0.

Proof = We merely sketch the crucial step in the argument, which is otherwise similar to
the preceding one. The additional task is to make sure that the Friedman homomorphism h
will map genuine set-theoretic overlap to the interpretation of the some functor in the term
model. What is needed for this purpose is the introduction of 'witnesses' in the earlier
construction of the set A describing the term model for all statements of the form some

aff accepted at some stage. That this will work is ensured by the two final rules stated
above. 5 The final check after the construction of h from the standard model to the term
model runs as follows. If two sets X, Y of individuals are mapped onto term equivalence
classes o~ , B~, and the former share some element T~ , then we have o(t) =1, p(t) =1
derivable from A, and hence some off =1as well (some afy =0 would derive that
oUDAB(T) =0): ie., [[some]](a)(B) holds. Conversely, if the latter relation holds, then

its witness will give a non-empty intersection for X, Y . [ |

This result does not exhaust all questions of interest concerning general deduction in the
lambda calculus. In particular, the analysis should be extended to cover non-standard
quantifiers, such as "most" . Also, various further categorial operators are involved in first-
order inference in natural language that deserve separate investigation. One case are
argument reducers of predicates, like the reflexivizer "self" in type ((e—(e—t))—(e—t)) .
This is the only logical 'Boolean homomorphism' in its type (cf. van Benthem 1986),
which means, amongst others, that it commutes with negations and conjunctions. Would
this suffice to characterize its inferential behaviour in the setting of a full lambda calculus?

5 Characterizing General Monotonicity

Our next concern is the earlier monotonicity. In a full lambda calculus, this phenomenon
may be defined using a natural notion of 'Boolean inclusion' &, in all types a:

Ceis =, C¢is <

in functional types (a—b), fSaopg iff f(X)Spgx) forall x in Dj.
Now, a term Ty with a free variable x; may be called ‘monotone’ in x if its denotation
[[x]] under any variable assignment depends monotonely on the object assigned to the
variable x . Briefly, 'uSav only if [[t]]%u S [TI]%v .

This generalizes the earlier case of predicate-logical formulas with individual predicates.



Evidently, this 'upward' notion has a 'downward' dual too, reversing the relationship.
On the syntactic side, there is also a natural notion of 'positive occurrence' for variables in
lambda terms:

X occurs positively in x itself, but in no other single variable y

a positive occurrence of x in M is also one in an application M(N)

a positive occurrence of x in M is also one in an abstraction Ays M.
This allows only one positive position, namely as the 'head variable' of a term. But in the
presence of monotone parameters, such as the earlier constants — , A, 3, the situation
changes. One now adds 'negative occurrences' as well, stating the obvious rules for
argument positions of Boolean operators or quantifiers (upward monotone parameters
preserve polarity in their arguments, downward monotone ones reverse it). Again, it is
easy to prove 'soundness':

If a variable x has only positive occurrences in a term of a lambda calculus with

first-order logical constants as parameters, then that term is monotone in x .
As for a converse preservation theorem, the situation is subtle, and we only have partial
results so far. What should be noted in any case is the following exception. The above
inclusion relation reduces to identity on all 'non-Boolean types' whose final atomic type is
e instead of t. Accordingly, each term is trivially monotone with respect to all its variables
of non-Boolean type. Thus, in this case, no syntactic restrictions can be justified at all —
and attention must be restricted to Boolean types, if anything of interest is to be discovered.

First-Order Predicate Logic

On the above view, even predicate-logical formulas have further positions where they

might be monotone. For instance, the formula —p is monotone in the connective
occurrence — , as may be seen quite easily. Here, one refers to replacements in the
ordering < (1) of unary Boolean operators, which is a diamond

Axel

Axex AXe—X

Ax0
Likewise, formulas may even be monotone with respect to certain occurrences of
quantifiers in them, allowing substitution by 'more inclusive' quantifiers. What this
requires, of course, is a more abstract view of predicate-logical formulas than the usual
one, where propositional operators or quantifiers may now become subject to varying
interpretation, so that the usual distinction between variable 'assignments' and more
permanent 'interpretation functions' becomes fluid. By itself, such a change need not affect



essential properties of the logic. For instance, a fundamental result like the Compactness
Theorem still holds with 'Boolean variables'. ¢ Here is a relevant observation.

Proposition A predicate-logical formula is monotone with respect to a certain Boolean
operator symbol if and only if itis equivalent to some formula having only
positive occurrences of that symbol.

Proof The argument rests on a simple trick, that will recur a number of times in what
follows. If a formula ¢ is semantically monotone in the Boolean operator F (which we

take to be unary, for convenience), then we have the following schematic equivalence:
(0] > dF'c (t—)t)F: [F/F] 0.
Now, the latter formula may be defined explicitly via the disjunction of all four possible

cases for F':
Axel1 € 15ty F A [Ax*1/F] ¢ Axex S (1) F A [Axx/F] ¢
Axe—x & (t—t) F A [}LX'_IX/F] q) Ax*0CS t—%) Fa [}\,X'O/F] (I)

Here, the substituted forms for ¢ on the right no longer contain occurrences of F at all.

Moreover, the left-hand inclusions can be written entirely in positive terms for F, namely
(respectively) F(0)AF(1) F(1) F@O) 1. 7 |

But already for the case of quantifier symbols, the situation is less clear:

Open Question ~ Does semantic monotonicity of a first-order formula ¢ with respect
to some quantifier symbol Q imply definability of ¢ in a form which has only
positive occurrences of Q in the above sense (that is, only directly under an even

number of negations and an arbitrary number of monotone first-order operators
such as A, V, 3, but not under itself) ?

First-Order Predicate Logic with Generalized Quantifiers

The preceding case really leads to a common kind of extension of first-order predicate
logic, namely with additional generalized quantifiers interpreted via families of sets. (The
restriction to unary quantifiers is made here merely for the sake of convenience.) Thus, the
syntax now also allows operators of the form Qxe ¢(x) . One obvious question in this case
is if the earlier Lyndon Theorem goes through for formulas with respect to occurrences of
individual predicates. For extension by upward monotone quantifiers Q , this was shown
by Makovsky & Tulipani: cf. the elaborate analysis in Doets 1991. For the case of arbitrary
generalized quantifiers Q , even this simple question still seems open.

10



Lambek Calculus and the Linear Lambda Fragment
Now, let us pass to a general typed system. We start with a modest engine of categorial

combination, namely the Lambek Calculus with its corresponding 'linear lambda terms'.
Van Benthem 1991 (chapter 11) has the following result for the pure version of this system
(without Boolean parameters):

Proposition A linear term is monotone with respect to some variable of Boolean type if
and only if itis equivalent to some term having that variable in head position.

Proof Sketch First , one reduces the relevant term T to its lambda normal form. Suppose
that its occurrence of x still is not positive. Then, two variable assignments may be created
progressively, differing at their x-values but otherwise the same, starting with two
properly included Boolean values at the occurrence of x, and working outward across its
successive 'contexts' in the term — whose effect is as follows:
At each stage of the construction, some context in our term is under inspection,
which is to receive two different values under the two assignments. If this context
has a non-Boolean 'individual type', its leading variable' may be evaluated via
extended assignments so as to make the whole context yield two distinct values in
the appropriate individual type domain. If its leading variable has a 'Boolean type',
then one reverses the Boolean inclusion once (working inside out), after which the
resulting non-inclusion may be maintained across wider Boolean contexts
encountered on the outward journey.
The single occurrence property of linear terms is crucial in maintaining the desired
properties. At the end, T will have non-included values for included values of x. [ |

Now, this proof may be extended to cover the case of linear terms with Boolean parameters
as well, by showing how to pass negations and conjunction in the above procedure.

Proposition  The preceding result also holds for linear terms with Boolean parameters,
be it that the equivalent term may fail to contain the relevant variable at all.

Proof  The non-trivial direction runs as follows. The earlier reduction to lambda normal
form may be performed first without using Boolean identities. (The latter might interfere in
this process, witness the possible multiplication of redexes in a Boolean equation like
M= AM)M) . ) Afterwards, Boolean reductions may be made with impunity, as

algebraic identities on terms of the non-functional type t do not introduce new redexes.

11



Now, suppose that x still has an occurrence in the final form, which is not positive. Then,
the procedure from the preceding proof still works, with this twist that Boolean (non-)
inclusions must now be switched when passing negations. The only sensitive new case in
maintaining the desired behaviour under the two assignments arises when a conjunctive
context of the form A (M)(N) is to be passed, with x occurring, say, in the conjunct M .
Then it should be possible, by modifying the two assignments, to make N at least true:
otherwise, the value becomes 0 in both cases, and the intended difference gets lost. But if
N were unsatisfiable, A (M)(N) would reduce to 0 by Boolean equivalence, and our

original term would be equivalent to one without any occurrence of x after all. |

Nevertheless, this result does not seem fully satisfactory, since Boolean conjunction in
natural language seems to occur mainly in a 'coordinative' mode which results in lambda
terms allowing multiple binding across conjuncts at the same level ("twists and shouts"
naturally means Axee A (TWIST(Xe)) (SHOUT(Xe)) ) . 8 Therefore, we shall consider the

full system of types and lambda terms after all.

Full Lambda Calculus
In the ordinary lambda calculus, apparent counter-examples exist to a preservation theorem
for monotonicity, even at a simple Boolean level (cf. again van Benthem 1991, chapter 11):

Example Non-Positive Monotonicity.
The term  X(t_s¢) (X(t—t) (Yt)) is semantically monotone in both its free variables, without

having any definition by means of a pure term in which either of these variables occurs
only positively. Nevertheless, there is a positive definition when Boolean parameters are
allowed. Indeed, the following terms will both do (as may be checked by brute force):
(Xt—t)(1) VXt ) A Y) vV (Keot)(1) A Xt=t)(0)) A —Y)
(Yt A X=X t—t) (1)) V X(t-t)(X(t—)(0)) . n

The preceding Example points at a more general result:

Proposition  For terms in a lambda calculus having only pure Boolean types (that is,
involving t alone) , semantic monotonicity implies positive definability.

Proof An earlier trick may again be applied here. Suppose that a term 1Ty is semantically

monotone in its variable x, . Then itis definable in the following schematic form:
V AeD: (ASX A AKX D).

12



More precisely, the relevant disjunction is taken here in the Boolean domain of type b .
Now, this schema can be turned into a genuine definition, with X occurring only
positively, because of the following facts:
@) the enumeration of D, can be made completely via closed terms of the Boolean
lambda calculus. The reason is the Functional Completeness result in van Benthem
1991 (chapter 11) which shows that each pure Boolean object is explicitly definable
in a lambda calculus having 0, 1, =, A added. In these closed terms, the
variable x does not occur at all.
@) inclusions between lambda terms of the form 'AEXx’ are definable in a form which
has only positive occurrences of x , again using a complete enumeration:
« A,x bothoftype t: —AvVvXx
» otherwise, use a conjunctioh of assertions 'A(U) €¢x(U)' running over
all possible tuples of arguments U that take A, X to objects in type t.
Of course, available positive definitions may turn out much simpler in specific cases. 9
|

The general case with individual types seems much more difficult. In particular, the above
kind of argument does not generalize, as it exploits the essential finiteness of the Boolean
universe. 10 For the moment, we merely have a conjecture to offer concerning the pure
lambda calculus with arbitrary types, but without special parameters. It is easy to see that
the above pattern of analysis may be extended from Boolean inclusion to the case of
arbitrary binary relations on ground domains lifted to more complex types componentwise.

Example Natural Numbers. ‘
Consider the binary relation < on D =N . For functions, we have, e.g., that yl = Axex
< y2 = Axex+1 . Moreover, a lambda term like AZe—se)* Y(e—e)(Z(e—e)(Xe)) Will be

'monotone’ with respect to < in an obvious sense. |

" Conjecture  General monotonicity with respect to arbitrary binary relations over the
relevant ground domain for some typed variable implies positive definability.

Example, Continued Non-Positivity.

Non-positive cases will typically not be semantically monotone with respect to variables
occurring in irreducible argument positions. The term  y(e—se) (Z((e—e)—e) (Ye)) does not
respect the above binary relation < , as may be seen by taking functions yl = Axex <
y2 =Axsx+1 , and any functional z having z(yl) =1, z(y2) =0. [ |

13



Theory of Types

Finally, it should be noted that the above question collapses in a full Theory of Types,
allowing arbitrary identities in terms, or equivalently, 'higher-order’ quantification over
objects in arbitrary types. 11 In this system, we have the following reduction, again
exemplifying an earlier trick:

A term 7 is semantically monotone in the variable x, if and only if

T is definable by means of the formula AU 3v ([v/x] T(U) A 'VEX"),

where 'U' is some tuple of variables reducing T to ground level.

(Note that Boolean inclusion is explicitly definable in this type theory.) 12
Nevertheless, certain more interesting versions of preservation results might be found even
here, by placing restrictions on the complexity of proposed definitions, and looking for
special cases where these might be available. For a possible illustration, we return to the
earlier open question of preservation for monotone quantifier occurrences in a first-order
language with an added quantifier Q . The above trick would involve existential
quantification over variables of the second-order type type ((e—t)—t) : but one can do
better. An adaptation of a standard proof of monotonic preservation, based on elementary
chains (cf. Chang & Keisler 1990), shows this 13

Proposition A formula ¢ is semantically monotone in the quantifier Q if and only if
it is definable by means of some formula in which Q occurs only positively,
allowing also existential quantification over predicates.

A simple formula in such an extended second-order formalism is 'mon-emptiness':
3Pty Q (P) , which is essentially outside of the original first-order language with Q .
The earlier open question concerning this case then amounts to asking whether these

existential quantifiers are really unavoidable when defining suitably simple Q-monotone
formulas ¢ (Q) .

6 Conclusion

We have shown how the general linguistic environment of generalized quantifiers is of
interest as such, and how it raises unresolved questions concerning logical type theory.
There are other general mechanisms of interaction too, that need to be investigated in the
same spirit. In particular, one may think of various connections between quantification and
the dynamics of interpretation and information flow (cf. Van Eyck & De Vries 1992 or
Kanazawa 1992 on various further implications for Conservativity or Monotonicity).

14
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11

Notes

This lambda calculus with constants for Boolean operators and first-order quantifiers should not be
confused with another possible generalization of first-order logic, having identities between

lambda terms for its atomic statements, with Boolean operations over these, as well as quantifiers
3x, running over type domains Djy . This would amount to the earlier higher-order Type Theory.
Note that quantifiers of the latter kind are not confined to any single category: they are
'transcategorial operators' just like the lambda abstractor itself.

In a common notation with Boolean inclusion, this would read as: '¢1 A ... AOp <Y '.

Actually, from the type-theoretic point of view, having arbitrary base domains of 'truth values',
with appropriate operations over these, would be quite admissible too.

This calculus has been chosen for its meta-logical convenience, not for its practical utility. For
instance, here is a proof of the Boolean 'conjunction rule' : " Suppose that A - og=1 and
A} By=1. By Boolean Algebra and Substitution of Identicals, og=1, Bt=1F otal=1

F (o A Bp) =1 . Hence, by Cut and Contraction, A+ (ot AB)=1."

The principles preceding them are merely some useful derived facts, allowing one to represent the
binary quantifier some as a unary one in the usual manner.

The reason is that, since only finitely inany possibilities exists for interpreting a Boolean operator,
the usual ultraproduct proof for Compactness will still go through: one unique interpretation will
be enforced in the ultrafilter.

Here is an illustration. The formula —(pA—Fq) is monotone in F . By the recipe given, it must
be equivalent, after some Boolean simplification, to the disjunction of F(O)AF(1), F(1)A~(pA—q),
F(0)A—(pAq), —p . And the latter may be reduced again to the obvious equivalent —pvFq .

There are many further subtleties to the process of 'argument management' in natural language,
where, e.g., identifications must be lexicalized to a large extent. See the discussion in van
Benthem 1991, as well as the treatment of Boolean coordination in Sdnchez Valencia 1990.

By way of example, the procedure may be applied to the earlier form xxy . What we get then for
the case of y , is the disjunction of '0Sy'Axx0, '1 S y'Axx1 , which is indeed equivalent to the
earlier form (xx1Ay) v xx0 . For the case of x , the result obtained reduces to that obtained via
the earlier procedure for predicate logic, namely to something like (x1Ax0) v (x1Ay) V (xOAy) ,
which is again equivalent to the one found 'by hand'.

It will still work, of course, for purely Boolean objects evenin a an {e, t}—type environment,
witness the earlier case of truth-functional operators in predicate logic.

As was noted before, in a sense, the latter syncategorematic treatment of quantifiers is an
alternative type-theoretic 'generalization' of first-order predicate logic, choosing the variable
polymorphic type ((x—t)—t) for unary generalized quantifiers.

15



12 This is related to the notorious trivialization of Lyndon or Beth theorems in second-order logic.

13 The argument essentially treats the system as a two-sorted first-order one, with quantifiers standing
for unary properties over individuals of the second 'predicate sort'. A full proof may be found in the
Master's Thesis "Dyadic Quantifiers' by Martijn Spaan, 1992 (Department of Mathematics and
Computer Science, University of Amsterdam).
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