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Meeting Some Neighbours?

(A dynamic modal logic meets

theories of change and knowledge representation)

Maarten de Rijke’

ABSTRACT

Over the past several years the computer science community seems to have lost interest
in dynamic logic and related systems somewhat. In the philosophical community, on
the other hand, more and more people have felt a need for systems in which changes
and processes can be modelled. This has lead to the birth of quite a number of
systems blessed with the predicate ‘dynamic’.

In this paper one such system, called DML, is taken as a starting point, and its
connections with alternative dynamic proposals are examined. Specifically, a revision
operator is defined in DML which can be shown to satisfy most of the postulates
such operators are currently supposed to satisfy. Further links are established with
terminological logic, Veltman’s update semantics, and preferential reasoning.

Technical results pertaining strictly to the dynamic modal system of this paper
are given in a companion paper.

1 Introduction

In this note I discuss links between a recent proposal for reasoning about the dynamics
of information, called dynamic modal logic or DML, and other such proposals, as well as
connections with some other formalisms in philosophical logic cognitive science and Al
The key phrases common to most of the systems that come up in this note are (minimal)
change and reasoning about information.

As many dynamic-like formalisms have been proposed over the last few years, the
danger that several researchers might be re-inventing the wheel is not entirely fictitious.
For that reason I think it is important to have occasional comparisons across platforms.
As a result of such comparisons results known in one domain may shed light on problems
in the other domains, allowing the field at large to benefit. And at a more down to earth
level the obvious advantage of such comparisons is that they may serve as partial maps of

#The investigations were supported by the Foundation for Philosophical Research (SWON), which is
subsidized by the Netherlands Organization for Scientific Research (NWO).

$Department of Mathematics and Computer Science, University of Amsterdam, Plantage Muidergracht
24,1018 TV Amsterdam, The Netherlands. Email: maartenr@fwi.uva.nl.



rapidly changing research areas. Thus, the purpose of this note is to sketch such a partial
map by comparing or unifying some related dynamic systems using the DML formalism.

What’s commonly considered to be the minimal requirement for a system to be called
dynamic, is that it has a notion of state, and a notion of change or transition from one
state to another. States and transitions are precisely the basic ingredients of the system
DML; in addition it has various systematic connections between those basics. Although
DML may at first appear to be a somewhat unorthodox modal system, it can be analyzed
using fairly traditional tools from modal logic, yielding results on its expressive power,
the hardness of the satisfiability problem for the language, and axiomatic completeness.

In my opinion, the main benefits of using DML as a guide-line for linking a number of
dynamic proposals are the fact that many dynamic proposals are, so to say, de-mystified
by being embedded in a system itself comprising of two well-known components (Boolean
algebra and relational algebra); the embedding of such proposals into (a fragment of)
DML suggests natural additions to, and generalizations of these proposals. Moreover, the
work presented here shows how fairly orthodox dynamic proposals can be used fruitfully
far beyond their traditional boundaries.

In §2 I describe the basics concerning DML, including two ways of dealing with the states
of DML models: one can either take the usual view as states as objects devoid of any
structure, or one can endow them with an internal structure and logic of their own.

After that I move on to two connections between DML equipped with ‘structure-less’
states and other systems. In §3 an example from cognitive science and Al is consid-
ered when I model certain postulates for theory change inside DML. Then, in §4, a
link is established between DML and a line of research that stems from computer sci-
ence, viz. terminological logic and knowledge representation. An exact match is obtained
between DML and a KL-ONE dialect, called the Brink and Schmidt language, plus an
axiomatization of the representable algebras underlying this language.

In §85 and 6 the states of our DML-models will be equipped with structure. This
is needed in §5 to link DML to a system of update semantics from the philosophical
logic tradition proposed by Frank Veltman, while §6 contains some suggestions on how
one would have to go about dealing with preferences and other more complex systems in
DML.

Finally, §7 rounds off the paper with some conclusions and questions.

2 DML: a quick review

Basics

The system of dynamic modal logic DML figuring in this note first appeared in what’s
more or less its present form in (Van Benthem 19915), but parts of it can be traced back
to Van Benthem (1989). The original application of the system was reasoning about the
knowledge of a single agent, and the “epistemic moves” this agent makes in some cognitive
space to acquire new knowledge. Thus, in DML provisions have been made to talk about



certain transitions that represent the acquisition of new knowledge, and about transitions
representing the loss or giving up of knowledge. Moreover, these transitions may be
structured in a variety of ways. To sum up, the DML-language has Boolean ingredients
to reason about the static aspects of the agents knowledge, and relational ingredients to
reason about the dynamic aspects thereof. In addition there are systematic connections
between the two realms, as depicted in Figure 1.

modes

propositions procedures
(BA) (RA)

projections
Figure 1: DML, the basic ingredients.

Let’s not wait any longer but give a formal definition of the language. After some
cleaning up had been performed, a more or less stable version of the language was given
in (De Rijke 1992b). Here it is:

Atomic formulas: p € @,
Formulas: ¢ € Form(®),
Procedures: a € Proc(®).

o= p| L] T |1 — 2 |do(a) | raa) | fix(a),
a =exp(yp) |con(p) a1 Naz |ag;az | —ala’| p?.

I will refer to elements of Form(®) U Proc(®) as ezpressions.

The intended interpretation of the above connectives and mappings is the following.
A formula do(a) (ra(e)) is true at a state z iff z is in the domain (range) of «, and fix(«)
is true at z if z is a fixed point of a. The interpretation of exp(y) (read: expand with ¢)
in a model M is the set of all moves along the “informational ordering” in 90t that take
you to a state where ¢ holds; the interpretation of con(y) (read: contract with ¢) consists
of all moves backwards along the ordering to states where ¢ fails; ¢? is the “test-for-¢”
relation, while the intended interpretation of the operators left unexplained should be
clear.

The models for this language are structures of the form M = (W,C,[-], V), where
C C W?2is a transitive and reflexive relation (the informational ordering), [] : Proc(®) —
2WXW and V : & — 2%, Here the interpretation of the modes in our modal language
is:

M,z = do(a) i Iy ((z,y) € [o]),
Mz E=ra(e) ff Jy((y,2) € [a]),
M,z = fix(e) i (z,z) € [of,

while the relational part is interpreted using the mapping [] as follows:



lexp(v)] Azy. (z CyAM,y =),
[con(p)] = Azy.(z Ty AM,y ),
[an ] [ed N 4],
[e; B8] [ed; 81,
[-o] = [,
[l = {(z,9):(y,2) €]},
[l = {(z,2):MzlE=e}

Obviously, ra and fix are definable using the other operators, however, for conceptual and
notational convenience they will be part of the official definition of the language. Further
examples of operators definable in terms of the others will be given below.

I will refer to this language as the DML-language, and in more formal parts of this
paper also as DML(C, &), where @ is the set of proposition letters. A natural extension is
obtained by considering multiple basic relations { C; };cs instead of the single relation C;
I will write DML({ C; }icr, ®) for the language thus extended. (In this extended language
the expansion and contraction operators will be indexed with the relations they are based
upon, viz. exp(p); and con(p);.)

In its original formulation found in (Van Benthem 1991b) the DML-language also con-
tained minimal versions, p-exp(-) and p-con(-), of the expansion and contraction opera-
tors, respectively, where

[1-exp(9)] = Aay. ((z,) € [op(p)] A =32 (2 T 2 C y A (2,2) € [exp(0)]),

and likewise for u-con(yp). However, there is no need to add them explicitly to the lan-
guage, as both are definable:

[u-exp(9)] = [exp(p) N —(exp(y); (exp(T) N =(T)))],

and similarly for p-con(p).

Some results

Let me mention some of the work that has been done on DML. De Rijke (1992b) gives an
explicit axiomatization of validity in DML, comprising of 36 axioms, and 4 derivation rules
(including a so-called ‘unorthodox’ Gabbay-style irreflexivity rule). For future reference
let me record this result:

2.1. THEOREM. There exists a complete, finitary aziomatization of validity in the lan-
guage DML({ C; }icr, ®).

De Rijke (1992b) uses a difference operator D (‘truth at a different state’) to characterize
some of the modes and projections, for example

pA-Dp — (fix(a N B) < do(an ,B;p?))



is an axiom in his axiomatization governing the interaction of fix and N.

The same paper also establishes the undecidability of satisfiability in DML. In addi-
tion it gives a number of subsystems and extensions of DML whose satisfiability problems
are decidable; in particular, deleting (; and ~) or just — yields decidable fragments again,
as does restricting the class of models to those based on trees. Furthermore, exact de-
scriptions, both syntactic, and semantic by means of appropriate bisimulations, are given
for the first-order counterpart of DML.

Some connections

There are obvious connections between DML and propositional dynamic logic (PDL,
cf. (Harel 1984)). The ‘old diamonds’ (&) from PDL can be simulated in DML by putting

(o) := do(os; 7).

And likewise, the expansion and contraction operators are definable in a particular mu-
tation of PDL where taking converses of program relations is allowed and a name for
the informational ordering is available: [exp(¢)] = [C;¢?] and [con(p)] = [C~;—¢?].
The operator do(a) can be simulated in standard PDL by (a)T. An obvious difference
between DML and PDL is that (at least in it’s more traditional mutations) PDL only has
the regular program operations U,; and *, while DML has the full relational repertoire
U,—,” and ;, but not the Kleene star. Another difference is not a technical difference, but
one in emphasis; whereas in PDL the Boolean part of the language clearly is the primary
component of the language, in DML some effort is made to give the relational part the
status of a first-class citizen as well by shifting the notation towards one that more clearly
reflects the aspects of relations which we usually consider to be important.

A related formalism whose relational apparatus is more alike that of DML is the
Boolean modal logic (BML) studied by Gargov & Passy (1990). This system has atomic
relations p1, pa, . . ., a constant for the cartesian product W x W of the underlying domain
W, and relation-forming operators N,U and —. Relations are referred to within the BML-
language by means of the PDL-like diamonds («). Since BML does not allow either ; or
~ as operators on relations, it is a strict subsystem of DML({ p1, p2,...}, ®).

Further connections between DML and related work have been given in (Van Benthem
1991b). Specifically, these include links with Hoare Logic, and with various styles of non-
standard inference.

Adding structure

Usually no assumptions are made on the nature of the states of modal models. But for
some applications of modal or temporal logics it may be necessary to be more specific
about their nature. (Cf. (Gabbay, Hodkinson & Reynolds 1992) for a whole array of
examples.) In such a structured setting models will have the form 90t = (W,,...), where
the global components of the model are given by the ..., while the set W is a set of models
{m};cr each of which may have further structure. For instance, they may themselves be



of the form m = (Wj, R, V;). Clearly, two languages are involved here: a global language
which talks about global aspects of the structure, but which does not deal with local
aspects, and, secondly, there is local language used to reason only about the internal
structure of the elements of the model 9. Below, in §§5 en 6, I will equip the states of
DML-models with structure in different ways, each with an appropriate local language,
but in every case DML will be the global language.!

3 On Postulates for Theory Change

In this section I will first discuss to which extent Gardenfors’ theory on the dynamics of
belief and knowledge can be dealt with in the DML language. After that I will discuss
two alternative proposals, and finally I will tie up some loose ends.

The Gardenfors postulates®

Consider a set of beliefs or a knowledge set T. As our perception of the world as de-
scribed by T changes, the knowledge set may have to be modified. In the literature
on theory change or belief revision a number of such modifications have been identified
(cf. (Alchourrén, Gardenfors & Makinson 1985), and (Katsuno & Mendelzon 1991)); these
include expansions, contractions and revisions. If we acquire information that does not
contradict T, we can simply ezpand our knowledge set with this piece of information.
When a sentence ¢ previously believed becomes questionable and has to be abandonded,
we contract our knowledge with ¢. Somewhat intermediate between expansion and con-
traction is the operation of revision, this is the operation of resolving the conflict that
arises when the newly acquired information contradicts our old beliefs. The revision of T
by a sentence ¢, T * ¢, is often thought of as consisting of first making changes to T, so
as to then be able to expand with ¢. According to general wisdom on theory change, as
little as posstble of the old theory should be given up in order to accommodate for newly
acquired information.

Géardenfors and others have proposed a set of rationality postulates that the revision
operation must satisfy. To formulate these, let a knowledge set be a deductively closed
set of formulas. Given a knowledge set T and a sentence ¢, T * ¢ is the revision of T by
. T + ¢ (“the expansion of T by ¢”) is the smallest deductively closed set containing

Tu{e}

Basic Géardenfors postulates for revision

(¥1) T * ¢ is a knowledge set.

!The essential syntactic restriction corresponding to the above global-local distinction is that operators
from the global language are not allowed to occur inside the scope of operators from the local language.
By results of Finger & Gabbay (1992), if both the local and the global language have some nice property
P, then so does their composition, provided that the above syntactic restriction is met; here P can be a
property like enjoying a complete recursive axiomatization, decidability, or the finite model property.

2This subsection was inspired by a reading of (Fuhrmann 1990).



(x2) p € Txo.

(x3) T*xp C T+ .

(#¥4) @ ¢ Tthen T+ C T * ¢.
(x¥5) If L € T * ¢ then ¢ is unsatisfiable.
(%6) If o <> ) then T*xp = T x 1.

Additional Gdrdenfors postulates for revision

(7) T*(pA9) C(T*p)+ 9.
(%8) If ~ip ¢ Tx @ then (T xp)+1 C T * (@ A7).

For an intuitive explanation of this postulates I refer the reader to (Alchourrén et al.
1985, Géardenfors 1988).

To represent the revision operator in DML some choices need to be made. First, we
have to agree on some kind of structure in which our theories will be represented, and in
which the ‘actual’ transitions between theories will take place. To keep things simple, and
exclude what I consider to be aberrations in this context (like densely ordered sequences
of theories), let us assume that our structures are well-founded ones (in addition to being
pre-orders, of course).

Next, we have to decide how to represent theories or knowledge sets. The natural
option suggested by standard practice in epistemic logic is to do the following. Let C
abbreviate exp(T), and let [C]¢ be short for =(C)—p. Then, I represent theories as sets
of the form

w!:l:{‘p:maw 'Z[E](p}’

for some w in the model M. So in this set-up “@p € T” may be represented as “[C]¢,”
that is, as —do(exp(T); ¢?). I will adopt this second alternative to represent theories.

A third choice needs to be made to represent the ezpansion operator [+¢]¥ (“4 belongs
to every theory resulting from expanding with ¢”). Here I opt for:

[+¢]¢ := —~do(u-exp([E]yp); ~[C]?).

So, a formula [+¢]t is true at some point z if in every ‘minimal’ C-successor y of ¢ where
[C]e holds (i.e. where ¢ has been added to the theory), the formula [C]4 is true (i.e. 9
is in the theory). Obviously, [C]¥ may be viewed as the special case of [+¢]y, where one
expands with ¢ = T.

Representing the revision operator [xp]y (“ib belongs to every theory resulting from
revision by ¢”) is a slightly more complex matter. Recall that revision of T by ¢ is often
explained as removing from T all (and only those) sentences that are inconsistent with
¢, and subsequently expanding T by ¢.3 Mimicking the removal from T of the formula
that causes the inconsistency with ¢ by p-con([C]—¢), and the subsequent performance

Isaac Levi has in fact suggested that revisions should be defined in terms of such contractions and
revisions.



of an expansion with ¢ as before, I end up with the following definition:

[}t := ~do [u-con([C]~); p-exp([Clp)]; ~[Clw?) 4

Before actually translating the revision postulates into DML, let me mention one
possible point of discussion here. In my approach the expansion and revision operators
lack the functional character they have in the Gardenfors approach. This is due, of course,
to the fact that the underlying C-paths to points where “p € T” holds or fails for the first
time, need not be uniquely determined. I don’t see this as a shortcoming of the way I've set
up things. Au contraire, one could view this as an attempt to take the non-deterministic
character of everyday expansions and revisions seriously, instead of dismissing it as being
“non-logical”.

Another source of indeterminism is that, starting from a given node/theory and a for-
mula ¢ that you want to expand with, you may have to pass several other nodes/theories
before ending up at an outcome of the expansion, while a move to contract by ¢ at this
outcome need not take you all the way back to your starting point.®

Finally, despite the fact that expansions and revisions may have multiple outcomes
in my set-up, they need not have a single one, i.e. expansions and revisions need not be
defined in every situation. An example to this effect will be given below.

Given the above points some of the postulates (¥1)—-(*8) are bound to come out invalid
when translated into DML. But on the other hand, they also allow some room for creativ-
ity when doing the translation. Now that expansions have lost their functional character,
the statement ¢ ¢ T * ¢ may be read as “¢ does not belong to any theory resulting from
revision by ¢,” or as “for some outcome T’ of revising T by ¢, ¥ ¢ T'.” The modal
counterparts of these options are

~do([u-con(C]); p-exp([Ele)]s [E147),

or [tp]4 for short, and —[*p]ep, or

do([u-con([C]¢); w-exp([Clel ~[E¥?),

respectively. In particular, these subtleties will make some difference for postulate (*8).

On a similar note, as expansions and revisions need not be defined in every situation,
one might consider adding a clause —~[+¢]L (—[*p]L) saying “and if expansion (revision)
with ¢ is at all possible” to some of the Gardenfors postulates. In most cases this will
have no effect, but see the modal translations of postulate (*2) below.

“This definition is clearly in accordance with the earlier maxim “change as little as possible of the old
theory.”

In other words: it may be that you need to expand with some formulas %1, ...,%, before you can
expand with ¢. Admittedly, this kind of interference may be undesirable, especially when ¥1,...,%n and
 are logically independent; on the other hand, this interference might be useful to model various kinds
of non-logical dependencies between formulas.



(G2a) [*yple

(G2b)  —[xp]L — [+p]p

(G3)  [*pl¥ — [+ol¥,

(G4) —[Clme A [+l — [xp]d,

(G5)  [*¢]L — [*d]e,

(G6) ¢ = /[*xplx & [xP]x,

(G7) e AD)lx = [*¢l[+]x,

(G8a) —[*p]=9 A [xp][+9]x — [*(¢ A ¥)]x,
(G8b) = [tel¥ A [xp][+¥]x — [x(¢ A¥)]x.

Table 1: Translating the Gardenfors postulates.

Which translations does this give, then? Translating x € T +¢ as [+¢]x, with [C]x as
the limiting case where T'+ ¢ is in fact T (or T+ T), and, likewise, translating x € T *¢p
as [*¢]y, while adding conjuncts as suggested by the above remarks, I arrive at Table 1.
Note that there is no schema corresponding to postulate (1) in Table 1; this one seems
to resist a direct translation, but its validity is guaranteed given the choices I have made.

Now, which of the schemata G2a—G8b is valid on the well-founded DML-models we
are considering here? First, the obvious translation G2a of (¥2) comes out invalid, as is
witnessed by Figure 2. The reason for its invalidity is of course that revisions need not
always be defined in my set-up. But, once an antecedent saying “if revision is possible”
is added (as in G2b), (¥2) comes out valid after all.

QG

-p
Figure 2: No revisions.

To see that G3 is valid, assume that in some model we have z [~ [+¢]i. So there is
a minimal C-successor y of ¢ with y |= [Clyp, ~[C]y. Let us verify that = f= [xp]ep.
Clearly, y = [Cle implies z [~ [C]-¢, so (z,z) € [p-con([C]¢)]. In addition (z,y) €
[1-exp([E]p)]. Hence, as y = —[Clep, we must have

z k= do([u-con([C]~; prexp((Cle)]; ~[El¥?),

which is what we were after. Ergo, G3 is valid on all DML-models.

Next comes G4. Suppose that z = —[C]-yp, [+, but that z = [*plp. We
derive a contradiction. By z [~ [*p]y there is a minimal C-predecessor y of z with
y E ~[C]-¢. But as z | —[C]-yp,  itself must be this y. But then, by assumption,
z | do(u-exp([Cly; —[E]9¥?), that is: for some minimal C-successor z of z, z = [Clo,
=[Cly. But by z = [+¢]y, we must also have z = [C]v, yielding the required contradic-
tion. Hence G4 is valid.

G5 is trivially valid, as its antecedent can never be satisfied. The validity of G6 is also
obvious, so let us consider G7. Seeing that it is valid requires a small argument. Assume
that in some model we have z [~ [*(p A q)]r — [*p][+¢]r. Then there are y, z, u such that



1. y is a minimal C-predecessor of ¢ with y [~ [C]-p,
2. z is a minimal C-successor of y with z = [C]p,
3. u is a minimal C-successor of z with u |= [C]q,=[C]r.

To arrive at a contradiction assume that

4. zE=[*(pA ).

Then, by 1. and an easy argument, y must be a minimal C-predecessor of z with

5. y ¥ [El-(p A g).

To arrive at the desired contradiction, we will show that u = [C]r—conflicting with 3. If
u is a minimal C-successor of y with u |= [C](p A ¢), then, by 4 and 5, we must have that
u = [C]r. If, on the other hand, u is not such a successor, then, as u = [C](p A ¢) by
2. and 3., there must be a v such that

6. v is a minimal C-successor of y with v = [C](p A ¢) and v C u,

because we have assumed our structures to be well-founded. But then, by 4. and 5.,
v |= [C]r, and by 6., u = [C]r, and we have reached our contradiction. All in all, this

implies that G7 is valid.

.
® @@ —m > o

Y2 n /
b,q,7T

e — °

Y3 23

Figure 3: Refuting G8a.

In G8a the antecedent —¢p ¢ T * ¢ of (x8) is translated as —[xp]—t). The instance
—[xp]gA[*p][+¢]r — [*(p A g)]r of G8a is refuted at z in the model depicted in Figure 3.
To see this, notice first of all that [*(p A g)]r is refuted at z because

(z,22) € [u-con([E]=(p A 9)); p-exp([E](p A 9)); ~[E]r?].

Second, —[*p]—q holds at z because (z,23) € [u-con([C]-p); u-exp([E]p); [C]¢?]. Third,
[¥p][+¢]r holds at z because there’s only one “revise by p, expand by ¢” path leading
from z, notably (z, z3), and at the end of that path [C]r holds. (In particular, (z, zp) is
not a “revise by p, expand by ¢” path since (z, y2) ¢ [u-con([C]-p)].)

There are several aspects to the invalidity of G8a, and it’s worth identifying them.
For a start, we are able to perform a contraction with —p (moving from z to y;) before we
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can contract with —(p A ¢) (move from z to y; to y2). As a consequence it is consistent
to have (z,y2) € [u-con([C]=(p A ¢))] \ [e-con([E]-p)].® A related point is this. Since in
our indeterministic set-up we have interpreted —¢ ¢ T * ¢ as “for some result of revising
by ¢, =% is not in that result,” we are able to have a revision with p that contains —g,
notably z;, while at the same time having one that does contain g. And as expansions
need not always be defined in my set-up a revision with p (the move from z to y; to z)
need not be a revision with p A g.

Some of the causes underlying the invalidity of G8a can be eliminated. For example,
reading —7p ¢ T * ¢ as “for all results 1" of revising T by ¢” as in G8b, some of the
indeterminism can be lifted. In particular, points like z in Figure 3 will then be forbidden.
Nevertheless, G8b is still not valid, as the reader may verify. Further, one might go some
way towards ensuring that expansions and revisions are defined when needed. But I don’t
think that all aspects of indeterminism can be done away with. Specifically, I don’t think
that the kind of dependencies noted in footnotes 5 and 6 can be removed. In conclusion:
there is no reasonable translation of (8) into DML that will make it come out valid.

In this subsection I have tried to give a modal analysis of the Gardenfors postulates inside
DML, yielding a formal machinery for reasoning about Theory Change. The surplus value
of having the full relation algebraic repertoire available in conjunction with Géardenfors
style expansion and revision operators will be discussed towards the end of this section.
At this point I want to pursue another issue, having to do with the fact that one postulate,
viz. (*8), did not come out valid despite some alterations to its initial translation. This
failure may prompt at least three kinds of reactions. One can, for instance, leave things
as they are, and not be bothered by the invalidity of (*8); as (*8) has been criticized
extensively in the literature, this choice could be well argued for (cf. for example (Ryan
1992) for some arguments against (x8).) Alternatively, one can change the rules of the
game somewhat, by changing the relevant postulate to one that no longer rests on the
assumptions that expansions and revisions be functional and always defined. And another
possibility would be to look for an alternative (modal) modelling of the postulates in DML
or some other formalism. Two proposals pursuing the second option will be discussed in
the following two subsections. Readers interested in alternative (modal) modellings of the
Gardenfors postulates and of postulates proposed by others are referred to (Fuhrmann
1990) and (Grahne 1991).

The Lindstrém-Rabinowitz postulates

While discussing the indeterminacy arising in the context of revision of probabilistic func-
tions modelling belief states, one proposal Lindstrém & Rabinowitz (1989) come up with,
is letting belief revision be a relation rather than a function. They argue that this way
of looking at belief revision is natural if one thinks that the agent’s policies for belief

8 As another consequence, the so-called recovery postulate for contraction (I' C T — ¢ + ¢, or in modal
terms [CJip — [—¢p][+p]¥, where [—¢] has the obvious interpretation) is not valid in my set-up. This
may not be such a bad thing as the recovery postulate is commonly considered to be the intuitively least
compelling of the Gardenfors postulates for contracting, cf. (Hansson 1991).
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change may not always yield a unique belief set as the result of revising a given set T
with a formula ¢. The postulates Lindstrom and Rabinowitz propose for belief revision
as a relation are the following. A belief revision relation is a ternary relation R between
knowledge sets, (consistent) formulas and knowledge sets such that for all T, §, U and
¢, ¥ postulates (R0)—(R4) below hold.

Lindstrom-Rabinowitz postulates for revision as a relation

(RO) There exists a T' such that TR, T".

(R1) If TR,S then ¢ € §.

(R2) If TU{ ¢} is consistent and TR, S, then § = T + ¢.

(R3) If p & 1 and TR, S, then TR, S.

(R4) If TR,S, SRy U and S U {4 } is consistent, then TRny U.

The intuitive reading of TR,S is: S is a (possible) outcome of revising T by ¢. Postu-
late (RO) corresponds to the requirement that revision should be defined for all T and
(consistent) ¢. Postulates (R1)-(R3) are the relational counterparts to the Gardenfors
postulates (*2), (%3) and (*4), (¥6), and (x8), respectively. Lindstrom and Rabinowitz
don’t give relational counterparts to (*5) and (x7). (R) is new.

How can the Lindstrém-Rabinowitz postulates be accounted for in DML? As before
we let knowledge sets be represented as sets of the form wg = {¢ : M, w = [Cle }. And
following the definition of [*¢]¢, the obvious choice for the relation R, seems to be

Ry = [p-con([C]—¢); p-exp([Cle)]-

So TR,S iff At,s (T =tg A S =sgA(t,s) € Ry).
Given this representation, one can reason about the revision relation R and its prop-
erties using the DML apparatus. For instance, idempotency properties like

fix(Ry;Ry")

can now be tested for. I leave it to the reader to check that (RO0) fails under this rep-
resentation, and that (R1)—(R3) are all valid. As to (R4), in order to make sense of
it in DML we have to decide how to represent “S U {1 } is consistent” in DML. One
natural candidate is “[C]—% ¢ sg,” where sg represents S. But this reading does not
make (R4) come out valid in DML. An easy counter model is given in Figure 4, with
T=1t,8S=s0,U=un,p=pand ¢ =q.

In Figure 4 (s,t) € R,, (t,u) € Ry, s f= [C]—gq, but (s,u) ¢ Rpa,. Hence, in DML
an agent has the possibility to distinguish between revising his knowledge by ¢ (without
excluding v as an unacceptable proposition) and subsequently revising by % on the one
hand, and revising by the conjunction ¢ A @ on the other hand. Thus, in DML there’s
still more (room for) indeterminism than is allowed for by the Lindstrom-Rabinowitz
postulates.
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Figure 4: A counter model for (R4).
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The Katsuno-Mendelzon postulates for indeterministic revision

Katsuno & Mendelzon (1992) give a model-theoretic characterization of all revision opera-
tors that satisfy the Gardenfors postulates (¥1)—(*8). They show that these operators are
precisely the ones that accomplish a revision with minimal change to the class of models
of the knowledge set. This minimality is measured in terms of total pre-orders among
models of the “initial” knowledge set. To understand why some of the proposals for revi-
sion operators break the Gardenfors postulates Katsuno and Mendelzon study variations
on the ordering notions and their corresponding postulates. In one of their variations they
change the above total pre-orders to partial ones, and formulate postulates characterizing
the corresponding indeterministic revision operators. In this subsection I will translate
these postulates into DML.

The Katsuno-Mendelzon postulates are formulated for knowledge sets T' that are as-
sumed to be represented by a propositional formula 17 such that T = {¢ : 7 F ¢ }.
The notation v o u is used to denote the revision of (the knowledge set represented by) 9
with (the formula) p. Katsuno and Mendelzon propose seven postulates for indetermin-
istic revision, the first five of which are in fact equivalent to the Gardenfors postulates
(¥1)—(x7). Here are the remaining two.

Additional Katsuno-Mendelzon postulates for indeterministic revision

(R7) If ¢ o py implies p2 and 1 o po implies p;, then 9 o uy is equivalent to 9 o uo.
(R8) (¢ o p1) A (3 o po) implies 3 o (p1 V p2).

Intuitively, (R7) says that if s holds in every result of revising with p;, and g holds in
every result of revising with uy, then the revision with p; and the revision with ps have
the same effect. Postulate (R8) says that every knowledge set that may be arrived at
after revising with p;, and also after revising with po, must be among the knowledge sets
obtained after revising with pj V po.

Given these intuitive readings of (R7) and (R8) the following seem to be the natural
translations of these postulates into DML. (Recall that R is the revision relation defined
in the previous subsection.)

(KM7) [x@lp A [splo — ([xolx < [¥]x).
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(KM8) [*(p V 9)]x = ~do((Ry, N Ry); =[E]X?).

Although (*8) or G8a has now been weakened to (R7)A(R8) or (KMT7)A(KM8), this weaker
version is still not valid in DML. In Figure 5 the instance [*p]gA[*q]lp — ([*p]r < [*q]r) of

pq qT

.\y’\ ./.m
S

Figure 5: Refuting (KM7).

(KMY7) fails at z. As before, one thing that makes the model depicted in Figure 5 a counter
model for (KM7) is the fact that expansions and revisions need not always be defined in my
set-up. In particular, (KM7) would not fail at z in Figure 5 if it were possible to expand
with ¢ at y. Furthermore, in Figure 6 the instance [(p V g)]r — =do((Rp, NR4); =[C]r?)
of (KMB) fails at . What this seems to amount to is that in DML an agent can get to
know a (non-trivial) disjunction without having to know either disjunct. This possibility
seems to be excluded by the Katsuno-Mendelzon postulates.

Figure 6: Refuting (KMS8).

A look back

Let’s sit back a minute and review some points made in this section. One of the main
features of the revision and expansion operators defined in this section as opposed to other
formalisms for theory change, is that in my set up revisions and expansions need not always
be defined. Just as one can argue for giving up the functionality or determinism implied
by the Gardenfors postulates by saying that an agent’s strategies for belief revision may
not always tell him how to choose between possible outcomes,—one can also argue for
the possibility of revisions and expansions not being defined at all by pointing out that
an agent’s strategy for belief revision may not always tell him how to revise or expand.
Everyday life examples to this effect are easily found.

Another feature worth mentioning again here is the fact that revisions and expansions
as they are defined in this section lack the total independence of sentences implicitly
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assumed by, for instance, the Gardenfors postulates for belief contraction (cf. footnotes 5
and 6). As pointed out before, this lack of independence might be useful for modelling
non-logical relations between beliefs.

Apart from the above two deviations this section shows that it is possible to define revi-
sion and expansion operators in a fairly standard dynamic modal formalism like DML that
satisfy the Gardenfors/Lindstrém-Rabinowitz/Katsuno-Mendelzon postulates. There are
several advantages to having revision and expansion operators satisfying those postulates
defined using the well-known Boolean and relation algebraic repertoire. This embedding
de-mystifies much of the enterprise of theory change. Next, in this larger repertoire you
are no longer restricted to classical combinations of expansions and revisions, but further
operations become visible as well. One can think of sequential composition of revisions,
of reversals or ‘un-doings’ of revisions, and given that revisions and expansions need not
always be defined in my set-up, one might introduce conditional revisions or expansions,
where the conditions could read something like “after having contracted with —¢ you
should always be able to expand with ¢.”

Furthermore, having revision and expansion operations embedded in a Boolean and
relation algebraic setting also reveals some of the possible generalizations. One might
consider forms of revision that are weaker than the one considered here in that some
of the minimality requirements are weakened. Second, in this section I talked about
revision, that is, about changing beliefs as a result of newly obtained information about
a static world; one could also try and define so-called updates in DML; an update is
a theory change reflecting a change in the world. As shown in (Katsuno & Mendelzon
1991) updates can be characterized by a set of postulates different from but similar to
for example the Gardenfors postulates. Another obvious generalization is to allow for
several copies of these operators, possible interacting in certain prescribed ways, to model
not only the belief change of several agents simultaneously but also the belief changes
resulting from interaction between the agents; some additional remarks concerning this
suggestion are given in §6 below.

In later sections of this paper the states of our models will be equipped with structure,
a move that could be made here as well, allowing the theories that are being revised to
explicitly have structure. One can think here of a hard core of sentences not admitting
revisions, surrounded by sentences which do admit revisions but which need not all have
the same epistemic status; the latter kind of sentences would then be ranked according
to their “epistemic entrenchment”, and the revision process would need to take this into
account (compare (Gardenfors & Makinson 1988)).

4 Terminological languages

As Blackburn & Spaan (1992) put it, in recent years modal logicians have considered a
number of enriched modal systems that bear on issues of knowledge representation. One
example is (Schild 1990) in which the correspondence between terminological languages
and modal logic is used to obtain complexity results for terminological reasoning. In the
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present subsection the correspondence between DML and one particular terminological
proposal will be described.

Recall that terminological languages provide a means for expressing knowledge about
hierarchies of concepts. They allow the definition of concepts and roles built out of
primitive concepts and roles. Concepts are interpreted as sets (of individuals) and the
roles are interpreted as binary relations between individuals. For instance, traveler and
Amsterdam may be concepts, and has-flown-to may be a role. Compound expressions
are built up using various language constructs. Quite a number of proposals for such con-
structs have been and still are being put forward (cf. (Schmidt 1991) for a comprehensive
survey). Here I will link DML to a KL-ONE dialect discussed by Brink & Schmidt (1992);
I will refer to this language as the Brink and Schmidt language.

The operations considered by Brink and Schmidt are the usual Boolean ones for the
concepts plus the usual RA-operations for the roles. In addition they consider a bi-
nary operator ¢ taking a role and a concept, and returning a concept: O(R,C) = {z :
dy ((z,y) € RAy € C)}, and a mapping (-)¢ called (left) cylindrification taking concepts
to roles: C¢ = {(z,y) : ¢ € C}. Other operations that are usually considered in termi-
nological languages are the so-called role quantifications of the form (SOME has-flown-to
amsterdam) and (ALL has-flown-to amsterdam). These expressions can be read as “ob-
jects having flown (at least once) to Amsterdam” and “objects all of whose flying trips
went to Amsterdam”. The quantifications (SOME R C) and (ALL R C) can be defined in
Brink and Schmidt’s language as 0(R, C) and —0(R, —C), respectively.

Here’s an example using some of the above constructs; while the present author is
abroad one thing he may sometimes try to achieve is “writing a paper and not phoning
to a Dutch person”, or:

¢(writing, paper) A =¢(phone N (dutch A human)®, T),

where T is the Boolean 1.

The main questions in terminological reasoning are satisfiability problems (does a
concept (role) have a non-empty denotation in some interpretation), and the subsumption
problem (a concept (role) C subsumes a concept (role) D iff in every interpretation the
denotation of C is a superset of the denotation of D). For example, on the understanding
that amsterdam is in europe the concept

(ALL has-traveled-to amsterdam) (SOME has-flown-to north-of-paris)
is subsumed by
(ALL has-flown-to europe).

In the present terminological language the subsumption problem can be reduced to the
satisfiability problem, simply because we have conjunction and negation available.

Now, what’s the connection between Brink and Schmidt’s terminological language and
DML? Clearly, the terminological concepts are nothing but the propositions of DML, and
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the roles have their counterparts in the extension DML({C,; };cr,¢) of DML in which
multiple ‘primitive’ relations C; are available. So the two systems have the same basic
ingredients. But what about their operators? Are they interdefinable, for example?
Tables 2 and 3 show that in fact they are.

Oa,p) = {z:3y((s,9) €lelmAMy )} = do(a;¢?),
e = {(z,9) : M,z =0} = % (6U-9),
Table 2: From terminological logic to DML ...
dof@) = 0(a1),  explp) = CNp®,
() = o(a%1), con(p) = C N (=),
fix(a) = 0(ané),1), e? = dNec.

Table 3: ... and conversely.

To illustrate this connection, here’s an example expressing the concept “people having
flown only to cities called Amsterdam” in DML:

human A do(has-flown-to; (city A amsterdam)?) A
—do(has-flown-to; —(city A amsterdam?)).

The above connection may be formulated ‘officially’ by means of two mappings between
the two languages, thus establishing the following result.

4.1. PROPOSITION. The Brink and Schmidt language for terminological reasoning with

primitive concepts ® and primitive roles { C; }ics is a notational variant of the modal
language DML({ C; }ic1, ®).

Thus, the main issues in terminological reasoning, viz. satisfiability and subsumption,
may be re-formulated as satisfiability problems in (an extension of) DML, and results
and topics from the modal domain can be transferred to the terminological domain, and
vice versa. To substantiate this claim, let me give some examples.

4.2. COROLLARY. Modulo the obvious translation induced by Table 3, the azioms and
rules of DML({ C; }ic1,®) are a sound and complete aziomatization of subsumption in
the Brink and Schmidt language.

We can be very brief about the proof of Corollary 4.2: apply 4.1 and 2.1. And although the
following result is not new (cf. for example (Schmidt-Schaufl 1989)), its proof too comes
very easy given Proposition 4.1, and the fact that satisfiability in DML is undecidable
(by (De Rijke 199256, Theorem 5.1)).

4.3. COROLLARY. Satisfiability and subsumption in the Brink and Schmidt language are
undectidable.
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As is well known, part of the Knowledge Representation community is concerned with
finding tractable terminological systems, either by limiting the expressive power of the
representation language, or by limiting the inference capabilities of the formalisms. This
has resulted in the description of quite a number of decidable or even tractable systems,
many of which can be seen as fragments of the Brink and Schmidt system. Thus, by 4.1,
this work is relevant to the search for decidable or tractable fragments of DML.

Let me complete my short list of examples by suggesting two more possibilities for
exchange between the modal and terminological domain. First, terminological reasoning
often deals with (qualifying) number restrictions like ( > 2 has-flown-to amsterdam)
(which can be read as “objects having flown to Amsterdam at least twice”) to perform
numerical comparisons. The modal logic of these counting expressions (by themselves)
has been analyzed by Van der Hoek & De Rijke (1992). The link between terminological
languages and DML established in 4.1 suggests that it may be worth the effort to add the
counting quantifiers to DML, and examine the resulting language.

Second, both in modal logic and in terminological logic a wide variety of formalisms
and languages have been studied. In modal logic quite some work has been done on
comparing languages, for example by analyzing the expressive power of several of these
languages in terms of restricted variable fragments of appropriate first-order languages,
and/or in terms of their behavior with respect to certain equivalence relations between
models (cf. (De Rijke 1992a)). A similar approach to the formalisms studied in termi-
nological logic might be very useful, and give us a better grasp of the differences and
similarities between those formalisms.

To finish this subsection let me cast the connection between Brink and Schmidt’s termi-
nological language and DML in algebraic terms. Schmidt (1991) equips the Brink and
Schmidt language with an algebraic semantics called Peirce algebras. To understand what
these are we have to go through one or two definitions. First of all, a Boolean module is
a structure 9t = (B, R, 0), where B is a Boolean algebra, fR is a relation algebra and ¢ is
a mapping R X B — B such that

M1 O(r,a+b) = 0(r,a)+ 0(r, b) M4 0(6,a) = a,
M2 O(r+s,a) =90(r,a)+ 0(s,a) M5 ¢(0,a) =0,
M3 0(r,0(s,a)) = 0((r; 5), a) M6 O(r™,0(r,a)) < o

Just as Boolean algebras formalize reasoning about sets, and relation algebras formalize
reasoning about relations, Boolean modules formalizes reasoning about sets interacting
with relations through ¢. In the full Boolean module M(U) = (B(U),R(U), ¢) over a set
U # () the operation ¢ is defined as described earlier, by

O(R,C)={z:3y((z,y) e RAy€ C)}.

(See (Brink 1981) for a formal definition of Boolean modules and some examples.) Now,
Boolean modules are almost, but not quite, the right algebraic semantics for Brink and
Schmidt’s terminological language. To obtain a perfect match, what we need in addition
to the set forming operation ¢, is of course an operation that forms new relations out
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of sets. This brings us to the notion of a Peirce algebra, which is a two-sorted algebra
B = (B,R,90,(-)°) with (B,R,0) a Boolean module, and ()¢ : B — R a mapping such
that for every a € B, r € R we have

P1 ¢(a%1) = a,
P2 O(r,1)° = r; 1.

In the full Peirce algebra P(U) over a set U # 0, ()¢ is defined, as before, as C¢ =
{(z,y) : ¢ € C}. The algebraic apparatus of Peirce algebras has been used by Brink &
Schmidt (1992) as an inference mechanism in terminological representation

Where does the system DML come in here? Given Proposition 4.1 what we have in
fact, is that

the modal algebras for the DML-language L({C; }icr, ®) are the Peirce alge-
bras generated by the relations { C; };c; and the propositions ®.

As a consequence the completeness result 2.1 may be interpreted as follows.

4.4. PROPOSITION. The obvious algebraic counterpart of DML({C; }ic1,®) completely
aziomatizes the identities valid in all representable Peirce algebras.”

As far as I know this is the first result on axiomatizations for representable Peirce alge-
bras.

5 Structured states: update semantics

In both this and the next section I will equip the states of DML-models with additional
structure to be able to link DML with other dynamic proposals.

The formalism I will consider in the present section is Veltman (1992)’s update se-
mantics. In this system the standard explanation of the meaning of a sentence being its
truth-conditions, is replaced by: “you know the meaning of a sentence if you know the
changes it brings about in the information state of anyone who accepts the information
conveyed by the sentence.” According to this point of view the meaning of a sentence
becomes a dynamic notion, an operation on information states. In this dynamic approach
phenomena surrounding the instability and changing of information caused by modal
qualifications like ‘might,” ‘presumably’ and ‘normally’ can be adequately accounted for,
as is shown by Veltman using a number of systems. The simplest one, called US; here,
has in its vocabulary a unary operator might and a connective ‘@’ in addition to the usual
Boolean connectives; in US; one can reason about an agent acquiring new information
about the actual facts.

5.1. DEFINITION. The language of US;(®) is given by the following definition.

7Although, strictly speaking, the completeness result 2.1 only axiomatizes validity on pre-ordered
DMIL-structures, the construction does not depend in an essential way on these structural assumptions.
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Atomic formulas: p € @,
Simple formulas: ¢ € Formy(®),
Formulas: P € USL(®).

pu=p|L]|-p|p1 Az |might ¢,
¢::=(Pl’l,b1’¢2'

The important restriction is that no e is allowed to occur in the scope of a might.

The intuitive reading of might ¢ is that one has to agree to might ¢ if ¢ is consistent
with one’s knowledge; otherwise might ¢ is to be rejected. The operator e is simply the
composition of (the functions expressed by) formulas.

5.2. DEFINITION. The semantics of the update system US; is as follows. Let W C 2%; a
subset of W is an information state. Formulas are interpreted as functions in 2% — 2W
that is, as functions from information states to information states. Let o C W. I write
[¢]o for the result of updating o with ¢.

plo = onN{w:pew}, [mightylec = { g: i)ftl[lilzvi;sée?
pVelo = [ploU[dlo,

[¢le = o\lglo, [pedlo = [Hl(¢lo).

Veltman discusses several notions of valid consequence. Since these are not my prime
concern here (but see below), I will confine myself to explaining the notion “US; = ¢” as
“for all information states o, [~p]o = 0.”

Van Eijck & de Vries (1992) have established a connection between US; and the modal
system S5 via a detour through Hoare Logic. This connection has subsequently been
cleaned up and re-established directly by Groeneveld (1992). Groeneveld’s construction
underlies the embedding of US; into DML to be presented below. Basically, what the
embeddings presented by him and van Eijck and de Vries amount to is that US; is a
formalism for reasoning about S5-models and certain transitions between them. This
inspires the following definition.

5.3. DEFINITION. A structured DML-model is a tuple M = (W,,C,[-]) where C is a
global relation on W, and W, is a set of (finite) pointed S5-models of the form m =
(W,R,w, V) such that w € W, R = W x W, and V is a valuation. Moreover, the
following conditions should be satisfied:

— mLC niff mis a submodel of n,
—ifm=(W,R,w,V) € Mthen (W,R,v,V) € Mforall v € W, and n € M for all
nC m.
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The formal language appropriate for reasoning about such 2-level structures, denoted
DML(S5), is defined as follows. Starting from a set of proposition letters ®, S5 formulas
are built using the operators L and M in the usual way. Let & be the set of resulting
formulas; this is the set of local formulas. These local formulas serve as ‘proposition
letters’ for the global language DML; that is: DML(S5) formulas are obtained from &’
by applying the usual DML connectives to the elements of ®'.

The important semantic clauses then read as follows, for m = (W, R, w, V):

MmpEp ff we V(p)
MmpE Mo iff for some v € W with wRv, (W,R,v, V) = ¢,

that is, the value of such formulas is computed locally. For ‘purely global’ formulas, on
the other hand, the value is computed globally, as in the following example:

M, m = do(C) iff for some n € 9, m C n.
5.4. DEFINITION. Define a translation ()T of the US;-language into DML(S5) as follows.

@ = »p
(o)t = =l
vl = oTvyl
(might<p)T = M(pJr
(o)t = T Ado(1Z;(LeT A7)

N =35 (ZeT AvT)25 (@0 - 8); (LT A9T)2)]).

The intuitive reading of (might ga)T is that we locally check whether there is a point
verifying <pT. The intuitive interpretation of (¢ e zp)T is that (p ¢)T holds at m =
(W,R,w,V) if m <pJf and for § = {z € m: (W,R,2,V) E goT} we have that
(S,8%,w,V18)E ¢T Notice, by the way, that ()T takes USi-formulas into a decidable
fragment of DML(S5).

5.5. PROPOSITION. Let ¢ be a formula in US1(®). Then US: = ¢ iff DML(S5) |= <pT.

Proof. Suppose US; = ¢. Then for some W C 2%, and 0 C W, [-plo # 0. Define
M = (Wg7 E) I[]l)) Where

Wgz{((r,az,w, Vo):ogC W,zeo,(pe Vo(y)if pey, for y€o)},

and C and [-] have their standard interpretation. Then, by a simple formula induction,
we have that ViVo C WVj € o (j € [¢]o iff (0,027, Vo) |E %). From this it follows that
DML(S5) | .
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To prove the opposite direction we proceed as follows. Assume that for some 9t and
m € 9 we have M, m [~ <pT. Let m = (W, W2, w, V,,). By standard modal logic we may
assume that in m every ‘relevant’ state description of the form (=)po A (=)p1 A ... A(—)pn
(where py, . .., pn are all the proposition letters occurring in ¢), occurs only once in m. We
may also assume that for every n = (Wy, Ry, wy, V1) € 9, (W1, Ry, V1) is a substructure
of (W, W2, V). Now, let W' = 2{Porpn} and for n € 9 let 0, C W be the set of state
descriptions realized in n. Then, by a simple inductive proof, we have for all formulas 1
containing at most the proposition letters po, ..., pn, and all n = (Wi, Ry, w;, V1) € M,
nkE 1/;T iff wy € [¢]o,, which completes the proof. -

Proposition 5.5 may be interpreted as saying that the ‘internal’ notions of US; can be
turned into internal notions of DML. But some of the ‘external’ or meta-notions of US;
can also be turned into internal notions of DML. For example, Veltman (1992) discusses
various notions of valid consequence for his update systems, including the following two:

P1y- o 1 iff forall o sucﬁ that [p;lc =0, [¥lo =0 (1< i< n)
Prreerpn 2 I ifE for all o, [P)([pal(- - (p1)0) ) = [@al. (fp1]0) ).
In DML(S5) these notions become

o1, on 19 i AT AL A Lel - IyT), and
Pl1y--3Pn '=2'(,b iff AL(((plto(pn)T—)qu)’

respectively, where M, m |= Ay iff for all n € M we have M, n |= x.

In addition, due to the embedding of US; into DML, some natural extensions and
generalizations become visible. Besides might one can consider other test operations, the
most obvious of which are definable in DML, like an operator testing whether updating
with a formula ¢ will indeed change your current state, or one testing whether the current
state is at all reachable via an update with ¢, or whether a pre-given goal state may be
reached by performing certain updates.

6 Structured states: preferences

Among the structures of logic L there may be some models that are preferred for one
reason or another. Preferences may differ between applications, thus giving rise to different
notions of preferential inference. Shoham (1987) offers a general to preferential reasoning
in which there is a (strict partial) order of preference < on L-models on top which minimal
consequence is defined as “truth of the conclusion in all <-minimal or most-preferred L-
models of the premisses.”

By specifying the relation < in alternative ways many formalisms with non-monotonic
aspects can be shown to fit this general preferential scheme.

Given the embedding of US; into DML of §5 as an example, it should be obvious how
preferential reasoning can be mimicked in DML: let C be the preferential ordering, and
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let the states of our DML-models simply be L-models. Then ‘@ preferentially entails v’
is true in the global structure 9t iff

M = Ap A—=do(C ¥ 97) — ).
Via this equivalence all preferential reasoning can be performed inside DML.

Just as the prefence relation embodies certain dynamic aspects of the underlying L, it
itself could also be subjected to change. This point may be illustrated with a system US>
which is slightly more complex than US;, and which has also been introduced by Veltman
(1992).

In US; one is not only able to reason about changing knowledge as new information
comes in, but also about changing expectations; the latter are modelled using a notion of
optimality with respect to a pre-order. Modelling this system in DML requires adding a
separate S4-like component for expectations to the structured states of §5, in addition to
the S5-like component for knowledge. An agents refinement or revision of his expectations
can then be modelled inside such DML-structures by making moves to points with a
suitably altered ‘expectations’ component.

7  Final remarks

Let me point out what I consider to be the main points of this paper. It has brought out
connections and analogies between dynamic formalisms from cognitive science, philosophy
and computer science by using a fairly traditional dynamic modal system (DML) in a
flexible way, far beyond its traditional boundaries.

Putting DML to work in this manner had the surplus advantage of de-mystifying some
of those formalisms, and through these applications natural alternatives and generaliza-
tions of formalisms in those areas became visible.

As a possible direction for future work, let me mention just one thing. Structuring states
as in §§5 and 6 of this note may be seen as initial steps of a larger program of adding
structure to objects. As to adding structuring the transitions between states, rather than
or in addition to structuring the states, there seems to be a problem. When transitions are
equated with pairs of objects rather than treated as first-class citizens in their own right,
there does not seem to be an obvious way to structure them. But Van Benthem (1991a)
proposes a system of arrow logic in which the transitions or arrows have a primary status
in the ontology, without necessarily being identified with pairs of states. Eventually this
might be the way to go if one wants to be able to structure transitions as well as objects.
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