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1 Finding the Computational Core

The current interest in logic and information flow has found its technical expression
in various systems of what may be called 'dynamic logic' in some broad sense.
But unfortunately, existing dynamic logics based on binary transition relations
between computational states have high complexity (cf. Harel 1984). Therefore, it is
worthwhile rethinking the choice of a relatively simple dynamic base system forming
the ‘computational core' that we need, without getting entangled in the complexity
engendered by the additional 'mathematics of ordered pairs'. To some extent, this
program is realized by various algebraic theories of programs and actions. But the
conventional wisdom enshrined in these approaches may be biased: for instance, in its
insistence that Boolean negation or complement is the main source of complexity.
This may be seen by developing an alternative, namely a modal logic of 'arrows’,
which takes transitions seriously as dynamic objects in their own right (cf. van
Benthem 1991, Venema 1992). The main technical contribution of this Note is the
presentation of a system of Arrow Logic with both first-order relational operations
and infinitary Kleene iteration, which may be a good candidate for the computational
core calculus. In particular, we prove completeness for its minimal version, and
establish various connections with propositional dynamic logic and categorial logics.

There is a more general program behind the above proposal. For instance, one can do
the same kind of 'arrow analysis' for many other systems in the computational
literature, such as the 'dynamic modal logic' in De Rijke's contribution to this volume.
Moreover, issues of apparent undecidability and higher-order complexity abound in
the semantics of programming. For instance, in Hoare Logic, infinitary control
structures create high complexity: is this inevitable, or can the situation be mitigated
by redesign? Likewise, in Knowledge Representation, higher-order data structures
(such as 'branches' in trees) can generate complexity, witness the field of 'branching
temporal logic', which may be avoided by suitable re-analysis in many-sorted first-
order theories. Thus, the general issue raised in this Note is the following:

What is genuine ‘computation’ and what is ‘extraneous mathematics’

in the logical analysis of programming and its semantics?

If we can isolate the former component, many different technical results in the current
literature might be separable into different computational content plus a repetition of
essentially the same mathematical overhead. We do not offer any general solution to
this question here, but we do advocate some general awareness of the phenomenon.



2 Arrow Logic in a Nutshell

The intuition behind Arrow Logic is as follows. Binary relations may be thought of as
denoting sets of arrows. Some key examples are 'arcs' in graphs, or 'transitions’ for
dynamic procedures in Computer Science, but one can also think of 'preferences’ in
the case of ranking relations (as found in current theories of reasoning in Artificial
Intelligence, or social choice and economics). These arrows may have internal
structure, whence they need not be identified with ordered pairs <source, target>:
several arrows may share the same input-output pair, but also certain pairs may not be
instantiated by an arrow. This motivates the following definitions (what follows here
is a brief sketch: we refer to the references in the text for further technical details):

Arrow Frames are tuples (A, C3,R2,I1) with

A a set of objects (‘arrows") carrying three predicates:
C3x,yz X is a 'composition' of y and z

R2x,y y is a'reversal' of x

1 x X is an 'identity' arrow

Arrow Models M add a propositional valuation V here, and one can then interpret
an appropriate modal propositional language expressing properties of (sets of) arrows
using two modalities reflecting the basic 'ordering operations' of relational algebra:

M,xE p iff x € V(p)

M,xE—¢ iff not M,xF ¢

M, x E oAy iff M,xF ¢ and M, x F vy

M, x E ¢oy iff there exist y,zwith Cx,yz and M,y E ¢, M,zF y
M,x E ¢v  iff there exists 'y with RXx,y and M,y F ¢y

M,x F Id iff Ix

The minimal modal logic of this system is an obvious counterpart of its mono-modal
predecessor, whose key principles are axioms of Modal Distribution:

G1vd) e < (d1°9) V ($2°9)
de(W1vy2) < (by) Vv (0y2)
(91v02)” < 01T v e

A completeness theorem is provable here along standard lines, using Henkin models.
(This minimal logic includes all the usual laws of Boolean Algebra.)



Next, one can add further axiomatic principles (taking cues from relational algebra)
and analyze what constraint these impose on arrow frames via the usual semantic
correspondences. In particular, we have that

€)) —(0)” = (—0)” iff Vx3dyRx,y
2) (=0)” — —=(d)” iff Vxyz: Rx,y ARX,z) > y=z

Together, these make the binary relation R into a unary function r of 'reversal'.
Then the 'double conversion' axiom makes the function r idempotent:

3 @ oo iff  Vxr@x)=x.

Let us assume this much henceforth in our arrow frames. Next, the following
principles of Relational Algebra regulate the interaction of reversal and composition:

4 (W) = Y iff  Vxyz: Cx,yz— Cr(x), 1(2)(y)
®)) O —(¢p7ey) - -y iff Vxyz: Cx,yz— Cz 1(y)x

Together (2), (4), (5) imply the further interchange law Vxyz: Cx, yz — Cy, xr(z) .

Moreover, there is actually a more elegant form of axiom (5) without negation:
OAx) = ye(XA(Y9).
Finally, the propositional constant Id will be involved in correspondences like

6) Id-—Id iff Vx: Ix > Ir(x)
(7 Iddp—>0 iff Vxyz: Iy A CX, yz) > x=z.

Obviously, there are many further choices here, and 'Arrow Logic' really stands for a
family of modal logics, whose selection may depend on intended applications.
Nevertheless, what might be the most natural 'computational core' in this field?
Our recommendation would be as follows:

Universal Frame Constraints
Take only those principles concerning composition, converse and identity

on arrow frames which lack existential import: i.e., their corresponding
constraints can be formulated by purely universal first-order sentences.



One potential exception to this proposal is Associativity for composition:

Ba)  (dow)ox = Oe(yey) iff Vxyzuv: (Cx,yz A Cy,uv) =
dw: (Cx,uw A Cw, vz))

(8b) and likewise in the opposite direction.

Associativity is often tacitly presupposed in the formulation of dynamic semantics.

In what follows we shall avoid this practice.

Further information about the landscape of systems for Arrow Logic may be found in
van Benthem 1991, Marx, Németi & Sain 1992, Vakarelov 1992 and Venema 1992
(cf. also Appendix 1). Two further technical points deserve mention here. One is the
existence of a certain uniformity. The above correspondences all follow from a
general result in Modal Logic called the Sahlgqvist Theorem (van Benthem 1984),
which supplies an algorithm for computing frame conditions that can also be applied
to other proposed candidates for inclusion in our core set. The other point is that the
present modal language also has clear limits to its expressive power. Notably, one
cannot force composition to become a partial function (general arrow logic allows
more than one way of composing two transitions). For the latter purpose, enriched
modal formalisms will be needed, employing further modal operators (cf. De Rijke
1992B, Roorda 1992), which we shall not pursue here. Of course, by the time we
have enforced full representability of arrow frames via sets of ordered pairs, the
resulting modal logic will be just as complex as the ordinary theory of representable
relational algebras. The art is to know when to stop.

3 A Complete System of Dynamic Arrow Logic

Now, Dynamic Arrow Logic adds one infinitary operator to the above language:

M, x E ¢o* iff x can be C-decomposed into some finite sequence of

arrows satisfying ¢ in M.

What this says is that there exists some finite sequence of ¢-arrows in M which
allows of at least one way of successive composition via intermediate arrows so as to
arrive at x . (Without Associativity, this does not imply that x could be obtained by
any route of combinations from these same arrows.) Intuitively, ¢* describes the
transitive closure of ¢ . It satisfies the following simple and natural principles:



(9)  axiom o — ¢o*
(10)  axiom o*e* — ¢*
(11)  rule if &— o and oso.— o are provable,

thensois ¢*— o

These principles may be added to the earlier minimal arrow logic, to obtain a simple
base system, but our preferred choice will consist of this minimal basis plus the
earlier principles (1)—(5), to obtain a suitable axiomatic Dynamic Arrow Logic DAL .
Here is an illustration of how this system works.

Example Derivation of Monotonicity for Iteration

If Foa—B then F o—B* (axiom(9))

Also FB*p* — B* (axiom (10)) whence Foa*—B* (rule 1)) |
Example Derivation of Interchange for Iteration and Converse

i o - ¢* axiom (9)

ii o — o* i plus monotonicity for converse

1ii

(q)*v.q)*v) - (q)*.q)*)v

(the latter follows from its distributivity)
this may be derived using axioms (3) and (4)

iv d*e0* — ¢* axiom (10)

v (0 0™)" — ¢* iv plus monotonicity for converse
vi 9" ™) — ¢* iii, v

vii O* — o ii, vi plus rule (11)

viii OF — o7t by similar reasoning

ix o= 0 axiom (3)

X o — v * monotonicity for iteration

xi o* — ot X, viii

xii o* — oV xi plus monotonicity for converse
xiii ¢V o7* axiom (2)

xiv ¢ — ¢ xii, xiii n

Completeness may be established for DAL , as well as several of its variants.

Theorem

DAL is complete for its intended interpretation.



Proof Take some finite universe of relevant formulas which is closed under
subformulas and which satisfies the following closure condition:

if ¢* isincluded, thensois ¢*+¢*

Now consider the usual model of all maximally consistent sets in this restricted
universe, setting (for all 'relevant' formulas):

Cx,yz iff Voe y, ye z: pey e x
Rx,y iff Voe y: ¢V e x

Here we can prove the usual 'decompositions' for maximally consistent sets, such as
Oy € X iff there exist y,z with Cx,yz and ¢€y, yez

using the minimal distribution axioms only. The key new case here is the following:

Claim ¢* e x iff some finite sequence of maximally consistent sets
each containing ¢ 'C—composes' to x in the earlier sense.

Proof  Fromrighttoleft.  This is a straightforward induction on the length of the
decomposition, using axioms (9), (10) and the closure condition on relevant formulas.

\l

From left to right.  Describe the finite set of all 'finitely C—decomposable
maximally consistent sets in the usual way by means of one formula o , being the
disjunction of all their conjoined 'complete descriptions' o . Then we have

Foé— a:

since ¢ is provably equivalent to \/¢65 d in propositional logic, and o contains all
these & by definition. Next, we have

F oo — o

To see this, suppose that (oieat) A —0 were consistent. Using Distributivity with
respect to successive relevant formulas, (81+82) A —o. must be consistent for some
maximally consistent &1, 8. And likewise, (81°82) A =t A 83 will be consistent

for some maximally consistent 83 . Now, 81,2 must be in o , and moreover
C 83, 5182 by the definition of C and some deductive reasoning. Therefore, 83 is



in o too (by definition), contradicting the consistency of —o A 83 . So, applying the

iteration rule (11), we have
F o —> a
Therefore, if ¢*€ x,then x belongsto o .

Semantic evaluation in the canonical model will now proceed in harmony with the
above syntactic decomposition: any relevant formula is true 'at’ a maximally
consistent set iff it belongs to that set. This completes our analysis of the basic case.

In order to deal with the additional axioms (1)—(5), their frame properties must be
enforced in our finite canonical model. This may be done as follows:

i one closes the universe of relevant formulas under Boolean operations and
converses: the resulting infinite set of formulas will remain logically finite,
given the Boolean laws and the interchange principles for converse,

ii the definition of the relation C is to be modified by adding suitable clauses,
so as to 'build in' the required additional frame properties.

First, the required behaviour of reversal is easy to obtain. One may define r(x) to be
the maximally consistent set consisting of (all representatives of) { ¢ I1dex }:
the available axioms make this an idempotent function inside the universe of relevant
maximally consistent sets. For a more difficult case, consider axiom (5) with
corresponding frame condition Vxyz: Cx,yz — C z, r(y)x . One redefines:

Cx,yz iff both Voey, ye z: ¢y € x
and Vo ey, ye x: ¢poye z

This has been designed so as to validate the given frame condition. But now, we need
to check that the earlier decomposition facts concerning maximally consistent sets are
still available, to retain the harmony between membership and truth at such sets.

Here are the two key cases:

Oy € X iff there exist y,z with Cx,yz and ¢ey, yez
o*e x iff some finite sequence of maximally consistent sets
containing ¢ 'C—composes' to X .



The crucial direction here is from left to right: can we find maximally consistent sets
as required with C satisfying the additional condition? What we need is this. In the
earlier proof, the sets y, z were constructed 'globally’, by showing how successive
selection yields a consistent set of formulas X, /\y-/\z with ¢ey, yez. (For then,
whenever oef is a relevant formula with aey, Bez, oeB must belongto x,on
pain of inconsistency. ) Now, it suffices to show that, in this same situation, the set
zZ, /\r(y)-/\x is consistent too. Here, we use a rule derived from axioms (2), (5):

if Fo—>-(yex) then Fy— =(y70):

Then, if F z— — (/\r(y)-/\x), then F x - — (/\rr(y)-/\z) , and hence also

Fx—= (/\y-/\z) : contradicting the consistency of x, /\y-/\z . The argument
for iteration is similar. Moreover, the general case with all frame conditions implanted
simultaneously employs the same reasoning. |

Corollary DAL is decidable.

Proof The preceding argument establishes not just axiomatic completeness
but also the Finite Model Property. |

The above strategy for accommodating the relevant additional frame properties in the
finite counter-model is that of Roorda 1991. More generally, we conjecture that every
modal logic which is complete with respect to some finite set of Horn clause frame
conditions has the Finite Model Property. But, will decidability will go through if the
further existential property of Associativity is included in our basic arrow logic?
This is more difficult, since the required additional worlds, whose existence is easily
shown in a full Henkin model by traditional arguments, seem to over-flow the finite
universe of 'relevant' maximally consistent sets during filtration. Dimiter Vakarelov
has announced a proof, but the negative results in Andréka 1991 counsel caution.

Another strategy uses a labeled version of arrow logic with statements of the form
'arrow : assertion' , which transcribe the above truth definition into a simple fragment
of predicate logic. Labels might be either bare arrows (with relations of composition
and converse), or complex descriptions from some (semi-)group. Following Roorda
1992, decidability might then be proved via an effective equivalence with some cut-
free labeled sequent calculus for Arrow Logic, whose rules might use a format like:
X, x:A,y:BFA implies Y, xy:ABF A
ZFA, 1(x): A implies THFA, x:AY
A general labeled approach to Arrow Logic must be left to further investigation.

9



4 Propositional Dynamic Logic with Arrows

Now what about a Propositional Dynamic Logic based on the above? The usual
account in the literature considers the addition of a propositional component referring
to truth at states essential, as it allows us some negation at least at the latter level.
Since this is no longer true now, having this second component becomes more of a
convenience. Nevertheless, we do think the resulting two-level system is a natural
one: 'arrow talk' and 'state talk' belong together in an analysis of computation and
general action. So as usual, add a Boolean propositional language, plus two

mechanisms of interaction between the two resulting components:

a test 'mode’ ? taking statements to programs
a domain 'projection’ <> taking programs to statements.

For notational convenience, we shall reserve 0, y, ... henceforth for state assertions

and T, mp, 7, ... for describing programs in this two-tier system.

In line with the general modal analysis of the above, let us view this system with
some greater abstraction. What we have is a two-sorted modal logic, whose models
have both 'states' and 'arrows', and whose formulas are marked for intended
interpretation at one of these. Both the arrow and state domains may carry internal

v

structure, reflected in certain modalities, such as the earlier « and ~ referring to
arrows. (States might be ordered by 'precedence’ or 'preference’ with appropriate
modalities.) Our key point, however, is this. Even the modes and projections
themselves may be viewed as 'non-homogeneous' modalities, reflecting certain
structure correlating the two kinds of object in our models. For instance, 'test' is again

a distributive modality, and so is 'domain":

Gvy? o 0?vy?
<T1 V M> 4 <M1> V <mM>

whose interpretations run as follows:

M,xE ¢? iff there exists some s with Tx,s and M,s F ¢
M, x F <> iff there exists some X with Ds,x and M,x E &

Intuitively, the first relation T x, s says that x is an identity arrow for the point s,
while the second relation D s, x says that s is a left end-point of the arrow X .

10



Via the usual correspondences, further axioms on ? , <> will then impose additional
connections between T and D.

Example Connecting Identity Arrows and End-Points
The principle <¢?> <> ¢ (itself again a modal 'Sahlqvist form') expresses the
conjunction of
Vs3dx: Ds,x ATx,s Vsx: Ds,x - Vs Tx,s' —s=s'.
|

Also, axiomatic completeness proofs are straightforward here, with two kinds of
maximally consistent sets: one for arrows and one for points. Thus everything about
Propositional Dynamic Logic is Modal Logic: not just its two separate components,
but also their connections.

Further elegance may be achieved here by a reformulation. The following observation
is made in van Benthem 1991:

Fact There is one projection which is a Boolean homomorphism, namely the
diagonal function ARe Axe Rxx

There are exactly two homomorphic modes, namely
APe Axye Px and APs Axys Py.

Thus, we can introduce three matching modalities with corresponding new binary
relations in their semantics:

M,s E Dr iff for some x, As,x and M,x E &
M,x E L¢ iff for some s, Ls,x and M,s F ¢
M,x F R¢ iff  forsome s, Rs,x and M,s F ¢

These modalities satisfy not just the Distribution axioms, but they also commute with
Boolean negation (just like relational converse), so that we can take A, £, R to be

functions. This set-up is more elegant, as well as easy to use. (It may still be
simplified a bit by dropping R¢ in favour of (L$)~. ) For instance, one source of

axiomatic principles is the interaction of various operators:

Observation
DL & ¢ expresses that Vs: LA(GS)=s
LDt <> (nAld)+ T expresses that Vxdy : Cx, AL(X)y
Lot — Lo expresses that Vxyz: CXx,yz = LX) =Ly).

11



One may achieve exactly the power of the standard system with these new primitives

under the following

Translation from old to new format
¢? : Loéald <n>: D(=nT)

Analyzing the usual axioms of Propositional Dynamic Logic in this fashion is a
straightforward exercise. We list the key principles that turn out to be needed (these
allow us to represent statements <mn> ¢ faithfullyas D ((m A R¢) T ):

1 Drn - D(n A Id) 2 Id - (L4 & RY)
3a DL < ¢ 3b DR < ¢
4 1 A RDmp & mpe(m A Id)

(m1°m2) A RO > w1 (M2 A RY)

Their corresponding frame conditions can be computed by hand, or again with a
Sahlqvist algorithm, as they are all of the appropriate modal form. These principles
suffice for deriving various other useful ones, such as the reductions

ddAa Lp)em & Loa = nte(Id A Rp) & mA RO.
Finally, there is also a converse route, via two more schemata:

Translation from old to new format
Lo : ¢?-T Drn : <IdaA m>

The same style of analysis may be applied to richer systems of dynamic logic, having
additional structure in their state domains (cf. van Benthem 1991, de Rijke 1992A).
One example is the 'dynamic modal logic' in De Rijke's contribution to this Volume,
which features modes over information states with an inclusion order < . This may
be treated by introducing another propositional constant at the arrow level, say, E for
'inclusion’' (perhaps with suitable axioms expressing its transitivity and reflexivity).
Then, the logic of updating and revision will employ special defined arrows, such as
E A R update transition for ¢
EARO)A-(EARY(EA =Id)) minimal update transition for ¢
This may provide a workable alternative where the undecidability of the full system is
circumvented. Roughly speaking, the arrow version should stay on the right side of
the '2D-boundary' which allows embedding of two-dimensional grids in the models,
and hence encoding of full Turing machine computation.

12
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5 Appendix 1 From Amsterdam to Budapest

Arrow Logic in its 'Amsterdam manifestation' says that dynamic transitions need not
be identified with the ordered pairs over some underlying state set. This idea has
really two different aspects. Distinct arrows may correspond to the same pair of
<input, output>, but also, not every such pair need correspond to an available arrow.
This shows very well in the following less standard example:

Let arrows be functions f: A—>B giving ﬁse to, but not identifiable with, ordered pairs <A, B>

of 'source’ and 'target’. Then, the relation C expresses the partial function of composition of

mappings, while the reversal relation R will hold between a function and its inverse, if available.
This model will validate all of the earlier core principles, at least, in their appropriate
versions after functionality for reversal has been dropped. For instance, axiom (5)
now expresses the fact that, whenever f=goh and k=g-1, thenalso h =kof .

Nevertheless, there is also an interesting more 'conservative' variant found in various
earlier and recent publications from Budapest, where arrows are still ordered pairs,
but one merely gives up the idea that all ordered pairs are available as arrows.
Essentially this takes us to a universally first-order definable class of arrow frames
which can be represented via sets of ordered pairs (though not necessarily full
Cartesian products). Its complete logic can be determined in our formalism, and it
turns out to be decidable as well (Marx Németi & Sain 1992). This system is another
natural, richer stopping point in the arrow landscape, including the earlier systems
presented in Section 2 above, with additional axioms expressing essentially the
uniqueness of the pair of identity arrows surrounding an arbitrary arrow, as well as
their 'proper fit' with composition and reversal. Various weaker natural arrow logics
with desirable meta-properties (decidability, interpolation, etcetera) may be found in
Németi 1987 (see also the survey Németi 1991 for more extensive documentation).
Simé6n 1992 investigates deduction theorems for arrow logics, showing that our basic
systems lacks one. Finally, Andréka 1991 provides a method for proving results on
non-finite-axiomatizability in the presence of full Associativity. Even undecidability
lies around the corner, in this perspective, as soon as one acquires enough power to
perform the usual encoding of relation-algebraic quasi-equations into equations.
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6 Appendix 2 Dynamic Arrow Logic with a Fixed-Point Operator

The analysis of this Note may be extended to prove completeness for a more powerful
system of Dynamic Arrow Logic which has the well-known minimal fixed-point
operator ppe ¢(p) . Its two key derivation rules are as follows:

if Fo(a)—>a then F ppe d(p) > o I
if =B—>pped) then + o) — pupe o(p) II

This language defines iterations ¢* in our sense via the fixed-point formula

upe ¢ vpep.

(Its successive approximations give us all C-combinations that were involved in the
earlier semantic definition.) The derivation rules for iteration then become derivable
from the above two rules: I corresponds to rule (11), while II gives the effect of the
axioms (9), (10). In the completeness theorem, these allow us to generalize the earlier
argument for the crucial decomposition:

upe ¢(p) € x iff X belongs to some finite iteration of the operator
Ape O(p) starting from the empty set for p .

7 Appendix 3  Connections with Categorial Logic and Action Algebra

Dynamic Arrow Logic may also be compared to a dynamic version of categorial
logic, as employed in current categorial grammars, extended with Kleene iteration.
At base level, this connection runs between ordinary arrow logic and standard
systems such as the Lambek Calculus with two directed functional slashes (cf. van
Benthem 1991, 1992 for details):

a\b

-'l(aV i —lb) b/a - (—lb i a")

Moreover, categorial product goes to composition ¢ . The two basic categorial laws
then express the basic interaction principles for C and r on arrow frames:

as(@b) <b Vxyz: Cx,yz— Cz 1(y)x
(b/aysa <b Vxyz: Cx,yz—=Cy, xx(z) .
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This gives us the two implications

X<ab = a*X<hb X <bla = Xea<b

Their converses (which generate all of the Lambek Calculus) require no more.
For instance, suppose that a+ X < b.Now, X A (a¥+—b) < a¥ ¢ (—=b A (a* X))
(by the first interaction principle), whence X A (a¥ +—b) < a*+ (—b A b) and then
XA@ee—=b)<a"e0<0.1e, X < (@ +—b).

Thus, Basic Arrow Logic contains the Lambek Calculus, and it even does so
faithfully, thanks to the completeness theorem in Mikulds 1992. Many further

connections between categorial logics and arrow logics remain to be explored.

With * added, we get some obvious further principles, such as (a\a)* = (aa),
due to Tarski & Ng. Note thow this may be derived in Dynamic Arrow Logic:

1 (a\a) < (aa)* axiom 9

2 (a\a) £ (a\a)
(a\a) * (a\a) < (a\a) by the above categorial rules (derivable in arrow logic)
(a\a)* < (a\a) by rule (11)

A related system is the Action Algebra of Pratt 1992 and previous publications, which
may be viewed as a standard categorial logic enriched with iteration and disjunction.
It would be of interest to determine the precise connection with arrow logic here.
What is easy to determine, at least, is the following 'arrow content' of the equational
axiomatization offered by Pratt. Its basic axioms each exemplify one of four kinds of
assertion in our framework:

1 consequences of the minimal arrow logic — in particular, the basic laws of
monotonicity (a typical exampleis "a—b <a—>(b+Db")" )

il expressions of categorial principles, whose content was the basic interaction
between composition and converse ( as expressed in the inequalities
"a@—>b)y<b<La—ab")

iii universally valid principles for iteration, such as its monotonicity
(compare " a* < (a+b)* ")

iv associativity for composition (whose precise strength remains to be

determined in the arrow framework, as we have seen).
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8 Appendix 4 Predicate Arrow Logic

It may also be of interest to ask whether the above style of analysis applies to
ordinary predicate logic. In particular, does its undecidability go away too, once we
give up the usual bias toward ordered pairs? First, the formulation is easy:

Take a two-sorted language with 'objects’ and 'arrows'
and read, say, "Rxy" as Ja(Ra A fay=xA fa)=y).

Thus we need unary predicates for the old relations, plus two new auxiliary cross-
sorted maps 1, r identifying end-points of arrows. (For general n-any relations, we
may need a more-dimensional version of Arrow Logic, as in Vakarelov 1992.)
But the resulting system still faithfully embeds ordinary predicate logic, and hence it
is at least as complex.

Question What would have to be weakened in standard predicate logic to get an
arrow-based decidable version, either in the Amsterdam or the Budapest Way?

What this analysis shows is that versions of Arrow Logic can also get undecidable
without identifying arrows with ordered pairs, viz. by putting in additional expressive
power via modal operators reflecting further predicate-logical types of statement,
such as a 'universal modality' or a 'difference operator’ or yet other additions (cf. again
De Rijke 1992B, Roorda 1992 — as well as the various recent publications by Gargov,
Goranko, Passy and others from the 'Sofia School' in enriched modal logic).

Question What happens to the previous versions of Propositional Arrow Logic
if one adds a 'universal modality' or a 'difference operator’, or yet other notions
from extended Modal Logic?

A good concrete example here is the traditional formula enforcing infinity of a binary

relation in its models:

Vx —Rxx A Vx3dyRxy A Vxy Rxy — Vz (Ryz = Rxz)) .

Its 'arrow transcription' reflects our natural reasoning about this formula, in terms of
growing chains in arrow diagrams. Analyzing the usual argument about its models,
one finds how little is needed to show their infinity, thus destroying the Finite Model
Property and endangering Decidability.

16



9 References

H. Andréka
1991

J. van Benthem

1984
1991

1992

‘Representations of Distributive Semilattice-Ordered Semigroups with Binary Relations',
Algebra Universalis 28, 12-25.

‘Correspondence Theory' , in D. Gabbay & F. Guenthner, eds., 167-247.

Language in Action. Categories, Lambdas and Dynamic Logic, Elsevier Science Publishers,
Amsterdam, (Studies in Logic, vol. 130).

‘Logic and the Flow of Information', in D. Prawitz et al., eds., to appear.

D. Gabbay & F. Guenthner, eds.

1984
D. Harel
1984

Handbook of Philosophical Logic, vol. 11, Reidel, Dordrecht.

‘Dynamic Logic', in D. Gabbay & F. Guenthner, eds., 497-604.

M. Marx, I. Németi & 1. Sain

1992

S. Mikulés

1992

I. Németi
1987

1991

V. Pratt
1992

‘Everything You Always Wanted to Know about Arrow Logic', Center for Computer Science
in Organization and Management, University of Amsterdam / Mathematical Institute of the
Hungarian Academy of Sciences, Budapest..

‘Completeness of the Lambek Calculus with respect to Relational Semantics', Research Report
LP-92-03, Institute for Logic, Language and Computation, University of Amsterdam.

'Decidability of Relation Algebras with Weakened Axioms for Associativity', Proceedings
American Mathematical Society 100:2, 340-345.

'Algebraizations of Quantifier Logics, An Introductory Overview', to appear in Studia Logica,
special issue on Algebraic Logic (W. Blok & D. Pigozzi, eds.).

'Action Logic and Pure Induction', this Volume.

D. Prawitz, B. Skyrms & D. Westerstahl, eds.
to appear Proceedings 9th International Congress for Logic, Methodology andPhilosophy of Science.

M. de Rijke
1992A

1992B
D. Roorda
1991

1992

A. Simon
1992

D. Vakarelov
1992

Y. Venema
1992

Uppsala 1991, North-Holland, Amsterdam.

'A System of Dynamic Modal Logic', Report LP-92-08, Institute for Logic, Language and
Computation, University of Amsterdam. '
"The Modal Logic of Inequality', Journal of Symbolic Logic 57:2, 566-584.

Resource Logics. Proof-Theoretical Investigations, Dissertation, Institute for Logic, Language
and Computation, University of Amsterdam.

Lambek Calculus and Boolean Connectives: On the Road, Onderzoeksinstituut voor Taal en
Spraak, Rijksuniversiteit, Utrecht.

'Arrow Logic Lacks the Deduction Theorem', Mathematical Institute of the Hungarian
Academy of Sciences, Budapest.

'A Modal Theory of Arrows I', Report ML-92-04, Institute for Logic, Language and
Computation, University of Amsterdam.

Many-Dimensional Modal Logic, Dissertation, Institute for Logic, Language and Computation,

University of Amsterdam.

17



The ILLC Prepublication Series

ML-91-10 Maarten de Rijke, Yde Venema Sahlgvist's Theorem for Boolean Algebras with Operators

ML-91-11 Rineke Verbrugge Feasible Interpretability

ML-91-12 Johan van Benthem Modal Frame Classes, revisited

Computation and Corrglexi%[Theo . i i

CT-91-01 Ming Li, Paul M.B. \?i’tényi Kolmogorov Complexity Arguments in Combinatorics

CT-91-02 Ming Li, John Tromp, Paul M.B. Vitinyi How to Share Concurrent Wait-Free Variables

CT-91-03 Ming Li, Paul M.B. Vitinyi Average Case Complexity under the Universal Distribution Equals
Worst Case Complexity

CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence
CT-91-05 Sieger van Denneheuvel, Karen Kwast Weak Eq}u;\i/alence for Constraint Sets

CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis Laus

CT-91-09 Ming Li, Paul M.B. Vitinyi ngb{nagorial Properties of Finite Sequences with high Kolmogorov
mplexity

CT-91-10 John Tromp, Paul Viténéijl k A Randomized Algorithm for Two-Process Wait-Free Test-and-Set
CT-91-11 Lane A. Hemachandra, Edith Spaan Quasi-Injective Reductions
CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

Computational Linguistics

CL-91-01 J.C. Scholtes Kohonen Feature Mag{s in Natural Lfnniguage Processing

CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval

CL-91-03 Hub Priist, Remko Scha, Martin van dgrxl1 Beﬁg A Formal Discourse Grammar tackling Verb Phrase
aphora

Other Prepublications

X-91-01 Alexander Chagrov, Michael Zakharyaschev The Disjunction Property of Intermediate Propositional Logics
X-91-02 Alexander Chagrov, Michael Zakharyaschev On the Undecidability of the Disjunction Property of
Intermediate Propositional Logics

X-91-03 V. Yu. Shavrukov illx_})dajlgcb;as of Diagonalizable Algebras of Theories containing
etic
X-91-04 K.N. Ignatiev Partial Conservativity and Modal Logics
X-91-05 Johan van Benthem Temporal Logic
X-91-06 Annual Report 1990
X-91-07 A.S. Troelstra Lectures on Linear Logic, Errata and Supplement
X-91-08 Giorgie Dzhaparidze Logic of Tolerance
X-91-09 L.D. Beklemishev On Bimodal Provability Logics for IT;-axiomatized Extensions of
Arithmetical Theories
X-91-10 Michiel van Lambalgen Independence, Randomness and the Axiom of Choice
X-91-11 Michael Zakharyaschev Canonical Formulas for K4. Part I: Basic Results
X-91-12 Herman Hendrd Flexibele Categoriale Syntaxis en Semantiek: de
oefschriften van Frans Zwarts en Michael Moortgat
X-91-13 Max I. Kanovich e Multiplicative Fragment of Linear Logic is NP-Complete
X-91-14 Max I. Kanovich The Hom Fragment of Linear Logic is NP-Complete
X-91-15 V. Yu. Shavrukov Subalgebras of Diagonalizable Algebras of Theories containing
Arithmetic, revised version
X-91-16 V.G. Kanovei Undecidable H&)Otheses in Edward Nelson's Internal Set Theory
X-91-17 Michiel van Lambalgen {,ndependence, andomness and the Axiom of Choice, Revised
ersion
X-91-18 Giovanna Cepparello New Semantics for Predicate Modal Logic: an Analysis from a
standard point of view
X-91-19 Papers presented at the Provability Intelgretabm"‘tjy Arithmetic Conference, 24-31 Aug. 1991, Dept. of Phil.,
trecht Universi
1992 Annual Report 1991 '
Logic, Semantics and Philosophy of Langauge
LP-92-01 Victor Sinchez Gai'encia Lambek Grammar: an Information-based Categorial Grammar
LP-92-02 Patrick Blackburn Modal Logic and Attribute Value Structures
LP-92-03 Szabolcs Mikulis g’he Completeness of the Lambek Calculus with respect to Relational
emantics
LP-92-04 Paul Dekker An I.llggate Semantics for Dynamic Predicate Logic
LP-92-05 David 1. Beaver The Kinematics of Presupposition

LP-92-06 Patrick Blackburn, Edith Spaan A Modal Perspective on the Computational Complexity of Attribute

Value Grammar . R

LP-92-07 Jeroen Groenendijk, Martin Stokhof A Note on Interrogatives and Adverbs of Quantification

LP-92-08 Maarten de Rijke A System of D ic Modal Logic

LP-92-09 Johan van Benthem Quantifiers in the world of Types .

LP-92-10 Maarten de Rijke Meeting Some Neighbours (a dynamic modal logic meets theories of
change and knowledge representation)

LP-92-11 Johan van Benthem A note on Dynamic w Logic

Mathematical Logic and Foundations .

ML-92-01 A.S. Troelstra Comparing the theory of Representations and Constructive
Mathematics

ML-92-02 Dmitrij P. Skvortsov, Valentin B. Shehtman Maximal Kripke-type Semantics for Modal and
Superintuitionistic Predicate Logics

ML-92-03 Zoran Markovié On the Structure of Kripke Models of Heyting Arithmetic
ML-92-04 Dimiter Vakarelov A Modal Theory of Arrows, Arrow Logics I .
ML-92-05 Domenico Zambella Shavrukov’s Theorem on the Subalgebras of Diagonalizable

Algebras for Theories containing IAg + EXP . .
ML-92-06 D.M. Gabbay, Valentin B. Shehtman Undecidability of Modal and Intermediate First-Order Logics with
Two Individual Variables
ML-92-07 Harold Schellinx How to Broaden your Horizon
Compution and Complexity Theory . .
CT-92-01 Erik de Haas, Peter van Emde Boas Object Oriented Application Flow Graphs and their Semantics
CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications
Other prepublications

X-92-01 Heinrich Wansing The Logic of Information Structures . .

X-92-02 Konstantin N. Ignatiev The Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic
of Z;-conservativity . . .

X-92-03 Willem Groeneveld &'namic Semantics and Circular Propositions, revised version

X-92-04 Johan van Benthem odeling the Kinematics of Meaning



