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Sequent calculi for normal modal propositional
logics
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Gentzen’s proof-theoretical methods
have not yet been properly applied to modal logic.
Serebriannikov [1982, p. 79]

Abstract. In this paper we present a systematic sequent-style proof theory for many
important systems of normal modal propositional logic based on classical propositional logic
CPL. After discussing philosophical, methodological, and computational aspects of the problem
of Gentzenizing modal logic, we introduce a variant of Belnap’s Display Logic and show that
within this proof theory the modal axiom schemes D, T, 4, 5, and B (and some others) can be
captured by characteristic structural inference rules. We show that for all sequent systems under
consideration (i) Cut is admissible, (ii) the subformula property holds, and (iii) all connectives are
uniquely characterized. Eventually we briefly deal with modal systems based on substructural
subsystems of CPL.

The aim of this work is to present a systematic and perspicious sequent-style proof
theory for many axiomatic systems of normal modal propositional logic based on classical
propositional logic CPL. As Segerberg [Bull & Segerberg 1984] has observed, “Gentzen
methods have never really flourished in modal logic, but some work has been done, mostly
on sequent formulations”. We first briefly review several known sequent-style proof sys-
tems for various normal modal propositional logics. Subsequently, in Section 2 we lay
down certain philosophical, methodological, and computational requirements which the
proof theory to be presented should fulfill. It will turn out that each of the earlier sequent
systems falls short of satisfying some of these conditions. In Section 3, an informal outline
is given of Belnap’s [1982, 1990] Display Logic DL. The proof theory of the present paper
is a modification of DL and is developed at length in Section 4. Finally, extensions to
modal systems on a substructural base are considered in Section 5.

The Gentzen-style proof theory to be developed is only a slight and simple modification
of Belnap’s DL. Nevertheless it seems worth a separate presentation and discussion, since

1. It allows an extension to a broader class of substructural base logics than Belnap’s

DL.

*Universiteit van Amsterdam, Faculteit Wiskunde en Informatica, Plantage Muidergracht 24, 1018
TV Amsterdam, The Netherlands, e-mail: heinrich@fwi.uva.nl




2. It associates the unary modal operators with a unary structural connective and not
with a binary structural operation as in [Belnap 1982].

3. Whereas Belnap considers modal logic as comprising connectives from two different
families, we regard the language L1 0,-v,o,00} of modal logic as a one-family
language.

4. Belnap’s application of DL to modal propositional logics in [Belnap 1982] is some-
what sketchy.

5. There seems to be a need for a more systematic methodological discussion of Gentz-
enizing modal propositional logic.

Moreover, DL does not yet seem to have attracted the attention it deserves.

1 Some known sequent systems for normal modal
logics

1.1 Standard systems

Sequent systems for the axiomatic calculi S4 (= KT4) and S5 (KT5) are known for a
long time. The following schematic sequent rules for O and < go back to Curry and Feyes,
and have been studied by Ohnishi and Matsumoto [1957]:

(-0 OX -0YV,AFOX —0OY,04
(O-) X, A-YFX OA-Y
(20) X—-Y,AFX —>Y,0A
(© =)o OV, A—- OX OV, 04— OX.

Here X and Y range over finite sets of formulas and OX (OX) denotes {0A | A € X}
({CA| A € X}). If either the rules (— O)g and (O —)g or the rules (— <)g and (O — )
are added to (an appropriate version of) the standard sequent system LCPL for CPL,
then the result is a sequent calculus LS5 for S5. Various other modal propositional logics
can be obtained by modifying (— O)g resp. (¢ —)o. If Y is empty in (— O)g resp. in
(O —)o, this yields a sequent calculus LS4 for S4. Ohnishi and Matsumoto also show
that if (— O)g resp. (& —)o is replaced by

(-0); X—AFOX — 0OA  resp.
(©—=)1 A=Y FOCA- DY,

one obtains a Gentzen-system for T' (= KT').! If one just adds (— O); to LCPL, this
results in a sequent calculus LK for the minimal normal modal propositional logic K (see
e.g. [Leivant 1981], [Sambin & Valentini 1982], [Mints 1990]). A sequent calculus LK 4 for
K4 can for instance be obtained by adding to LCPL the rule

11t has been observed by Routley [1975] that the equivalences between OA and ~<0-A4, and ¢ A and
—0-A4 cannot be proved by means of Ohnishi’s and Matsumoto’s rules.



(-0, X,0X > AF0OX — 04

(see [Sambin & Valentini 1982]). As shown in [Goble 1974], the pair of modal sequent
rules (— O); and

yields a sequent system for KD, and, if (— O); is then modified into the rule

(»0); X' > AFOX — 04,

where X' results from X by prefixing zero or more formulas in X by O, one obtains a
sequent calculus for K DT'4. Shvarts [1989] gives a sequent calculus formulation of K45
by means of supplementing LC PL with the following rule for O:

[D] DXhXZ - lehn F DXla I:])(2 i Enfh D}/27

where Y> contains at most one formula. If in addition Y; and Y> are required to be non-
empty, this results in a sequent system for K D45. Avron [1984] (see also [Shimura 1991])
presents a sequent calculus LS4Grz for S4Grz (= KGrz) by replacing the rule (— O)
in Ohnishi’s and Matumoto’s sequent calculus for S4 by the rule

(- 0)y OADOA),0X - A+ OX — OA.

1.2 Higher-level systems

Dosen [1985] has developed certain non-standard sequent systems for S4 and S5. In these
Gentzen-style systems one is dealing with sequents of arbitrary finite level. Sequents of
level 1 are like ordinary sequents, whereas sequents of level n+1 (n > 0) have finite sets of
sequents of level n on both sides of the sequent arrow. Moreover, the main sequent arrow
in a sequent of level n carries the superscript ™, and  is regarded as a set of any finite
level. The rules for logical operations are presented as double-line rules. A double-line rule

S1y.-4438n
So
involving sequents sq, ..., S5, denotes the rules
81,.-.98n So So
-_—.—’ _, RN ’ —c
So S1 Sn

Dosen gives the following double-line sequent rules for O and <:

X+ {0 -1 {A}} —2 Xz + {X3 —1 X4} Xl + {{A} —! 0} —2 Xg + {X3 —1 X4}
X]. —)2 .X2 + {X3 + {DA} —)1 X4} X1 —)2 X2 + {X3 —)1 _X4 + {OA}} ’

where + refers to the union of disjoint sets. If these rules together with the axiomatic
sequents



{X+{0 -1 {A}} =% X + {X5 =" Xu}} =° {X) =2 Xo + {X3 + {04} - X4}}
{X1 =2 X+ {X + {04} = X4}} -° { X0 + {0 - {4}} =2 Xo +{X3 - X,}}
{X+{{4} =10} =2 Xo + {X5 =! X4}} =2 {X; =2 Xo 4+ { X3 ! X5+ {OA}}}
{X1 =2 Xo +{X3 =" X5+ {OA}}} = {X1 + {{4} = 0} =2 X, + {X5 - X,4}}

are added to DoSen’s higher-level sequent calculus Cp/D for CPL, this results in the
sequent system S5p/D for S5. The sequent calculus S4p/D for S4 is then obtained by
imposing a structural restriction on the monotonicity (or thinning) rule of level 2:

X -2Y
XUZ, -2YU2Zy

The restriction is this: if Y = @, then Z, must be a singleton or empty; if Y # 0, then Z,
must be empty. If the same restriction is applied to monotonicity of level 1 in Cp/D, then
this gives one a higher-level sequent system for intuitionistic propositional logic IPL.

2 Desiderata

2.1 Rules as meaning assignments

Gentzen-style proof theory is usually associated with a certain philosophy of meaning.
The idea is that the schematic introduction rules for an n-ary connective f}, together with
a set of structural assumptions, specify the meaning of §, which has certain consequences
for the format of rules. In the first place, the meaning assignment should not make the
meaning of § dependent on the meaning of other connectives. That is to say, the sequent
rules for § should give a purely structural account of {’'s meaning, in the sense that they
should not exhibit any connective other than §. This property may be called separation.?
Moreover, the rules for § should be weakly symmetric; every rule should either belong to
a set of rules (— ) which introduce § into premises (i.e. on the left side of — in the
conclusion sequent) or to a set of rules (§f —) which introduce § into conclusions (i.e. on
the right side of — in the conclusion sequent). The sequent rules for § can then be called
symmetric, if they are weakly symmetric and both (— ) and (§ —) are non-empty. The
sequent rules for § will be called weakly ezplicit, if the rules (— f) and (§ —) exhibit §
in their conclusion sequents only, and they will be called ezplicit, if in addition to being
weakly explicit, the rules in (— {) resp. (§ —) exhibit only one occurrence of § on the
right resp. the left side of —. Separation, symmetry, and explicitness of the rules imply
that in a sequent calculus for a given logic £, every connective that is explicitly definable
in £ also has separated, symmetric, and. explicit introduction rules.> Therefore we would
like to have rules for O and < as primitives. With CPL as our base logic, these rules
should allow us to prove 04 — —~O=4, =04 — 04, OA — -~0-4, and -0-4 — CA.
Let us call this property (inter 0O).

2Cf. [Zucker & Tragesser 1978].
3These rules can be found by decomposition of the defined connective. We have to assume that £ has

a compositional semantics, or, in syntactic terms, that the deductive role of §(Ay,...,An) depends on
the deductive relationships between A;,..., A, only.



It can easily be verified that each of the standard rule systems presented in the previous
section fails to satisfy some of the philosophical requirements mentioned so far:*

I | sep. | weak sym. | sym. | weak expl. | expl. | (inter00) |
IK : 7 - :
IT 7 " - :
LKA - - - -
LK45
LKD
LKDT4
LK D45
LS4
LS4Grz
LS5

Note that Dosen’s [1985] higher-level sequent rules for O and < being double-line rules
do not satisfy weak symmetry and weak explicitness. However, (inter0<) holds for these
rules. '

NSNS

NSNS
SO ONER NN

2.2 Uniqueness

Suppose that £ is a logical system with a syntactic presentation S in which the connective
i occurs. Let S* be the result of rewriting ff everywhere in S as {f*, and let £L* be the
system presented by the union of S and S* in the language with both { and #*. Let A
denote a formula (in this language) that contains a certain occurrence of i, and let Ay
denote the result of replacing this occurrence of § in A by #*. The connectives } and #*
are said to be uniquely characterized in LL* iff for every formula A in the language of
LL*, Ay is provable in SS* iff Ay is provable in SS*. Unique characterization of the
logical operations of a system £ can be considered as a desirable property of a syntactic
presentation of £. Dosen [1985] has proved that unique characterization is a non-trivial
property and that the comnectives in his higher-level systems S4p/D and S5p/D are
uniquely characterized.

2.3 The range of systems: axioms versus rules

Compared with the multitude of not only existing but also interesting axiomatically pre-
sentable normal modal propositional logics, the number of systems for which sequent
calculus presentations (of some sort) are known is disappointingly small. In contrast to
the axiomatic approach, the standard sequent-style proof theory for normal modal logic
fails to be ‘modular’, and the very mechanism behind the small range of known possible
variations is not very clear. Also in Dosen’s higher-level framework it is not clear how
restrictions similar to the one used to obtain S4p/D from S5p/D would allow to capture
further axiomatic systems of normal modal propositional logic.> One might be inclined
to agree with Segerberg’s [Bull & Segerberg 1984, p. 30] remark (in connection with nat-
ural deduction systems for modal logic) that “only exceptional systems ... seem to be

4The rule [0] of LK45 and LK D45 can be considered either as a left or a right rule for O.
5This point of view is shared by Cerrato [1990, p. 1].

5



characterizable in terms of reasonably simple rules”. Applying Segerberg’s methodology,
-on the basis of the above sequent system LK for K “different logics would have to be
characterized by special axioms. This means giving up the idea of finding characteristic
rules for those systems.” Apart from the absence of symmetric and explicit introduction
rules for O and ©, the problem is that it is simply not clear which parameters could
be systematically modifed so as to obtain characteristic sequent rules. Structural con-
straints like those mentioned in the previous section simply do not seem to give enough
systematic flexibility. What one would need, it seems, is an extension of the usual Gentzen
format that (i) conforms to the usual philosophy of meaning present in studies inspired
by Gentzen, and (ii) offers sufficient degrees of structural freedom. The proof theory we
are in search of should exemplify a principle that has most emphatically been advocated
by Dosen [1985, 1988] and that may therefore be called Dosen’s Principle:

“[T)he rules for the logical operations are never changed: all changes are
made in the structural rules” [DoSen 1988, p. 352].

We shall take as our basic modal system the minimal normal modal propositional logic
K, that is to say the introduction rules for O and < should be such that, together with
appropriate structural assumptions, their addition to a suitable sequent calculus for CPL
results in a sequent system LK for K. Sequent calculus presentations of certain extensions
of K by modal axiom schemes should then be obtainable by adding suitable structural
inference rules to LK. It would be nice, if quite a few important systems of normal modal
logic will turn out to be ‘Gentzenizable’. Of interest would then be a classification of the
systems which can be Gentzenized and those which cannot.

2.4 Subformula property and Cut-freedom

Certainly, “Hilbert systems are not suited for the purpose of actual deductions” [Bull
& Segerberg 1984, p. 28]. In order to be computationally attractive, a sequent calculus
presentation LL of an axiomatic system L should, however, enjoy certain well-known
properties. According to Sambin and Valentini [1982, p. 316, it “is usually not difficult
to choose suitable [sequent] rules for each modal logic if one is content with completeness
of rules. The real problem however is to find a set of rules also satisfying the subformula-
property”. Moreover, if in £, - A, then it would be nice, if § — A has a Cut-free proof
in LL. In sequent systems whose rules are separate, symmetric, and weakly explicit the
redundancy of Cut implies the subformula-property, if these systems do not comprise silly
structural rules like X,Y — Z F X — Z. In principle, it is desirable to have Cut as
an admissible rule. Ohnishi’s and Matsumoto’s LS5 does not allow Cut-elimination (see
[Ohnishi & Matsumoto 1959] for an example of an S5-theorem without any Cut-free proof
in LS5). Apart from this system the sequent calculi presented in Section 1.1 allow Cut-
elimination. The sequent calculi for S5 in [Mints 1970] and [Sato 1980], although admitting
of Cut-elimination, do not have the subformula-property. In DoSen’s higher-level calculi
Cut of all levels is not eliminable [1985, Lemma 1].



2.5 Digressions
2.5.1 The constructive approach of Benevides and Maibaum

Recently, Benevides and Maibaum [1992] have suggested to present O as a constructive
connective in a generalized system of natural deduction. In this system, a modal proposi-
tional logic is presented as a denumerable series of sets of modal formulas &g, £;, 5 .. .. In
every X;, the formulas are indexed by t-5,, and %; is supposed to be closed under the usual
natural deduction rules for CPL. In addition, for every X;, there are introduction rules
for conjunctions and disjunctions prefixed by O and elimination rules for conjunctions
and implications prefixed by O. This latter set of rules consists of the modal distribution
principles valid in K and is called R,. Moreover, there is a set Rz of introduction and
elimination rules for completely unspecified formulas A in the scope of one occurrence of
O, which are based on an interaction between sets &;, £;.1:

O-I -l':—’j'é]—;% where the proof of ;. ; A does

not depend on an undischarged assumption in ¥;,;
H OA
O-E F—a
i+l
Benevides and Maibaum [1992, p. 45] state a theorem to the effect that, if no further
rules are assumed, ¥y = K, where ¥y may be any (initial) set of modal formulas. Proof

systems for certain extensions of K are obtained by adding further proof rules which
operate within the sets ¥;, e.g. the rule associated with T is

H A
F; OA

Obviously, these additional rules violate DosSen’s Principle. Moreover, no rules are
given for ¢ as a primitive operation.

2.5.2 Cerrato’s framework

An extended Gentzen-style proof-theoretic framework for normal modal propositional
logics has also been suggested by Cerrato [1990]. In this sequent calculus framework a
formula A may be signed as (A) or [A] indicating that A occurs “in a modal (possible
or necessary) way” [1990, p. 1]. There are four types of sequent rules: (i) structural rules
including a reflexivity rule and Cut for arbitrary expressions, (ii) ‘logical rules’ for the
classical connectives, (iii) modal rules for the axiom schemes K, D, T, 4, 5, B, and (iv)
‘duality rules’ ’

A, X >YFOAX Y XY [AFX—Y,04
(A, X 2 YFOCAX-Y XY (AHFHX-Y,0CA
X oY, [AF(-A), X -Y [4,X >YFX ->Y,(-A4)
X oY, (A)F[-4],X -Y (4),X ->YFX Y, [-A]
These duality rules make sure that (interd<0) holds and that one can prove [A] — OA,

OA — [4], (A) —» CA, and OA4 — (A). Although copying OA and ©A as structural
elements [A] resp. (A) introduces a certain amount of flexibility, DoSen’s principle fails



to be satisfied: some of Cerrato’s modal rules exhibit O or O, like for instance the rules
corresponding with 5: ’

[4,X - Y F(O4A), X -Y X-Y,(4A)FX —>Y,[0A]

Moreover, Cerrato proves Cut-elimination only for his sequent system for K.

3 The solution: some general remarks

The proof theory to be presented is a modification of Belnap’s [1982, 1990] Display Logic
DL which is a very elegant and general proof-theoretic framework. At the moment we
are not interested in DL’s full generality, but rather in a case study application of its
modified version to normal modal propositional logics based on C PL. Therefore our pre-
sentation of modified DL will to a large extent be restricted to this limited purpose.®
DL is rooted in two fundamental and ingenious ideas. (i) In DL the usual inventory of
structural connectives in sequent systems is slightly extended. This extension is already
inherent in the standard presentation of LC P L. Usually, sequent calculi dispose of only
one structural connective, viz. the comma *,’, which can take an arbitrary finite number of
arguments. This connective is to be interpreted as Boolean conjunction in the antecedent
and as Boolean disjunction in the succedent of a sequent. Instead of working with the
polyvalent ‘’, Belnap uses the binary structure connective ‘o’ and also introduces the
structural constant I to denote the empty sequence. In antecedent position I is to be
understood as the truth constant 1 and in succedent position I is to be understood as the
falsum constant 0. Moreover, there is a unary structural ‘shift connective’ * (to use ter-
minology from [Gabbay 1991]) that shuffles structures from the right side to the left side
of —, and conversely, and that is used to introduce negation as a ‘declaratively identical’
operation in the logical language. While a polyvalent connective similar to o is already
present in ordinary Gentzen-systems, I and * are ‘copied’ from the logical language into
the language describing the structure of premises and conclusions. (ii) Some systems com-
prise connectives of different sorts, or from different families. Belnap e.g. thinks of modal
systems based on CPL as combinations of Boolean connectives with intensional connec-
tives. Drawing on work of Dunn and Mints in relevance logic, he associates with each
family of logical connectives its own set of structural connectives. That is to say, the ba-
sic structural connectives can be indexed as belonging to certain families of connectives,
say, Iy, op, **, and I,, o, *™, where b stands for ‘Boolean’ and m for some system of
modal propositional logic. The combination of both ideas turns out to be flexible enough
to provide sequent calculi for certain ‘hybrid’ systems from relevance logic. In contrast to
Belnap, however, we shall not consider the language of modal logic as hybrid. Whereas
for Belnap this language combines the Boolean family with the modal one, we think of
dealing with only one family, viz. the Boolean-modal family. (Other families e.g. are the
intuitionistic-modal and the relevant-modal ones.) Accordingly, our application of DL to
modal logic will differ from Belnap’s [1982]. Instead of working with two sets of structural
connectives, we shall introduce an additional unary structural connective o that will be
used to formulate introduction rules for the modal operators.

6See, however, the remarks in Section 5 on substructural base logics.



Belnap’s approach. Let us briefly describe Belnap’s [1982] application of DL to
modal logic. Belnap assumes structural rules to the effect that I, = I; and *= = ** and
uses the binary modal structural connective o, to give introduction rules for O and <:

(O0) Xopl,—-AFX - 04
Ao XFOA-Tro, X

(©) X 5 Ak (X* o L) — OA
X*m o, A—Iim - OA — X.

Now, in order to prove equivalences with axiomatic systems, one would like to translate
sequents into formulas of Ly 0,-,4,v,5,0,0}- In the absence of the B-axiom-scheme A D
OOA, however, (X o,, Y) cannot always be translated into L1 ,0,-,a,v,5,0,0}- The reason
is that in antecedent position, (X o,, Y') is considered to hold at a world y in a Kripke
frame (W, R) just in case there is a world £ € W, zRy, the translation of X holds at
z, and the translation of Y holds at y. (In succedent position (X o,, Y) is considered
to hold at a world y just in case for every world z € W, if zRy, then the translation
of X holds at y or the translation of Y holds at y.) In the standard vocabulary such
a ‘backwards-looking’ operation cannot be defined on non-symmetric frames. Therefore
one has to consider conservative extensions by a logical connective corresponding to o,,
in antecedent position. One can then show that, in the presence of suitable structural
inference rules, Belnap’s connective rules (O) and (<O) give rise to a Cut-free sequent
system LK for K with separated, symmetric, and explicit introduction rules. Moreover,
sequent calculus presentations of various axiomatic extensions of K can be obtained by
adding suitable further structural rules to LK, that is to say DoSen’s Principle is satisfied.

A moment’s reflection about the use of I,, = I in Belnap’s rules (O) and (<) shows
that it would be enough to use a unary structural connective instead of the binary o,
and that this unary connective is just the tense logical operation P (“sometimes in the
past”). In other words, sequents can be translated into the simple (modal) tense logical
language L{1,0,-,1,v,5,0,0,P}- (If £ is a normal modal propositional logic that is sound and
complete for a certain class F of Kripke frames, then let LP denote the logic of F in
L{1,0,-,av,5,0,0,p}- Clearly, LP is a conservative extension of L.) In antecedent position
our unary operation e will be nothing but P at the structural level. In succedent position
e is to be understood as 0. Note that P is a natural companion to 0; it is the converse of
the dual of O. With this modification we shall still be able to benefit from Belnap’s general
development of DL, in particular from the Display Theorem and his admirably general
Cut-elimination theorem. Moreover, we can give more general basic rules governing the
structural connectives.

4 The proof systems

In DL there are first of all certain basic structural rules which are postulated for every
system of DL. These basic structural rules describe the ‘geometry’ of structures. More-
over, there are logical rules and connective rules, which also remain the same for every
display logic. And there are additional structural rules which may successively be added
to the basic structural rules, the logical rules, and the connective rules. It is well known
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that in the presence of certain structural rules certain connectives can become interre-
placeable. Since in what follows we shall consider modal systems based on CPL, many
structural rules will already be present, and we need not consider DL’s full inventory
of non-modal formula connectives here, but may stick to the language L{1,0,-.v,5,0,0}-
Formulas (structures) are built up from propositional variables and formula connectives
(formulas and structure connectives) (of any family) in the obvious way. A substructure
of a structure is positive (negative), if it is in the scope of an even (uneven) number of
*’s. We shall use p, p;, p2 ... to denote propositional variables, A, B, C, A;, A2 ... to
denote formulas, and X, Y, Z, X;, X,, ... to denote structures. An expression X — Y
is called a sequent; the structure X (V) is the antecedent (succedent) of X — Y. An
antecedent (succedent) part of a sequent X — Y is a positive substructure of X or a
negative substructure of Y (a positive substructure of Y or a negative substructure of X).
We shall use I, o, *, and e to denote the Boolean-modal structural connectives; the basic
structural rules are, however, postulated for every family of structural connectives.

Logical rules:
(Id) Fp—op (Cut) X—->A4 A-YHFHX Y

Basic structural rules:

(1) XoV - Z4X - ZoY*4Y 5 X*0Z
(2) X=YoZA-rXo0Z* Y AY*oX = 2Z
3) X->Y Y oX 4X Y™

(4) X > oY d-eX Y.

where X; — Y7 4F X5 — Y5 abbreviates X; - Y F Xo - Yoand Xo - Yo F X; — ;.
If two sequents are interderivable by means of (1) - (4), then these sequents are said to
be structurally equivalent. It can easily be verified that the following pairs of sequents are
structurally equivalent by means of the rules (1) - (3):

XoY—>Z Z*->Y*o X*
X —>YoZ Z*oY*—- X*
X =Y X*->Y
X*-Y Y*- X
X-Y Y - X*.

Moreover (see [Belnap 1982, p. 381]) one can prove

Theorem 1 (Display Theorem) For every sequent s and every antecedent (succedent)
part X of s there exists a sequent s’ structurally equivalent with s, such that X is the
antecedent (succedent) of .

Operational rules:

(—-1) FI-1

1-) I-XF1-X
(-0 X—-IFX—0
(0-) FO—I

(—)-—n) X—-AFX - -4
(=) A*>XF-A-X
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AN) X—-A Y—->BFXoY—> AAB
) AcB—-XFAAB-—-X
)

X—-A0oBFFX —-AVDEB
A—-X B->YFRAVB—-XoY

—)
—)) XoA—-BFX—->ADB
—) X—-A B->YFADB—- X*oY

— D) oX - AF X —- 0OA4

(O0—-) A-YFDOA > eY

(—0) X > Ak (o(X*)* - CA

(C =) Y*— o(A")FOCA-Y.
Note that H A — A. This can be shown by induction on the complexity of A. Also
(inter OO) can easily be established, e.g.:

A4 A= 4

Ao A . A" 4 (o)
24— A" oy A” > 24 (o)

A — ('WA)* (EJ—») (O(A**))* - <>—1A (1_3)
04 — 0(("!A)*) (1-3) (OﬂA)* — Q(A**) (4)
(BA)™ = o((04)") (o)  o((OmA)") = A™ (13
O-A — (0A4) (1-3) *((¢-4)") = A (Lo
04 — (OﬂA)* (=) (O—:A)* — OA4 (=)
04 = —OA —~O—-A4 — OA.

In order to obtain K as our modal base logic we assume the following additional
structural rules:

(I+) X—->ZFIoX - 2Z
X—>ZFXol—Z

(I-) IToX—>Z+-X->7Z
Xol—-2ZFHX -7

(ex0) X —>IFX > 2Z

(A) X10(X20X3) > Z4F(X10X3)0X35 > 2

(P) Xi0Xo > 2ZFX50X, = 2

(C) XoX—Z+X—2Z

(M) Xl—)Z"Xlo_Xg——)Z
X1i—2ZFX0X;1 - 7

(MN) 1= AF ol — A.

Here we have opted for mnemonically easy names, eg: (A) ((P), (C), (M)) stands for
association (permutation, contraction, monotonicity). Let us now call the above collection
of logical, structural, and operational rules LK. Consider the following translation 7 of
sequents into (tense logical) formulas:

(X -Y)=n(X)D Tz(Y),

11



where 7; (1 = 1,2) is defined as follows:

Ti(A)
71(I)
72(I)
Tl(X*)
Tz(X*)
Tl(X o Y)
(X oY)
71(0X)
T2(0X)

1 I A | I | I

A

1

0

(X))
-71(X)

(X)) A (Y)
Tg(X) \% TQ(Y)
PTl(X)
DTz(X).

Theorem 2 (i) If - Ain K, then I — A in LK.
(i) I+ X —>Y in LK, then - 7(X - Y) in KP".

PRrROOF By induction on the complexity of proofs in K resp. LK. In order to further ac-
quaint the reader with LK we here verify (i) wrt K based on Lukasiewicz’s axiomatisation
of CPL. We first consider Lukasiewicz’s three axiom schemes and modus ponens:

A— A

A = A" v
A*OB*_>A*
A*—> A*o B
A —> A*o B
Ao-A—> B
A—-)_IA:)B
IOA—-)ﬂADB
I-AD>(-ADB)

B—-B C—>C

B>C -5 B*oC
Bo(B>C)—C

A—-A B->Co(BDCO)
ADB— A*o(Co(B D C))

Ao(ADB)—»Co(BDC)
w Ao (A5 B)o(BoC)=C

(P) AO((ADB)O(BDC))—)C

((ADB)o(BD(C))oA-C
(ADB)o(BDC)— ADC

(ADB)—-(BD>C)D>(ADC)
Ic(ADB)—»(BD>C)D>(ADC)

I-(ADB)>D((BDC)D>(4DC0))

A— A

A* — A*

A*—>—-A A— A
“ADA—> A0 A
A*o(nADA) - A
A* > Ao (A D A
A* 0 A* — ("lADA)* (C)
A* —» (nA D A)®
“ADA—- A
Io(nADA)— A
I-(-ADA)DA

A—-A B— B

I1-A I-A>DB ADB— A*oB
IcI>-AAN(ADB) Ao(ADB)— B
I-AAN(ADB) AN(ADB)— B
I—- B.

For the purpose of readability we shall split up the proof of the K-axiom-scheme into a

"This minimal tense logical system is called Lq in [Burgess 1984].
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number of steps. In a first step we prove O((4 D B) A A) — eB. This step is very easy
and left to the reader. Next we prove 0(4A D B) AOA — O((4 D B) A A):
—
SRV ETCEE:) =}

0(A D B)oOA — ¢(A D B) O(ADB)oOA — oA

OADB)AOA—e(ADB) UOADB)ALOA— oA

o(0(ADB)ANOA)—-ADB oOADB)ANTA)— A

o(0(AD B)AOA)oe(O(AD> B)ATA) - (ADB) A A

o(0(ADB)ANOA)—- (ADB)AA

0O(AD>B)AOA— O((AD B)AA).

Applying Cut we obtain 0(A D B) A OA — B and can then continue as follows:

OADB)—»0OADB) OA—-OA
O(ADB)oOA—O(ADB)AOA O(ADB)AOA— eB
O(ADB)oOA — eB

o(0(AD B)oUA)— B

O(AD>B)oOA— OB

0(AD>B)—»0ADOB

IoO(ADB)—»>UOADOB

I-0(ADB)D>(0ADOB).

The necessitation rule is captured by (MN).
Corollary 1In LK, FI —» Aiff H Ain K.

In addition to the K-axiom-scheme we shall also consider the following modal axiom
schemes:

D OADCA

T OADA

4 0A D> 0OO4

5 CADOCA

B ADOCA

Tr (OADA)A(ADUOA)
vV 0OA4

Altl ©A D OA.

If R is any of these axiom schemes, we shall associate with R one or two structural rules
R':

|| R |
D eAoeB —->I"FA— B*

T X - FX oY

4 X -V FX —eeY

5 () = Y F o) =7

B (o(X*)* > Y FeX oY

Tr X—oeYFX =Y X->YEFEX-oeY
\%4 Fel - X

Altl1 | X -5 Y F X — (o(eY)*))*

13



Let A be the set of all axiom schemes R and ' C A. Then I = {R' | R€ T}.
Theorem 3 In LKUI',FI—- Aiffr Ain KUT.

PRrOOF It suffices to show that (i) F A in K + R implies - I — A in LK + R', and (ii)
FX —Yin LK + R implies - 7(X — Y) in KP + R. Here is one example concerning
the verification of (i):

A (s(0-4))

54 +((+([04)")
oA — (o(O-A))*
IoedA — (e(0-A4))*
oA — I* o (e(O-A4))*
eTAoe(0-A) > I* p
O0A — (O-A)®

04 — ~0O-A.

From the final sequent one can easily derive the D-axiom-scheme.?

Theorem 4 Applications of Cut can be eliminated from proofs in every system LK UT".

PRroOF This follows from Belnap’s [1982] general Cut-elimination theorem for DL: all
rules under consideration satisfy Belnap’s conditions C2 - C8 [Belnap 1982, 389 ff.]. The
only condition which cannot be verified by eye is C8 Eliminability of matching principal
constituents. This is the situation where both premise sequents of Cut introduce the Cut-
formula A. For O and ¢ we get the following replacements by proofs with an application
of Cut involving less formula connectives:

oX — A A->Y oX—-A A-Y
— 0 _-)L_J. — e — X oY
X — oY
Y*——)Q(A*)
XA Y —e(d) X4 A> (o))

(X)) > CA CASY
(o(X7) =Y

= X — (o(Y*))*
oY*) - X~

Y*— O(X*)

(o(X*))* =Y.

Corollary 2 The systems LK U I enjoy the subformula property.

PROOF Their operational rules are separated, symmetric and explicit.

8Note that the rule D’ corresponds with the relational property corresponding with D, viz. seriality.
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Observation The connectives of LK UI" are uniquely characterized.

PRroOF It is enough to show by induction on A that for every primitive connective ff, the
following sequents are provable in (LK UT')(LK UT')*: Ay — Ay and Ay — Ay.

5 Substructural base logics

Giving up structural rules of inference may lead to a richer inventory of logical operations.
In particular, in the absence of (M) we get a distinction between (i) multiplicative con-
junction A and additive conjunction 1, and (ii) multiplicative disjunction V and additive
disjunction U (cf. [Belnap 1990], [Troelstra 1992]). In the absence of (P) implication D
breaks down into two directional connectives, the left-searching \ and the right-searching
/. We shall also add L and T as the duals of 1 rep. 0. The basic structural rules of LK are
appropriate for formulating introduction rules for the operations from this richer stock of
connectives.® We shall now present a modal sequent calculus based on non-commutative
classical linear propositional logic without exponentials (alias, following the terminology
of [Wansing 1992], classical sequential propositional logic). Let us call this system LK.
The rules of LK{ consist of all logical rules and basic structural rules of LK together
with LK’s rules for 1, 0, -, A, V, O, and < and the following operational rules:

(-T) FI*->T

(T->) I'->X+FT - X

(L) X->I'FX > 1

(L-) FL->T

(-N) X—-A4 X—->BFX—->ANB

Mm-») A-X+FANB—-X B—-XFANB-X

(-U) X>AFX > AUB X ->BFX— AUB
U-) A-X B-oXFAUB-X

(-/) XoA—-BFX — BJ/A
(/-) X—-A B->YFHB/A-YoX*

(-\) AoX->BFX— A\B
\-) X—-A B->YFA\B—- X*oY.

In LK we can prove for example O(AM B) - OAN OB, 0AN OB — O(AMN B), and
0OAU OB — O(AU B). Clearly, (inter0<) holds for LK, and we also have - A — A.
Applications of Cut can be eliminated in LK@, LK® enjoys the subformula property, and
every connective in this system is uniquely characterized. From the display logical point
of view, LK( is a very natural logic. The question arises whether LK can be finitely
axiomatized with modus ponens as the only rule of inference.

Acknowledgement Thanks are due to the audience of the Konstanz Colloquium in Logic and
Information (October 1992) where this paper was presented. Moreover I would like to thank
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In Belnap’s [1982] original version of DL the structural connective o is assumed to be commutative
in succedent position. Therefore, in succedent position o can be interpreted as V only in the presence of

(P).
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