1=

Institute for Logic, Language and Computation

ITERATED QUANTIFIERS

Dag Westerstahl

ILLC Prepublication Series
for Logic, Semantics and Philosophy of Language LP-92-13

%
&
%

University of Amsterdam



The ILLC Prepublication Series

1990
Logic, Semantics and Philosophy of Language .
LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives
- LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar .
LP-90-03 Renate Bartsch Concept Formation and Concept Composition
LP-90-04 Aarpe Ranta Intuitionistic Categorial Grammar
LP-90-05 Patrick Blackburn Nominal Tense Logic
LP-90-06 Gennaro Chierchia The Variablity of Impersonal Subjects
LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic
LP-90-08 Herman Hendriks Flexible Montague Grammar . .
LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic
Montague grammar
LP-90-10 Theo M.V. Janssen Models for Discourse Markers
LP-90-11 Johan van Benthem General Dynamics )
LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic
LP-90-13 Zhisheng Huang Logics for Belief Dependence
LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics
LP-90-15 Maarten de Rijke The Modal Logic of Inequality
LP-90-16 Zhisheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience
LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

Mathematical Logic and Foundations
ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of Graph Models

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella Sequences with Simple Initial Segments

ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a
Solution to a Problem of F. Richman

ML-90-07 Maarten de Rijke A Note on the Interpretability Logic of Finitely Axiomatized Theories

ML-90-08 Harold Schellinx Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jongh, Duccio Pianigiani ~ Solution of a Problem of David Guaspari

ML-90-10 Michiel van Lambalgen Randomness in Set Theory

ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

Computation and Complexity Theory

CT-90-01 John Tromp, Peter van Emde Boas  Associative Storage Modification Machines
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions -
CT-90-03 Ricard Gavalda, Leen Torenvliet, Osamu Watanabe, José L. Balcdzar Generalized Kolmogorov Complexity
in Relativized Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions
CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions
CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial
CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Emest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas
Physiok}éical Modelling using RL

CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel
)O(t r Prepublications Conditional, a case study in conditional rewriting
-%-6)1 KMS# roelstra %cmgn‘ks on Intuitionism and the Philosophy of Mathematics, Revised
ersion
X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic
X-90-03 L.D. Beklemishev On the Complexit% of Arithmetical Interpretations of Modal Formulae
X-90-04 Annual Report 1989
X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic
X-90-06 Valentin Goranko, Solomon Passy Using the Universal Modality: Gains and Questions
X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable
X-90-08 L.D. Beklemishev _}Prhovapi]ity Logics for Natural Turing Progressions of Arithmetical
eories
X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate
X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1
X-90-11 Alessandra Carbone Provable Fixed points in IAp+€,, revised version
X-90-12 Maarten de Rijke Bi-Unary Intergretabi]ity Logic
X-90-13 K.N. Ignatiev Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed
Point ogert;,r Craig's Pr%aerty
X-90-14 L.A. Chagrova Undecidable Problems in Correspondence Theory
)1(§9OI-IS A.S. Troelstra Lectures on Linear Logic
9

Logic, Semantics and Philosophy of Langauge
LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic

LP-91-02 Frank Veltman Defaults in Update Semantics

LP-91-03 Willem Groeneveld ’ll)hynamic Semantics and Circular Propositions

LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with Additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boas The Schlc{)enmakers Paradox: Its Solution in a Belief Dependence
Framewor]

LP-91-06 Zhisheng Huang, Peter van Emde Boas Belief Dependence, Revision and Persistence
LP-91-07 Henk Verkuyl, Jaap van der Does The Semantics of Plural Noun Phrases

LP-91-08 Victor Sdnchez Valencia Categorial Grammar and Natural Reasoning

LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic

LP-91-10 Johan van Benthem Logic and the Flow of Information

Mathematical Logic and Foundations

ML-91-01 Yde Venema Cylindric Modal Logic . .

ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories . .
ML.-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schellinx CollapsinéGraph Models by Preorders

ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century

ML-91-06 Inge Bethke Finite e Structures within Combinatory Algebras

ML-91-07 Yde Venema Modal Derivation Rules

ML-91-08 Inge Bethke Going Stable in Graph Models

ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF

ML-91-10 Maarten de Rijke, Yde Venema Sahlgglist's Theorem for Boolean Algebras with Operators
ML-91-11 Rineke Verbrugge Feasible Interpretability



E Institute for Logic, Language and Computation

Plantage Muidergracht 24
1018TV Amsterdam
Telephone 020-525.6051, Fax: 020-525.5101

ITERATED QUANTIFIERS

Dag Westerstahl
Department of Mathematics and Computer Science
University of Amsterdam
Department of Philosophy
Stockholm University
10691 Stockholm

ILLC Prepublications
for Logic, Semantics and Philosophy of Language
ISSN 0928-3307

Coordinating editor: Dick de Jongh received November 1992






ITERATED QUANTIFIERS

Dag Westerstihl

Department of Philosophy, Stockholm University, 106 91 Stockholm, Sweden, westerstahl@philosophy.su.se

Abstract. We study the logic of polyadic quantifiers definable by generalized quantifier prefixes,
called iterations. Besides being of general logical interest, the study is also motivated by the fact
that iterations provide a perspicuous way of displaying scope dependencies in formalizations of
many quantified sentences in natural language. First, two results by Keenan on quantifier prefixes
are presented in a generalized and global form, and some techniques used in their proofs are made
explicit. Then, these techniques are applied to logical definability issues for quantifiers, more pre-
cisely to questions as to when certain kinds of polyadic quantifiers are iterations. Among other
things, necessary and sufficient conditions are given for resumption quantifiers, branching quanti-
fiers, and cumulative quantifiers, respectively, to be iterations on finite models.

1. Introduction

This paper deals with a special kind of generalized quantifiers, called iterations. As expected, itera-
tions are obtained by iterating quantifiers, of certain types. Equivalently, they are definable by
(generalized) quantifier prefixes. This generalizes the notions of a quantifier prefix, and of prenex
form, familiar from elementary logic, to logic with generalized quantifiers. Another motive for
studying iterations is linguistic. A wide range of sentences in natural languages have truth conditions
representable by means of iterations. When this is possible, the scope relations between noun
phrases in the sentences are directly reflected in the corresponding prefix, by the left-right order.
Scope ambiguities are accounted for by permutations of that order. Furthermore, there are other sen-
tences, seemingly similar to the ones using iterations, whose truth conditions can be represented by
other kinds of generalized quantifiers, but, on a closer look, not by iterations. Thus, it becomes of
interest to know just when these other kinds of quantifiers are iterations, and when they are not.
Several such questions will be addressed in this paper.

The first significant results on generalized quantifier prefixes were obtained by Edward Keenan.
In fact, Part I of the present paper is my way of understanding his two main results in this field, the
'Reducibility Equivalence Theorem' in Keenan 1991a and the 'Generalized Linear Prefix Theorem' in
Keenan 1991b.1 Keenan usually writes with particular linguistic applications in mind, but these theo-
rems also have a purely logical interest. I will reformulate them in a setting more familiar to logi-
cians, generalize them slightly, and bring out certain techniques which are implicit in their proofs.

1In the case of Keenan 1991b, I have only read an early draft of the paper, not the final version.



That this is not only in the interest of exegesis and clarity is shown in Part II, which contains a num-
ber of applications of these techniques to questions of definability of generalized quantifiers.

In more detail, the paper is organized as follows. In section 1, the iteration operation is defined
for a suitable class of quantifiers, and motivated by a number of linguistic examples. Section 2 pre-
sents some useful properties of iterations, and section 3 contains (generalizations of) the two results
by Keenan mentioned above. In section 4, the convertible iterations are characterized, i.e., those
which are 'closed under converses', and as a corollary we also obtain necessary and sufficient condi-
tions for a resumption (an ordinary monadic quantifier applied to n-tuples instead of individuals) to be
an iteration. The main result of Section 5 gives a similar characterization for branching quantifiers,
and section 6 one for cumulations (quantifiers rendering the so-called cumulative readings of certain
sentences). Section 7 takes up the issue (raised in van Benthem 1989) of when a quantifier is a
Boolean combination of iterations, and we prove, among other things, that the resumption of the
quantifier most to pairs instead of individuals is not such a Boolean combination. Section 8, finally,
lists some problems for further study.2

I
ITERATIONS AND THEIR PROPERTIES

2. Motivation and definitions

As usual, a (generalized) quantifier of type <kq,....k,> (k; 2 1) is a functional Q which to each non-
empty set M assigns a quantifier Qs of type <ky,....k,> on M, that is, an n-ary relation between
subsets of Mkl,...,Mkn, respectively. Q is monadic if all k; = 1, polyadic otherwise. Q is simple if
n=1,

To Q corresponds a quantifier symbol Q (of the same type), which acts as a variable-binding op-
erator according to the following formation rule: if ¢y,...,, are formulas and X115 nk, are dis-
tinct variables, then

qu...xlkl, vos ,xnl...xnkn(q)l,...,(b,,)

is a formula. By adding Q to elementary logic, with this formation rule and a corresponding addi-
tional clause in the definition of satisfaction, one obtains the logic L(Q), and similarly L(Q1,...,0p)-.
The formation rules and satisfaction clauses for the usual type <1> quantifiers V and 3 can be seen as
instances of this.

Call the quantifier symbol followed by appropriate variables, Qxjj...X1ks -+ Xn1---Xnk, » 2
quantifier expression. Quantifier expressions with simple quantifier symbols, i.e., those applying to
just one formula, can be iterated: put one more in front of a formula and you get a new formula. A

2 The main results of this paper were announced, in weaker forms and without proofs, in Westerstihl 1992.



(generalized quantifier) prefix is a finite string of simple quantifier expressions, with all variables dis-
tinct. If Q;,...,0; are simple, a formula of L(Q1,...,Qp) is in prenex form if it has the form of a
prefix (which may contain V and 3) followed by a quantifier-free formula.

Iterating quantifier expressions is one thing, iterating quantifiers is another, though of course re-
lated, thing. To see which kind of quantifiers we want to iterate, let us look at a few examples from
natural language.

The canonical quantified English sentence has quantified subject and object noun phrases and a
transitive verb, as in

(1)  Most critics reviewed two books.

This can be formalized as a quantifier Q applied to three arguments, the set of critics (A), the set of
books (B), and the relation 'reviewed' (R); Q is thus of type <1,1,2>. But clearly it is more infor-
mative to represent the truth condition of (1) by means of the two familiar type <1,1> quantifiers
most and two. Indeed (suppressing the universe M),

QOAB,R < mostAla:two B {b: Rab}}.
We will call Q the iteration of most and two, and formalize (1) as

most-two AB,R.

One advantage of this is that the other reading of (1), that there were two books such that most critics
reviewed both of them, can now be represented as another iteration two B{b: most A {a: Rab}} ,
ie.,

two-most BA,R‘1

(note that we always take the first set argument to be linked to the first argument of the relation, and
the second set argument to the second relation argument; hence the appearance of R! above).
There are more complex iterations. Consider

(2)  Two boys gave more dahlias than roses to three girls.

Here three quantifiers are iterated, the first and the third of type <1,1>, but the second is the type
<1,1,1> quantifier more-than (defined by more-thanABC < |ANCI> IBNCl), and the result-
ing quantifier has type <1,1,1,1,3>. We should have

two-more-than-three ABCD,R < two A{a: more-than BC{b: three D{c: Rabc}}};

this gives one reading of (2).3
It thus seems clear that we should be able, in principle, to iterate arbitrary monadic quantifiers. In
fact, we will define iteration for an even larger class, which includes (certain) polyadic quantifiers as

3 1t is instructive at this point to work out just what this reading says, and which the other five readings are. Some of
these may strike the reader as more natural for (2), whereas some will seem very unnatural. But if the latter are ruled
out, this is mainly due to contingent facts about the relation of giving, and not, it seems to me, to any principled im-
possibility of these readings.



well, and which is closed under iteration. It is not surprising that this turns out to simplify the defini-
tion; after all, the iteration of two monadic quantifiers is polyadic. More interesting is the fact that this
move also has a linguistic motivation. Keenan 1991a gives several examples involving ‘unreducible’
polyadic quantifiers, among them

(3)  Every student criticized himself

(4)  Every boy likes a different girl.

One reading of (4) uses the type <1,1,2> quantifier ED, defined by
EDABR & VabeA(a#b = JceB(Rac & —Rbc)),

and (3) uses the type <1,2> quantifier EHA,R < VaeA Raa . Now, although none of these are
iterations, as Keenan shows, they can themselves be iterated with other quantifiers:

(5)  Every student introduced himself to two professors
(6)  Every boy gave different flowers to two girls.

For example, one reading of (6) should be rendered
ED-two ABC,R & ED AB,{(a,b): two C{c: Rabc}},

and the other reading is obtained by permuting the two quantifiers as before.
We are now ready to define iteration. Here is the relevant class of quantifiers.

L.1. Definition. CIT is the class of quantifiers of types <1,...,1,k> with m+1 arguments, m > 0,
k = 1. For obvious reasons, the first m arguments are called the noun arguments, and the last argu-
ment the verb argument. Thus, simple quantifiers in CIT have only verb arguments. For every Q €
CIT and all sets A,,...,A  , define the simple quantifier

0 @ AmuR o QuALA R

(if some A, is not included in M, @*vmy, R is false).

Now, the idea is to first define iteration for simple quantifiers, and then extend the definition to all
quantifiers in CIT via (7). We need the following

1.2. Notation. If R is an n-ary relation on M, k < n, and @15y € M, let Ral,..ak be the (n—k)-

ary relation defined by
ay..ay {(dk+1,...,dn)€M”'k : Ral...an}.
Note that
(Ral...ak)bl...bm = Ral...akbl...bm *

Here is how to iterate two simple quantifiers.



1.3. Definition. If @, is of type <k>, @, of type <m>, define Q,-Q, of type <k+m> as follows:
010k & O){@apa): QR 4}

(the universe M is suppressed as usual).

We will often omit the "' and write just Q1Q2 . Itis easily verified that the iteration operation is
associative:

(Q1Q2)Q3 = QI(Q2Q3)-
Thus, Q1Q2Q3, and in general

0,0y
is well-defined.

We have defined iteration of simple quantifiers in a purely set-theoretic way. Of course, we could
have gone via prefixes instead:

1.4. Fact. If Q, is of type <p>, Q,...Q, is the quantifier defined by the sentence

lell"'xlpl Qkxkl"‘xkpk Rxll'“xkpk‘
Finally, we extend the notion of iteration to arbitrary quantifiers in CIT.

1.5. Definition. If Qi is of type <1,...,1,pi> with ml.+1 arguments, define the quantifier Ql...Q k
of type <1,...,1, ... ,1,...,1, py+.tp> (with m +...4+m +1 arguments) by

AfgseA AptreeA
Q1 QA A R & Q@ TTIMLQ FRITTIR

Thus, the class CIT is Closed under ITeration. The reader can check that Definition 1.5 indeed
gives the truth conditions we wanted in the examples above. To account for ambiguities we can in-
troduce permutations of iterations:



1.6. Definition. For simple Q,...,Q,, a permutation i,,...,i, of 1,....k induces a permutation
Q-0 k)(ll’""l") of ,..0, as follows: (Q,..0 k)(ll""’l") is the quantifier defined by the sentence

Qilxillmxilpil Qikxikl'"xikpikal1"'xkpk'
This can be extended to arbitrary Q,,...,0, € CIT as usual:
(Q1"‘Qk)(il’m,ik)A11"’Akmk’R o (© IAI1,...,A1,,,1."QkAk1,...,Akmk)(il,...,ik)R 4

2 Basic properties of iterations

The familiar properties of type <1,1> quantifiers,

CONSERV Oy AB & Q)A ANB

EXT IfA.Bc MM’ then Q) AB < Q)AB

ISOM If (M,AB)=(M',A"B’) then QyAB & Q) A'B’,

can be generalized to quantifiers in CIT. This is immediate for EXT and ISOM. For CONSERV, let O
be of type <1,...,1,k> with m+1 arguments, and assume m > 0 to avoid trivialities. For example, Q
could be an iteration 0, ...0,, and then we know precisely which noun arguments are /inked to which
arguments of the k-ary relation. This information is required for CONSERV to make sense: CONSERV
says that each relation argument can be restricted to the union of those sets which are linked to it:

2.1. Definition. Let Q be as above. For each Mooty > 0 with m+.4m, =m, we say that @
is (ml,...,m k)-conservative if the following holds:

CONSERV QA11...A1ml,...,Ak1...Akmk,R S
QAI1"'A1m1""’Ak1"'Akmk’ ((A1IU"’UAlml)x"‘x(Aklu"'UAkmk)) N R.

When k = m =1 we have the old notion of CONSERYV for type <1,1> quantifiers. When k=1,
the above definition coincides with the notion of conservativity for monadic quantifiers proposed in
the literature. Quantifiers like ED above of type <1,1,2> are (1,1)-conservative. In most cases a
specific linking of noun arguments to the verb argument is understood; we then drop the prefix and
talk about plain conservativity.

2.2. Fact. Iteration preserves CONSERV, EXT, and ISOM. More specifically, for CONSERV: if @,
is (ml,...,mk)-conservative and Q2 is (pl,...,pn)-conservative, then Q1Q2 is (ml,...,mk,pl,...,pn)-
conservative.

4 It would have been aesthetically more satisfactory, though slightly longer, to write down the L(Ql...Qk)-sentence

defining the permutation also in the general case. On the other hand, a purely set-theoretic formulation of Definition
1.6 is of course possible but considerably more involved.



Proof. Straightforward calculation. —]

A quantifier Q is said to be trivial on M, if Q, is either the empty or the universal relation be-
tween relations on M (of the appropriate type); otherwise Q is non-trivial on M. This is a local notion
of non-triviality. We also need a global notion — one not confined to a particular universe:

2.3. Definition. Let Q and M enesly, be as in Definition 2.1. Q is (ml,...,mk)-non-trivial — but

'(ml,...,mk)' is usually left out — if/;there are ny,...,n; 2 0 such that whenever All""’Akmk cM

and 4, U..VA, 120, 1<i<k Q11"
1

stead that there be an n = 0 such that Q is non-trivial on M whenever Ml > n. Byt (n) are called

the triviality bounds of Q. If the condition is not satisfied, Q is trivial.

~Akmk i non-trivial on M. If Q is simple we require in-

For example, the type <1,1> quantifier af least 5 is non-trivial, with a triviality bound of 5, but
the quantifier

QOAB & lAliseven and IANBI>5

is trivial. Note that this quantifier is (globally) trivial even though it is (locally) non-trivial on every
universe with at least 5 elements. This is because of the special role of the noun arguments in Defini-
tion 2.3: to be non-trivial, @ has to be non-trivial on all large enough noun arguments, as it were, not
just on all large enough universes.

2.4. Triviality Lemma. (i) For Q@ € CIT: Q,.-Q, is rivial <& some Q, is trivial.
(ii) (Keenan) For simple Ql,...,Q f 0 1...Q k is trivial on M < some Qi is trivial on M.

Ql,...,Q & can of course also be simple in (i), but the restriction to simple quantifiers is necessary
in the local version (ii). To see this, consider the iteration every-0 , where 0 is the empty quantifier
of type <1>. We have every-0 A,R <& A= ,so every-0 is in fact non-trivial on every M,
although one of its components is trivial on every M.

Proof of Lemma 2.4. We first give Keenan's proof of (ii), and then derive (i) from (ii).
(ii): An immediate induction shows that it is sufficient to consider the case k= 2. Let Ql be of type
<m> and Q, of type <n>. Thus,

0,0,k = 0{(@ya,) QR o )
Now, if either @, or @, is trivial on M, it is straightforward to calculate that so is 0,0,. Sosuppose
Q1 and Q2 are both non-trivial on M. Hence there are RI,R2 c M™ and Sl,S2 c M" such that
O R, —QR,, 0,5, and =Q,S, (on M). It follows that the following claim establishes the result,
ie., that @, @, is non-trivial on M:

CLAM:  VRcM"IR'cM™" R = {(@p-a,): QR, . D

ay..ay,



The Claim is proved by taking
R" = {(@ay,...a,,b;...b,): Ra,..a, &S.b,..b)) Vv (—Ra,..a, &S,b;..b )}
= Sl, and hence Q2 !

ai...ay,

Then Ral...a implies that R’

aq..ay . Similarly, —Ra,...a, implies

—0,R

@i): ZWZ iea‘z/e it as an exercise to check that if all of Ql,...,Q e non-trivial, (ii) can be used to ver-
ify that Q,...0, too is non-trivial (with triviality bounds given by those for Q,,...,0,). For the other
direction, suppose some Q. is trivial. More precisely, suppose it is (ml,...,mp)-lrivial, and hence is
of type <l1,...,1,p> with m1+...+mp+1 arguments. Now choose any putative triviality bounds
ny,....n, for Q1 Q. Letn=max(ng,..,n ) By the triviality of Q we can find M and
Ay, ©M such that 14, 0. uAJ |2 for 1<) < p, and @ A1"4pmp is ivial on M.
Now, from {u) and Definition 1. 5 it follows that for any choice of the remaining noun arguments for
Q,..Q, — let us indicate such a choice by C — (@2,...0 k)C’A 11-Apmp is trivial on M. More-
over, by the choice of n, we can take C such that all the sizes of the relevant unions of sets are >
ny.-»n,, and all noun arguments are still subsets of M. So we have shown that however these
bounds are chosen, we can find an M including noun arguments 'above' the respective bounds such
that the corresponding simple 'instance' of 0,.-Q, is trivial on M. In other words, Q,...Q, is triv-

ial. —]

Next, let us look at iteration and negation'. For Q € CIT, the inner negation of Q is defined by
(Qﬂ)MAl...Am,R = QMAI...Am,MP——R , and the dual is Qd = —=(Q-) = (—=Q)— . The fol-
lowing lemma is simple but useful.

2.5. Negation Lemma. For Q,,....0, € CIT:

@ 0,0 = 0;-0;,;07C;,10;5-C;
(i) —'(Ql Q = _'QI'QZ"‘Qk

) (©Q-0)= = 0100

™ @, = 0,

Proof. Almost immediate, using Fact 1.4, and the fact that (Q—.)xl...xpcb © Qxl...xp—-;cp . —

Call a quantifier Q positive (on M) if —-QQ (on M). One frequent use of the Negation Lemma is
that when Q is an iteration, we can always assume that Q is of the form Ql...Q i with @,,...Q, posi-
tive (on a particular M, or on every M).

Our last two lemmas, which are more or less implicit in Keenan 1991a, concem the characteristic
behaviour of iterations on Cartesian products. In particular the first of these lemmas turns out to be
very useful.



2.6. Product Decomposition Lemma. Suppose Q, is of type <k>, Q, of type <m>, and that
Q, is positive on M. Then, for all R ¢ Mk andall § C Mm

Q,0,RxS & (QR&Q,5) v (2, & —0,5).

Proof. This is almost immediate once you understand the mechanism of iteration. The argument goes
like this. Since

(a) Ral...ak = (RxS)almak =S

(b) —Ra,..a, = (RxS)almak = O,

it follows from the positivity of 0, that

(©) 0,5 = {(@p--ap: Q2(R><S)a1mak} =R
(d) —0,5 = {(ay-.ap): QZ(RXS)al...ak} =

And since Q1Q2R><S = Ql{(al,...,ak): QZ(RXS)al...ak} , the desired result follows readily from
(c)and (d).

2.7. Product Lemma. Suppose that,on M, 0 =0,..0 p Where Q. is of type <p >, and let m =
Pyt Ap,. Then, for every R Mm, there is a product P = Rlx...XRk, with Ri c Mpi, such that
O,R & Q)P

Proof. By induction on £, the case k£ = 1 being trivial. Suppose the result holds for k, and consider
Q@ where we may assume that Q,...Q, is positive. Take any R MPOT Pk Y et

RO = {(al,...,apo) : Ql"'QkRal...apO}'
Thus, Q,..QR & QR . =D, we can take P =Q. So suppose R, # . Since
0,.-Q)R byby for some (b, b ) there is by induction hypothesis a product P =R X..XR,
such that Q,.. & P’. SetP =R xR %--XR,. Essentially the same argument as in the previous
proof now gives the result.> —|

5 1t may be pointed out that the Product Lemma is very weak. Call a simple quantifier @ non-trivial on products on M
if there is a product on M (of the suitable form) for which Q holds, and another for which it does not hold. Then Q
trivially has the property stated in the Product Lemma: The Product Lemma just gives a way (for iterations) of finding
a corresponding product regardless of such a non-triviality assumption.



3. Keenan's Prefix Theorems

The two theorems by Keenan mentioned in the Introduction provide answers to the following ques-
tions:
1. To what extent does an iteration determine its components, or, equivalently, the prefix that
defines it?
2. Are iterations uniquely determined by their behaviour on Cartesian products?

Versions of these answers are given in this section. To distinguish them from Keenan's original theo-
rems, I will call them the Prefix Theorem and the Product Theorem, respectively. They generalize
Keenan's results in the following ways:

) The theorems are global, not (only) local.

(ii))  They apply to iterations of arbitrary quantifiers in CIT whereas Keenan deals with iterations
of type <1> quantifiers.

(iii)  The relation between the two results is exhibited: the Prefix Theorem can be seen as a corol-
lary to the (proof of the) Product Theorem.

Starting with the first question, it is clear by associativity that an iteration by itself determines
neither the number of its components nor their types. In other words, the notion of a component is
not yet precise enough.

3.1. Definition. If t,,...,T, are types of quantifiers in CIT, ¢ = <Ty,e-,Tp> is called a (k-ary) it-
eration form. G is an iteration form of Q if there are Q, of type T, such that @ = Q,...0;. Q,...Q;
are called o-components of Q.

A first version of the first question is then: Does an iteration Q of form ¢ determine its G-compo-
nents? The answer is NO. First, if Q is trivial we can, by the Triviality Lemma, get no useful infor-
mation about the 6-components (except that at least one of them must also be trivial). Second, the
Negation Lemma shows that there are 2*1 different ways to distribute inner and outer negations in
0,...9, without changing the resulting quantifier or the iteration form.

Thus, we need to disregard trivial quantifiers and provide some information about how negations
are distributed. Moreover, we wish to do this globally, not just on a particular universe. A global
notion of non-triviality was introduced in Definition 2.3. As to negations, it turns out that it suffices
to know, for each choice of the noun arguments, the behaviour of the 6-components when the verb
argument is the empty or the universal relation. We could extend iteration forms to, say, weighted it-
eration forms by encoding this information as well. The Prefix Theorem then says that a non-trivial
iteration together with a weighted iteration form does determine the components uniquely. Butsuch a
formulation would be cumbersome, and instead we proceed as follows.
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3.2. Definition. Let Q,Q' € CIT be non-trivial quantifiers of the same type. Q and Q' are bal-
anced, if for all large enough M and all Al,...,A mS M (i.e., with the cardinality of the relevant
unions above the maxima of the respective triviality bounds), QA,..4, D < Q'A,..A I, and
similarly for @— and Q'—. The sequences (Q,,...,Q;) and (Q 1',...,Q k') are balanced if Q; and Ql.'
are balanced for each i. The corresponding local notion of balance on M is obtained by restricting at-
tention to a particular universe M and leaving out the non-triviality requirements.

For example, if the @, and Q' are non-trivial and MONT (upward monotone in the verb argu-
ment), then Q0@ and (Q',....Q k') are balanced. We leave the proof of the next lemma as an
easy exercise.

3.3. Lemma. If(Q,,Q,) and (Ql',Qz') are balanced on M, then so are Q-Q, and Ql'-Qz'.

3.4. The Prefix Theorem. Ile...Qk = Ql'...Qk', where (Q {,...,Q,;) and (Ql',...,Qk') are
non-trivial and balanced, then for each i, Qi is eventually equal to Qi' (they are equal above the trivi-
ality bounds of Q ;). For the local version we must assume that the quantifiers involved are simple;
then, ifQI...Qk = Ql'...Qk' on M, where (Q,,...,Q;) and (Q',...,Q ) are non-trivial and bal-
anced on M, we have for each i, 0,=0/onM.

Remark. Keenan's Generalized Linear Prefix Theorem is essentially the local version of this for k =
2 without the assumption of balance. The conclusion then becomes that either Q 1= Ql' and Q2 =
Q, onM,or Q, =0, and @, =—Q,"on M. Balance reduces the options to one, and hence al-
lows generalization to any k.

The answer to the question whether iterations are determined by their product behaviour is YES,
once we make clear what 'product behaviour’ means.

3.5. Definition. Two quantifiers Q and Q' in CIT of the same iteration form ¢ = <Tppeens T,

where T = <1,...,1,pi> with ml.+1 arguments, are said to be equal on products on M w.r.t. ¢, if for
p .

all A11""’Akmk CM and all R, c M™", QAII"'Akmk’Rlx"‘XRk = Q'All...Akmk,Rlx...ka

on M. They are equal on products w.r.t. ¢ if this holds for all M.

3.6. The Product Theorem. If two iterations in CIT are equal on products (on M) w.r.t. the

same iteration form, then they are equal (on M).
Proof. First, it is clearly enough to prove the local version. Second, it suffices to prove the result for

simple quantifiers. For then, if @ and Q' are arbitrary iterations in CIT which are equal on products
w.r.t. 6 on M, choose noun arguments All""’Akmk c M. By definition 1.5, QAll"“’Akmk and
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Q"1 Amk gre simple iterations, equal on products on M w.r.t. the simple iteration form ¢' cor-
responding to o. Hence QA11»-~~’Akmk = QvAll""’Ak'”k on M, and since All""’Akmk were arbi-
trary, 0 = Q' on M.

Next, we dispose of the case where one of the iterations is trivial on M. So suppose Q,...Q; and
Q,..Q, are equal on products on M w.r.t. the iteration form <<p,>,...,<p;>>, and that, say,
Q,...Q, is trivial on M (the other case is symmetric). Let p = p,+..+p,. Suppose

VR cMPQ,. QR
Then, we claim, the same holds for Q,'...Q,". For, it follows from our assumption that Q,"...Q,'P
for any product P = R X..XR ¢ S MP. But then, by the Product Lemma, @,"...Q k'R holds for all R
cMP. A similar argument applies if VR Mp_‘lQl...QkR. Hence, 0,..0, = Ql""Qk"

To prove the theorem for simple iterations which are non-trivial on M we use induction on the
length k of the iteration form. The result is trivial for k£ = 1, so suppose it holds for &, and let
0,2, and Q,-Q, be equal on products on M w.r.t. <<p>,...,<p,>>. As noted before, we
can assume that Q,...0, and Q,'...Q,' are positive on M. Thus, by product decomposition:

(*) ForallRcMOandall S ¢ M (p=p +.4p)),

QR & Q.05 V (QyD &—0,.-0,5) & (Q,R & Q,'..0,S)V QD & —Q,'..Q,S).
Then,

0 0@ o 0,9

(we suppress mention of M here and below). To see this, suppose, say, that —-.QOQ but QO'Q. But
then (*) is false for R = .

(i Q,-Q,and Q,'..0, are equal on products.

This is proved as follows. Suppose first that =0, and so -0 ;D by (i). Take any product P =
R X..XR, . Fix R such that QR (non-triviality of Q). Then

0,-0F = QR & 0,..QP

= Q0 o .0 KRxP (product decomposition)
= 0,...0Q /RxP (assumption)
=  0,.9,P (product decomposition).

Similarly, Q,'..Q,'P = 0,..Q,P. If instead QOQ, and hence Q'D, apply the above argument
to —.QO...Q  and —.QO'...Q k" This proves (ii).
By (ii) and the induction hypothesis,
i) Q,..0, = 0,...0;"
Now take S such that Ql...Q kS' It follows immediately from (iii) and-(*) that
v) Q=0
This concludes the proof. —]
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The proof of the Prefix Theorem follows the same pattern. This is, in fact, not surprising. First,
the hypothesis that the two iterations are equal could be replaced by the assumption that they are equal
on products, as we have just seen. Second, the Prefix Theorem makes the additional assumptions of
non-triviality and balance. Thus, it is only natural that if we carry out roughly the same proof under
these stronger assumptions, the conclusion becomes stronger too: not only the iterations are equal,
but also their respective components.

Proof of the Prefix Theorem. We first show that the local version implies the global one. So sup-

pose Q,...Q0, and Q'.....0, ' satisfy the assumptions of the global result. Take large enough M
andA, ... A kmy C M (so that the cardJﬁahty oi the relevant ljlmons ;re above the re"ipecuv,i triviality

bounds for Q i@ ). Then @ “1lBlmi - g FkL2Zkme gpd g 11 %imy,

Q, At Aimy satisfy the assumptions of the local version, relatlve to M. In particular, they are

non-trivial on M by definition. So the local result gives us that Q; AitrrAim; - o i'A'l’ Aim; on M,

for each i. Hence Q, = Q/, for large enough arguments.

We now prove the local result by an induction similar to the one in the previous proof. Suppose
the result holds for k, and let QO,...,Q k and QO‘,...,Q k' satisfy the assumptions of the theorem, rela-
tive to M. This time we cannot simply assume that —0Q,..0 k@. Qo...Q ¢ can always be written so
that this holds, but that may change some of the components, and here we need to show that the
given components are pairwise equal. So we distinguish two cases.

Case A: —0Q,..0, .

By balance, and Lemma 3.3, -Q,"..0 k'@. But then we can argue just as in the last part of the pre-
ceding proof (because of the assumption of non-triviality on M), concluding that Q= QO' and
Ql“’Qk = Ql'...Qk' onM. But(Q,,...Q,) and (QI',...,Qk') are balanced and non-trivial on M,
so the induction hypothesis applies, and we are done: Q, = @, on M for each i.

Case B: Q,..0,3.

As before, 0,"...0 k‘@. But the assumptions of the theorem also hold, by the Negation Lemma, for
Q¢—Q -0 and @ y'—,—Q ',....,0,'. So Case A applies (this is where we need the balance
assumption that also Q- and Q ;- behave the same on ), and we conclude that Q;— = Q- and
=Q;..0, =—0,...0,/'on M. Hence, 0, =0, and @,..0, =0,"..0;" on M. The proof is

complete. —]

The following corollary is easily obtained by inspecting the previous proofs.

3.7. Corollary. IfQ,..Q, and Q,'...Q,' are equal on products on M w.rt. <<p;>,..,<p>>,
and all Qi and Qi' are positive on M, then Qi = Ql.' onM, fori=1,..k.
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11
APPLICATIONS TO DEFINABILITY

4. Convertibility and resumptions

Keenan's motive for studying generalized quantifier prefixes was partly to obtain methods for show-
ing that certain polyadic quantifiers are not iterations. One such method is this: Show that a particu-
lar quantifier is equal to some iteration on products, but not on all relations. Then it follows by the
Product Theorem that the quantifier in question cannot be an iteration. This is quite efficient in many
cases; for example, it can be used to show thgt the quantifiers ED and EH from section 1 are not it-
erations.5

In sections 4 - 6 we apply the results in Part I not to particular quantifiers, but to some natural
classes of quantifiers, and give necessary and sufficient conditions for a quantifier in such a class to
be an iteration (these characterizations are in fact also quite useful for showing particular quantifiers
not to be iterations). Although the characterizations are not simple applications of the previous results
but require extra work, the basic facts of Part I are used repeatedly, and the present results would
have been much less feasible without them.

We now make a few assumptions that will hold, unless otherwise stated, for the rest of the paper.
First, we restrict attention to simple quantifiers. We have already seen that this is no real restriction —
think of these quantifiers as noun phrase denotations, obtained from quantifiers in CIT by fixing the
noun arguments. Second, we consider for simplicity only iteration forms <<1>,...,<1>>. So the in-
formation about a quantifier that it is a k-ary iteration uniquely determines its iteration form (and its
type, i.e., <k>). Third, we restrict attention to finite universes. Fourth and last, we assume ISOM of
all quantifiers.

In contrast with the first three assumptions, the last one may seem completely unrealistic from a
linguistic point of view, since a noun phrase denotation of the form QA 11 practically never satisfies
ISOM (A, ... are fixed sets)! However, this simplifying assumption does have an adequate motiva-
tion: our results in fact have stronger versions which only rely on the (quite realistic) assumption that
Q, not QA“’"', satisfies (CONSERV and) ISOM.

The present section is supposed to deal with convertible quantifiers and with resumptions, so we
had better define these notions. First, however, another piece of

4.1. Notation. If R is a k-ary relation on M and i,,...,j; a permutation of 1,....k, let REL) pe
the relation on M defined by the following condition:

(i smsigy)
R ail...aik 2= Ral...ak.

6 More examples can be found in Keenan 1991a. Ben-Shalom 1992 further extends Keenan's methods.
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Thus, if R is binary, R(z’l) is the converse of R, or R'l. This notation is related to the one we in-
troduced for permutations of iterations in Definition 1.6 by the following easily verified

4.2. Fact. For type <1> quantifiers, (@,.-@)"V""PR & Qil...QikR(il""’i").

4.3. Definition. A quantifier Q of type <k> is convertible (on M) if for every permutation i, ...,
of 1,....k and every k-ary relation R (on M), QR = QR‘"%® (on M).

4.4. Fact. (i) If Q is convertible, so are —Q, Q—, and (hence) Qd.
(ii) If Q is of type <k> and closed under permutations of k-tuples, then Q is convertible.

Proof. For (i), note that M*— R = gk R)¥10  Gii) follows from the fact that if @
is closed under permutations of k-tuples, then only the cardinality of R matters for whether QR holds
or not, so @ is clearly convertible. —|

There are lots of convertible quantifiers, but for our main example we need one more

4.5. Definition. If Q is of type <1,...,1> with n arguments and k = 1, the k-ary resumption Q(k)
of @ is defined as follows: for all M and all Rl,...,Rn c Mk,

k
0® R.R & QR.R.
Fork=0welet 0¥ = T, , the trivially true quantifier on M (of the type of Q).

(2)

For example, most™ is the type <2,2> quantifier defined by

most®RS <  IRASI > IR—SI.

The use of resumption (quantification over pairs) in natural language is proposed in May 1989; cf.
van Benthem 1989 and Westerstdhl 1989 for further discussion. Note that most(z) is not in CIT.
To remain within CIT we will only consider resumptions of type <1> quantifiers here. In particular,

instead of most(z) we consider the type <2> quantifier

@YP R o IRI>MR,
i.e., the resumption of the 'type <1> counterpart' QR of most.
Here are some familiar examples of convertible quantifiers:

e All resumptions Q(k) (since Q is assumed to satisfy ISOM, Q(k) is closed under permutations
of k-tuples).

U QE ,R & Risanequivalence relation with at least n equivalence classes.

e TotR & Ris atotal ordering of the universe.
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° QkR & there is an infinite set A such that AX...XA C R (a 'Ramsey quantifier'; only inter-
esting on infinite universes, of course).

Which iterations are convertible? Well, clearly 3..3 and V...V, but it is not so easy to find
other examples. Here, however, is one. Let Q od dA & Alis odd.

%) . . .
4.6. Fact. Qodd = Qodd""'Qodd (k components). Hence, the iteration Qodd""'Qodd is con-
vertible.

Proof. Induction on k. k=1 is trivial. Suppose the result is true for k. Write It(k)(Q od d) for
Qodd""'Qodd with k£ components.

It(k+1) ()

(@ qR & Qgala Ir7(Q 49R,} (by definition)

< 0 odd{a: IRaI isodd}  (by induction hypothesis).
But clearly, for M = {al,...,am},
Rl = IRa1I+...+IRa L

m

Now it is easy to verify that IRl is odd iff there is an odd number of a ; such that IR is odd. —
1

The main result of this section says, essentially, that these three iterations are the only convertible
ones. For the proof we shall need the following

4.7. Lemma. If Q is non-trivial on M and Q---Q, is convertible on M, then Q 1@y is also
convertible on M.

Proof. Case 1: —Q,..0,53.
Subcase 1A: —0,O.
Take A such that QA (non-triviality). By product decomposition, for every R M,
Qp-@AXR & 0A & Q,.0.R & 0,..0R,
and similarly,
040 AR o g 0 ROV,
But AR is a ‘converse' of AXR, and so, by the convertibility of 0.0, @0,k <
0 1...QkR(il’""ik).
Subcase 1B: Q.
This time, taking A such that =0 A, product decomposition gives

QO"-QkAXR ) <=>. _'QI“‘QkR ' ‘
Qou-QkAXR(ll’m’lk) P _IQI'"QkR(ll,...,lk)’
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etc.
Case2: 0,..0,90.

Consider QO—'""(Ql"'Q k) and repeat Case 1. —|

4.8. Theorem. Ql...Q k is convertible iff, on each M where Ql“‘Qk is non-trivial, Ql...Q k is ei-
ther A..3 or V...V or 0,4+ @oga (k components), or one of their negations (k 2 2).

Proof. 'If': This follows from Fact 4.6, and the fact that if @ is trivial on M, it is convertible on M.

‘Only if': We shall prove by induction on k that if Q,...Q, is convertible, and nontrivial on M, and if
both @, and @,...Q, are positive on M, then Q,...Q, is either 3.3 or V..V or @ - Q 44 OO
M. This is sufficient, for we can always assume that Q,...Q, is positive on M, and if @, is not posi-
tive on M, we apply the result to —Q,...0,, and conclude that 0,...Q, is the negation of one the
three alternatives.

INDUCTION BASE, k = 2: In this inductive proof the basis case requires more work than the
induction step. Suppose Q,0Q, is convertible and non-trivial on M, and that @, and Q, are positive
(from now on in the proof, the phrase "on M" will usually be omitted). We start with the

CLAIM: 0,=0,
To prove this, we argue as follows. For all A,B c M,

0] 1Q2A><B o 0 1QszA (by convertibility)
& 0B & Q,A (by product decomposition, since 0,,0, are positive)
& 0,0,AxB (by product decomposition again).

This shows that 0,0, and 0,0, are equal on products. Hence, by Corollary 3.7, @, = Q,.

LetM= {al,...,am}. Because of ISOM (and the fact that M is finite), we can regard @, simply as
a subset of {0,...,m}. Thus, we often write k€ Q1 instead of "there is A ¢ M with lAl = k£ such
that QIA". We now consider two cases.

Casel: 1¢ Q,.

Since 0,1 ¢ Q,, we have m > 1 by the non-triviality of @;. Thus, @, cannot be dor Qodd‘ We
show that it must be V. Let n be the smallest number in Ql; n exists by non-triviality, and is > 1 by
assumption. It suffices to show that n = m. Suppose, for contradiction, that n < m. Choose a bi-
nary relation R such that a, has exactly n (R-)successors for 1 <i <n, but such that not all of these a;
have the same successors, and that the remaining elements of M have no successors. Note that this
choice of R is possible because 1 <n<m. Sincene @, but0¢ Q,,{a: QR }l =n, and so
0,0 R. But, by the construction of R, the number of elements in M with exactly n predecessors
must be smaller than » (all predecessors are among a 1,...,an). So this number is not in @, and it
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follows that —1Q1Q1R'1. This contradicts the convertibility of 0,0, and we have shown that 0, =
Y = {m}. '
Case2: 1€ Q.
Subcase 2A: 2 € Q.
We show that Q1 =3d={1,...,m}. This follows from the next
CLAIM: Ifke Q,, then k+l e 0, (k<m).
If m = 2 we are done, so assume m > 2. Assume k € Q1 but k+1 ¢ Ql. Then define R as follows:
Ra1 = {al,...,ak+1}
ay = {alyaz}
R, = {a;},for3<i<k+l, andR, = & otherwise.

a;

Then {a:QR,} = {ay,....a,, }, 50 @,Q R. But{a:Q R }={a,,..a,,,} and hence
-0 1QIR_I, contradicting our hypothesis, and the Claim is proved.
Subcase 2B: 2¢ Q,.
That @, = Q_,,now follows from the
CLAIM: ke 0, iff k+le @, (k<m).
To prove this we define R as follows:

Ra1 = {al,...,ak}

Ra2 = {ay,,}, andR = & otherwise.
Suppose first that k ¢ Q,andk+1 ¢ Q,. Then {a: QlRa} ={a,}, so Q,0R. But{a: QIR‘la} =
{ay,...ap,}, and hence —Q 1QIR‘I, contradiction. Next, suppose instead k € Q, and k+1 € Q,.
This time {a : QlRa} = {al,az}, and so —1Q1Q1R. But {a: QIR‘la} = {al,...,ak+1} as before, and
it follows that @, 0 1R‘l, again a contradiction. This proves the Claim, and thereby concludes the
proof of the induction basis.

INDUCTION STEP: Suppose the result if true for k, and let 0,2, be convertible, nontrivial
on M, and such that both @, and Q,...Q, are positive. Since 0, is non-trivial (by the Triviality
Lemma), it follows from Lemma 4.7 and the induction hypothesis that @,...Q, is either d.3or
V..Vor Qa2 odar
Case 1: Q,..Q, = 3..3.

Thus, @,..Q,R < Qyfa:R, #D}. Since @ is positive and non-trivial, there is A # O such that
QA Fix anon-empty S M*1 and let B be any non-empty subset of M. Then

Qo0 AXBXS & QA

Qo0 BXAXS & Q.B.
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Thus, by the convertibility of Q,...Q,, @,B. We have shown that QB for any non-empty subset B
of M, i.e., Q0 =3Jon M.

Case2: Q,..Q, = V..V.

By the Negation Lemma, (Q,...0))% =3..3. But (Q,..0)% = 0,%0,%..0,% is convertible (Fact
4.4), and QOd and (Qld...de) are positive, so by Case 1 we get QOd =3,ie,Q,=V.

Case 3: Q1"'Qk = Qodd""'Qodd‘

This time, by Fact 4.6, QO...Q £ Qpla: IR 4 isodd}. Fix § ng‘l such that ISl is odd. Then,
for all A,B c M:

@) If IBl is odd, then QO...Q kAxBxS 2= QOA (since 1BxS| is odd).

(i) IflAlis odd, then Q.0 BxAXS << Q.B.

(i)  If LAl is even, then —Q,...0 BXAXS (since IAXS| is even and —-‘QOQ).
(iv) IflAlis even, then —-.QOA (by convertibility from (iii) and (i)).
) If Bl is odd, then QOB.

To see that (v) holds, suppose IBl is odd, and take (by non-triviality) an A such that 0. By (iv),
lAl is odd. Thus, by (i), (ii), and convertibility, Y3

(iv) and (v) show that @, = @ _,, on M. This concludes the proof of the induction step, and
thereby of the theorem. —]

As a bonus, we get the following characterization for free:
4.9. Corollary. Q(k) is a k-ary iteration iff, on each M where Q(k) is non-trivial, Q(k) is either El(k)
or V(k) or Q od d(k), or one of their negations (k 2 2).

Proof. 'Only if": If Q(k) =0,..0; then 0,..0 k is convertible, so the result is immediate from the
theorem (and Fact 4.6).

If: Suppose the right hand side holds. We must find type <1> quantifiers Q,,...,Q, such that Q
=0,..0;. So we must define each Q, on every universe M. If Q( is trivial on M, we can clearly

find Ql,...,Q(icon M such that Q(k) =0,..0,onM. If Q(k) is non-trivial on M, it is either El(k) or
9]
v

)

or Q odd ), or one of their negations, on M. So again Ql,...,Q & can be defined on M in the de-
sired way. (For example, if Q(k) = ﬁﬂ(k) on M, we let (@), = —dy and (Q5)p, = . = (@), =
E| % Of course, we cannot guarantee that Ql,...,Q x are defined in the same way on every M where
0™ is non-trivial, but that is not required.) —|

Remark: In view of the fact (4.4) that not only —@Q, but also 0— and Qd are convertible if Q is, did
we not forget a few cases in Theorem 4.8? Well, (3...3)— is convertible, but (3..3)~ =
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—(V...V), so this is covered by the theorem. But what about (@ ;@440 ? To see that this
too is covered, note first that

(1) IfiMiis oddthenQodd‘1 = 0 4q OnM, and if IMl is even, Q_,;— = Qodd on M.

Thus, if M1 is 0dd, (@4 Qogd)— = (QogaLoasD) = (QogqLodq) 2 above, and
if IM1is even, (@45 Qoga) = LoadPoddPoda— = LogdLogsr —

It should be noted that both the assumptions of ISOM and of finiteness of the universe are used
essentially in these results. As to ISOM, consider typical non-ISOM quantifiers like proper names:

JohnA & Johne A.

Then John-JohnR < (John,John) € R ,so John-John is convertible. Similarly, it can be seen
that the results in the next two sections fail for proper names.

However, we said earlier that the requirement of ISOM for the type <1> quantifiers Q,5--Q, in
Theorem 4.8 can be weakened to a linguistically more realistic assumption. The next proposition
points the way to the correct formulation of this result.

4.10. Proposition. someA~someB is convertible iff A = B or one of A.B is . Similarly for

all® a1l and odd® 0dd".

Proof. A= orB=0, someA-someBR is always false, so convertibility holds. And clearly
someA-someA is convertible. For the other direction, suppose & # A,B, and take a € A. Then
take b € B and let R = {(a,b)}. Thus someA-someBR, so by convertibility, someA~someBR'1,
i.e., there is ¢ € A such that someB(R'l)c. Hence, ¢ = b, (R™"), = (a}, and BA(R™"), # D, s0a
B. We have shown that A ¢ B, and by symmetry, that B ¢ A. This takes care of the case of
someA~someB. For allA 'allB the result follows by taking duals. For oddA odd® essentially the
same argument as for someA-someB works. —]

4.11. Lemma. Suppose that QA = someB on M, where QA and someB are non-trivial on M, Q is
ISOM and CONSERV, and -1QA® on M. Then A = B. The same conclusion holds if QA = alIB , or

0% = 0ad®.

Proof. Note that the assumptions imply that & # A,B c M. (in particular, if A = &, then by CON-
SERV, QC & QD for all C c M, which makes @ trivial on M). Suppose first a € B. Then
some®{a}, so 0*{a}, and 0*An{a} by CONSERV. Hence, An{a}#J, ie.,ae A. SoB CA.
Next, suppose a € A. Take any b € B. Since someB{b}, we have QA{b}. Buta,b € A, and
hence it follows from ISOM that QA{a}. Hence, someB{a}, so a € B. This shows that A = B when
QA = someB. If instead QA = allB , we get the same result by taking duals, and if QA = oddB , the
same proof as for some works. —]
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‘We can now give the following strengthening of Theorem 4.8.

4.12. Theorem. Suppose that the type <1,1> quantifiers Q,,....Q, are CONSERV and ISOM that
A Ap # O, and that Q 1 Q k k is non-trivial on some umverse Then, Q1 Q k, ks con-
verttble if A =A, = A, and, on every M where Q 1 Q ¢ IS non-trivial, Q1 Q k
someA. someA or allA allA or oddA oddA (k components), or a negation of these.

Note that Theorem 4.8 follows from this theorem: if @,,...,Q, are of type <1> and ISOM, then
Q.0 defined by Q/BC <> Q;BNC are CONSERV and ISOM, and 0;,= Q on every M,
so the theorem applies.

Proof of Theorem 4.12 (outline). 'If': This is just as before

'Only if': We consider only the case k = 2. Suppose Q1 Q2 is convertible, and non-trivial on M;
such an M exists by hypothesis. As before we may assume that QIA and Q2 are both positive on
M. Now the first claim in the proof of Theorem 4.8 used only the Product Decomposition Lemma,
not ISOM, so exactly the same argument gives

QlA = QZB
(on M). Thus, Q,"Q,* is convertible. Since Q, is CONSERY, only the behaviour of 0, on sub-
sets of A need be considered. Since @, is ISOM (and 4 is finite), only the size of these subsets mat-
ters. Thus, Q1 can be con31dered as a subset of {0,...,|Al}, where ke Q lA means that there is C
A such that ICl = k and Q1 C. But then, the same arguments as for the case k£ = 2 in the proof of

Theorem 4.8 show that Q y 1s either some or allA or oddA on M. It also follows by Lemma 4.11
that A = B, and we are done. —|

The results in the next two sections also have stronger versions, where the type <1> quantifiers
involved are 'instances' of CONSERV and ISOM type <1,1> quantifiers, but I will not state these ver-
sions explicitly.

5. Branching

Barwise 1979 introduced branching generalized quantifiers in connection with natural language se-
mantics. Here we shall only consider branching of MONT type <1> quantifiers, defined (by Barwise)

as follows:
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5.1. Definition. For MONT 0,0y, define the quantifier B(Q,....,Q,) of type <k> by
B(@Q, QPR & 3IX,..X, cMI[Q,,X &..& QX & X X.xX; CR].

We call the corresponding syntactic expression 'B(Q,,...,Q,)" a branching prefix (for typographical
reasons; a vertical alignment of Q 1,...,Q k would have been better).

Note that B(Ql,...,Q k), as defined above, is always MONT, regardless of the monotonicity be-
haviour of Ql,...,Q Iz However, in what follows we presuppose that Ql,...,Q i are MONT, when-
ever 'B(Ql,...,Qk)' occurs.

5.2. Lemma. If each of Q,,....Q, is MON T, then so is 0,9,
Proof. Straightforward calculation. —]
Here are some further useful facts about branching.
5.3. Lemma. B(Q Q) is non-trivial on M iff each Qi is non-trivial on M.

Proof. 'Only if': Suppose Q, is trivial on M. If Q= J then B(Q -, Q )R is always false. If O,
= P(M), then Qi(Z, and so, by the definition of branching,

B(@Q,.0pR & 3IX,...X, [0, X, &..&0Q0.X,],
and the right hand side is independent of R.
Tf': Suppose that each Q ; 1s non-trivial on M. Then there are X; such that @, X, , and hence
B(Ql,...,Qk)Xlx...xXk. It remains to show that -VR c M B(Q,....@ )R. Suppose this is not

so. Then B(Ql,...,Q k)@, so it follows that for some i, QiZ. But then Q ; is trivial on M by MONT,
contrary to assumption. —|

5.4. Lemma. IfB(Ql,...,Qk) is non-trivial on M, then B(Ql’""Qk) and Q,...0, are equal on
products on M.

Proof. By the previous lemma, each Q; is non-trivial on M. We have

B(Q QA X XA,
& I, X [0,X, & .. &QX, & X;X.XX, SAX.XA]

e IXQX, &X, cA & .. &I [QX, &X, cA] X;#9,by MONT + non-triv.)
& QA &..&QA, (by MONT)
(=4

Q.0 A X.. XA, (by product decomposition).
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The next lemma shows that the branching of @,,...,0, is stronger than the iteration of Q....,0;,
in any order.

5.5. Lemma. For any permutation i,,....i, of 1,....k and any k-ary R,

B(QQp)R = (Ql'"Qk)(ll’ g

Proof. 1f there are X ,...,X such that Qj Xj for each j and X X..XX, C R, it follows that
(*) X X...XX. cC R(ilr“)ik).

Suppose first that Q %] for some j. Since Q is MONT, {a: Q A} = M for every set A. But, by
MONT and our assumptlon Q; M for each i. From this it follows that (Q,...Q k)(ll’ ’l")R
Next, suppose ﬁQ (D for each i. Then, by the Product Decomposition Lemma,

0, @, (X, XXX, ).
Thus, by (¥) and Lemma 5.2, Qil...QikR(ll"f”i"), ie, Q@) VPR, —|

This is a good time to note the following fact, which is immediate from the definition of branch-
ing:

5.6. Fact. B(Q,,..Q)R B(Qil,...,Qik)R(il""’i").

We may express this by saying that branching prefixes are order-independent, in contrast with
(most) linear prefixes. Note carefully that order-independence, i.e., invariance under permutations of
quantifier expressions in a prefix, is a property of syntactic prefixes, but not of the quantifiers defined
by these prefixes. For example, the quantifiers 33 and 3—-—3 are identical, but whereas the prefix
IxJy is order-independent, the prefix (F—)x(—J)y is not!

Also note the difference between order-independence of a prefix and convertibility of the corre-
sponding quantifier, i.e., invariance under permutations of the arguments of the relation (this is a
property of quantifiers). Branching quantifiers are not in general convertible, not even when they are
equal to iterations, as we shall see. However, for both linear and branching prefixes, the two prop-
erties coincide in the case of iterations of the same quantifier expression (compare the notion of self-
commutativity in van Benthem 1989), so, for example, B(Q,...,Q) is convertible. Is this the only
case when a branching quantifier is convertible? The positive answer to this question (which was
posed by Jaap van der Does) turns out to be a simple application of the methods developed here:

5.7. Proposition. B(Q,,...,Q,) is convertible iff, on any M where B(Q,,....Qp) is non-trivial,
0,=..=0,
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Proof. Suppose B(Q,,....Q,) is convertible and non-trivial on M. Leti,,...,i; be any permutation
of 1,...,k, and let jl,...,ik be its inverse permutation. Then
B(Q; Q)R & B(Q...0 PRI (by Fact 5.6)
& B (Ql,...,Q k)R (by convertibility).
Thus, B(Q,,....0,) = B(Qil’""Qik)‘ But then, by Lemmas 5.3 and 5.4, Q,...Q, and Qil...Qilc
are equal on products (on M). Since each Q, is positive on M, it follows as usual from Corollary 3.7
that Qr = Qi , forr =1,....k. But since il,...,ik was an arbitrary permutation, this can only hold if
r
Q,=..=Q,onM. —]|

For linear prefixes, the properties of order-independence and convertibility (of the corresponding
quantifier) don't seem to have much to do with each other. However, it is shown in Westerstdhl
1986 that at least in the MONT case, order-independence too is a rare phenomenon (under ISOM, and
for finite universes). In fact, the results there together with Theorem 4.8 show that the following Jo-
cal result is true.

5.8. Proposition. If Q5,0 are MONT and non-trivial on M, then

0,...0, is convertible on M & the prefix Q. x,...Q,x, is order-independent on M.
1%k F1r-Yet

The main result of this section says that branchings are iterations only in very few cases.

5.9. Theorem. B(Q Q) is a k-ary iteration iff, on each M where B(Q,....,Q ) IS non-trivial,
for some n with 0<n <k, B@,,@) = 370 V" Von M; infact, 0, = .= @, =3,
and Q ~=0,=V,onM (k22).

n+1

n2 =

Proof. 'f': We have to find Ql',...,Qk' such that B(Ql,...,Qk) = Ql'...Qk’. If M is such that

B(Ql,...,Q k) is trivial, clearly this is possible. Otherwise, we take Q i' = Qi , where Q1 =.=0 .=
J,andQ ,=..= Q,=V,onM. From Lemma 5.5, we know that B(Q},...,Qk)R = 0,.-.Q,R.
. . . k-n-1
For the other direction, suppose that Ql...Q kR’ i.e., that 3(")-Qn +1-V( ""YR. Then
. (k-n-1) _ i . _ gk n-1
{(al""’an) ) Qn+1'v Ral...an} - {(al""’an) : Qn+1{b : Ral...a,,b =M Iz o

Take (a,...,a,) in this set. It follows that
{“1} X vee X {an} xX{b:R

Thus, B(Q;,....@ JR.

‘Only if: Suppose B(Q,,....Q,) = @,"...Q,, and that B(Q,,....Q,) is non-trivial on M. By

Lemma 5.3, each Ql. is non-trivial on M (mention of M will be omitted in what follows). By Lemma

5.4 and the assumption, 0,0, and 0 1@, are equal on products. Hence, by the Product Theo-

MY xMx..xM < R

01...anb =



rem, Q,..0, = Ql'...Qk'. That is, B(Ql,...,Qk) =0Q,..0, Now we are in a position to show
that the quantifiers Ql,...,Q k have the required form, by induction on k.

INDUCTION BASE, k =2: Suppose B(Q,,0,)=0,0,0nM ={a,,...a,}. Letn, bethe
smallest number in Qi ,i=1,2. nyhy > 0, by non-triviality. If n, = 1, then Q1 =13, and we are
done. Assume n; >1. We must show that n, = m (so @, = V). Suppose instead that n, <m. Let

R = ({al,...,anl_l}x{al,...,anz}) ) ({anl}x{az,...,anz,am}).
It follows that if XXY < R, then IX] < n. Thus, —.B(QI,QZ)R. On the other hand, |{a: IRaI > nz}l =
n;, so @,0,R. This contradicts our assumption.

INDUCTION STEP: Suppose the result is true for k, and B(Q,,....0,) = 0y, We use the
following

5.10. Lemma. If B(Q,...Q,) = Qy.--Q, and B(Q,...Q,) is non-trivial on M, B(Q ,....Q,) =
0,.-Q; and BQ -0, 1) = QgL ;-

Proof. Fix A such that QA (non-triviality and Lemma 5.3) and take any R M. We have

B(Qy»--»Q )AXR
& 3X,. X, [QXy & ... & @ X, & X x..xX, € AXR]
= EIXO[QOXO &X,cAl & 3X,.X, [0, X, & .. & Q.X, & X X.XX, cR]
e 04 & B@Q,,....0 R
& B(Q-Q)R .
But also,
QO...QkAXR = QOA & Ql"'QkR (product decomposition) <« Ql"'QkR'

This proves the first part of the lemma. The second part is proved by fixing B such that Q B and
considering RxB. —]

To finish the proof of Theorem 5.9, the induction hypothesis and the lemma shows that both
B(Ql,...,Q k) and B(QO""’Qk-l) have the desired 'form’ on M. But then it is readily verified that the
same holds for B(Q,,....Qp). —I

6. Cumulation

So-called curmulative readings (Scha 1981) of quantifiers are natural for sentences like

(1)  Sixty teachers taught seventy courses at the summer school
(2)  Five girls told ten stories to three boys.
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(2) has a reading involving five girls, ten stories, and three boys, but not saying exactly how many
stories the first girl told the second boy etc., only that each girl told some story to some boy, that each
story was told by some girl to some boy, etc. This leads to the following

6.1. Definition.
(Q1,...,Qk)cxl...kaxl...xk & Qx 3%, A Rx X A A QpxFx, . 3x  Rx; Xy
Or, equivalently,

3) @R & A Q3. 3RGLHILHLR

1<i<k
Thus, cumulatives are Boolean combinations of iterations, but we shall see that they are very sel-
dom iterations themselves. We only consider cumulations of positive (but not necessarily monotone)

quantifiers, and start with the following observations.

6.2. Lemma. Let Q-0 k be positive. Then (Ql,...,Q k)c and Q,...Q, are equal on products.

Proof.
(Ql,...,Qk)CAlx...xAk = ls/i\Sin'a'"a(AiXAlx"'Ai-1XAi+1X"'XAk) (definition)
& ANQA & NA;# )) (product decomposition)
1<k j#i
e 04, &..&0A, (positivity)
e 010 AX.XA, (product decomposition).
—

6.3. Lemma. Suppose Q-0 are positive on M. (Ql,...,Qk)c is non-trivial on M iff each Q;
is non-trivial on M.

Proof. If Qj is trivial on M it must be empty on M (since it is positive), but then the corresponding
conjunct in (3) is always false, so (Q;,....Q k)c is trivial on M. If each Q, is non-trivial on M there
are A i F < such that Q zAi , 1 i<k, and thus, just as in the proof of the previous lemma,
(Q 5@ A X.. XA, We must show that =VR € M(Q,....Q,)°R. Otherwise, (Q;,...8;)°D.
But then the first conjunct in (3) is @,-3...3J, and hence @<, contradicting the positivity of Q.

—

Now we can characterize the (positive) cumulations which are iterations.
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6.4. Theorem. (Q,,...,Q k)c is a k-ary iteration iff, on each M where (Q,....Q k)c is non-trivial,
Q,=..=Q,=13.

Proof. 'If: As usual, we can obviously find the required iteration on universes where (Q,,...,0 k)c
is trivial. On other universes, one easily verifies, using the positivity of Ql, that (QI,EI,...,H)c =
Q,4.43.
'Only if: Suppose (Q;,...0,)° = @,"...Q,’, and that (@,...,2,)° is non-trivial on M. By Lemma
6.2,0,..0, and Q,'...0,' are equal on products, and hence equal, by the Product Theorem. Thus,
(Ql,...,Qk)c =Q,...0,onM = {a,,...a,}. We shall prove the
CLAIM: Ifo< ki < m then ki € Qi = ki+1 € Qi , fori=2,..k.
Since 0 ¢ Q, but some p € Q,, it follows from the Claim that Q, = 3d,fori=2,..k.

To prove the Claim, fix such an i. For eachj#1i, 1 <j<k, choose kj € Qf Thus, each & ; >0.
Now define the k-ary relation R by the following stipulations:

RX{eeX (@ 1% 1o Xy s v s Rxl'"xi-lakixi+1"‘xk ,
for all x € {al,...,akl_l} and xje {al,...,akj} , 28 j<k,j#i,
and Rak1x2...xi_1a2xl.+1...xk s e s Rak1x2"'xi-1ak,~+1xi+1"‘xk .
for all x; € {al,...,ak_} , 2L5j<k,j#i,
) J
and no other k-tuples are in R.

Then R has the following properties.

@) Forj#i,1<j<k: {y::I 3{11"j_?fj—lngﬂ“axkkxl"‘xj-l ijj+1“’xk} - {al""’akj}v
and hence, QJ-E'...EIR R AU

(ii) {y;: Hxl...Hxi_lElel...kaRxl...xi_lyixi+1...xk} = {al""’akiﬂ}’

(iii) Fori<r<k: Iije {al,...,ak‘} forj#i,1<j<r, andxl. € {al,...,ak+1}, then
1
{,: Qr+1"’Qka1...x,_1y,} = {“1""’ak,}‘ Otherwise, {y, : Q’+1'"QkR11~xr-1yr} =
(i) and (ii) are immediate from the definition of R. (iii) follows by a (downward) inductive argument

on r (omitted here), using the fact that 0 ¢ Q ,butk € Q  fori<r=k. (iii) is not true for r = i.
However, we do have

@iv) Iij € {al,...,ak‘} for 1 <j< i, then l{yi: Qi+1"'Qka1 % 1yi}l = ki’ Otherwise,
Xp
Hy;: Qg Qp xl...xi_ly,-}l = 0.
Indeed, we see from (iii) and the definition of R that { y;: 0

{al,...,aki} or {02,---,01({'_1 }.

"+1"'Qka1~--xi-1>’i} is either & or else
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Now, let 0 < ki < m and suppose first that ki € Qi . Then, by (iii) and (iv), we can 'continue
downward, from r = i to r = 1, eventually obtaining

{)’1 : Q2"’QkRy1} = {alr"9ak1},

and hence Ql...QkR; But then, (Ql,...,Qk)CR, and so in particular,
Qia“aR(i,L...,m,i+1,...,k).

By (ii), this is equivalent to

Qi{al""’ak,-+1 },
and thus kl.+1 €0,
Now suppose instead k; & Q,. It follows that from step i-1 and downward in the above induction
we always get &, and so —=Q QR Hence, —(Q,,....0 k)CR. But, by (i), all the conjuncts in the

definition of (Q,,...,.0 k)CR, except the one involving Q,, are true. It follows that

_1Qi_3maR(i,1,...,i-1,i+1,...,k),

which, by (ii), means that k+1 & Q.. This proves the Claim, and thereby the theorem. —|

7. Unary complexes

In this section, we briefly look at a generalization of the question as to when a certain quantifier is an
iteration. The linguistic interest of this question stems from the ubiquity of natural language sen-
tences with a transitive verb and quantified subject and object noun phrases. But other means of ex-
pression are also ‘natural'. For one thing, Boolean operators are clearly available. For another, sen-
tences corresponding to iterations are often ambiguous, and hence all their readings can be used.
Restricting attention to 2-ary iterations, this leads to the following definition, from van Benthem 1989
(though he uses 'unary complex' for what I here call a 'right complex').

7.1. Definition. A quantifier Q of type <2> is a unary complex if there is a Boolean combination
® of iterations of the form Q,Q,R and inverse iterations of the form Ql'Q2'R'1 , such that for all R,

OR & ®. Qis aright complex (left complex) if only iterations (inverse iterations) are used.

The next proposition is an example of the added expressive power of unary complexes compared
to iterations. Note that, by Corollary 4.9, (HZn )(2) is not an iteration for n = 2.

7.2. Proposition. (E!Zn)(z) is a right complex for all n.

Proof. (sketch) We must express IRl 2 n, for binary R, as a right complex. Start with the following
equivalence, which is clearly valid:
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IRIZ2n & vV @_pxIyRxy A Rizn) v 3, x3IyRxy.
Isksn1

Thus, it suffices to express each of the # - 1 first disjuncts as right complexes. Given that exactly &
elements have R-successors, it is not so hard to describe the circumstances under which IRl = 7.
Consider the different ways, say s,,...,s,, in which n can be written as the sum of & positive integers
(independent of order). Each such way corresponds to a minimal distribution of successors (over the
k elements which have successors) so that IRl > n. With each s, we will correlate a right complex ;.
Rather than giving precise details, we explain the idea by means of an example. There are 5 ways in
which 10 (n) can be written as the sum of 6 (k) positive integers. We exhibit them below, together
with the corresponding right complexes:

5 v
54+14+1+1+1+1 Jx3,5yRxy
44+424+1+14+1+1 35,x35,yRxy A Ixd, yRxy
343+1+1+1+1 3,,x353yRxy
3+24+2+14+1+1 355x3,yRxy A IxI,.yRxy
24+24+2+2+1+1 3, x3,yRxy

(note that, since 3_cxJyRxy, conjuncts corresponding to the 1's, such as 3, ,xJyRxy for the first
row, are not needed in ;). Hopefully the idea is clear, and one may now verify that, in general,

d_pxIyRxy A RI2n & 3_xIyRxy A (Y V..vy).
—

The properties of orientation from van Benthem 1989 provide convenient ways of showing that
certain quantifiers are not unary (right, left) complexes. For example, in this way one easily sees that
cumulations, although unary complexes, are usually not right or left complexes, and that branchings
are usually not unary complexes. However, the method does not work for resumptions, since all re-
sumptions have these orientation properties. Our final application of 'prefix techniques' in this paper
shows that the resumption of QR is not a unary complex. Recall that, on finite universes, QR means
"more than half of the elements of the universe". Itis clear that the next result extends to any propor-
tion quantifier "more than m/n:ths of the elements of the universe".

7.3. Theorem. QR is not a unary complex.
Proof. We shall prove that not even (QR)(Z)AXB can be expressed by a (fixed) unary complex.

Suppose to the contrary that there is a unary complex @, i.e., a Boolean combination of iterations of
the forms Q'Q"AXB and Q"'Q""BXA such that for all M and all A,B C M,

AXBl > IMP2 & .
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We now perform the following operations on ®. First, by redefining the quantifiers in ® if neces-
sary, make sure that the second quantifier in an iteration (or inverse iteration) is always positive.
Then replace, according to the Product Decomposition Lemma, each Q'Q"AXB in ® by (Q'A A
0"B) v (Q'D A —Q"B) , and similarly for the inverse iterations. Next, rewrite the result in dis-
junctive normal form. Finally, in each disjunct, 'pull together' the conjuncts which involve A by
defining suitable new quantifiers (for example, if the conditions on A in one conjunct are Q'A ,
O"A ,and —Q"A ,replace Q'AAQ"AA—Q"A by QA ,where Q = Q'AQ" A -Q"),
and similarly for B and &. The result of all this is that there are type <1> quantifiers 0,0 i" and
Ql.", 1 <i<p, which satisfy ISOM and are such that

IAXBl > Ml /2 sV (Q A A Q'B A Q"@) (on M).
1<i<p

In other words, for all m > 0 there areX. , Y. ,Z. c {0,...,m}, 1 <i <p, such that for all k,n < m,

kn>m'2 & V (keX, aneY, A OcZ)
1<isp

Simplifying a little, it follows that
) IdpVm>03p'<p BX. Y; € {0,...m} for1 <i<p’s.t. Vkn<m,

kn>m2 o V ((kn)e XXY,).
1sisp
It is intuitively plausible that (*) cannot possibly be true, since p is fixed but m arbitrary. Neverthe-
less, here is a proof.
Suppose m is even and large enough (cf. below). For k,n < m, call (k,n) minimal if kn > m2/2,
but (k- Dn, k(n-1) < m2/2. We shall count the number of minimal pairs.

@) If (k,n) is minimal then (»,k) is minimal.
(ii) If (k,n) is minimal then k,n >m/2 and k # n.
(iii) (m/2+1,m- 1) is minimal.

These are all immediate or almost: that (k,k) cannot be minimal follows from the fact that if k-k >
m2/2 then k(k - 1) > m2/2, for large enough m (m > 70 suffices).

Let ky = m/2+1,and then k; ;= k; +1 until we reach k = k;; +1 = the largest k such
that kk< < m /2 Also, let n; be the smallest n such that k:n >m /2
@iv) (ki’ni) is minimal, n,> ki ,for0<i</ and ng>...>n;.
Proof: That n,> ki is immediate. The rest is by induction. (kO’"O) = (m/2 + 1 , m-1) is minimal.
Suppose (k;,n,) is minimal. Then kipi(n;-1) = (k; + Dm;-1) = kn; +n; - (k;+1) 2 kn
(since n,> k) > m2/2 Thus, n<n . To see that (ki L 1) is minimal, it suffices to check that

Ky 1)”z+1 <m’p2. But (kipq 1)”z+1 = KiaMir - Mien < Kipafisg ~ R = k(g - D <
m /2, by the definition of » i+l
W) If (k,n) is minimal and & < n, then (k,n) = (ki’"i)’ for some i.
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Proof It suffices to show that k <k< k Clearly k < k Suppose k > k Now (k + 1)(k +1)>
m /2 and hence k (k +1D)>m /2 But then, (k - 1)n >m /2 contradlctmg the minimality of (k,n).
From (i), (ii), (1v) and (v) we get

(vi) There are 2(/ + 1) minimal pairs.
Now we can return to (*). The point of the preceding exercise is this:
(vii) Distinct minimal pairs belong to distinct X ><Y. in (*).

Proof: Suppose (k,n), (k',n") are rmmmal (k,n) # (k')n’), say, k <k', and (k,n),(k’,n") € X XY .
But then (k,n") € X xY ,80kn'>m /2 by (*), which contradicts the minimality of (k’,n’).

We have shown that p 2 p’ > 2(I + 1). But this is impossible, since p is fixed and / increases
with m, in fact,

(viii) 1 > mRE2+1) - 2.

Proof: Easy calculation, from the facts that (k, + 1)° > m’/2, and k, = m/2 + [+ 1.
This concludes the proof of the theorem. —]

I'have been a bit fussy about distinguishing local from global results in this paper. The usual no-
tion of definability in logic is global, i.e., uniform over universes, and I have endeavoured to state
global forms of all definability results here. We have seen that many of these results have both a
global and a local version. The last result above, however, is a good illustration of the point that this
is not always so. Indeed, it follows from a result in van Benthem 1989 that, on any given universe
M, QR can be defined as a right complex. There is just no definition that works for all universes.”

8. Issues for further study

What else could said about iteration? Very briefly, here are a few suggestions.

1. Characterizing quantifier lifts. Can iteration be characterized in terms of their properties? That is,
are there (interesting) properties such that, say, a type <2> quantifier is a 2-ary iteration iff it has
these properties?® One necessary such property is being determined by its behaviour on products.
We have seen in Part IT that this is not sufficient, but combining it with other properties might give a
sufficient condition.

This is part of a more general issue. Iteration, resumption, branching and cumulation can all be
considered as natural liftings of monadic quantifiers to polyadic ones (or, more generally, liftings of

7 In Westerstahl 1992 I conjecture that QR is not even monadically definable, that is, not definable in any logic
L(Ql’“"Qk)’ where the Qi are monadic.

8 Keenan 1991b has such a characterization (the Reducibility Characterization Theorem), but the property used is too
reminiscent of the definition of iteration to be of real interest here (it has other uses, mainly as a tool for showing that
certain quantifiers are not iterations).
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quantifiers of certain types to quantifiers of 'higher' types). These lifts have characteristic properties,
and it would be interesting to know if they can be completely characterized in terms of these proper-
ties. A similar question is studied in van der Does 1992a,b in the field of collective quantification
(i.e., quantification over collections, or sets, of individuals). He displays several lifts from ordinary
quantification to quantification over collections, and, among other things, characterizes the lifts in
terms of their respective properties, such as (versions of) conservativity, monotonicity, etc. Further,
in both cases one can study which linguistic mechanisms trigger such lifts. In general (as Johan van
Benthem has pointed out), polyadic quantification of the kinds studied here and collective quantifica-
tion seem to have much in common.

2. Generalizing the Prefix Theorem. It is an immediate corollary of the Prefix Theorem that if
Qx,-Qpx, and Q,'x,..0,'x, are prefixes with Q; and Q' in {V,3} such that

™) = lel"'Qkkaxl'“xk © Ql'xl...Qk'kaxl...xk ,

then Qi = Qi' for each i (in view of Corollary 3.7, we could replace Rxl...xk by P KA A kak
here). This is a weak version of the Linear Prefix Theorem in Keisler and Walkoe 1973. In the
original version, Rx,..x, on the right hand side in (*) is replaced by an arbitrary quantifier-free for-
mula ¢ (without constant or function symbols). As Keenan notes, the strong version does not hold

for arbitrary type <1> quantifiers; even VxPx <> (—3d)x —Px is a counterexample. But it might
still hold under some restrictions. For example, does it hold when all the quantifiers are positive?

3. Infinite universes. The proofs of the main theorems in Part IT depend heavily on the assumption
that universes are finite. Are there versions of these results for infinite models?

4. General branching. Barwise's branching of monotone quantifiers has been extended to other gen-
eralized quantifiers (cf. Spaan 1992 for references and a discussion of the various options here). Can
the results in section 5 be extended accordingly?

5. Iteration in other types. The notion of iteration is not confined to quantifiers. Thinking of quan-
tifiers as objects in type theory, one may generalize the idea to objects of (certain) other types. What
is the common pattern here? Will characteristic properties of quantifier iteration, such as the Product
Theorem, carry over to the general case?

Already for the case studied here, the perspective of type theory and categorial grammar, may be
fruitful. Johan van Benthem remarked that our basic iteration scheme (Definition 1.3) yields a type
transition

(F=n—t, ("—=t—>t = (FtMmon—t (where el = e, e"tl = ¢-e™)

which is provable in the Lambek Calculus, and that the scheme itself is precisely the lambda term for
its most straightforward derivation (cf. van Benthem 1991). Likewise, some properties of iterations,
like the preservation of ISOM or CONSERYV, can be predicted from a categorial analysis.

6. Syllogistic inference. Various kinds of syllogistic inference with non-iterated quantifiers are
known from the literature. For example, consider a language which has atomic formulas of the form
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QAB ,where A and B are Boolean combinations of set variables Xl,Xz,... ,and Q isa type
<1,1> quantifier symbol selected among QI,Q:,,... , Where Ql,Qz,... are given quantifiers. The
language also has the usual propositional connectives, and the obvious semantics. For simple
choices of QI’QZ"" , complete axiomatizations of validity are known; for example, van der Hoek
and de Rijke 1991 axiomatize the case when Q,=at least i (in this logic, quantifiers like all and no
are of course definable).

This could be generalized to iterations, say, of type <1,1,2>. One then adds variables R 1>R2""
for binary relations, and in addition to the Boolean operations, one might have other operations from
relational algebra, such as converse. New 'atomic' formulas are QQ'AB.R , with A, B as before,
R an expression in the chosen relational algebra, and Q, Q' type <1,1> quantifier symbols. The
expressive power has increased somewhat, but is still weak compared to L(Q;,Q2,,...). Do the valid
sentences still have nice axiomatizations for natural choices of 2,,0,,... ?
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