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Parallel Quantification

Martijn Spaan
February 22, 1993

Abstract

We investigate various forms of parallel quantification, both from a linguistic and
a logical point of view. In particular, we are interested in finding a general branching
definition. Our natural language examples suggest strong connections between paral-
lel and collective readings. In fact, many people seem to confuse the two classes of
readings. Following the intuitions of [10], we investigate the effects of various notions
of maximality. In our logical treatment, starting from basic intuitions of globality and
parallelism, we introduce various semantic principles that parallel definition schemes
should satisfy. These strongly suggest that the three parallel definition schemes we
eventually find are in fact the only ones. In the course of the article we will intro-
duce some notions concerning quantifiers that may be applicable to other parts of
generalized quantifier theory as well.

1 Introduction

In standard logical languages all formulas have a linear format. It would seem that this
suits the interpretation of natural language, which, after all, is spoken in linear time or
written in lines. For instance, in formulas or natural language sentences with a binding
two-quantifier prefix, like (la-b), one of the bindings precedes the other.

(1) a. Vz-3Jy:Rzxy
b. Most townsmen hate most villagers.
c. most[townsman] . most[Villager], . [hate]zy

On the semantic side, taking the most preferred reading (1c) for (1b), this means that
the rightmost variable is bound within the range of the leftmost quantifier. Thus, the y
in (la) depends on our choice for z, and the choice of villagers in (1c) depends on the
choice of townsmen.

So logical and natural languages seem to share the principals of syntactic linearity and
semantic linear dependence. However, on both sides of the equation, things are not all
that clear. Constructions have been proposed in which variable bindings are independent
of each other. We will call the ensuing dyadic quantifiers parallel.

In logic, the linearity principle is challenged by so-called branching quantification,
discovered by Henkin ([8]). The idea behind the construction of branching quantifier
prefixes is the following. Consider (2a) and its Skolem equivalent (2b).

(2) a. Vey,zz-Jyi,ye - (e, 22,91,92)



b. 3f1, fa - V1,22 - d(z1,22, fi(21, 22), f2(21,22))
c. 3fi, fa-Vei,z2 - ¢(21,22, fi(z1), f2(22))

Vzy - 3y1
d. é(z1, 2,91, Y2)

sz . Eiyz

In (2a), y; and y2 depend on both z; and z2, as is shown clearly by the Skolem-functions
f1, f2 in (2b). It seems rather unnatural, that there shouldn’t be a formula in some first-
order formalism where the dependency-scheme is like in (2c), i.e. y; depending only on
z7 and y2 only on z2. Therefore, we want something like (2d) to express (2c) in a quasi
first-order language, where the branching format signifies that the dependency scheme
is non-linear here. Bindings that occur on the same line are interpreted in the usual,
linear way. However, there is no dependency between bindings occurring on different lines.
Therefore, (2d) has exactly the same interpretation as the Skolem-formula (2c), the formula
it was meant to mimic. It is the simplest form of branching standard quantifiers that is
genuine, in that it is not reducible to a first order sentence, and in fact, as Ehrenfeucht
showed, adding the quantifier-prefix from (2d) to first-order logic would lead to non-
axiomatizability ([8], pp. 181-183).

Does branching occur in natural language? Examples of natural language sentences
that may express the branching formula (2d) are rather complicated and highly disputed.
But the question can be answered positively by introducing branching of generalized quan-
tifiers, cf. [1]. In that case, genuine branching already occurs in the form (3a), prime
examples being sentences of the form (3b), like e.g. (3c-d).

Qf'z
3) a >Rmy
QFy
Q1 C’s and Q2 D’s [all] R each other.
c. Most philosophers and most linguists agree with each other about branching
quantification.
d. More than half the dots and more than half the stars are all connected by lines.

In the present article, we will only be concerned with this two quantifier format. However,
in general, it’s not entirely clear what we mean by (3a). One of our tasks in this article
will be to find reasonable truth conditions for the interpretation of branching formulas.

The second class of parallel quantification that occurs in natural language is formed by
so-called cumulative quantification ([9]), graphically represented as (4a). Natural language
sentences allowing this reading are in general of one of the forms (4b-c), like e.g. (4d-e).
These are easily interpreted, though we still have to be careful not to confuse them with
certain forms of collectives, cf. section 2.1.

Qfz
(4) a. |Ra:y
QFy
b. Qi1 C’s R Q2 D’s [together]
c. Q2 D’s are R-ed by @1 C’s
d. In the kitchen, four boys were eating three pizzas.
e. Three elephants were chased by a dozen hunters.



My aims in this article are the following;:

e To find an acceptable general interpretation for the branching formula (3a). In par-
ticular, I will reconcile Westerstahl’s and Sher’s truth conditions for this formula
([13], [10]), which at first sight seem totally different, by showing that, after some
modifications, their basic ideas and intuitions can be used to obtain a single branch-
ing scheme B1, cf. section 5.3.

e To make a clear distinction between parallel quantification and certain collective
readings that have been confused with parallel quantification, and suggest a possible
reason behind the apparent connection between the two groups of readings.

e To make plausible that, even from a logical point of view, there can be only three
parallel forms of dyadic quantification, one of these being the cumulative reading, and
the other two representing two possible interpretations of branching quantification.

Here is how I will go about. I will start linguistically and examine the meaning of
sentences that allow parallel readings, in section 2. The analysis will lead to a number
of parallel definition schemes o0 = 0(Q1,Q2,R), where Q1,Q2 represent the two quanti-
fiers occurring in the sentence and R is a relation denoting the VP. These will generate
parallel unary dyadic quantifiers 0(Q1,Q2) for specified classes of unary logical quanti-
fiers Q1,Q2. These classes may consist of all quantifiers, all upward monotonic ones, all
downward monotonic ones, all convex ones, etc. . To make them really work in interpret-
ing natural language, we modify these unary parallel definition schemes to binary ones
c*(Q1,C,Q2,D, R), Q1,Q2 binary logical quantifiers with respective domain restrictors
(noun denotations) C, D, in section 3.

In section 4 I will start a logical analysis of parallel quantification, by introducing
semantic principles that parallel definition schemes o = 0(Q1,Q2, R) should satisfy, as well
as some that are characteristic for specific classes of parallel quantifiers. As an example,
I mention the principle of

symmetry o(Q1,Q2,R) & 0(Q2,Q1,R),

which can be found in [13] and [3]. The relevance of these principles is threefold. First
of all, we may eventually be able to use such principles to find elegant mathematical
characterizations of specific classes of parallel quantifiers. Also, they allow us to analyze
the concept of parallel quantification. It is of course impossible to take any reading of a
parallel-type natural language sentence to be its parallel reading, as these sentences are
usually highly ambiguous. By analyzing readings by their principles we can check whether
they are indeed parallel. Finally, we may even be able to use a number of semantic
principles to show that the number of parallel definition schemes is limited — my guess
is that there are only three. These three applications of the logical approach started
in section 4 will be the subject of section 5, where I will present partial answers to the
associated questions.

2 Natural Language

In this section we will analyze natural language examples of parallel quantification in order
to see if these can help in finding an acceptable interpretation of branching quantification.



In doing so, we have to be aware of the danger of accepting a reading of a parallel-type
sentence as the parallel reading. This means that we have to check possible readings
against what our intuition tells us about the concept of parallel quantification. It will
turn out that collective readings are easily misinterpreted as parallel and that to avoid
this we have to apply the intuition that parallel readings ought to be ‘global’, evaluating
the entire VP denotation R, not just some product contained in it.

We will set out with the easier form of parallel quantification, the cumulative readings.
After that, we will review Barwise’s treatment of monotonic branching ([1]), and Sher’s
generalization of Barwise’s upward branching ([10]). The more logically oriented approach
towards finding a general branching definition found in [13] will be investigated later, in
section 5.

Before we start our discussion of natural language examples of parallel quantification,
two technical remarks have to be made.

1. In the present section, we will only consider unary, logical quantifiers, using defini-
tion schemes o = 0(Q1,Q2, R), where @1, Q2 are two unary logical quantifiers and R
is a 2-place relation interpreting the VP. From these, we easily obtain the more gen-
eral definition schemes 6*(Q1,C, @2, D, R), Q1,Q2 binary, logical and conservative,
with respective domain-restrictors C, D denoting nouns, cf. section 3. Furthermore,
considering only logical quantifiers isn’t a real restriction, since parallel sentences
featuring non-logical quantifiers do not seem to make much sense.

2. Since our definitions will crucially involve cross-products A x B — the basic indepen-
dent items in relational algebra —, we have to make a choice regarding the empty
relation, which is multi-representable as a cross-product by taking either of A, B
empty. Taking into account that the cumulative interpretation

C 3A,B#0-domR=A A rangeR=B AN A€ Q; AN Be Q>

automatically does not allow that exactly one of A,B is empty, and noting the
failure of sentences like (5), I propose that we disallow cross-products of the form
A x 0, ) x Bif A, B aren’t empty themselves.

(5) *No men and three women hate each other.
We achieve this by treating the empty relation separately, defining

J(QI’QZ’Q) A m € Ql Aw € QZ

for all parallel definition schemes o, and considering only non-empty relations hence-
forth. Note that the other uniform choice, which is actually implicit in Barwise’s
original definitions, and therefore also in Sher’s and Westerstahl’s definitions,

U(Ql’Qz,w) A 0 € Ql V@ € QZ )
would leave (5) satisfiable.



2.1 Cumulatives

Cumulative quantification, graphically represented as (6a), is the simplest form of parallel
quantification. The semantics for this class is fixed as the cumulative reading C (equiva-
lently C’) of cumulative-type sentences like (6b-c). As an example, the cumulative reading
of (6¢c) states that three boys ate a total of four pizzas, and that this assertion describes
the whole boys-eating-pizzas situation.

le I
(6) a. IRwy
Q2y

Three elephants were chased by a dozen hunters.
c. Three boys ate four pizzas.
C Q@Qiz-Jy-Rzxy A Q2y-3z- Rxy
C' domR€Q; A range R€ Q2

In this paragraph I will point at a collective reading that seems related to the cumulative
interpretation. Consider (7a). One may argue that this should imply (6b). The reading
of cumulative-type sentences that allows additions like in (7a) is T(ogether): there are
groups A (‘hunters’) in @Q; (‘a dozen’) and B (‘elephants’) in Q2 (‘three’) that match
up to each other cumulatively in the relation R (‘chase’). I will call this the cumulating
collective interpretation.

(7)  a. Three elephants were chased by a dozen hunters, and two others were chased
by ten.
b. In the kitchen, three boys ate four pizzas.
c. Last summer in this hotel, 148 beds served 4193 guests.
T 3JA4€Q:,B€Qy-(R[A]=B A R[B] = A)*

Restating the cumulative reading C in terms of this collective reading, it says that the
choices A, B in T are mazimal sets (in any sense of maximality) such that the condition
R[A] = BA IVE[B] = A holds; in other words, T holds, and provides a description of all
of R. This reading comes out more clearly if we modify our examples in such a way that
it becomes clear that we are describing the whole situation within a certain context, like
in (7b-c).

The idea that parallel quantification should be ‘global’ will come back in our analysis
of branching quantification. It remains an open question how the reading T should be
captured in Van der Does’ framework ([4]), and what its exact relation with C is. My
guess would be that parallel quantifiers can be obtained as globalized versions of certain
collective readings. The deeper reason behind this connection may have something to do
with static versus dynamic interpretation contrast.

!Where R[X] and R are defined by
R[X] = {d|3z€ X:Ray}
Rzy & Ryz



2.2 Monotonic branching

A first step towards a truth-definition for branching non-standard quantifiers was made
in [1]. In solving the disputed question whether genuine branching occurs in natural
language, Barwise argues that the (affirmative) answer is most easily given by considering
branching of generalized quantifiers. For this purpose he uses sentences like (8a-c).

(8) a. Quite a few philosophers and quite a few linguists [all] agree with each other
about branching quantification.
b. Less than half the dots and less than a third of the stars are all connected by
lines.
c. Less than half the villagers and most townsmen [all] hate each other.

In the intended branching reading of (8a) we are only interested in the relation ‘agree’
between philosophers on the one hand, and linguists on the other, not among the groups
of linguists and philosophers themselves. Inserting the predicate quantifier ‘all’ in these
sentences seems to help us obtain the branching reading.

Note that there is no linear dependence between the quantifiers in (8a-b). Furthermore,
both quantifiers in (8a) are upward monotonic, and both quantifiers in (8b) are downward
monotonic. Both these sentences make perfect sense, but mixed monotonicity examples
like (8c) are definitely trickier. In fact, both [1] and [13] claim that this type of sentence is
impossible to make sense of. On this issue I am inclined to agree with Sher, who does obtain
an acceptable reading for the mixed monotonicity case. Exploiting the monotonicity-

behavior of the underlying monadic quantifiers, Barwise proposes the following upward
(BU) and downward (CD) branching definition schemes.2

BU J4,B#0-(AxBCRA A€EQ1 A Be€ Q)
CD 3A,B#0-(AxBDRA A€Q; A B€Qy)?

It seems obvious that these provide sufficient conditions — in fact, they are the minimal
monotonic definition schemes, cf. section 5.1. But we will see later that CD may be too
strict.

Here are some justifications for the truth-definition BU, some of which also hold for

CD:
e Intuitively, BU seems to provide the preferred reading of (8a).
e The branching of V,3 is a special case of BU.

e Upward branching dyadic quantifiers are upward monotonic under definition BU,
and the same kind of thing holds for CD. In section 4 we argue that this preservation
of monotonicity behavior is one of the semantic principles that parallel definition
schemes should satisfy.

2 Actually, unlike us, he doesn’t treat the empty relation separately, so he gives JA € Q1,B € Q2-AXB C
R in the upward case. The effect of this definition as opposed to BU,isthat 0 € Q & 0 € Q, V0 € Q2,
rather than € Q & 0 € @1 A® € Q2. As we explained in the second remark preceding this section,
we prefer the latter. In the downward case there isn’t any difference, but we use this formulation to get
uniform definition schemes.

3Here is the key to the labeling of these definition schemes: B=branching, C=cumulative, U=upward,
D=downward. The reason behind the actual names of the present two schemes will become clear in the
course of this section.



¢ BU(Q1,Q3, R) implies both its linear variants Q12 - Q2y - Rzy and Q2y- Q1z - Rzy.*
e A point stressed by Barwise is that BU, CD are analogous to

AecQ & 4 Q- ACA
AcQ & 34 ecQ-AD4A (1)

which provide valid second-order definitions, for upward and downward monotonic
monadic @, respectively.

In connection with the last remark, it should be noted that there are other obvious second-
order equivalents:

AeQ & (VA -A DA = AeQ)
AeQ & (VA - ACA= AeQ) (2)

for upward/downward monadic @, respectively. So as far as the ‘monadic analogue’ prin-
ciple goes, we might just as well have defined upward and downward branching as

CU VA,B#0-(AxBDR = A€ Q:ABEQ,)
BD VA,B#0-(AxBCR = A€ Qi AB€E Q)

Note that the downward variant BD wouldn’t have made any sense if we had allowed
A, B such that, e.g., A = 0,B # (; yet another reason for treating the empty relation
separately.

Before we continue, two remarks should be made about the four definition schemes in
this section.

1. Asis easily checked, BU implies CU and CD implies BD for @1, Q2 of the intended
monotonicity behavior, but the converses of these implications don’t hold.

2. BU and BD estimate R from below, whereas CU and CD do the opposite. This
discrepancy between the ways of approaching R may be a fundamental difference
between branching and cumulative quantification, though at this point this can be
no more than a guess.

Definition CU, to be honest, doesn’t make much sense as a branching definition; it
does not even pass the test of coincidence with the branching of V, 3:

example
Consider a domain F = {1,2}, a formula

Vo

N
(9) Ry
Yy 4

*However, there is no connection between CD(Q1,Q2,R) and its linear variants. [13] calls this fact
surprising, but here is a simple explanation. If we write @1 = =Q}, Q2 = —Q5 (so @}, Q> are upward
monotonic), the first linear variant gets the form —=Q'z--Q5%y - Rzy, or, equivalently, (—=Q1—)z - Q2y - Rzy.
The converse (=Q]—) of Q] is upward monotonic, whence the whole quantifier prefix is upward monotonic.
In contrast, the branching version should be downward monotonic. So there shouldn’t be an implicational
connection here! In fact, it seems to me that downward monotonic branching formulae should imply the
negations of their linear counterparts, and if we use CD, they indeed do.



and a relation R = {(1,1),(2,2)}. (9) is equivalent to Vz - Vy - Rzy, so it shouldn’t hold
for this particular relation. However, CU(V,V, R) holds. O

So we reject the proposed definition CU as a branching definition. It is in fact, as you
have probably guessed by its name, the upward cumulative reading. On the other hand,
BD seems to make a lot of sense:

example
Consider the sentence

(10) Less than four dots and less than four stars are all connected by lines.

e o o o
b R S S o

There are 4 groups of dots and stars that are all connected by lines, all consisting of 1
dot and 1 star. If we interpret (10) by CD, we would reject this relation of groups of 1
dot and 1 star that are all connected by lines, on the grounds that there are too many
dots and stars involved in the connectedness relation. However, as I read (10), it only says
something about the number of dots and stars that are all connected to each other,’ not
about how many dots are connected to some star and how many stars are connected to
some dot.® Therefore, I would accept (10) here. O

The reading described in this example is captured exactly by BD above. It is reminis-
cent of the ideas presented in [10], the terms ‘big parties’ and ‘all’ reflecting the concept
‘mazimal each-all dependence’ discussed there. Sher’s approach will be the subject of the
next section. Again I stress that the existence of the reading BD for downward branching-
type sentences does not automatically imply that it is the branching reading. However,
since I cannot find another explanation for its existence as a reading, and it is in accor-
dance with my intuition of the branching concept, I accept it as a possible downward
branching reading. I called it BD, for if it exists, I don’t see what it can be but the
downward branching definition scheme.

Here are some advantages of the interpretation BD:

e BD seems to provide the preferred meaning of downward branching-type sentences,
as is illustrated by the example above.

®But remember that we are not interested in connections amongst the groups of dots and stars.

81f you do not obtain this reading, try binding the compound subject together by pronouncing it slightly
quicker, and stressing ‘all’ by hesitating before it and putting it in a slightly higher tone. Also, the BD
reading can be brought out by paraphrasing (10) as (11):

(11) Less than (four dots and four stars) are all connected by lines.

This suggests a connection between BD and resumptives — another line of future research. For an overview
of various types of dyadic quantification, cf. [3]



BD captures the negative flavor of sentences like (10); in contrast, CD is distinctly
positive.

Downward branching quantifiers are downward monotonic under BD as well as CD.

As we already mentioned, BD has a monadic analogue (2).

As Sher notes, CD is equivalent to the cumulative interpretation C.” There seems
to be no reason why this should be so. If we use BD as the downward branching
reading, the unwanted equivalence disappears.

For these reasons, I prefer BD as the downward branching reading over CD. However,
it seems fair to say that CD should not be rejected as a branching scheme just like that
— after all, no one but Sher has objected to it. Therefore, rather than choosing between
BD and CD, I will investigate both these alternatives in this article. I will combine the
four monotonic parallel definition schemes to get more general schemes in section 5.2.

2.3 Branching

A linguistically inspired approach towards finding a general branching definition was made
by [10]. The general feeling about the branching formula

Qlﬂv\

/ny

Q2y

is that its interpretation should have something to do with the basic independent objects
in relational algebra: Cartesian products A x B. Sher’s basic intuition is that of these
products only mazimal ones are relevant. For instance, it would be rather strange to use
sentence (13) as a description of the following graph, since there are not two dots and two
stars, but three dots and three stars that are all connected by lines.®

o *
o *
® *

(13) Two dots and two stars are all connected by lines.
Taking these considerations into account, Sher simply defines

S JA,B#0-(Ax B Cmaximalin R A A€ Q1 A B€Qs),

"This is of course the reason why I called it CD: it is certainly the downward cumulative reading, and
only one of the alternatives for downward branching.

8 Admittedly, (13) can be said to hold in this situation, in its reading paraphrased by (12), but this is
certainly not the branching reading.

(12) There are two dots and two stars that are all connected by lines.



where Cmaximal is defined in the obvious way:

A X B Cmaximalin R := AxBCR A
AXBCA XB CR=AxB=A4"xB

I don’t know how Sher got to this maximality intuition, but it seems sound to me; if we
are interested in the validity of a sentence like (13), we look for big cross-products within
our relation and check if their size is 2 X 2. Another thing that can be said in favor of S
is that it contains Barwise’s BU as a special case. Also, I do feel that S can be obtained
as a reading of many branching-type sentences, in the way shown by (14a-c):

(14) a. Four boys in my class and three girls in your class have all dated each other.
b. Four boys in my class have dated the same three girls in your class, and three
girls in your class have dated the same four boys in your class.
c. Four boys in my class have dated the same three girls in your class.

The ‘the same’ sentence (14c) can obviously be interpreted with S, which by the way is why
I called this definition scheme S in the first place. The reasoning behind the Cmaximality
condition comes out clearly in the relative failure of (15a) and (15b).

(15) a. ?Four of my friends applied to the same three graduate programs, and to the
same four graduate programs.
b. ?Four of my friends applied to the same three graduate programs, and two of
my other friends also applied to these.

It may be argued that (15a) and (15b) make some sense, they definitely sound strange.
The point is, that the clauses before the comma are not exhaustive. We conclude that the
S-reading is maximized because of the above pragmatic reasons.

Should branching quantification involve Cmaximality? Sher sensed that some kind of
maximality is involved in branching quantification, and rightly so, witness the example at
the beginning of this section as well as the discussion below. I think the reason why out
of all possible concepts of maximality she chose Cmaximality is that she took ‘the same’-
sentences to be some way of expressing branching quantification — the examples (15a-b)
are actually adapted from [10]. This is another confusion between collective readings
and parallel quantification. Although parallel quantification and collective readings are
probably related, they definitely have different underlying concepts. This should come
out as local versus global assessment of the relation R, as well as in validity of certain
preservation properties I will present in section 4.3.

So Sher’s maximality intuition makes sense, her definition S is compatible with Bar-
wise’s BU, and it can be obtained as a reading for many branching-type sentences. But
I have serious doubts as to whether it is a branching reading. For one thing, my feeling
about the whole concept of parallel quantification tells me that the branching definition
should be global, evaluating all of the relation R at the same time, whereas S only looks at
one cross-product contained in R. The situation is similar to what we saw in section 2.1,
where we found that cumulative-type sentences allow both a cumulative and a cumulating
collective reading. This suggests that we bring out the branching reading more clearly if
we paraphrase the branching-type sentences as in (16), where it is obvious that we are
interested in all of the relation [agree].

10



(16) All in all, few linguists and few philosophers all agree with each other about branch-
ing quantification.

If you are not convinced by these vague considerations, here is something more tangible.
Consider (17a-b)

(17) a. Most townsmen and most villagers hate each other.
b. Less than half the townsmen and less than half the villagers hate each other.
c. Most townsmen hate the same majority of villagers.

These two sentences obviously cannot be true at the same time. However, if we would
use Sher’s interpretation S, they would both be true in the following situation, where the
domain contains three townsmen (dots) and three villagers (stars):

—

L *

So Sher’s proposed branching definition S fails here. The formal principle of

locatedness 0(Q1,Q2,R) A o(Q1,Q5, R) = Q2NQ4 #0.

is inspired by the failure of (17a-b), cf. section 4. In fact, the quantifiers in (17a-b) don’t
allow a ‘the same’ sentence; if you try, you end up with something like (17c), the description
‘majority of’ revealing that S is in fact a collective reading. All of these considerations
lead us to the conclusion that S is the ‘the same’ interpretation, not a branching reading.
I will call S the mazimal each-all collective reading.

If we accept Sher’s basic maximality intuition as a basis for our branching definition,
there has only been one point where we could have gone wrong: in choosing the maximality
notion. Looking at the example above, and considering that we want a global measure,
that looks at all of the cross-products contained in a relation, we can only come to the
conclusion that we need a notion of maximality that is based on cardinality rather than
inclusion. Here is a first attempt:

AX Bis (E,#)maximalin R := AxBCR A
AxB'CR = A<Xg ANB' <g B,

where <g is a double cardinality notion taking into account the remainder F — A, which
consists of the elements in the entity domain E that are non-A’s:

A'<p A = |A|<|A| A |E-A|>|E— Al

Using <g we define =g and <g in the obvious way. For instance, if E = IN, A = F — {0},
B = FE, then A <g B, even though |4| = |B|. Of course, when E is finite, =5 comes
down to equi-cardinality. It is worth noting that the global behavior of (E, #)maximality,
i.e. the fact that it considers all of the products contained in R at the same time, can be
ascribed to the fact that the <g-relation is logical in that it is invariant under pairs of
permutations. In fact, it is the closure of C under permutations.

11



However, the following example shows a subtlety that (E,#)cardinality does not take
care of.

example

(18) a. At least two dots and at least two stars are all connected by lines.
b. Two or three dots and three stars are all connected by lines.

S
=

e o o o o
L R R S S o

The connectedness relation consists of two cross-products between dots and stars, of sizes
2 x 3 and 3 X 2, respectively. This means that neither of the two cross-products is
(EF, #)maximal. However, (18a) should definitely hold here, as is properly modeled by
the upward branching scheme BU. Therefore, a branching definition based on (F,#)-
maximality can never work, because it fails to coincide with BU for upward monotonic

Ql) QZ-

Next, consider (18b). I would say that this sentence is true here. The point is, that we
should take into account the actual quantifiers used in the sentence we are interpreting.

First look at the dots. In the first cross-product there are two, in the second one
three. So is there any difference? The relevant quantifier 20r3 doesn’t make a distinction
between two or three, so neither should our notion of maximality.? We conclude that on
the side of the dots, there is no real difference in size between the two cross-products. The
stars then tell us, that the upper cross-product should be considered maximal. Checking
its size against 2 x 3 against 20r3, 3, we accept (b) in this situation. O

Here is the definition formalizing the ideas introduced in the example:

A x B is (F,#)maximal in R relative to Q1,Q2 :=
AXxBCRA
A x B CR = (Al le,E AANB ng,E B) R

where the ordering relations <g g are defined by
A =Q,E A = A <g Av A ~Q,E A,
and the equivalence relations ~g g (‘is in the same convex part of Q’) are defined as

A’NQ,EA = A'<p A A (A’jEA"jEAé(AEQﬁAHEQ)) \%
A<p A N(A<pA"2pA'=>(AcQ e A" €Q))

®However, if the quantifier would have been 20r4, and the numbers of dots 2 and 4, respectively, there
would have been a difference: we pass the ‘gap’ 3 when going from 2 to 4.
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It may be revealing to see the accompanying strict ordering relation <g g as induced by
the following ordering of P(F)/~q E:

[A,]NQ,E <E [A]NQ,E = A <pd

A closer examination of the ordering relations we introduced in this section may be worth-
while. For example, does a relativization of C to a quantifier () lead to an acceptable or-
dering relation? Can we characterize the orderings by their properties? These questions,
however, are not within the scope of the present article.

Our branching definition based on the maximality intuition is simply:

Bl 34,B # 0 - A x B (E,#)maximal in R relative to Q1,Q2 A A€ Q1 AB € Q,

We will see in section 5 that the same definition can be obtained by applying the techniques
introduced in [13] to BU+BD.

3 Binary Quantifiers

At the start of section 2 we put aside the issue of binary quantifiers and conservativity
with a short remark, because it would unnecessarily complicate the definitions of paral-
lel quantification we were after. However, now that we have the unary definitions, we
should check if we were right in claiming that we can easily find their extensions to binary
quantifiers.

The first question we should answer is whether or not non-conservative binary quan-
tifiers allow parallel quantification. One quantifier that has been claimed to be non-
conservative is many. Some attempts to obtain parallel readings with this quantifier are
shown in (19a-d).

(19) Many boys ate four pizzas.
*Many townsmen and most villagers all hate each other.
Many townsmen and many villagers all hate each other.

Many townsmen and villagers all hate each other.

oo

Cumulative-type sentences with the quantifier many like (19a) obviously don’t allow a
cumulative reading. On the branching side, it is impossible to make sense of sentences
like (19b); the complex nature of the sentence does not allow us to check the group of
townsmen against some reference set. A many/many branching-type sentence like (19c)
seems to make some sense, but in fact its only possible reading is the resumptive (19d).1°

Another quantifier that does not satisfy conservativity is only. Curiously, it seems to
have exactly the same behavior in parallel environments as many. The examples (20a-d)
behave exactly like (19a-d).

(20) Only boys eat four pizzas.
*Only townsmen and most villagers all hate each other.
Only townsmen and only villagers all hate each other.

Only townsmen and villagers all hate each other.

ao o

1By ‘resumptive’ we mean pair-quantification, as in ‘Most lovers will eventually hate each other.’
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That the branching-type sentence (20c) should be read as the resumptive (20d) nicely
corresponds to intuitions about (21a) in its meaning (21b), which has been claimed to be
the resumptive (21c).

(21) a. No one hates no one.
b. No one hates anyone.

c. no’(z,y) - [hate](z,y)

We conclude from the above survey that only conservative binary quantifiers allow parallel
readings, so we can restrict attention to those. It is obvious that parallel quantifiers defined
with conservative binary quantifiers should be conservative themselves. There are various
types of conservativity of dyadic quantifiers, but in the parallel case only few come into
consideration. If we do not have to take into account the possibility of the empty set
messing things up, it is quite easy to choose a type of conservativity that works. Two
examples suffice.

(22) a. Last summer in this hotel, 200 beds served 4000 guests.
b. Most townsmen and most villagers all hate each other.

In (22a) it is obvious that we are only interested in guests sleeping in beds, not in guests
sleeping on the floor or hotel ‘employees sleeping at their work station. Also, in (22b), we
are only interested in the hate relation between townsmen and villagers.

Judging from the above two examples, it is tempting to define binary parallel definition
schemes ¢* from their unary counterparts o by the following rule:

(23) *For binary logical conservative Q1, Q2:
0*(Q1,C,Q2,D,R) & 0(Q1(C),Q2(D), RN (C x D))

However, if we apply this type of conservativity against parallel-type sentences of which
the interpretation does involve the empty set, we get into trouble. Consider the following
natural language examples involving the quantifier no. It is obvious that (24a-b) fail.

(24) a. *No boys ate three pizzas together.
b. *No men and three women all hate each other.

However, if we use (23) to generate our binary parallel definition schemes, (24a-b) would
be left satisfiable. The point is, that although we disallowed cross-products of the form
A x B when exactly one of A, B is empty, we didn’t exclude non-empty products A x B
such that exactly one of AN C,B N D is empty. The best way to solve this problem is to
consider all domains at once and assume the principle of extension.!!

First note that we have been rather sloppy in section 2, where we tacitly assumed a
fixed domain F x E. However, this will cause no problems, since the definitions we gave
will work uniformly in all non-empty domains C x D. What we want to do now, is to
use our unary parallel definition schemes o(Q1,Q2, R) to derive the accompanying binary
ones 0*(Q1,C,Q2, D, R), making sure that for every product A X B that turns up in the
interpretation, we will automatically have ANC = A4, BN D = B.

" For monadic quantifier properties like conservativity, extension, logicality (permutation-invariance),
monotonicity, etc., cf. [12] or [2], as always.

14



To achieve this, we use the notion of relativization of a unary quantifier. All binary
quantifiers Q@ that satisfy extension and conservativity, can be had as relativizations Q'"
of unary quantifiers @', and vice versa — cf. [12], pp. 18,64. This means that

Q-(ANC) & Qg(C,A) foral ACCE,C+#0

Using this fact, the type of conservativity we want in the parallel case is clear. We state it
in the form of a semantic principle that parallel definition schemes should satisfy. If o is a
unary parallel definition scheme, then its corresponding binary parallel definition scheme
o* should satisfy

conservativity preservation For all unary logical Q1,Q2:
U*(QI, C> QE’ D7 R) And 0((Q1)C’ (QZ)D7 RN (C X D))

Note that this type of conservativity removes the problems the empty products caused
in the earlier conservativity attempt (23). It corresponds to the P-conservativity (type 2
conservativity) of [4], ch. 5 — yet another connection between parallel quantification and
collective readings.

Here are the binary forms of the parallel definition schemes from section 2.

BU* 34, B#0- ACCABCDAAXxBCRN(CxD)AQ:1(C,A) AQ2(D,B)

BD* VA, B#0- (ACCABCDAAXxBCRN(C x D))= (Q1(C,A) AQ2(D, B))

CU*VAB#0- (ACCABCDAAXxBDRN(C x D))= (Q:1(C, A) A Q2(D, B))

CD* 3A,B#0-ACCABCDAAXxB2RN(C xD)AQ1(C,A) AQ2(D,B)

C* Q1(C,dom(RN (C x D))) A Qa(D,range(RN (C x D)))

B1* 3A,B#0-A x B (C,D,#)maximal in RN (C x D) relative to Q1,Q2 A
QI(C,A)AQZ(D’B)

where (C, D, #)maximality relative to Q1, Q> is defined in the obvious way.

We saw in this section that non-conservative quantifiers do not allow parallel quan-
tification. Also, for conservative quantifiers we have a uniform way of obtaining binary
parallel definition schemes from unary ones. From these two facts we can conclude that
we were right in considering only unary logical quantifiers on fixed universes. We will
continue to do so when we start our logical analysis of parallel quantification, in section 4.

4 Principles

In the previous section we showed that the analysis of binary parallel definition schemes
0*(Q1,C,Q2,D, R) can be reduced to the treatment of unary schemes o(Q1,Q2, R) by
the principle of conservativity preservation. In the present section we will start our logi-
cal analysis of these unary schemes, by introducing semantic principles that they should
satisfy.

As a first remark, from a technical point of view, we may look at unary parallel quan-
tifiers in two ways. The first one is to ask, which dyadic quantifiers Q qualify as parallel
quantifiers. The second one is to determine which definition schemes ¢ = 0(Q1, @2, R)
lead to classes of parallel quantifiers. These two points of view come down to the same
thing, since all parallel quantifiers should obviously be

decomposing VA, A", BB’ #0- (AxBcQAA xB' €Q = Ax B €Q)?

12This is a rather general principle that holds for many dyadic quantifiers that are definable by two
monadic ones; e.g. positive Fregean ones.
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By defining
A€eQ: = d3B#0-AxBeQ (A#0)

BeQ, = 3A#0-AxBeQ (B#0)
le@: = e
®€Q2 = 0€Qa

which is possible exactly because of the decomposing principle, we are back at the level of
parallel definition schemes, with the extra principle of

productivity VA,B # 0 - (0(Q1,Q2,AX B) & A€ Q1 ABE Q)
0(Q1,Q2,0) & DeQ1ADE Q.12

In this section we will examine semantic principles that we could impose on scope-inde-
pendent definition schemes o, in the way propagated by Van Benthem in [3]. In order to
check the ‘soundness’ of the principles we propose, we can use two perspectives. From
a linguistic point of view, we should look at all instances of parallel-type sentences, and
see if they satisfy all principles. From a logical point of view, we can check the principles
against a couple of basic intuitions.

First of all, we can view parallel quantifiers as two-dimensional forms of monadic ones.
Secondly, the two monadic quantifiers used in the parallel one have to be treated as on
a par. Finally, in contrast with collective readings, parallel quantification should involve
a ‘global’ condition. The principles of productivity and symmetry model part of the
parallelism intuition.

symmetry 0(Q1,Q2,R) < 0(Q2,Q1,R)

The latter principle doesn’t seem to be of much use in itself; it just ensures that every
other principle we propose will have a symmetric meaning. I.e. there is no difference
between giving a full symmetric formulation of a principle or a partial one.

The basic insight of global parallelism gives rise to principles of heredity of structural
properties, of the form ‘if Q;,Q2 both have the property X then so does the parallel
quantifier 0(Q1,Q2)’. The conservativity preservation from section 3 is an example of this
type of principle. Also, this intuition suggests a syntactic format for parallel definition
schemes — cf. the discussion in 5.1.

Eventually, a number of such semantic principles may lead to a characterization of
the various forms of parallel quantification. However, it may also be that we need some
restrictions on the syntactic format of the definition schemes in addition, to take care of
the intuition from section 2.2 that they should have monadic analogues. In this article,
however, we have to settle for less. What we do achieve is a breakdown of our intuitions
about parallel quantification in small, easily manageable parts — and possibly to use these
to generate parallel definition schemes automatically. In connection herewith, we can
cut back the number of possible parallel definition schemes, by showing that only some
schemes satisfy all principles we found.

Here is how we will go about. We will start with a reexamination of monadic quantifica-
tion, and draw some conclusions from this discussion for parallel quantification. Next, we

13Note that this is exactly the empty relation handling from section 2.
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will examine two further basic groups of semantic principles, monotonicity principles and
preservation properties.'4 Application of these principles will be the subject of section 5.

4.1 Monadic quantifiers

Unary logical monadic quantifiers can be divided in a more or less standard way into four
classes of ascending ‘complexity’. The simplest quantifiers are the upward monotonic ones.
The closure of this class under negation is the class of monotonic quantifiers. Closing these
under - arbitrary or simple - conjunctions gives us the class of convex quantifiers.!® The
class of logical monadic quantifiers in general is obtained from this class by closing it under
arbitrary disjunction.

In the parallel case, we want to obtain a general definition schemes from the com-
paratively simple monotonic cases, via an intermediary convex scheme. The step from
monotonic to convex schemes goes back to [11] and has been applied to branching quan-
tification in [13]. Convex monadic quantifiers are split into monotonic ones in the following
way:

AeQt = 34 e€qQ-AcCc4
Ac@Q := 34 eQ - A D4

This appropriately corresponds to the view of the class of convex quantifiers as the closure
of the class of monadic quantifiers under conjunctions, since we have

Q=Q"NQ~ & Q is convex.
The meaning of the 4+ and - operations is probably best explained by some examples.

1. If Q is upward monotonic, then Q* = Q, and Q~ is the trivially true quantifier 7.

2. If Q is downward monotonic, then Q~ = @, and Q™ is the trivially true quantifier
T.

3. If @ =between 3 and 6, then Q" = 353, Q~ = J<,.
4. If Q =4or5, then Q* =354, @~ = J<s.
Going from convex to general logical monadic quantifiers, we use the equivalence rela-
tion ~qg g (‘is in the same convex part of Q’) we introduced in 2.3:
A~qpA = (AXpA' AN A=p A" <p A =>Q(4)=Q(4") Vv
(A <p AN A <p A" <p A= Q(4) =Q(4"))

Again, this corresponds to the view of the class of logical monadic quantifiers as the closure
of the class of convex ones under arbitrary disjunctions, since we have

Q = U [A]NQ,E
AEQ

where [A].,  is the equivalence class of A under ~q g. Obviously, for every pair Q, E,
all equivalence classes [A]NQ’E are convex. Again, we give some examples to clarify the
meaning of ~¢ g.

4The first group consisted of the two basic principles of symmetry and productivity.
15These are often called continuous, but that is a confusing term.
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1. If Q is convex, and A € Q, then Q = [4].q 5-

2. If Q = an even number of, then the equivalence classes induced by [Q]py are
exactly the sets S, = {4 C IN | |A| = n}, and Q = Uy, even Sn-

3. If Q = 3or4or7, then the equivalence classes of @ contained in Q are {4 | |4] €
(3,4} } and {4 | |4] = 7}.

Of course, there are many other ways of going from monotonic quantifiers via convex
ones to general ones. However, the above way seems to reflect intuitions about quantifiers.
Also, it leads to a smooth way of generalizing monotonic parallel definition schemes, that
corresponds to our intuitions about parallel-type sentences.

4.2 Monotonicity in Qq, Q2

It is obvious that all parallel definition schemes should be monotonic in @1, Q2; the more
sets Q1, @2 accept, the more relations its parallel combination o(Q1,@2) should accept.

monotonicity in Q1,Q2 0(Q1,Q2) C o(Q1UQ},Q2U Q%)

However, more should be said about the exact way in which ¢ is monotonic in @1, Q2; for
instance, it could be continuous in @;,Q2. To start with, we saw in 2.3 that branching
quantification should at least satisfy the principle of

locatedness a(Ql) Q2, R) A U(Qlla Q2, R) = Q1N Q!l # 0

It seems that this is a principle that any parallel definition scheme should meet. For one
thing, cumulatives satisfy it. More importantly, from our intuitions about the parallel
and global nature of parallel definition schemes, we can conclude that parallel quantifiers
defined with totally different monadic quantifiers should never accept the same relations.

One aspect of the principle of locatedness is that neither of Q;1,Q2 can be trivially
false if 0(Q1,Q2) is to accept any relations. This is obviously a sound principle. The
formalization reads

non-triviality —o(0,Q1,R) ;0(T,T,R) ,

where T is the trivially true quantifier. Assuming non-triviality, we may consider the
following strengthening of locatedness:

A-preservation o(Q1,Q2N Q5 R) < 0(Q1,Q2,R) Ac(Q1,Q4, R)

This is a very strong principle, and I would prefer to do without it. Still, it makes
some sense. On monotonic quantifiers, A-preservation corresponds to the view of monadic
quantifiers we gave in section 4.1. Also, it goes well with our basic intuition of global
parallelity, but then again, so does

V-preservation ¢(Q1,Q2U Q5 R) & 0(Q1,Q2,R)V o(Q1,Q%, R)

and we certainly do not want to impose that on all parallel definition schemes - especially
not together with A-preservation, since that would lead to a condition that seems much
to strong. And if we cannot impose V-preservation, then from a logical point of view, we
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cannot impose its counterpart A-preservation either on all parallel definition schemes. Of
course, both principles may still hold for specific classes of parallel quantifiers.

We may also consider less conservative monotonicity principles. Here is one that
describes the parts of the quantifiers @1, Q2 that are relevant to the relation R.

R2SA0(Q1,Q25) = (0(Q1,Q%R) & o(Q1NQT,Q5NQ3,R)
RCSA0(Q1,Q2,5) = (0(Q1,Q%R) ©a(Q1NQT,Q5NQ5,R)

This is an immensely strong principle, but I believe it makes a lot of sense. For one thing,
all our parallel definition schemes satisfy it. But more crucially, it combines orderings
on relations and quantifiers in a natural way. Also, it does seem an exact modeling of
intuitions about which parts of the quantifiers 1, Q2 are relevant to R. Finally, without
proof, we note that relevance implies monotonicity preservation.

Still, we have to be very careful with principles as strong as this one. When we will
apply the principles, in section 5, we will always try to avoid using relevance.

The last strengthening of the principle of monotonicity in @1, Q2 we may consider is
again based on the observations we made in section 4.1. Just like there, in going from
convex to general quantifiers, we use the notion of ~g g to get the principle of continuity

in Ql/""Ql,E and in Q2/NQ2,E:

0(Q1,Q2,R) = A€ Q- o([Alug, 5 Q2 R)
U(Qla Q27R) = 4B € Ql * U(Qla [B]qu,E’R)

Continuity in Q1/~q, g states that the truth of o(Q1,Q2, R) depends precisely on the
convex parts of ;. For instance, the truth of a statement like o(20r4, @3, R) should
depend on the truth of either of 0(2,Q2, R), 0(4,Q2, R). The point is that there is a ‘gap’
between 2 and 4, so that these two cannot cooperate in making o(20r4, Q2, R) true.

Continuity in Q1/~q,,E is a very strong property, but in contrast with A-preservation
I think we should accept it, as it makes a lot of sense, cf. also [13], where exactly the same
thing is done for some simple separate branching cases.

This ends our discussion of the various types of monotonicity in Q1,Q2 we could
consider. We adopt locatedness and continuity in Q1/~q, g, and keep relevance in reserve.

relevance

4.3 Preservation principles

From a logical point of view, parallel quantifiers should inherit as many structural prop-
erties from their defining monadic ones as possible. A parallel quantifier o(Q1,@2) should
inherit the property X exactly if both Q; and Q2 both satisfy X. This type of preservation
models part of the ‘global parallelity’ intuition. An example <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>