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Dynamic Generalized Quantifiers and Monotonicity*

Makoto Kanazawa
Department of Linguistics
Stanford University
Stanford, CA 94305-2150, USA
kanazawa@csli.stanford.edu

1 Introduction

It has long been recognized that certain types of anaphoric dependencies in natural
language cannot be straightforwardly captured by variable binding in standard logic.
They are ‘intersentential’ and donkey anaphora, which have been widely discussed in
the literature since Geach 1962. In the last decade, they motivated various similar
proposals of so-called ‘discourse semantics’, including Kamp 1981, Heim 1982, Barwise
1987, Rooth 1987, and Schubert and Pelletier 1989. Groenendijk and Stokhof’s recent
(1991) dynamic predicate logic (DPL) is an attempt to capture the basic insights of
earlier theories in the form of a minimal modification of first-order logic.

Its similarity with first-order logic gives the formalism of DPL some distinct ad-
vantages. DPL is easy to use; for those familiar with first-order logic, it is easy to
develop intuitions about DPL. As a logical system closely related to first-order logic,
DPL naturally brings standard logical concerns into the picture, like the notion of log-
ical consequence and its syntactic characterization. It is also easy to consider various
extensions of DPL analogous to well-known extensions of first-order logic.

This paper concerns the system of DPL augmented with generalized quantifiers.
DPL with generalized quantifiers can be seen as a refinement of first-order logic with
generalized quantifiers, just as DPL is a refinement of first-order logic. Systems of first-
order logic with generalized quantifiers have been studied mainly in mathematical logic,
but when the system has a two-place generalized quantifier symbol for each natural
language determiner, it can be considered as a fairly good model of a certain extensional
fragment of natural language. Such a fragment is studied in generalized quantifier theory
(van Benthem 1986, Westerstahl 1989), and DPL with generalized quantifiers is expected
to add to the theory the capacity to treat anaphoric subtlety of natural language.

The kind of generalized quantifier that is of interest here is what Groenendijk and
Stokhof would call internally dynamic generalized quantifiers. They allow an indirect
binding relation to obtain between dynamic existential quantifiers in their first argument
and corresponding variables in their second argument. An empirical motivation for

*This is part of a larger work on the semantics of donkey sentences, monotonicity inference, and
generalized quantifiers in dynamic predicate logic. The focus here is on the logical issues. The more
linguistic half of the work will be found in Kanazawa 1992. The preparation of the present draft was
partly supported by project NF 102/62-356 (‘Structural and Semantic Parallels in Natural Languages and
Programming Languages’), funded by the Netherlands Organization for the Advancement of Research
(N.W.0.).



studying such generalized quantifiers comes from donkey sentences with relative clauses.
The correspondence is shown in (1):

(1) a. DetN[s...[np; aN]...][vp ...[Np; pronoun]...]
b. Qz(...8y...,...y...)

(1a) is a donkey sentence with a relative clause, like Every farmer who owns a donkey
beats it. (1b) is a formula of dynamic predicate logic with generalized quantifiers. Q is an
internally dynamic generalized quantifier, and £ is the dynamic existential quantifier of
DPL. The anaphoric relation in (1a) is modelled by the indirect binding relation between
£y and y mediated by Q in (1b).

An interesting task that suggests itself is to develop a theory of dynamic generalized
quantifiers, something analogous to the well-established theory of ordinary generalized
quantifiers (van Benthem 1986, Westerstahl 1989). Such a theory should formulate
dynamic notions analogous to static ones found in generalized quantifier theory and
prove formal results about dynamic generalized quantifiers. This paper can do no more
than suggest how such a theory might begin. While the standard generalized quantifier
theory is given at the denotational level, it will be convenient, at least for a start, to
speak of dynamic generalized quantifiers mainly in syntactic terms, using analogy with
first-order logic with generalized quantifiers.

Special attention is paid to a notion of Monotonicity suitable for internally dynamic
generalized quantifiers. This is in part inspired by a more general problem of accounting
for monotonicity inference in dynamic contexts. To illustrate the problem, the following
non-inference shows that one must take care in drawing monotonicity inference in the
presence of donkey anaphora:!

(2) [man who owns a garden] C [man who owns a house]
No man who owns a house sprinkles it
No man who owns a garden sprinkles it

Here, the first premise is that the set of men who own a garden is a subset of the set of
men who own a house, or every man who owns a garden is a man who owns a house.
From the fact that the determiner no is downward monotone in the first argument,?
one might expect that the replacement of man who owns a house in the second premise
by man who owns a garden is truth-preserving, which in fact it is not. The problem is
obviously caused by the presence of a donkey pronoun it; compare the validity of the
inference from No man who owns a house is poor to No man who owns a garden is poor,
under the same assumption. Nevertheless, it is not the case that monotonicity inference
does not make sense in donkey sentences. Both of the following are valid instances of
monotonicity inference:

3) No farmer who owns a donkey beats it
No farmer who owns and feeds a donkey beats it

IThe example is adapted from van Benthem 1987.
%A determiner is said to be downward monotone in the first-argument (JMON) if its denotation Qa
in any universe M satisfies the following:

for all A,A’,BC M,QmAB and A’ C Aimply QumA'B.

Replacing A’ C A in the above definition by A C A’ gives the definition of upward monotonicity in the
first argument (TMON). Monotonicity in the second argument (MONT, MON|) is defined analogously.
Monotonicity in the first (second) argument is also called left (right) monotonicity.




(4) No farmer who owns a donkey beats it
No farmer who owns a female donkey beats it

What is called for is an appropriate dynamic sense of monotonicity more restrictive than
the usual one which accounts for the invalidity of (2) and the validity of (3) and (4).

Our concern for Monotonicity for dynamic generalized quantifiers has another em-
pirical motivation which is related to the issue of monotonicity inference. Here, the
task is to predict the interpretation of donkey sentences with relative clauses from the
monotonicity properties of the determiner. It has been observed that two distinct types
of interpretations are found in donkey sentences with determiners and relative clauses.
One interpretation, called the strong reading, allows a paraphrase with universal quan-
tification over donkeys, and the other interpretation, called the weak reading, allows a
paraphrase with existential quantification over donkeys.® The interpretation standardly
associated with FEvery farmer who owns a donkey beats it is the strong reading: Fvery
farmer who owns a donkey beats every donkey he owns. The (only) interpretation of No
farmer who owns a donkey beats it is the weak reading: No farmer who owns a donkey
beats a donkey he owns. The interesting fact is that in many cases, one or the other
interpretation is the only available one, or at least strongly preferred, and which reading
is available correlates with the monotonicity properties of the determiner. Compare the
following sentences, of which the available reading and the monotonicity properties of
the determiner are indicated.

(5) Every student who borrowed a book from Peter returned it
= Every student who borrowed a book from Peter returned every book he or she
borrowed from Peter (strong reading, | MONT)

(6) No student who borrowed a book from Peter returned it
= No student who borrowed a book from Peter returned a book he or she borrowed
from Peter (weak reading, |MON|)

(7) At least two students who borrowed a book from Peter returned it
= At least two students who borrowed a book from Peter returned a book they
borrowed from Peter (weak reading, TMONT)

(8) Not every student who borrowed a book from Peter returned it
= Not every student who borrowed a book from Peter returned every book he or
she borrowed from Peter (?) (strong reading, TMON])

We find the correlation between monotonicity properties of determiners and interpreta-
tions of donkey sentences given in Table 1. The data is actually quite complex, and we
cannot elaborate on Table 1 here.* In this paper, we will simply assume the data as
summarized in Table 1, and give an explanation of the observed correlation using the
notion of Monotonicity for dynamic generalized quantifiers. The key fact is that the
selected reading of a donkey sentence with a left monotone determiner is the one on
which monotonicity inference like (3) and (4) comes out valid.

The paper is organized as follows. In Section 2, we briefly look at first-order logic with
generalized quantifiers from a natural language perspective. In Section 3, we introduce

3Strong and weak readings of donkey sentences have been discussed by Rooth (1987), Chierchia (1990,
1992), and Gawron, Nerbonne, and Peters (1991), among others. The terms strong reading and weak
reading are apparently due to Chierchia (1990).

*For detailed discussions of weak and strong readings of donkey sentences with relative clauses and
of monotonicity inference, the reader is referred to Kanazawa 1992.




Available reading(s) Determiners
TMONT  Weak reading only a, some, several, at least n, many
TMON|  Strong reading preferred? not every, not all
IMONT  Strong reading preferred every, all, FC any
IMON]|  Weak reading only no, few, at most n
J/MONT Both most

Table 1: Monotonicity of determiners and interpretations of donkey sentences.

our version of dynamic predicate logic. Section 4 is devoted to the system of DPL
augmented with static and dynamic generalized quantifiers. In Section 4.1, we see two
ways of defining dynamic generalized quantifiers in terms of static ones and dynamic
connectives of DPL. In Section 4.2, we consider dynamic notions of Conservativity. In
Section 4.3, a suitable dynamic notion of Monotonicity is formulated, which is then
used to explain the correlation given in Table 1. In Section 4.4, we demonstrate that,
under minimal assumptions, dynamic double monotonicity actually serves as an implicit
definition of a dynamic generalized quantifier in terms of a static one. In section 4.5,
a correlation between left monotonicity and model-theoretic preservation properties is
extended to the dynamic case. Proof of the results in Sections 4.4 and 4.5 is relegated
to Section 4.6.

2 First-Order Logic with Generalized Quantifiers

Before turning to dynamic predicate logic, let us briefly look at ordinary first-order logic
with generalized quantifiers. The purpose of this section is to express various general
and special properties of quantifiers as formulas (in the case of local conditions on the
denotation in each model) or model-theoretic properties of formulas (in the case of global
conditions operating across models) in the language of first-order logic with generalized
quantifiers. This will prove convenient when recasting these properties in the dynamic
setting.

The language of first-order logic with generalized quantifiers is obtained by adding
two-place quantifier symbols to the language of first-order logic. If @ is a generalized
quantifier symbol and ¢ and 3 are formulas, Qz (¢, %) is a formula. (We shall be mainly
interested in the case where ¢ and 1 are formulas of first-order logic.) The new clause in
the Tarski style truth definition looks like the following. Let M be a model with domain
M. For any quantifier symbol @,

M = Qz(p, ¥)[s] iff
({a€ M| M gls(a/2)]}, {a€ M| M k ¢[s(e/2)]}) € QM.
QM C pow(M)xpow(M) is the interpretation of Q in M. s(a/z) denotes the assignment

s’ such that s'(z) = a and §'(y) = s(y) for all y # z. From this definition, it follows that
equivalent formulas are always intersubstitutable.

Equivalence (EQUI).
Vz(p & ¢') AVz( & ¢') = (Qz(p, ¥) « Qz(¢', ¥'))



Also, the choice of bound variable is arbitrary (with the usual provisos).

Renaming. Qz(p(z),¥(z)) « Qy(e(y), ¥(y))

For any quantifier @, the above two schemata are always valid in first-order logic with
generalized quantifiers.

We intend each @ to represent a natural language determiner. Consequently, QM is
not just an arbitrary subset of pow(M) X pow(M ). Interpretations of quantifier symbols
are constrained by conditions to be satisfied within and across models.

Firstly, QM should depend just on M, the universe of M. Thus, each @ is associated
with a functional assigning to each non-empty set U a subset Qu of pow(U) X pow(U).
QM is set to Qpr. Moreover, Qar’s must ‘agree’ with each other in the sense that

forall A,BC M,N, QuAB iff QNAB.

This condition is called Eztension.® As a model-theoretic property of formulas in our
language, it is expressed as follows:

Extension (EXT).
Forany M, N and s: VAR—- M NN,
if {ae M |M  ¢[s(a/z)]} = {a € N | N ¢[s(a/z)] }
and {a € M | M [= ¢[s(a/z)]} = {a € N | N k= ¢[s(a/z)] },
then M |= Qz(¢, ¥)[s] iff N |= Qz (o, ¥)[s].

Conservativity is one of the most important properties of quantifiers and it has been
claimed to hold universally of all natural language determiners (Barwise and Cooper
1981, Keenan and Stavi 1986). At the level of denotation, it says

For all A,BC M, QuAB iff QymA(AN B).
The corresponding formula is the following:

Conservativity (CONS).
Qz(p,¥) = Qz(p, 9 A ).

EXT and CONS are universal principles that are supposed to hold of all natural lan-
guage quantifiers. For ‘logical’ quantifiers, another principle called Quantity (QUANT)
is usually assumed, which says (under CONS and EXT) that QaAB depends just on
the size of A — B and AN B. QUANT does not play any role in this work. Henceforth,
EXT and CONS will always be assumed, if @ is supposed to represent a natural language
determiner.

In addition to general properties like EXT and CONS, there are special properties
of specific quantifiers that are of interest. Monotonicity properties are the focus of the
present paper. In terms of denotations, they are:

TMON forall A,A’",BC M,QpmAB and A C A’ imply QpmA'B
IMON forall AJA,BC M,QuAB and A’ C A imply QpA'B
MON? forall A,B,B'C M,QumAB and B C B’ imply QumAB’
MON| forall A,B,B'CM,QpymAB and B' C B imply QumAB’

In the language of first-order logic with generalized quantifiers, they are expressed by
the following formulas:

51t is called Extension since it is equivalent to the condition restricted to the case M C N.



Monotonicity.
TMON  Vz(p — ¢') = (Qz(p, ¥) — Qz(¢,¥))
IMON  Vz(¢' = ¢) = (Qz(p, %) — Qz(¢',¥))
MONT  Vz(y — ¢') — (Qz(p, ¥) — Qz(p, ¥"))
MON| Vz(¢' — ¥) = (Qz(p, ¥) = Qz(p,¥'))

Since CONS gives the left argument of a quantifier a privileged role, left monotonicity
(TMON, |[MON) and right monotonicity (MONT, MON|) turn out to be very different
properties. An illustration of the difference is given by the following model-theoretic
characterization of left monotonicity, adapted from Westerstahl 1989 (p. 79).

ProPOSITION 1. Assume that @ obeys EXT and CONS. Then @ is TMON (|MON) if
and only if Qz(P(z), R(z)) is preserved under extensions (submodels).®

The generalization of Proposition 1 will be of our interest (Section 4.5).

3 Dynamic Predicate Logic

Dynamic predicate logic of Groenendijk and Stokhof (1991) is presented as an alternative
interpretation of the language of first-order logic. It is more convenient for our purposes
to present DPL as an eztension of first-order logic. We provide all necessary definitions,
but cannot fully convey the intuitions behind the system. For that, the reader is referred
to Groenendijk and Stokhof 1991.

The language of DPL contains, in addition to equality, relation symbols, function
symbols, constant symbols, variables, and static connectives

- AV, =, e, ¥, 3
from first-order logic, dynamic connectives
o=y &

(dynamic conjunction, dynamic implication, and dynamic existential quantifier, respec-
tively). Moreover, I include ‘meta’ connectives

~, <

Yy =

which are interpreted like Groenendijk and Stokhof’s equivalence and meaning inclusion
relativized to models and assignments.

The semantics of static connectives can be completely explained in terms of the usual
satisfaction conditions:

M [ ¢[s]
(s satisfies ¢ in M) just as in first-order logic. In contrast, the semantics of dynamic
and ‘meta’ connectives must essentially rely on more ‘dynamic’ transition conditions:

slelms'.

$M is called a submodel of N (M C N)if M C N and pM _ pN [M™ (restriction of PN M™) for
all n-ary relation symbols P, F M_pN [ M™ for all n-ary function symbols F, and M_ N € M for
all constant symbols ¢. (In Proposition 1, all that matters is the interpretation of P and R.) f M C N,
N is called an extension of M. A sentence ¢ is said to be preserved under extensions (submodels) if

M = ¢ implies N |= ¢ whenever M C N (N C M).

6



P M E o[s]iff ... s[elpg s iff ...
M,s

1. t1=t, t}w" =1, s=¢s and M E ¢[s]

2. R(t,...,tn) (t}w", .. .,t,l,w”) e RM s=¢ and M [ ¢[s]

3. M £ ¢s] s=s" and M [ ¢[s]

4. YAy M [ ¢[s] and M [ x[s] s=s and M [ ¢ls]

5. YVx M E ¢[s] or M [ x[s] s=s and M [ ¢ls]

6. Yv—ox M E ¢[s] implies M [ x|s] s=5and M E ¢[s]

7. Yeox M E ¢[s] if M = x[s] s =35 and M [ ¢[s]

8. Vzy for alla € M, M | ¢[s(a/z)] s =35 and M [ ¢[s]

9. Jz¢ for some a € M, M E ¢[s(a/z)] s=s and M [ ¢[s]
10. ¥;x for some s, s [p]p s for some s”, s [¢]pg s” and s” [xIng 8
11. ¢¥=x for all s, s [¢]pg 5’ implies M |= x[s'] s=s" and M | ¢[s]
12. Ezy for some s', s [p]p 5 for some a € M, s(a/z) [¢]ng &'
13. ¢Y~x for all s', s [¥]png ' iff s [XIng &' s=¢"and M [ ¢[s]
14. ¢¥=<x for all ', s [¢]p\g s’ implies s [x]p1s’ s=5" and M | ¢s]

Table 2: Semantics of DPL.

In Table 2, we give the semantics of DPL as a simultaneous recursive definition
of M E ¢[s] and s[¢]ms’. The notions of models and assignments, as well as the
interpretation ¢™* of a term ¢ with respect to a model M and an assignment s are the
familiar ones from first-order logic.

The notions of truth and validity are defined in the usual way in terms of satisfaction:
M [ ¢ (¢ is true in M) if and only if for every s: VAR — M, M | ¢[s]; and = ¢ (¢ is
valid) if and only if for all M, M [= ¢.

Note that for 1-9, the definition of M = ¢[s] is identical to the usual one in first-
order logic. Consequently, if ¢ is a first-order formula, M |= ¢[s] in DPL if and only if
M [= ¢[s] in first-order logic. In this sense, we can say our version of DPL is an extension
of first-order logic.

Let us call [p]pm = {s | M = ¢[s] } the static denotation of ¢ (in M), and [¢]Mm =
{(s,8') | s[elms'} the dynamic denotation of ¢ (in M). It is easy to see [p]m =
dom([¢]m) (the domain of [¢]nm) for every formula ¢; i.e., the static denotation is
always recoverable from the dynamic denotation. For some formulas ¢, their dynamic
denotation can be extracted from their static denotation—[¢]ns = id [[¢]pm (the identity
relation restricted to [¢]py) holds. Such formulas are called tests.

For 1-9, 11, 13, and 14, the definition of s [¢]n s’ is the same—[p]m = id [[]M-
Formulas of these forms are always tests and have no external dynamic effect. For this
reason, all connectives except ; and £ are called ezternally static. The static connectives
(7, A, V, =, &, V, 3) from fisrt-order logic are also internally static. If the main
connective of ¢ is one of these, the static, and hence dynamic, denotation of ¢ can be
calculated from the static denotation of its immediate subformula(s). In contrast, the
dynamic connectives (;, =, £) and our ‘meta’ connectives (~, X) are internally dynamic.
To calculate the static and dynamic denotations of a formula whose main connective is
3y =, =, or <, the dynamic denotation of its immediate subformulas must be consulted.
In the case of &, [Ez]p is determined by [¢]m ([Ez¥]Mm = [3z9¥]Mm), but to calculate
[Ezv¥]m one must look at []p1- The connectives ; and € are even externally dynamic.
If the main connective of ¢ is ; or £, [¢]m is not determined by [¢]p in general, and s



and s’ such that s[¢]m s’ can be different.”

A remark on our ‘meta’ connectives ~ and < is in order. Groenendijk and Stokhof
(1991) use ~ and < as symbols in the metalanguage; in their paper, ‘¢ ~ 9’ and ‘p < ¢’
mean ‘for all M, [¢]m = [¢]m’ and “for all M, [o]m C [¥]m’, respectively. If we write
s[elm for { s | s[elm s’}

MEe~9y[s] iff slelm=slelm,
MEe=29y[s] iff slelm C slelm,

MEe~y iff [elm = [elm,
MEe=x9y iff [¢lMm Clelm,

and

FEe~y iff foral M, [¢]lm = [¢¥lMm,
Fe=x¢ iff foral M, [¢lm C [¢]m.

Thus, Groenendijk and Stokhof’s ‘¢ ~ 9’ and ‘@ < 9’ are our ‘= p ~ 9’ and ‘kE ¢ <X ¢’.
This justifies our own use of their symbols. ~ and < will be useful in expressing certain
principles, and are not intended for use in representing natural language sentences. In
what follows, metavariables like ¢ and 1 will always range over formulas without ~ or
<. Note that ¢ ~ 1 is equivalent to (¢ X ¥) A (¢ < ¢).

There is an obvious correspondence between dynamic connectives and their static
counterparts. If ¢ and % are tests, the following equivalences are valid:

9) e~ pAY
(10) pP2X ¥ p—oX

(In (10), x does not have to be a test.) Also, for any ¢,8
(11) Ezp o Fzp
However, even if ¢ is a test,

Exp ~ 3Tzp

usually does not hold. Although ; just passes on, so to speak, the external dynamic force
of its conjuncts, part of the external dynamic force of £z is created by £z.
The ‘meta’ connectives ~ and < correspond to < and —. If ¢ and % are tests,

(p=y) =~ (peot)
(p29) (p— )

"We note that our use of the term ‘internally dynamic’ is slightly different from Groenendijk and
Stokhof’s. Since ~ and < create no new variable binding, they would not be internally dynamic connec-
tives in their sense. On the other hand, their usage would make our 3 internally dynamic. (They do not
have a precise definition, however.) We can state our definition in the following way. A connective C is
externally static if a formula with C as its main connective is always a test. Otherwise, C is externally
dynamic. C is internally dynamic if the dynamic denotation of a formula with C as its main connective
cannot in general be determined by the static denotation of its immediate subformula(s). Otherwise, C
is internally static.

8Henceforth, we may just assert a formula to mean it is valid.
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Note also that for any ¢ and %,

() — (pe)
(p=2¥) — (p—19)

Both = and < correspond to —. If ¢ and v are tests, ¢ = 1 and ¢ <X ¥ are
equivalent. Intuitively, the difference between = and < is that the semantics of the
former is ‘sequential’ while that of the latter is ‘parallel’.

Note that = and the static connectives except — are definable in terms of -, ;, and
&, using the equivalences:

1R

p=>9 = —(p;-7)
poY ~ Y= -p
Vo =~ =€fz-¢p

and the standard equivalences in first-order logic. See Groenendijk and Stokhof 1991 for
details.

The most important properties of dynamic connectives are expressed in the following
equivalences:

(12) (P39)ix = @;(¥;x)
(13) Exp;p = Ez(p;9)
(14) Exp=>9¢ ~ Vz(p=>9)

In the last two schemata, (13) and (14), there is no restriction on ; unlike the cor-
responding equivalences in first-order logic, = can occur free in 1.° These properties
of dynamic connectives are used to represent intersentential and donkey anaphora in
natural language. For example, one may translate

If Pedro owns a donkey, it is kept in the barn

in DPL as
Ez(donkey(z) ; own(Pedro, z)) = kept-in-the-barn(z).

The latter can be seen to be equivalent to
Vz(donkey(z) A own(Pedro, z) — kept-in-the-barn(z)).

For more examples and discussion, see Groenendijk and Stokhof 1990, 1991.1°

°In first-order logic, if = does not occur free in 9, 3z¢ A ¢ and Iz — ¢ are equivalent to Iz(p A ¢)
and Vz(¢ — ), respectively. If z is free in 9, the equivalences do not hold in general.

19Groenendijk and Stokhof express the fact that (13) and (14) are valid by saying that the dynamic
existential quantifier can bind variables outside its syntactic scope. For Groenendijk and Stokhof, free
occurrences of z in the second conjunct of £z¢ ;1 are bound by the dynamic existential quantifier in
the first conjunct, and free occurrences of = in the consequent of £z¢ = 1 are bound by the dynamic
existential quantifier in the antecedent. This terminology might be misleading. In these formulas, £z
does not bind the z in ¢ and the z in ¢ in the same way. If anything, it is the combination of the
dynamic existential quantifier and the dynamic main connective (; or =) that binds the z in . (This
will be more apparent when the main connective is a dynamic generalized quantifier.) It is clear that
the occurrences of = in these formulas are not like free variables in first-order logic, and so I will follow
Groenendijk and Stokhof in saying that the free occurrences of = in 9 are ‘bound’ in £z ;9 or £z = .
I will avoid, however, the terminology ‘bound by £z’ in such cases; the ‘binding’ relation between z and
£z is an indirect one mediated by ; or =>. Cf. Barwise’s (1987) three-way distinction between captured,
restrained, and free.



¢ fv(e)

1. t1 =1 all occurrences of variables in ¢

2. R(ty,...,t,) all occurrences of variables in ¢

3. fv(y)

4 $Ax (1) U fv(x)

5. ¢vx fv(y) Utv(x)

6. ¥ x fv(1) U fv(x)

7. $ox v(1) U fv(x)

8. Vzv fv(4) minus all occurrences of z

9. dz9 fv(v) minus all occurrences of z
10. ¥;5x fv(p)u{z efv(x) |z ¢ AQV(¥)}
11. ¢¥=>x fv(p)u{z efv(x) |z ¢ AQV(¥)}
12. &zv fv(1) minus all occurrences of =

Table 3: Definition of fv(¢y).

Groenendijk and Stokhof (1991) define AQV(¢y), the set of active quantifier variables
of ¢, and FV(¢p), the set of free variables in . AQV(¢y) will be very important in what
follows. We define AQV(¢p) as follows. An occurrence of a dynamic existential quantifier
in ¢ is called potentially active if it does not lie within the scope of any externally static
connective in ¢. For any variable z, the rightmost potentially active occurrence of £z in
¢ is called an active occurrence of £z. AQV(yp), then, is the set of variables z such that
there is an active (or, equivalently, potentially active) occurrence of £z in . FV(p) is
defined in terms of another useful notion, fv(¢), the set of free occurrences of variables
in ¢. Table 3 gives the definition of fv(¢).1! Like Groenendijk and Stokhof, we allow
ourselves to be sloppy by not having an explicit way of referring to occurrences. FV(y)
is then defined to be the set of variables z such that there is an occurrence of z in fv(¢p).

If ¢ is a first-order formula, AQV(¢) = @ and FV(¢) is the set of free variables in ¢
in the usual sense.

The following facts point to the ‘meaning’ of AQV(y) and FV(¢):

o If for some M, there are s and s’ such that s[p]m s’ and s(z) # s'(z), then
z € AQV(p).

o If z ¢ FV(p), then for all M, for all s: VAR — M and a € M, M [ ¢[s] iff
M [ pls(a/2)).

As is already clear by now, the dynamic existential quantifier £ plays a pivotal
role in DPL. All ‘dynamics’ of DPL formulas originate in active occurrences of £. If
AQV(p) = 0, then ¢ is a test (but not necessarily conversely).!?

In a certain sense, the semantics of £ can be regarded as a reconciliation of two
competing views on indefinite noun phrases in natural language: the traditional idea
of ‘indefinites as existential quantifiers’ and the idea of ‘indefinites as variables’ made

11We do not include clauses for ‘meta’ connectives, as the notion of free variables sometimes does not
quite behave as expected in the presence of ~ or <.

12Formulas ¢ with AQV(p) = @ correspond to what Groenendijk and Stokhof (1991) call conditions.
They make a false statement that ¢ is a test iff ¢ is a condition or a contradiction (FACT 6, p. 58).
A counterexample is £ = a;£z(z = a), which is a test, but not a condition or a contradiction. [z =
a;€z(z = a)]yg = [z = a]pg. Their claim holds when confined to the case AQV(p) NFV(p) = 0.
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popular by discourse representation theory. For example, consider the formula £z P(z).
One can easily see

dom([€zP(2)lm) = [32P(2)lm,
ran([EsP(@)lm) = [P@)lm-
Let us make this observation more general. To make matters simple, we confine

ourselves to formulas with certain desirable syntactic properties. In what follows, let ¢
range over formulas which satisfy the following two conditions:

(15) AQV(p)NFV(p)=40.

(16) For any variable z, there is at most one potentially active occurrence of £z in ¢.

(15) excludes formulas like P(z);EzR(z), and (16) excludes formulas like
Ez(P(z); EzR(z)). Neither restriction, however, essentially reduces the expressive power
of the language.!> Now define ©* to be the result of erasing all (potentially) active oc-
currences of dynamic existential quantifiers in ¢. For example,

(farmer(z) ; Ey(donkey(y) ;own(z, y)))* = farmer(z) ; (donkey(y) ; own(z, y)).
Then

dom(f[elm) = [Fz1...3z.¢*M,
ran([¢]m) [p*Im,

where {z;,...,z,} = AQV(p).1
Here are some more important equivalences.

(17) piv=>x = e=>(P=x)
If 2 ¢ FV(p) UAQV(yp),

(18) p;€zyp > Ex(p;9)

If AQV(9)NFV(y) =0,

(19) piY o pAY

(20) p=>9 = o9

(19) and (20) generalize (9) and (10). The ‘internal dynamics’ of ; and => is exhausted by
their capacity to mediate indirect binding discussed above; if AQV(¢) NFV(p) = 0, this

13 For any formula ¢, a formula ¢ which meets (15) and (16) such that ¢ « % can be obtained by mere
renaming of variables. (15) is discussed by Groenendijk and Stokhof (1991). Formulas which violate it
are arguably never necessary to represent natural language sentences and discourses. As for (16), note
that, for any formula ¢ satisfying (15), there is a ¢ satisfying both (15) and (16) such that ¢ ~ 3. For
example,

Ex(P(z);EzR(z)) ~ 3IzP(z);EzR(x)

4By convention, the notation ¢* will always presuppose that ¢ satisfies (15) and (16) in the remainder
of the paper.
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does not happen, and ; and = collapse to A and — (as far as the satisfaction conditions
are concerned, in the case of ;).

Replacement of equivalents in DPL. In first-order logic, equivalent formulas are inter-
substitutable salva veritate. Formally, if ¢(9) is a first-order formula with subformula
¥, and {z1,...,2,} are the variables which have occurrences in (fv(¢) — fv((¢))) U

(v(¥) - v(e(¥))),
(21) Vo1 ...zn($ o 9') = (0(¥) & ©(¥))

An analogue of (21) in DPL is the following: if ¢(¢) and ¢’ are DPL formulas
(without ‘meta’ connectives) and {z1,...,2,} are the variables which have occurrences

in (fv(9) — fv(p($)) U (fv(') — tv(p(¥)),

(22) Vay...za( = ') = (@(¥) = p(¥))

(In case ¢(1) and ¢(%’) contain no free variables, this amounts to
V(% = ') = (p(¥) = ¢(¥)),

where V indicates universal closure.) In particular, we note the validity of the following.

Let {z1,...,2.} = AQV(¥).

(23) PP AV .z(x 2 X) = (Pix = P5X)
(24) Y AVE sz X) - (Wa2x >y =>X)
(25) Va(p ~¢') — (Ezyp ~ Ezy)

With this much background, we are now ready to introduce generalized quantifiers
into dynamic predicate logic.

4 Generalized Quantifiers in Dynamic Predicate Logic

We can introduce static generalized quantifiers into dynamic predicate logic in the obvi-
ous way. If ¢ = Qa(%, %),

ME¢ls] iff ({ae M|ME ¢[s(e/z)]},{ac M|M [ x[s(e/2)]}) € Qm,
slelms iff s=s and M [ ¢[s].

This was the format for all static connectives in DPL.1®

Since we built our version of DPL as an extension of first-order logic, DPL with static
generalized quantifiers (DPL(Q)) in turn becomes an extension of first-order logic with
generalized quantifiers. For any static generalized quantifier @, @ behaves in DPL(Q)
just like it does in first-order logic with generalized quantifiers. Basic principles like EQUI
and Renaming remain valid in DPL(Q), metavariables like ¢, %, etc., now ranging over
formulas of DPL(Q). For @ representing natural language determiners, EXT and CONS

15The new clause for fv(yp) is:

@ fv(e)
13. Qz(¥,x) 1v(¥)U1iv(x) minus all occurrences of z

Q is externally static, so if ¢ = Qz(¥, x), no occurrence of dynamic existential quantifier in ¢ is poten-
tially active, and AQV(yp) = 0.

12



continue to hold in DPL(Q), and depending on the kind of quantifier it is, one or more
of the MON formulas remain valid.

To model donkey sentences with DPL, addition of static generalized quantifiers
will not be enough; we need to introduce dynamic generalized quantifiers into DPL
(DPL(Q, )). Such quantifiers must allow active dynamic existential quantifiers in their
first argument to provide values for free variables in their second argument; i.e., they
must be internally dynamic in the way ; and = are. We may want some dynamic gen-
eralized quantifiers to be externally dynamic as well, to model a few natural language
determiners that show an external dynamic effect like some and a. Nevertheless, since
we are not concerned with the external dynamic effect of donkey sentences in this pa-
per, we will ignore such possibilities, and work with internally dynamic but externally
static generalized quantifiers. We use script Q as a symbol for such dynamic generalized
quantifiers.

The definition of fv(¢) is naturally extended as follows:

® fv(p)
14. Qz(¢,x) v(¥)U{yefv(x)|y & AQV(¥) } minus all occurrences of z

Since Q is externally static, if ¢ = Qz(%,x), no occurrence of dynamic existential
quantifier in ¢ is potentially active, and AQV(y) = 0.

It is not a straightforward matter to give a general format for the semantics for
dynamic generalized quantifiers as we did with static ones. It seems to me that there
is some arbitrary choice to be made in assigning denotations to dynamic generalized
quantifiers. For Chierchia (1990, 1992), dynamic generalized quantifiers are relations
between dynamic properties, and the latter are functions from individuals to relations
between assignments. Rooth (1987) takes relations between parametric sets, the latter
being sets of individual-assignment pairs. Such semantic notions of dynamic generalized
quantifiers may not be fully satisfactory, since possible arguments of such relations must
be restricted (only values for finitely many variables should matter). It is like taking
relations between sets of assignments as denotations of static generalized quantifiers.
What we want is an analogue of relations between sets of individuals. (Use of partial
assignments would improve the matter, however.)

It is possible to think of dynamic generalized quantifiers as a restricted class of
polyadic quantifiers (of variable adicity). So a dynamic generalized quantifier Q can be
associated with a family of two-place polyadic quantifiers Q},, Q2,, ..., where Qfyr is
a binary relation between n-ary relations on M. Q%,’s must ‘agree’ with each other in
some sense. Then we may define the satisfaction conditions for ¢ = Qz(%, x) thus:

M E ¢[s] iff
({{a,b1,...,b5) | s(a/z) [¥IMms(a/2,b1/y1, -5 bn/yn) },
{(Q,bl,-~-,bn) | M E x[s(a/z,b1/91,...,ba/yn)]}) € Q3F7,

where {y1,...,9n} = AQV(¢p).!¢ The idea is to interpret Qz(1,x) like
Q" zy; ...y (¥*, x), where Q™*! is a two-place n + 1-adic generalized quantifier. (The

162 ¢ AQV(4) is assumed. An alternative would be:
M = o[s] iff

({{a,b1,...,ba) | 3s'(s(a/z) [¥]M ' 8' (i) = b 1 < i <m))},
{{(a,b1,...,52) | M = x[s(a/z,b1/y1,...,bn/yn)] }) € Q,I:;]’

where {y1,...,yn} = AQV(¥) N FV(x).

13



latter formula is reminiscent of discourse representation theory.) However, this format
is still too general, and reference to AQV(%) may be vexing.

Fortunately, we can develop a theory of dynamic generalized quantifiers largely with-
out taking a stance on what the right notion of denotation is for dynamic generalized
quantifiers. This is because properties of a dynamic generalized quantifier Q@ can be
stated as properties of formulas Qz(p, ), as we did with static quantifiers in Section 2.
Moreover, particular dynamic generalized quantifiers we will consider are in fact the
ones given by simple definitions in terms of static quantifiers and dynamic connectives
of DPL.

Here, we note some obvious principles. As with static generalized quantifiers, dy-
namic generalized quantifiers allow renaming of the bound variable (with a fresh one):1”

Renaming. Qz(p(z), ¥(2)) « Qy(v(v), ¥(y))

Since our dynamic generalized quantifiers are externally static, the above < can be
replaced by ~.
The same should hold for variables that get bound indirectly:

Subordinate Renaming.

Qz(p, ¥) « Qz(¢', ¥[z/y])

where y € AQV(¢p), z is a fresh variable, ¢’ is the result of replacing occurrences of y
not free in ¢ by z, and [2/y] is the result of replacing free occurrences of y in 9 by z.
The principle of Equivalence takes the following form. If {y1,...,y.} = AQV(¢p),

Dynamic Equivalence (DEQUI).
Va(p > ¢') AVzVy .. Vya (b < ¢P') = (Qz(p, ¥) & Qz(¢', "))

The dynamic effects of dynamic existential quantifiers in the first argument of Q reach
into the second argument. This requires the extra quantifiers Yy, ...Vy, in the second
conjunct of the antecedent. Just as with dynamic implication of DPL, internal dynamics
of dynamic generalized quantifiers goes only one way; the dynamic effects of the second
argument does not matter, whence only the static equivalence « is required with respect
to the second argument. (Compare (24).)

The above three principles always hold for internally dynamic but externally static
generalized quantifiers.

4.1 Chierchia’s Two Definitions of Dynamic Generalized Quantifiers

Here we follow Chierchia (1990) and explore ways of defining dynamic generalized quan-
tifiers within the resources of DPL with static generalized quantifiers. Chierchia (1990)
has two schemata for defining a dynamic generalized quantifier in terms of a static coun-
terpart. One schema is used to represent the weak reading of donkey sentences, and the
other is used to represent the strong reading. In our present set-up of dynamic predicate
logic with generalized quantifiers, they come out as follows. For any static generalized
quantifier @, define two dynamic generalized quantifiers Qw and Qg by:!®

1"Here, we must have z ¢ AQV(¢(z)). (y is fresh, so we also have y € AQV(¢(y)).)

18Chierchia’s (1990) own schemata are cast in a higher-order framework. Also, for some mysterious
reason, he does not use = in (27), and instead uses an ‘adverb of quantification’ of universal force. It is
clear that => does the same job. Essentially the same definitions as (26) and (27) are also found in van
Eijck and de Vries 1992.
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(26) QWm((P7¢) « Ql‘(%(Pﬂp)
(27) Qsz(p,¥) < Qz(p, 0= ¥)

(26) is for the weak reading, and (27) is for the strong reading.!®
Let us work out an example:

(28) Most farmers who own a donkey beat it.

The first argument of most, farmers who own a donkey, is translated into DPL as:

(29) farmer(z) ; £y(donkey(y) ;own(z, y)).
The second argument, beat it, is translated as:
(30) beat(z, y).
The two readings of (28) are represented by the following two formulas:
(31) MOSTwaz(farmer(z) ; Ey(donkey(y) ;own(z, y)), beat(z,y))
(32) MOST sz(farmer(z) ; Ey(donkey(y) ;own(z, y)), beat(z,y))
By definition, (31) and (32) are equivalent to (33) and (34), respectively.
(33) MOSTz(farmer(z) ; Ey(donkey(y) ; own(z, y)),

(farmer(z) ; Ey(donkey(y) ; own(z, y))) ; beat(z, y))
(34) MOSTz(farmer(z) ; Ey(donkey(y) ; own(z, y)),

(farmer(z) ; Ey(donkey(y) ; own(z, y))) = beat(z,y))
By several validities in DPL mentioned earlier, we get

farmer(z) ; £y(donkey(y) ; own(z, y))
« farmer(z) A 3z(donkey(y) A own(z, y)).

Similarly, we have

(farmer(z) ; Ey(donkey(y) ; own(z, y))) ; beat(z, y)
— farmer(z) A y(donkey(y) A own(z,y) A beat(z,y))

and

(farmer(z) ; Ey(donkey(y) ; own(z, y))) = beat(z, y)
< farmer(z) — Vy(donkey(y) A own(z,y) — beat(z, y)).

Using EQUI, then, we see that (33) and (34) are equivalent to (35) and (36), respectively:

(35) MOSTz(farmer(z) A 3y(donkey(y) A own(z,y)),
farmer(z) A 3y(donkey(y) A own(z,y) A beat(z,y)))
(36) MOSTz(farmer(z) A 3y(donkey(y) A own(z,y)),

farmer(z) — Vy(donkey(y) A own(z,y) — beat(z,y)))

19Note that if Q satisfies CONS, and if AQV(p) N FV(9) = 0,
sz(‘Pa 11’) - QSI(‘P’ ¢) hmd QI(QD, 1/’)'
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By CONS, (35) and (36) in turn are seen to be equivalent to (37) and (38), respectively.

(37) MOSTz(farmer(z) A 3y(donkey(y) A own(z,y)),
Jy(donkey(y) A own(z, y) A beat(z,y)))
(38) MOSTz(farmer(z) A 3y(donkey(y) A own(z,y)),

Vy(donkey(y) A own(z,y) — beat(z,y)))

Note that (37) and (38) correspond to the two paraphrases Most farmers who own a
donkey beat a donkey they own and Most farmers who own a donkey beat every donkey
they own of (28), respectively.

The equivalences like these hold in general. If Q is conservative, z,y € AQV(x(z,v)),

and & ¢ AQV(¢(a)),

(39) QWZ(‘P(x) ;g?/X(x7 y)’ ¢($, y))
o Qz(p(z) A Jyx(z,y), Iy(x(z,y) A ¥(z,9)))
(40) Qsz(p(z); Eyx(z,y), ¥(z,¥))

o Qz(p(z) A yx(z,y), Yy(x(z,y) — ¥(z,y)))

The formulas on the right-hand side of (39) and (40) are schematic representations of
the weak and strong readings of donkey sentences of the form (1a) in first-order logic
with generalized quantifiers.

Thus, the problem of choosing between the weak and strong readings of donkey
sentences becomes the problem of choosing between Qw and Qg. Our agenda is to
choose between Qw and Qg on the basis of monotonicity properties of ). Before turning
to this task, however, let us sidetrack a little bit and look at a different possible way of
discrimination.

4.2 Dynamic Notions of Conservativity

Chierchia (1990) claims that there is an a priori reason to favor Qw over Qg regardless
of the kind of quantifier @ is. His reason is that Qw, but not Qg, can be said to be
dynamically conservative. A dynamic generalized quantifier Q is said to be dynamically
conservative in Chierchia’s sense if the following is valid:

Dynamic Conservativity 1 (DCONS1).
Qz(p, %) « Qa(p,¢;9)

DCONS1 is supposed to be the dynamic analogue of CONS. Given that ; is the dynamic
counterpart of A, there is a good correspondence. It is easy to see that Qw, but not Qg,
satisfies DCONS1.20

Since CONS is a fundamental property of static generalized quantifiers representing
natural language determiners, we would naturally expect some dynamic version of CONS
to hold of dynamic generalized quantifiers, and DCONSI is certainly one natural candi-
date. Chierchia’s mistake was to think DCONSI is the only natural dynamic analogue

20There is a proviso that AQV(¢)NFV(p) = 8. (See (15) and footnote 13.) This condition is necessary
to make many other reasonable statements, e.g., the validity of ¢ = ¢ or p;p ~ ¢.

Proof of the claim. As for Qw, since ; is associative (see (12)), it is sufficient to observe ¢ ~ ¢ ;¢
if AQV(¢) NFV(p) = 0. As for Qg, observe that (¢ = ¢;9) ~ (¢ — ¢;¥) so that Qgz(p,p;9¥) —
Qz(p,p — ¢;9) « Qz(p,¢;¥) — Qwz(p,¥) (assuming conservativity of Q).
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of CONS. He states: ‘I see no non-trivial sense in which [strong dynamic determiners,
our Qs—M.K.] may be said to be dynamically conservative’ (p. 21). However, there is
a non-trivial sense in which Qg may be said to be dynamically conservative. It is the
following;:

Dynamic Conservativity 2 (DCONS2).
Qz(p, ) < Qz(p,p = ¥)

It is easy to see that Qg, but not Qw, satisfies DCONS2.
Why is DCONS2 a natural dynamic analogue of CONS? Clearly, the static schema
corresponding to DCONS2 is

CONS2. Qz(p,¥) < Qz(p, 9 — ¥)

But CONS2 is equivalent to CONS: they express one and the same condition on Q.%!
Since CONS2 also expresses (static) Conservativity, DCONS2 can also be said to be a
natural dynamic version of Conservativity. If so, one cannot choose between Qw and
Qg on the basis of a criterion like conservativity, contrary to Chierchia’s claim. Unlike
CONS and CONS2, DCONS1 and DCONS?2 are not equivalent. They are different, but
equally natural, dynamic versions of the notion of conservativity. I do not see any good
grounds for choosing between DCONS1 and DCONS2.%2

We saw earlier that connectives in first-order logic may have more than one dynamic
realization in dynamic predicate logic. Here, we are observing a similar phenomenon.
Conditions on static generalized quantifiers like Conservativity may have a variety of
non-equivalent dynamic counterparts.

2! Proof. Assume CONS. Then

Qz(p, 0 = ¥) «— Qz(p,oA(p—9¥)) (CONS)
= Qz(p,pAY) (A (p—¥) = pAY)
= Qz(p,v) (CONS).

For the converse, assume CONS2. Then

Qz(p,p ANY) «— Qz(p,p — ¢AyY) (CONS2)
- Qz(p,p — ) (¢ = e AY) o (¢ — ¥))
= Qz(e,9) (CONS2).

(The middle steps make use of EQUI.)
220f course, viewed as inferential principles, CONS and CONS2 are not the same. One might argue
that DCONSI is ‘more natural’ since, like CONS; it corresponds to a natural form of inference in English:

Det N VP «— Det Nisa N and VP

Eg.,

Det farmer who owns a donkey beats it +»

Det farmer who owns a donkey is a farmer who owns a donkey and beats it

Expressing DCONS2 in English is more awkward:

Det farmer who owns a donkey beats it «
Det farmer who owns a donkey is such that if he is a farmer who owns a donkey, he beats
it

(CONS2 may be expressed as ‘Det N VP « Det N VP if he (she, etc.) is a N’, but this does not work
for DCONS2.) However, unlike Monotonicity, I think Conservativity should be thought of as a principle
about interpretation, not inference. It is difficult to imagine English speakers ever resort to paraphrases
like the above. Prolix forms like ‘Det N is a N and VP’ have little use in ordinary discourse; in fact, I
even think such paraphrasability may not be immediately recognized.
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In fact, there is yet another notion of dynamic conservativity which holds of both
Ow and Qg. This third notion of dynamic conservativity, which I in fact think is the
most natural one, can be given in terms of the *-transformation defined in Section 3.

DCONS*. Qz(p,¥) « Qz(p, p* A1)

Recall that ¢* is the result of erasing all potentially active occurrences of dynamic
existential quantifiers2® and

ran([elm) = [#*]m,

that is, ¢* expresses the ‘dynamic effect’ of p. What DCONS* says is this: to know
[Qz(p, %)M, it is not necessary to look at the whole of [1]ng; knowing ran([e]m) N [¥]Mm
is enough. This is a very natural condition, since, like dynamic connectives of DPL,
internally dynamic generalized quantifiers are supposed to evaluate the second argument
with respect to assignments that are outputs of the first argument.?4

Three notions of Dynamic Conservativity, when confined to the case AQV(¢) N
FV(9) = 0, all turn out to be equivalent and amount to:

Qz(p,9) < Qz(p,pAy) if AQV(p)NFV(¥)=0.

Clearly, dynamic conjunction and dynamic implication satisfy the following, which
are analogous to DCONS*:25

(41) L H (2 X))
(42) p=>P o o= (p*AY)

From this it follows that both DCONS1 and DCONS2 imply DCONS*.26 Therefore,
DCONS* is satisfied by both Qw and Qgs.

23 As before, ¢ is assumed to be such that it satisfies (15) and (16) in Section 3, that is, AQV(p) N
FV(p) = 0 and there is for any variable z at most one potentially active occurrence of £z. Under (15),
the second restriction (16) can be avoided by complicating the transformation (see footnote 13).

**To capture this ‘spirit’ of DCONS* without restricting ¢ to formulas that satisfy (15) and (16),
we might introduce * as a new operator in the language, so that [p*]\g = ran([¢])s) for an arbitrary
formula ¢. In fact, even this can be avoided if we adopt the following form of Dynamic Conservativity:

DCONS. Vz(p = (¢ = ¢')) = (Qz(p,¥) « Qz(p,¥’)).

DCONS implies DCONS* in its operator version, and, when ¢ satisfies (15) (AQV(¢) N FV(p) = 0),
conversely. They both coincide with DCONS¥* in its transformation version when ¢ satisfies both (15)
and (16). We opt for the transformation version of DCONS* for simplicity.

25(41) can be turned into a full dynamic equivalence using ; instead of A:

oY =~ o;(e*;v)

26For, if DCONS],
Qz(p,0*AY) o~ Qz(p,p;(v*Ay)) (DCONSI)

= Qz(p,p;9) (41)
~ Q(p¥) (DCONS1)
and if DCONS2,
Qz(p,p*AY) — Qz(p,p=>¢*A9) (DCONS2)
- Qz(p, 9= 9) (42)
- Qz(p19) (DCONS2)
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I adopt DCONS* as our official version of dynamic conservativity for the follow-
ing two reasons. Firstly, DCONS1 and DCONS2 are too strong principles; they seem
to do more than what dynamic conservativity should do, since they essentially reduce
dynamic generalized quantification to static generalized quantification combined with
dynamic conjunction or implication. (On the right-hand side of DCONS1 and DCONS2,
no ‘dynamic binding’ occurs between the two arguments of Q, except in the anomalous
case AQV(p)NFV(p) # 0.) They restrict the class of dynamic generalized quantifiers too
narrowly—for any static generalized quantifier, a unique dynamic generalized quantifier
would be determined. In contrast, DCONS* is a principle purely about dynamic quan-
tification, and it leaves many interesting options open. For example, the hypothetical
reading of ‘Most farmers who own a donkey beat it’ paraphrased by ‘Most farmers who
own a donkey beat most donkeys they own’ can be represented by a dynamic general-
ized quantifier satisfying DCONS*. Secondly, DCONS* is sufficiently strong to establish
some elegant results in the theory of dynamic generalized quantifiers. Stronger notions
of dynamic conservativity are not necessary.2’

4.3 Monotonicity for Dynamic Generalized Quantifiers

A universal property of quantifiers like Conservativity does not decide which of the
two schemata (26) and (27) should be used. Our claim is that different quantifiers
can choose different schemata, based on their monotonicity properties. To do this, we
have to formulate a suitable notion of monotonicity for internally dynamic generalized
quantifiers. Recall that in the static case, monotonicity of a quantifier ) is expressed by
the following formulas:

Static Monotonicity.
TMON  Vz(p — ¢') = (Qz(p, %) — Qz(¢',¥))
IMON  Vz(¢' — ¢) — (Qz(p, ¥) — Qz(¢',9))
MONT  Vz(¢ — ¢') — (Qz(p, %) — Qz(p,¢'))
MON|  Vz(¢' — ¥) = (Qz(», %) — Qz(p,¥"))
Suitable dynamic versions of these formulas turn out to be the following. Let

{yl’ ey yn} = AQV((P)

Dynamic Monotonicity.
IDMON  Vz(p < ¢') — (Qa(e, ¥) — Qa(¢/, %))
IDMON  Vz(¢' 2 ¢) — (Qz(, %) — Qz(¢',9))
DMONT  VaVy, ... V(s — %) — (Qa(p, ) — Qz(i, %))
DMON|  VzVy, ...Vya(¥' — ) — (Qa(p, %) —» Qa(p, %))

The reader should recognize an analogy with DEQUI.

In TDMON and |DMON, the static implication in the premise of MON and |MON
is replaced by <. This is dictated by the fact that, whereas the static denotation of
¢ exhausts its semantic contribution to Qz(y, ), the whole dynamic denotation of ¢
matters to Qz(p, ). Replacing — by < effects a shift from static denotation to dynamic
denotation.?® Note that, of the two dynamic connectives in our DPL which correspond

27] should also mention that DCONS* looks natural from a semantic point of view, if we think of a

dynamic generalized quantifier as a family of polyadic quantifiers as outlined earlier. DCONS* would
correspond to Q" RS iff Q"R(RN S).
?%In the simple case where AQV(¢) = AQV(¢’) = {91,..,¥n}, we have

Vo(p < ¢') o VzVyi...ya(p* — ¢'*).
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to static implication, the ‘meta’ connective < is the one that makes sense here. This
contrasts with the formulation of DCONS2, where => takes the place of — in CONS2.

For internally dynamic (externally static) Q, [Qz(p, ¥)]M is a function of []p and
[¥]M- (¥ does not make a ‘dynamic contribution’ to Qz (¢, ).) Hence, the implication
remains static in the premise of DMONT and DMON|. The extra universal quantifiers
Vy1 ...Yy, are accounted for by the fact that the free occurrences of y1,...,y, in ¥
become bound in Qz(p,).2°

A dynamic generalized quantifier Q is said to be dynamically upward monotone in
the first argument (etc.) if it validates the {DMON formula (etc.). We say Q is TDMON
(etc.), for short.

This dynamic notion of Monotonicity is adequate to capture monotonicity inference
in donkey sentences. Let us consider the earlier non-inference from No man who owns
a house sprinkles it to No man who owns a garden sprinkles it, in models where every
man who owns a garden owns a house. Here, we have

Vz(man(z) ; £y(garden(y) ; own(z,y)) — man(z) ; Ey(house(y) ; own(z, y))),

but the static implication — cannot be replaced by the dynamic <.3° Therefore, we
cannot expect to derive

NOz(man(z) ; Ey(garden(y) ; own(z, y)), sprinkle(z, y))

from
N Oz(man(z) ; Ey(house(y) ; own(z, y)), sprinkle(z, y)),

even if VO is a dynamic generalized quantifier that is [DMON. In contrast, in the case
of valid inference from No farmer who owns a donkey beats it to No farmer who owns a
female donkey beats it, the necessary premise does hold:

Vz(farmer(z) ; Ey(female(y) ; donkey(y) ; own(z, y))
< farmer(z) ; £y(donkey(y) ;own(z, y))).

Dynamic left monotonicity of Qw and Qs. Given a double monotone static quan-
tifier @, we can show either Qw or Qg, but not both, turns out to be dynamically left
monotone. First, note the following monotonicity behavior of ; and =. Let {y1,...,yn} =

AQV(yp).
(43) (p2¢) = (p5%—¢;59)

In the general case, the relation between the two formulas is complex.
291f DCONS* is assumed, reference to AQV(y) in DMONT and DMON/ can be avoided by adopting
the following:

DMONtT Vz(p = (¥ = ¢")) = (Qz(p, %) — Qz(p,¥"))
DMON| Vz(p = (¢¥' — ¢)) — (Qz(p,¥) — Qz(p, "))

~ The above version implies DCONS* (or DCONS of footnote 24).
30Note that

Vz(man(z); £y(garden(y); own(z,y)) < man(z); Ey(house(y) ; own(z, y)))
is equivalent to
VzVy(man(z) A garden(y) A own(z,y) — man(z) A house(y) A own(z, y)).

See footnote 28.
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(44) Vyi.. V(¥ = 9) = (p39—¢;9)
(45) (¢ 20) = ((e=9) = (¢ =)
(46) Vyi.. V(¥ = 9) = ((p=9) = (¢= )
For example, let () be [ MONT. Since
Vi(¢' 2 @) — Va(¢' - ¢)
and by (45),
Va(¢' <) — Va((p = 9) = (¢ =),

we get

Ve(o' X 9) — (Qz(p, 9= ¥) — Qz(¢,¢' = ¥))

by |[MON and MONT. This means that Qg is |DMON.
Table 4 shows the dynamic monotonicity properties of Qw and Qg for double mono-
tone Q.31

[ @ [ ow | 9s |
TMONT || {DMONT | /DMON{
TMON| || fDMON| | TDMON|
IMONT || /DMONT | |DMONT
IMON| || IDMON| | /DMON]

Table 4: Dynamic monotonicity of Qw and Qg.

Left Monotonicity Principle. We are now in a position to be able to formulate a
principle about interpretations of donkey sentences that explains the correlation given in
Table 1 precisely in terms of dynamic predicate logic with generalized quantifiers. The
interpretation of a donkey sentence of the form

Det N VP,
where Det ‘means’ @, is assumed to be represented by a formula of DPL(Q, Q)

Qz(p,¥),

where Q is either Qu or Qgs, and ¢ and % are the translations of N and VP, respectively,
in DPL. (Assume that indefinite noun phrases are translated using £.) The principle is
the following:

(47) Left Monotonicity Principle. If @ is TMON (JMON), the suitable dynamic version
Q of @ should be ]DMON (|DMON).

By Table 4, this correctly explains the correlation given in Table 1. The Left Monotonic-
ity Principle ensures that the interpretation of a donkey sentence with a left monotone
determiner validates monotonicity inference like (3) and (4).

Note that right monotonicity is preserved by both Qw and Qg. Hence we can also
say:

(48) Monotonicity Principle. The suitable dynamic version Q of @ should preserve the
monotonicity properties of @ (as dynamic monotonicity).

31 YDMON (YDMON) here means that the TDMON (]JDMON) formula is not in general valid.

21



4.4 Double Monotonicity Characterization of Dynamic Generalized
Quantifiers

We have shown that dynamic left monotonicity can be used to discriminate between
OQw and Qs. In fact, we do not have to restrict our attention to Qw and Qg from the
start. Under minimal assumptions, it can be shown that dynamic monotonicity in both
arguments uniquely determines a dynamic counterpart Q of a given static generalized
quantifier ¢). Of course, such a Q must be either Qw or Qgs.

An obvious condition to impose on the relationship between @ and Q is the following,
which we call Agreement.

Agreement. If AQV(¢) NFV(9) =0,
Qz(p,¥) = Qz(p,¥)

It says that dynamic quantification should reduce to static quantification when there is
no ‘dynamic binding’ involved. Recall that analogous situations obtained for ; and =
((19) and (20)). Obviously, Qw and Qg both satisfy this condition if @ satisfies CONS.

Agreement looks like a very innocuous principle; dynamic Q should certainly be a
‘conservative extension’ of static ). Nevertheless, combined with other natural princi-
ples, it implies rather strong consequences. In the following, DEQUI is always assumed.
(See Section 4.6 for proof of the results of this section.)

LeMMA 1. If Q satisfies DCONS* and Agreement, then the following holds:

Vz((p = ¥)V ~(¢;9)) —
(Qz(p, %) & Qwz(p, ¥)) A (Qz(p,¥) « Qsz(p,¥))

Lemma 1 corresponds to the fact that, with respect to sentences like Most farmers
who own a donkey beat it, ‘people have firm intuitions about situations where farmers are
consistent about their donkey-beating’ (Rooth 1987), that is, when each donkey-owning
farmer beats either all of their donkeys or none of them. In such situations, both the
weak reading and the strong reading—which become equivalent—adequately capture the
intuitions.

As a special case of Lemma, 1, we have

COROLLARY 1. Under the same conditions, the following holds:

Vmle...Hzn(go=>y1 =z1AN - AYn =zn)_.)
(Qz(p, V) & Qz(p,3z1... 3zm((p=> Y1 =21 A A Y = 2,)
A "/’lzl/yla EEY) zn/yn])))

Here, {y1,...,9n} = AQV(e¢) N FV(¥), 2z,...,2, are new variables, and
¥[z1/Y1,- - -, 2n/Yn] is the result of replacing all free occurrences of y; in ¥ by 2; (1 < i <

Corollary 1 says that if the value for the ‘donkey variable’ is unique per value for the
‘farmer variable’, then the donkey variable can be replaced by an appropriate definite
description, and the quantification can be taken to be static. Notice that the antecedent
expresses the uniqueness condition, and the quantification in the second argument of
@ amounts to a Russellian treatment of definite description. This corresponds to the
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empirical fact that when the ‘uniqueness presupposition’ of the donkey pronoun is met,
then there is no question whatsoever about the truth conditions of the donkey sentence,
and the paraphrase with a definite description is entirely adequate. It is interesting that
this automatically follows from Agreement and DCONS*.

Now with Agreement and DCONS*, dynamic double monotonicity is sufficient to pin
down Q uniquely from Q).

PROPOSITION 2. Assume that Q satisfies Agreement and DCONS*. If Q is moreover
DMONT,

st(g” ¢) -~ Q‘T(‘p, ¢) - QWIE((,O, "/))
If @ is DMON|, the reverse implication holds.

PRroPOSITION 3. Assume that Q satisfies Agreement and DCONS*. Then if Q is
TDMON,

QWx(‘Pa ¢) - Qz(% ¢) and st(% "p) - Qz(‘pa "p)
If @ is |[DMON, the reverse implication holds.

Proposition 3 uses Lemma 1. By the two Propositions, if @ is TMONT, Qw is
the only TDMONT Q which satisfies Agreement and DCONS*. Likewise for the other
three double monotonicity patterns. In this way, dynamic double monotonicity uniquely
determines a dynamic generalized quantifier corresponding to a given static one.

The significance of the results in this section can be summarized as follows. Rather
than thinking of Qw and Qg as two possible options to choose from, we may think that
no concrete choice for a dynamic counterpart Q of a static @ is given in advance, but
that there are minimal conditions to be satisfied by any possible dynamic counterpart of
a static @, namely Agreement and DCONS*.32 Imposing dynamic double monotonicity
as a further requirement then amounts to an implicit definition of Q out of Q).

The consequence of this to the semantics of donkey sentences is that we need not
think that the weak and strong readings are the two possible interpretations of donkey
sentences that would be allowed in principle, of which one or the other is picked by the
Left Monotonicity Principle when the determiner is double monotone. Instead, we may
think that in the absence of information about specific properties of the determiner,
the grammar would not assign any concrete interpretation to a donkey sentence at all.
The Monotonicity Principle (48) can then be considered as a principle that forms a
concrete interpretation, fleshing out a schematic, partially specified meaning provided
by the grammar.33

4.5 Monotonicity and Preservation

In Section 2, we mentioned an equivalence between left monotonicity on the one hand and
preservation under extensions/submodels of a sentence of a certain form on the other. It
turns out that this can be extended to the dynamic setting. Firstly, in first-order logic
with generalized quantifiers, one half of Proposition 1 can be strengthened:

32 Another natural condition is a suitable dynamic version of EXT. See Section 4.5.
33More discussion on this point will be found in Kanazawa 1992.
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PROPOSITION 4. Assume that @ has EXT and CONS. Then @ is {MON (|MON) if and
only if any sentence of the form Qz(y, 1), where ¢ is existential and 1 is quantifier-free,
is preserved under extensions (submodels).>4

Now let us define a dynamic notion of Extension as follows:

Dynamic Extension (DEXT).

For any M and N and s: VAR—- M NN,
if {(a,b1,...,b,) € M™* | s(a/z) [¢lm s(a/z,b1/y15- -, bn/Yn) }

= {(a,b1,...,bs) € Nt s(a/z) [eln s(a/z,b1/y15 -+ bn/Yn) }
and {(a,b1,...,b,) € M™1 | M [ 9¥[s(a/z,b1/y1,- -, bn/yn)] }

= {{a,by,...,b;) € N*1 | N E ¢[s(a/z,b1/¥1,- -, ba/¥n)] },

where {y1,...,¥n} = AQV(yp),
then M = Qz(p, $)[s]iff N | Qa(g, ¥)[s]:%

Then we have a straightforward dynamic version of Proposition 4:

PROPOSITION 5. Assume that Q satisfies DEXT and DCONS*. Then Q is DMON
(DMON) if and only if any sentence of the form Qz(y, ), where ¢ is existential and
% is quantifier-free, is preserved under extensions (submodels).

A DPL formula ¢ is ezistential if it is of the form £z, ...fz,32,41 ... 3T p4m ¢ for a
quantifier-free 1. (See Section 4.6 for proof of Proposition 5.) Proposition 5 may be seen
as an indication that our DEXT, DCONS*, and DMON are natural dynamic analogues
of the corresponding static conditions.

The fact that a sentence is preserved under extensions or submodels means that
the truth of the sentence in one model may be inferred from the truth of the same
sentence in another model. Such inference can be regarded as a model-theoretic mode
of monotonicity inference. The relevance of this to the semantics of donkey sentences is
discussed at length in Kanazawa 1992.

4.6 Proofs

In what follows, ¢ stands for a formula of dynamic predicate logic with generalized
quantifiers such that AQV(p) N FV(p) = 0 and there is at most one potentially ac-
tive occurrence of £z in ¢ for any variable z. 1 stands for an arbitrary formula. Let
{v1,..,yn} = AQV(¢p). ¢* is the result of erasing all potentially active occurrences of
dynamic existential quantifiers in ¢. Note the following equivalences:

o =~ Eyi...Eynp*

o 3y .. Jyee*
o;v = Eyr...Eyn(p*;9)
o Jyr...3ya(p* AY)
p=2>Y = Yy .. Vyu(e* — o)

34 A first-order formula ¢ is called existential if it is of the form 3z; ...zn% for a quantifier-free 1.
35 As usual, z € AQV(p) is assumed.
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LeMMA 1. If Q satisfies DCONS* and Agreement, then the following holds:

Va((o = ¥)V ~(p;9)) —
(Qz(p,¥) = Qwz(p, ¥)) A (Q2(p, ¥) = Qsz(p,¥))

Proof. By DCONS*,

Qz(p,¥) < Qz(p,p*AY)
and by Agreement and DCONS¥*,

QW‘D(‘P’ 'l[’) Qx(<,o,cp;¢)

Qz(p, 03 9)

Qz(@, p* A (¢;9))
Qz(p, 0= 9)
Qz(p,p = )

Qz(p, p* A (¢ = ¥)).

QSm((p, ¢)

N A A R

Therefore, it suffices to show that

Vz((p = ¥) V -(e;9))
implies
VaVy: .. Yyu(p* A = o* A (p;59))
and
VaVyr .. Yyn(¢* A Y = o* A (9 = 9)),
which, by DEQUI, imply

Qz(p,p*AY) o Qz(p,0*A(p;v))

and

Qz(p,p*AP) < Qz(p,0* A (¢ = ).
Notice that
XN — * A (p;59)
and
P*Ne=>9) = p*AY

are valid. It remains to show that

(1) P*AN(p3Y) — p*AYD

) P*AY — P*A(p=> )
follow from

(3) (p=Y)V(p;9).

As for (1), if (¢ = 1), then ¢* implies p* A9 and if ~(¢; 9), then the antecedent of (1)
is false. So (1) holds under (3). As for (2), if (¢ = 1), ¢* implies the consequent of (2),
and if ~(¢; %), the antecedent of (2) is false. So (2) holds under (3).
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PROPOSITION 2. Assume that Q satisfies Agreement and DCONS*. If Q is moreover
DMONT,
Qsz(p,¥) — Qz(p,¥) — Qwz(e,¥).

If Q@ is DMON|, the reverse implication holds.

Proof.

Qsz(p,¥) < Qz(p,o=>1) (Definition of Qg)
< Qz(p,p=>19) (Agreement)
— Qz(p,¢*— ) (DMONT)

Qz(p,¥) (DCONS*)
(Note VaVyy .. .Vya((¢ = ¥) — (¢* — ¥)).)

Qz(p,9) < Qz(p,p*Ap) (DCONS*)
— Qz(p,¢;9) (DMONT)
< Qz(p,p;9)  (Agreement)
« Qwz(p,¥) (Definition of Qw)

(Note VaVy; ... Vyn((¢* A ¥) = (@3 9)).)
The DMON| case is similar.

PRrOPOSITION 3. Assume that Q satisfies Agreement and DCONS*. Then if Q is
TDMON,

Qwz(p,¥) — Qx(p,¥) and Qsz(p,¥) — Qz(p,¥)
If @ is [DMON, the reverse implication holds.

Proof. The crux of the proof consists in finding formulas x and o that satisfy the following
conditions:

(1) Ve(x 2 ¢) (5) Vz(o <X ¢)
(2) Vz(x < ) (6) Vz(o <« ¢)
(3) Vz(x:;v « ¢;9) () V(o =2y o p=>1)

(4) Ve((x = ¥)V-(x;9) (8) Ve((o = 9)V (0;9))

If such x and o are found,

Qwz(p, ) Qz(p, ;%) (Definition of Qw)
Qz(x,x;¥) by (2), (3), and EQUI
Owz(x,v) (Definition of Qw)
Qz(x,v) by (4) and Lemma 1

Qz(p,%) by (1) and {DMON

i11t1te

Qsz(p, ) Qz(p,o => ¥) (Definition of Qg)

Qz(o,0 = ) by (6),(7), and EQUI
Qsz(o,v) (Definition of Qg)
Qz(o, ) by (8) and Lemma 1
Qz(p, ) by (5) and {DMON.

11117?
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(If Q@ is [DMON, the last implication is reversed.) Let
xX*=(@* APV (=(p;P) A p¥)
and
o* = (p* AP)V (¢ = P) A p*).
Then x = y1...Eynx* and 0 = €y ...Ey,0* are the desired formulas. We leave the
verification of (1)—(8) to the reader.

PROPOSITION 5. Assume that Q satisfies DEXT and DCONS*. Q is ]DMON (|DMON)
if and only if any sentence of the form Qz(¢p, 1), where ¢ is existential and % is quantifier-
free, is preserved under extensions (submodels).

Proof.
Only if. Suppose Q is |[DMON (the TDMON case is similar), and let

=&y ...EynIzr ... Iz X

where x is a quantifier-free formula with free variables z,y1,...,Yn, 21,...,2m. Let 9
be a quantifier-free formula with free variables z,y,,...,y,. Since dynamic connectives
are equivalent to corresponding static connectives when they combine quantifier-free
formulas, ¢* = 32 ...32,x is equivalent to a first-order existential formula, and % is
equivalent to a first-order quantifier-free formula. Let N C M. Then, as in first-order
logic, for all a,by,...,b, € N,

N E ¢*[a,b1,...,b,] implies M [ ¢*a,by,...,b,]
and
N E ¢la,by,...,b,] if and only if M [ ¢[a,by,...,by,].

Expand the language by adding a new unary predicate P, and expand M and N to M’
and N’ by putting PM' = PN’ = N (M’ and N’ are otherwise the same as M and N).
Note that N’ C M'. Let

¢ =Ey...Eyn3z ... 32 (Pt APy A.. .APy, APz A...A Pz, AX)

and
o' =Pz APy A...APy, APy A...A Pz, A .
Then for all a,b,,...,b, € M,
M ¢'*[a,by,...,b,] ff Nk ¢*a,bs,...,b]
- iff N’ ¢'*[a,by,...,by)
M' k& 9Y'[a,by,...,b,] if N E 9[a,by,...,b,)
if N’ ¢'[a,by,...,by,).

This implies that the preconditions of DEXT hold for Qz(¢’,%’) (and for an arbitrary
s: VAR — N). So

M’ [ Qz(¢',¢) iff N’ Qa(¢, ).
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Clearly,

M’ [ Vz(¢' £ )
M’ | VaVy .. . Vyu(@* AP o o™ A Y).

Therefore,

M' = Qz(p,¥)

M’ | Qz(¢',4) (IDMON)

M’ | Qz(¢',%’) (DCONS*, DEQUI)
N' | Qz(¢',4') (DEXT)

N' = Qz(p,%) (DEQUI)

= N[ Qz(p,9).

If. Suppose that any sentence of the form Qz(y,%), where ¢ is existential and %
quantifier-free, is preserved under extensions. (The submodel case is similar.) Let

M k= Vz(p < ¢)[s].

We treat the simple case where z ¢ AQV(p) = AQV(¢') = {¥1,---,Yn} and FV(p) =
FV(¢') = {z}. (It is possible to reduce the general case to this special case by us-
ing Subordinate Renaming and a trick of expanding the model by adding new con-
stants.) Take the language having four predicate symbols R, S, T, and U, and let
M,; = (M, RMl,SMl,TMl,UMl), where

RM: - {{a,by,...,b,) € M | s(a/z)[@lms(a/z,b1/v1,s- -1 bn/Yn) }s

SMi = {(a,b,...,b,) € M™ | s(a/)[@TM(a/2,b1/Y1, - - - bn/Yn) },

™! = ¢

UMt = {(a,b1,...,ba) € M™ | M = Y[s(a/z,b1/y1,- - -, bn/¥n)] }-

We have RM: ¢ §M1_ Let N; = (MU {c},RNl,SNl,TNl,UNl) (c € M), where

M = Qz(¢, %)

1111l

RN = pMi
sNi = gMi
™ = {c},
vN: = M,

We have M; C Nj. Let
X= gyl .. 'gynaz(R(z’ Yi,-- °)yn) \ (S(.’E, Y1,-. 'ayn) A T(Z)))
X is an existential formula. Clearly,

{{a,b1,...,bn) € M™ | s(a/2)IxIm, 5(a/2,b1/915- - -5 bn/yn) }
{ (a, bla ey bn) € Nn+l I s(a/z)[)(]le(a/z, bl/yl, REE) bn/yn) }
Therefore,

M E Qz(p,v)[s]

RM:

’

§Mi

M, ’= Qz(X7 U(z, Yis- - yn))[s] (DEXT)

Ml b Q(C(X, U(.’E, Yis-- oy y‘n.))

Ny | Qr(xX, U2, 41, -+ a) by assumption
Nl |= Qz(X, U(z7 Yiy- ey yn))[s]

M = Qz(p,¥)|s] (DEXT).

Tttt
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Dynamic Generalized Quantifiers and Monotonicity*

Makoto Kanazawa
Department of Linguistics
Stanford University
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1 Introduction

It has long been recognized that certain types of anaphoric dependencies in natural
language cannot be straightforwardly captured by variable binding in standard logic.
They are ‘intersentential’ and donkey anaphora, which have been widely discussed in
the literature since Geach 1962. In the last decade, they motivated various similar
proposals of so-called ‘discourse semantics’, including Kamp 1981, Heim 1982, Barwise
1987, Rooth 1987, and Schubert and Pelletier 1989. Groenendijk and Stokhof’s recent
(1991) dynamic predicate logic (DPL) is an attempt to capture the basic insights of
earlier theories in the form of a minimal modification of first-order logic.

Its similarity with first-order logic gives the formalism of DPL some distinct ad-
vantages. DPL is easy to use; for those familiar with first-order logic, it is easy to
develop intuitions about DPL. As a logical system closely related to first-order logic,
DPL naturally brings standard logical concerns into the picture, like the notion of log-
ical consequence and its syntactic characterization. It is also easy to consider various
extensions of DPL analogous to well-known extensions of first-order logic.

This paper concerns the system of DPL augmented with generalized quantifiers.
DPL with generalized quantifiers can be seen as a refinement of first-order logic with
generalized quantifiers, just as DPL is a refinement of first-order logic. Systems of first-
order logic with generalized quantifiers have been studied mainly in mathematical logic,
but when the system has a two-place generalized quantifier symbol for each natural
language determiner, it can be considered as a fairly good model of a certain extensional
fragment of natural language. Such a fragment is studied in generalized quantifier theory
(van Benthem 1986, Westerstahl 1989), and DPL with generalized quantifiers is expected
to add to the theory the capacity to treat anaphoric subtlety of natural language.

The kind of generalized quantifier that is of interest here is what Groenendijk and
Stokhof would call internally dynamic generalized quantifiers. They allow an indirect
binding relation to obtain between dynamic existential quantifiers in their first argument
and corresponding variables in their second argument. An empirical motivation for

*This is part of a larger work on the semantics of donkey sentences, monotonicity inference, and
generalized quantifiers in dynamic predicate logic. The focus here is on the logical issues. The more
linguistic half of the work will be found in Kanazawa 1992. The preparation of the present draft was
partly supported by project NF 102/62-356 (‘Structural and Semantic Parallels in Natural Languages and
Programming Languages’), funded by the Netherlands Organization for the Advancement of Research

(N.W.0.).




studying such generalized quantifiers comes from donkey sentences with relative clauses.
The correspondence is shown in (1):

(1) a DetN[g...[np; aN]...] [vp ...[xp; pronoun] ...]
b. Qz(...8y...,...¥...)

(1a) is a donkey sentence with a relative clause, like Every farmer who owns a donkey
beats it. (1b) is a formula of dynamic predicate logic with generalized quantifiers. Q is an
internally dynamic generalized quantifier, and £ is the dynamic existential quantifier of
DPL. The anaphoric relation in (1a) is modelled by the indirect binding relation between
€y and y mediated by Q in (1b).

An interesting task that suggests itself is to develop a theory of dynamic generalized
quantifiers, something analogous to the well-established theory of ordinary generalized
quantifiers (van Benthem 1986, Westerstahl 1989). Such a theory should formulate
dynamic notions analogous to static ones found in generalized quantifier theory and
prove formal results about dynamic generalized quantifiers. This paper can do no more
than suggest how such a theory might begin. While the standard generalized quantifier
theory is given at the denotational level, it will be convenient, at least for a start, to
speak of dynamic generalized quantifiers mainly in syntactic terms, using analogy with
first-order logic with generalized quantifiers.

Special attention is paid to a notion of Monotonicity suitable for internally dynamic
generalized quantifiers. This is in part inspired by a more general problem of accounting
for monotonicity inference in dynamic contexts. To illustrate the problem, the following
non-inference shows that one must take care in drawing monotonicity inference in the
presence of donkey anaphora:!

(2) [man who owns a garden] C [man who owns a house]
No man who owns a house sprinkles it
No man who owns a garden sprinkles it

Here, the first premise is that the set of men who own a garden is a subset of the set of
men who own a house, or every man who owns a garden is a man who owns a house.
From the fact that the determiner no is downward monotone in the first argument,?
one might expect that the replacement of man who owns a house in the second premise
by man who owns a garden is truth-preserving, which in fact it is not. The problem is
obviously caused by the presence of a donkey pronoun it; compare the validity of the
inference from No man who owns a house is poor to No man who owns a garden is poor,
under the same assumption. Nevertheless, it is not the case that monotonicity inference
does not make sense in donkey sentences. Both of the following are valid instances of
monotonicity inference:

(3) No farmer who owns a donkey beats it
No farmer who owns and feeds a donkey beats it

!The example is adapted from van Benthem 1987.
2 A determiner is said to be downward monotone in the first-argument (|MON) if its denotation Qum
in any universe M satisfies the following:

for all A,A",BC M, QmAB and A’ C A imply QuA'B.

Replacing A’ C A in the above definition by A C A’ gives the definition of upward monotonicity in the
first argument ({MON). Monotonicity in the second argument (MONT, MON]) is defined analogously.
Monotonicity in the first (second) argument is also called left (right) monotonicity.




(4) No farmer who owns a donkey beats it
No farmer who owns a female donkey beats it

What is called for is an appropriate dynamic sense of monotonicity more restrictive than
the usual one which accounts for the invalidity of (2) and the validity of (3) and (4).

Our concern for Monotonicity for dynamic generalized quantifiers has another em-
pirical motivation which is related to the issue of monotonicity inference. Here, the
task is to predict the interpretation of donkey sentences with relative clauses from the
monotonicity properties of the determiner. It has been observed that two distinct types
of interpretations are found in donkey sentences with determiners and relative clauses.
One interpretation, called the strong reading, allows a paraphrase with universal quan-
tification over donkeys, and the other interpretation, called the weak reading, allows a
paraphrase with existential quantification over donkeys.® The interpretation standardly
associated with Fvery farmer who owns a donkey beats it is the strong reading: FEvery
farmer who owns a donkey beats every donkey he owns. The (only) interpretation of No
farmer who owns a donkey beats it is the weak reading: No farmer who owns a donkey
beats a donkey he owns. The interesting fact is that in many cases, one or the other
interpretation is the only available one, or at least strongly preferred, and which reading
is available correlates with the monotonicity properties of the determiner. Compare the
following sentences, of which the available reading and the monotonicity properties of
the determiner are indicated.

(5) Every student who borrowed a book from Peter returned it
= Every student who borrowed a book from Peter returned every book he or she
borrowed from Peter (strong reading, |MONT)

(6) No student who borrowed a book from Peter returned it

= No student who borrowed a book from Peter returned a book he or she borrowed
from Peter (weak reading, |MON])

(7) At least two students who borrowed a book from Peter returned it
= At least two students who borrowed a book from Peter returned a book they
borrowed from Peter (weak reading, TMONT)

(8) Not every student who borrowed a book from Peter returned it
= Not every student who borrowed a book from Peter returned every book he or
she borrowed from Peter (?) (strong reading, TMON])

We find the correlation between monotonicity properties of determiners and interpreta-
tions of donkey sentences given in Table 1. The data is actually quite complex, and we
cannot elaborate on Table 1 here.* In this paper, we will simply assume the data as
summarized in Table 1, and give an explanation of the observed correlation using the
notion of Monotonicity for dynamic generalized quantifiers. The key fact is that the
selected reading of a donkey sentence with a left monotone determiner is the one on
which monotonicity inference like (3) and (4) comes out valid.

The paper is organized as follows. In Section 2, we briefly look at first-order logic with
generalized quantifiers from a natural language perspective. In Section 3, we introduce

3Strong and weak readings of donkey sentences have been discussed by Rooth (1987), Chierchia (1990,
1992), and Gawron, Nerbonne, and Peters (1991), among others. The terms strong reading and weak
reading are apparently due to Chierchia (1990).

*For detailed discussions of weak and strong readings of donkey sentences with relative clauses and
of monotonicity inference, the reader is referred to Kanazawa 1992.




Available reading(s) Determiners
TMONT  Weak reading only a, some, several, at least n, many
TMON|  Strong reading preferred? not every, not all
IMONT Strong reading preferred  every, all, FC any
IMON| Weak reading only no, few, at most n
JAMONT Both most

Table 1: Monotonicity of determiners and interpretations of donkey sentences.

our version of dynamic predicate logic. Section 4 is devoted to the system of DPL
augmented with static and dynamic generalized quantifiers. In Section 4.1, we see two
ways of defining dynamic generalized quantifiers in terms of static ones and dynamic
connectives of DPL. In Section 4.2, we consider dynamic notions of Conservativity. In
Section 4.3, a suitable dynamic notion of Monotonicity is formulated, which is then
used to explain the correlation given in Table 1. In Section 4.4, we demonstrate that,
under minimal assumptions, dynamic double monotonicity actually serves as an implicit
definition of a dynamic generalized quantifier in terms of a static one. In section 4.5,
a correlation between left monotonicity and model-theoretic preservation properties is
extended to the dynamic case. Proof of the results in Sections 4.4 and 4.5 is relegated
to Section 4.6.

2 First-Order Logic with Generalized Quantifiers

Before turning to dynamic predicate logic, let us briefly look at ordinary first-order logic
with generalized quantifiers. The purpose of this section is to express various general
and special properties of quantifiers as formulas (in the case of local conditions on the
denotation in each model) or model-theoretic properties of formulas (in the case of global
conditions operating across models) in the language of first-order logic with generalized
quantifiers. This will prove convenient when recasting these properties in the dynamic
setting.

The language of first-order logic with generalized quantifiers is obtained by adding
two-place quantifier symbols to the language of first-order logic. If @) is a generalized
quantifier symbol and ¢ and 9 are formulas, Qz(¢p, ¥) is a formula. (We shall be mainly
interested in the case where ¢ and v are formulas of first-order logic.) The new clause in
the Tarski style truth definition looks like the following. Let M be a model with domain
M. For any quantifier symbol @,

M = Qz(p,¥)ls] iff
({a€ M|ME ¢[s(a/a)]}, {a€ M | M ¢[s(a/2)]}) € QM.
QM C pow(M)x pow(M ) is the interpretation of Q in M. s(a/z) denotes the assignment

s’ such that s'(z) = a and §'(y) = s(y) for all y # z. From this definition, it follows that
equivalent formulas are always intersubstitutable.

Equivalence (EQUI).
Vz(p o @) AV2(h & ') — (Qz(p, %) < Qz(¢',¥"))




Also, the choice of bound variable is arbitrary (with the usual provisos).

Renaming. Qz(p(z), ¥(z)) < Qu(e(y), ¥(y))

For any quantifier @), the above two schemata are always valid in first-order logic with
generalized quantifiers.

We intend each @) to represent a natural language determiner. Consequently, QM is
not just an arbitrary subset of pow(M) X pow(M). Interpretations of quantifier symbols
are constrained by conditions to be satisfied within and across models.

Firstly, QM should depend just on M, the universe of M. Thus, each Q is associated
with a functional assigning to each non-empty set U a subset Qu of pow(U) x pow(U).
QM is set to Qnrr- Moreover, Qas’s must ‘agree’ with each other in the sense that

forall A,BC M,N, QuAB iff QnAB.

This condition is called Ertension.’ As a model-theoretic property of formulas in our
language, it is expressed as follows:

Extension (EXT).
For any M, N and s: VAR—- MNN,
if {a€ M| M ¢[s(a/z)]} ={a€ N|NE ¢[s(a/z)]}
and {a € M | M [ ¢[s(a/z)]} ={a € N |N | ¢[s(a/z)] },
then M = Qz (i, )] if N = Qa(p, $)[s].

Conservativity is one of the most important properties of quantifiers and it has been
claimed to hold universally of all natural language determiners (Barwise and Cooper
1981, Keenan and Stavi 1986). At the level of denotation, it says

Forall A,BC M, QuAB iff QmA(AN B).
The corresponding formula is the following:

Conservativity (CONS).
Qz(p,¥) = Qz(p, o A P).

EXT and CONS are universal principles that are supposed to hold of all natural lan-
guage quantifiers. For ‘logical’ quantifiers, another principle called Quantity (QUANT)
is usually assumed, which says (under CONS and EXT) that QaAB depends just on
the size of A — B and AN B. QUANT does not play any role in this work. Henceforth,
EXT and CONS will always be assumed, if () is supposed to represent a natural language
determiner.

In addition to general properties like EXT and CONS, there are special properties
of specific quantifiers that are of interest. Monotonicity properties are the focus of the
present paper. In terms of denotations, they are:

TMON forall A,A',BC M,QpAB and A C A" imply QpmA’'B
IMON forall A,A’,BC M,QpAB and A’ C A imply QpA'B
MONT?T forall A,B,B'C M, QnmAB and B C B’ imply QpAB’
MON|] forall A,B,B'C M, QpnAB and B’ C B imply QapAB’

In the language of first-order logic with generalized quantifiers, they are expressed by
the following formulas:

°Tt is called Extension since it is equivalent to the condition restricted to the case M C N.




Monotonicity.
TMON  Vz(p — ¢') = (Qz(p,¥) — Qz(¢',9))
IMON  Vz(¢' = ¢) = (Qz(p, %) — Qz(¢',¥))
MONT  Vz(¢ — ¢') — (Qz(p, ¥) — Qz(p,¢"))
MON| Vz(¢' — ¢) — (Qz(p,¥) — Qz(p,¥"))

Since CONS gives the left argument of a quantifier a privileged role, left monotonicity
(TMON, |[MON) and right monotonicity (MONT, MON]) turn out to be very different
properties. An illustration of the difference is given by the following model-theoretic
characterization of left monotonicity, adapted from Westerstahl 1989 (p. 79).

PROPOSITION 1. Assume that @ obeys EXT and CONS. Then @ is TMON (|MON) if
and only if Qz(P(z), R(z)) is preserved under extensions (submodels).®

The generalization of Proposition 1 will be of our interest (Section 4.5).

3 Dynamic Predicate Logic

Dynamic predicate logic of Groenendijk and Stokhof (1991) is presented as an alternative
interpretation of the language of first-order logic. It is more convenient for our purposes
to present DPL as an eztension of first-order logic. We provide all necessary definitions,
but cannot fully convey the intuitions behind the system. For that, the reader is referred
to Groenendijk and Stokhof 1991.

The language of DPL contains, in addition to equality, relation symbols, function
symbols, constant symbols, variables, and static connectives

_" /\7 V’ _)7 H’ V’ 3
from first-order logic, dynamic connectives
o=y €

(dynamic conjunction, dynamic implication, and dynamic existential quantifier, respec-
tively). Moreover, I include ‘meta’ connectives

<

~
- -

which are interpreted like Groenendijk and Stokhof’s equivalence and meaning inclusion
relativized to models and assignments.

The semantics of static connectives can be completely explained in terms of the usual
satisfaction conditions:

M = ¢[s]
(s satisfies ¢ in M) just as in first-order logic. In contrast, the semantics of dynamic
and ‘meta’ connectives must essentially rely on more ‘dynamic’ transition conditions:

s[elm s’

®M is called a submodel of N (M C N)if M C N and pM . pN [M™ (restriction of PN o M™) for
all n-ary relation symbols P, FM_p N | M™ for all n-ary function symbols F, and cM = cN € M for
all constant symbols ¢. (In Proposition 1, all that matters is the interpretation of P and R.) f M C N,

N is called an extension of M. A sentence ¢ is said to be preserved under extensions (submodels) if
M k= ¢ implies N |= ¢ whenever M C N (N C M).




@ M E p[s]iff ... s[elpg s iff ...

1. ti=ts tM” = tzlw” s=s"and M [ ¢[s]

2. R(t1,...,tn) (t{w”, .. .,t,I,VI”) e rRM s=5 and M [ ¢[s]

3. M £ [s] s=s" and M [k ¢[s]

4. YAy M E ¢[s] and M = x]s] s=s" and M [ ¢[s]

5. Y Vx M E ¢[s] or M [= x[s] s=s" and M [k ¢[s]

6. ¥v—x M [ ¢[s] implies M = x([s] s=s and M [ ¢[s]

7. Yeox M E ¢[s] if M | x[s] s=s and M [ ¢[s]

8. Vz¢ for alla € M, M | ¢[s(a/z)] s=s and M [ ¢[s]

9. dzy for some a € M, M | ¢[s(a/z)] s=s" and M [ ¢[s]
10. ¥;x for some s', s [@]pg &’ for some s”, s [¢]pg s” and s” [x]pg 8
11. v =>x for all s, s [¢]pg 5" implies M [ x[s'] s=s"and M |= ¢[s]
12.  Exy for some s', s [@]pg &’ for some a € M, s(a/z) [¢v]n 8
13. Y~ for all ', s [¢]pg 8" iff s [xIng ' s=s" and M [ ¢[s]
14. ¥ <x for all s', s[¢]g ¢’ implies s[x]pgs' s=+5"and M |= ¢[s]

Table 2: Semantics of DPL.

In Table 2, we give the semantics of DPL as a simultaneous recursive definition
of M | ¢[s] and s[¢]pms’. The notions of models and assignments, as well as the
interpretation t™+* of a term ¢ with respect to a model M and an assignment s are the
familiar ones from first-order logic.

The notions of truth and validity are defined in the usual way in terms of satisfaction:
M E ¢ (¢ is true in M) if and only if for every s: VAR — M, M |= ¢[s]; and | ¢ (¢ is
valid) if and only if for all M, M [ ¢.

Note that for 1-9, the definition of M = ¢[s] is identical to the usual one in first-
order logic. Consequently, if ¢ is a first-order formula, M = ¢[s] in DPL if and only if
M [ ¢[s] in first-order logic. In this sense, we can say our version of DPL is an extension
of first-order logic.

Let us call [p]m = {s| M = ¢[s] } the static denotation of ¢ (in M), and [¢]M =
{(s,8) | slelm s’} the dynamic denotation of ¢ (in M). It is easy to see [p]M =
dom([¢]m) (the domain of [¢]pg) for every formula ¢; i.e., the static denotation is
always recoverable from the dynamic denotation. For some formulas ¢, their dynamic
denotation can be extracted from their static denotation—[p]ps = id [[¢]n (the identity
relation restricted to [¢]ng) holds. Such formulas are called tests.

For 1-9, 11, 13, and 14, the definition of s[p]n s’ is the same—[¢]m = id [[¢]Mm-
Formulas of these forms are always tests and have no external dynamic effect. For this
reason, all connectives except ; and £ are called externally static. The static connectives
(=, A, V, =, <, V, 3) from fisrt-order logic are also internally static. If the main
connective of ¢ is one of these, the static, and hence dynamic, denotation of ¢ can be
calculated from the static denotation of its immediate subformula(s). In contrast, the
dynamic connectives (;, =, £) and our ‘meta’ connectives (=, <) are internally dynamic.
To calculate the static and dynamic denotations of a formula whose main connective is
;, =, =, or <X, the dynamic denotation of its immediate subformulas must be consulted.
In the case of &, [Ezv]pM is determined by [¢]m ([Ex¥]m = [Fzv¥]Mm), but to calculate
[Ez¥]m one must look at []pg- The connectives ; and £ are even ezternally dynamic.
If the main connective of ¢ is ; or &, [¢]nm is not determined by [¢]p in general, and s




and s such that s[¢]n s’ can be different.”

A remark on our ‘meta’ connectives ~ and < is in order. Groenendijk and Stokhof
(1991) use ~ and < as symbols in the metalanguage; in their paper, ‘@ ~ 1’ and ‘¢ < ¢’
mean ‘for all M, [¢]m = [¢¥]m’ and “for all M, [eo]m C [¢]m’, respectively. If we write
sTelw for {s' | s[elm o'},

ME@~y[s] iff s[elm=s[elm,
Mo =29[s] iff s[e]lm C slelm,

MEe~y il [o]lm = [e]lm,
MEe=29 iff [elm C [elM,

and

': e~ iff for all M, [[90]]M = [[<P]|Ma
Fe=zvy iff foral M, [¢]m C [¢]m-

Thus, Groenendijk and Stokhof’s ‘¢ ~ 9’ and ‘¢ < ¢’ are our ‘= ¢ ~ ¢’ and ‘= p J ¢P’.
This justifies our own use of their symbols. ~ and < will be useful in expressing certain
principles, and are not intended for use in representing natural language sentences. In
what follows, metavariables like ¢ and % will always range over formulas without ~ or
<. Note that ¢ ~ 1 is equivalent to (¢ < P) A (¢ <X ¢).

There is an obvious correspondence between dynamic connectives and their static
counterparts. If ¢ and % are tests, the following equivalences are valid:

(9) P = QAP
(10) pP=FX X poX

(In (10), x does not have to be a test.) Also, for any .2
(11) Exp o dzp
However, even if ¢ is a test,

Exp ~ Tz

usually does not hold. Although ; just passes on, so to speak, the external dynamic force
of its conjuncts, part of the external dynamic force of £z¢ is created by £z.
The ‘meta’ connectives ~ and < correspond to < and —. If ¢ and 7 are tests,

(p ) (p =)
(p2Y) =~ (p—19)

"We note that our use of the term ‘internally dynamic’ is slightly different from Groenendijk and
Stokhof’s. Since ~ and < create no new variable binding, they would not be internally dynamic connec-
tives in their sense. On the other hand, their usage would make our 3 internally dynamic. (They do not
have a precise definition, however.) We can state our definition in the following way. A connective C is
externally static if a formula with C as its main connective is always a test. Otherwise, C is externally
dynamic. C is internally dynamic if the dynamic denotation of a formula with C as its main connective
cannot in general be determined by the static denotation of its immediate subformula(s). Otherwise, C
is internally static.

8Henceforth, we may just assert a formula to mean it is valid.
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Note also that for any ¢ and 2,

(px9) — (pe)
(p29) = (p—19)

Both = and < correspond to —. If ¢ and v are tests, ¢ = % and ¢ < 9 are
equivalent. Intuitively, the difference between = and < is that the semantics of the
former is ‘sequential’ while that of the latter is ‘parallel’.

Note that = and the static connectives except — are definable in terms of —, ;, and
£, using the equivalences:

p=>19 >~ ~(p;79)
P — ¢ ~ —|’¢/J = @
Ve ~ =€z
and the standard equivalences in first-order logic. See Groenendijk and Stokhof 1991 for
details.

The most important properties of dynamic connectives are expressed in the following
equivalences:

(12) (p39%)sx =~ @;(¥5x)
(13) Expi ~ Ex(p;9)
(14) Ezp=>Y ~ V(=)

In the last two schemata, (13) and (14), there is no restriction on %; unlike the cor-
responding equivalences in first-order logic, = can occur free in 1.° These properties
of dynamic connectives are used to represent intersentential and donkey anaphora in
natural language. For example, one may translate

If Pedro owns a donkey, it is kept in the barn

in DPL as
Ex(donkey(z) ; own(Pedro, z)) = kept-in-the-barn(z).

The latter can be seen to be equivalent to
Vz(donkey(z) A own(Pedro, z) — kept-in-the-barn(z)).

For more examples and discussion, see Groenendijk and Stokhof 1990, 1991.1°

°In first-order logic, if  does not occur free in ¢, 3z A ¢ and Iz — 1 are equivalent to Iz(p A P)
and Vz(p — ¢), respectively. If z is free in 9, the equivalences do not hold in general.

1°Groenendijk and Stokhof express the fact that (13) and (14) are valid by saying that the dynamic
existential quantifier can bind variables outside its syntactic scope. For Groenendijk and Stokhof, free
occurrences of z in the second conjunct of £z ;1 are bound by the dynamic existential quantifier in
the first conjunct, and free occurrences of z in the consequent of £z = 9 are bound by the dynamic
existential quantifier in the antecedent. This terminology might be misleading. In these formulas, £z
does not bind the z in ¢ and the = in 9 in the same way. If anything, it is the combination of the
dynamic existential quantifier and the dynamic main connective (; or =>) that binds the z in #. (This
will be more apparent when the main connective is a dynamic generalized quantifier.) It is clear that
the occurrences of z in these formulas are not like free variables in first-order logic, and so I will follow
Groenendijk and Stokhof in saying that the free occurrences of z in 9 are ‘bound’ in £zp; ¢ or £z = .
I will avoid, however, the terminology ‘bound by £z’ in such cases; the ‘binding’ relation between = and
£z is an indirect one mediated by ; or =. Cf. Barwise’s (1987) three-way distinction between captured,
restrained, and free.




® fv(e)

1. t1 =1, all occurrences of variables in ¢

2. R(ti,...,t,) all occurrences of variables in ¢

3. ()

4 $Ax () Ufv(x)

5. ¥Vx fv(y) Ufv(x)

6. v—x  ME)UN(K)

Topex W)UK

8. Vzi fv(1) minus all occurrences of z

9. dzv fv() minus all occurrences of z
10. ¥;x fv(p)U{z etv(x) |z ¢ AQV(¥)}
1. $ox wv($)U{z € fv(x) | = € AQV(%) }
12. &z fv(7) minus all occurrences of z

Table 3: Definition of fv(¢p).

Groenendijk and Stokhof (1991) define AQV(¢y), the set of active quantifier variables
of ¢, and FV(¢p), the set of free variables in ¢. AQV(¢p) will be very important in what
follows. We define AQV(¢p) as follows. An occurrence of a dynamic existential quantifier
in ¢ is called potentially active if it does not lie within the scope of any externally static
connective in ¢. For any variable z, the rightmost potentially active occurrence of £z in
@ is called an active occurrence of £z. AQV(yp), then, is the set of variables  such that
there is an active (or, equivalently, potentially active) occurrence of £z in ¢. FV(¢) is
defined in terms of another useful notion, fv(¢), the set of free occurrences of variables
in ¢. Table 3 gives the definition of fv(¢).!! Like Groenendijk and Stokhof, we allow
ourselves to be sloppy by not having an explicit way of referring to occurrences. FV(¢)
is then defined to be the set of variables z such that there is an occurrence of z in fv(¢p).

If ¢ is a first-order formula, AQV(¢) = 0 and FV(yp) is the set of free variables in ¢
in the usual sense.

The following facts point to the ‘meaning’ of AQV(y) and FV(¢p):

e If for some M, there are s and s’ such that s[¢]pm s’ and s(z) # §'(z), then
z € AQV(p).

o If 2 ¢ FV(p), then for all M, for all s: VAR — M and @ € M, M [ ¢[s] iff
M [ gls(a/2).

As is already clear by now, the dynamic existential quantifier £ plays a pivotal
role in DPL. All ‘dynamics’ of DPL formulas originate in active occurrences of £. If
AQV(p) = 0, then ¢ is a test (but not necessarily conversely).!?

In a certain sense, the semantics of £ can be regarded as a reconciliation of two
competing views on indefinite noun phrases in natural language: the traditional idea
of ‘indefinites as existential quantifiers’ and the idea of ‘indefinites as variables’ made

1We do not include clauses for ‘meta’ connectives, as the notion of free variables sometimes does not
quite behave as expected in the presence of ~ or <.

2Formulas ¢ with AQV(p) = @ correspond to what Groenendijk and Stokhof (1991) call conditions.
They make a false statement that ¢ is a test iff ¢ is a condition or a contradiction (FACT 6, p. 58).
A counterexample is £ = a;Ez(z = a), which is a test, but not a condition or a contradiction. [z =
a;Ez(z = a)]pg = [z = a]pg. Their claim holds when confined to the case AQV(p) NFV(p) = 0.
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popular by discourse representation theory. For example, consider the formula £z P(z).
One can easily see

dom([€zP(z)]lm) = [3zP(z)lm,
ran([€zP(z)lm) = [P(z)lm-
Let us make this observation more general. To make matters simple, we confine

ourselves to formulas with certain desirable syntactic properties. In what follows, let ¢
range over formulas which satisfy the following two conditions:

(15) AQV(y)N FV(¢) = 0.

(16) For any variable z, there is at most one potentially active occurrence of £z in ¢.

(15) excludes formulas like P(z);&xR(x), and (16) excludes formulas like
Ex(P(z);ExR(z)). Neither restriction, however, essentially reduces the expressive power
of the language.!® Now define * to be the result of erasing all (potentially) active oc-
currences of dynamic existential quantifiers in ¢. For example,

(farmer(z) ; Ey(donkey(y) ;own(z, y)))* = farmer(z) ; (donkey(y) ; own(z, y)).
Then
dom(lelv) = [3o1-.3zap I,
ran([elm) = [¢*Im,

where {z1,...,z,} = AQV(p).1
Here are some more important equivalences.

(17) piv=>x = = (¥ =X
If 2 ¢ FV(10) UAQV (),

(18) pi€zyp > Ex(p;9)

If AQV(p) NFV(3) = 0,

(19) e;Y o PN

(20) ey = o=y

(19) and (20) generalize (9) and (10). The ‘internal dynamics’ of ; and = is exhausted by
their capacity to mediate indirect binding discussed above; if AQV(¢) NFV(p) = 0, this

13 For any formula ¢, a formula ¢ which meets (15) and (16) such that ¢ « ¢ can be obtained by mere
renaming of variables. (15) is discussed by Groenendijk and Stokhof (1991). Formulas which violate it
are arguably never necessary to represent natural language sentences and discourses. As for (16), note
that, for any formula ¢ satisfying (15), there is a ¢ satisfying both (15) and (16) such that ¢ ~ 9. For
example,

Ex(P(z);ExR(x)) =~ 3FzP(z);ExzR(z)

1*By convention, the notation ¢* will always presuppose that ¢ satisfies (15) and (16) in the remainder
of the paper.
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does not happen, and ; and = collapse to A and — (as far as the satisfaction conditions
are concerned, in the case of ;).

Replacement of equivalents tn DPL. In first-order logic, equivalent formulas are inter-
substitutable salva veritate. Formally, if ¢() is a first-order formula with subformula
¥, and {z1,...,2,} are the variables which have occurrences in (fv(¢) — fv(p(¢))) U

(fv(y") — fv(p(¥"))),
(21) Var...on(¥ & 9) = (0(¥) & ¢(¥))

An analogue of (21) in DPL is the following: if ¢(v) and ¢’ are DPL formulas
(without ‘meta’ connectives) and {zi,...,2,} are the variables which have occurrences

in (fv(9) - v(p($))) U (Iv(") — fv(e(4))),

(22) Voi...zn( = ¢) = (0(¥) = o(4"))

(In case ¢(¢) and (') contain no free variables, this amounts to
V(¢ = ) = (p(¥) = o(¥),

where V indicates universal closure.) In particular, we note the validity of the following.

Let {z1,...,z,} = AQV(%).

(23) Y AV en(x 2 X) - (Wix x ¥'5X)
(24) Y AVz L an(x o X) = (W2 x 2P = X)
(25) Ve(p ~ ) — (Eztp ~ Exvp’)

With this much background, we are now ready to introduce generalized quantifiers
into dynamic predicate logic.

4 Generalized Quantifiers in Dynamic Predicate Logic

We can introduce static generalized quantifiers into dynamic predicate logic in the obvi-
ous way. If ¢ = Qu(, X),

M ¢[s] iff ({aeM|M | 9[s(a/z)]},{ac M| M x[s(a/z)]}) € @um,
slelms’ iff s=s"and Mk ¢[s].

This was the format for all static connectives in DPL.1%

Since we built our version of DPL as an extension of first-order logic, DPL with static
generalized quantifiers (DPL(Q)) in turn becomes an extension of first-order logic with
generalized quantifiers. For any static generalized quantifier @, Q behaves in DPL(Q)
just like it does in first-order logic with generalized quantifiers. Basic principles like EQUI
and Renaming remain valid in DPL(Q), metavariables like ¢, 9, etc., now ranging over
formulas of DPL(Q). For @ representing natural language determiners, EXT and CONS

5The new clause for fv(yp) is:

® fv(e)
13. Qz(v,x) fv(¥)Ufv(x) minus all occurrences of z

Q is externally static, so if ¢ = Qz(%, x), no occurrence of dynamic existential quantifier in ¢ is poten-
tially active, and AQV(p) = 0.
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continue to hold in DPL(Q), and depending on the kind of quantifier it is, one or more
of the MON formulas remain valid.

To model donkey sentences with DPL, addition of static generalized quantifiers
will not be enough; we need to introduce dynamic generalized quantifiers into DPL
(DPL(Q, Q)). Such quantifiers must allow active dynamic existential quantifiers in their
first argument to provide values for free variables in their second argument; i.e., they
must be internally dynamic in the way ; and = are. We may want some dynamic gen-
eralized quantifiers to be externally dynamic as well, to model a few natural language
determiners that show an external dynamic effect like some and a. Nevertheless, since
we are not concerned with the external dynamic effect of donkey sentences in this pa-
per, we will ignore such possibilities, and work with internally dynamic but externally
static generalized quantifiers. We use script Q as a symbol for such dynamic generalized
quantifiers.

The definition of fv(¢) is naturally extended as follows:

¢ fv(e)
14. Qz(v,x) tv(¥)U{yefv(x)|y € AQV(?)} minus all occurrences of z

Since Q is externally static, if ¢ = Qz(%,x), no occurrence of dynamic existential
quantifier in ¢ is potentially active, and AQV(p) = 0.

It is not a straightforward matter to give a general format for the semantics for
dynamic generalized quantifiers as we did with static ones. It seems to me that there
is some arbitrary choice to be made in assigning denotations to dynamic generalized
quantifiers. For Chierchia (1990, 1992), dynamic generalized quantifiers are relations
between dynamic properties, and the latter are functions from individuals to relations
between assignments. Rooth (1987) takes relations between parametric sets, the latter
being sets of individual-assignment pairs. Such semantic notions of dynamic generalized
quantifiers may not be fully satisfactory, since possible arguments of such relations must
be restricted (only values for finitely many variables should matter). It is like taking
relations between sets of assignments as denotations of static generalized quantifiers.
What we want is an analogue of relations between sets of individuals. (Use of partial
assignments would improve the matter, however.)

It is possible to think of dynamic generalized quantifiers as a restricted class of
polyadic quantifiers (of variable adicity). So a dynamic generalized quantifier Q can be
associated with a family of two-place polyadic quantifiers Q;, Q3%,, ..., where Q7 is
a binary relation between n-ary relations on M. Q%,’s must ‘agree’ with each other in
some sense. Then we may define the satisfaction conditions for ¢ = Qz(®, x) thus:

M [ ¢[s] iff
({(a,b1,-.-,ba) | s(a/z) [¥Ims(a/z,b1/91,- -, bn/yn) },
{(a7b1,' >bn> | M I: X[s(a/z,bl/ylw"7bn/yn)] }) € QnM+1’

where {y1,...,9.} = AQV(¥).!® The idea is to interpret Qz(%,x) like
Q™" zyy ... yn(¥*, x), where Q™! is a two-place n + 1-adic generalized quantifier. (The

165 & AQV(9) is assumed. An alternative would be:

M [= ¢[s] iff
({{(a,b1,...,bs) | As'(s(a/z) [¥]pg 8’8" (i) = b (1 <5< n))},
{(a,b1,...,bn) | M |= x[s(a/z,b1/91,-.-,bn/yn)]}) € Q3"

where {y1,...,yn} = AQV(¥) N FV(x).
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latter formula is reminiscent of discourse representation theory.) However, this format
is still too general, and reference to AQV(%) may be vexing.

Fortunately, we can develop a theory of dynamic generalized quantifiers largely with-
out taking a stance on what the right notion of denotation is for dynamic generalized
quantifiers. This is because properties of a dynamic generalized quantifier Q can be
stated as properties of formulas Qz(p, ), as we did with static quantifiers in Section 2.
Moreover, particular dynamic generalized quantifiers we will consider are in fact the
ones given by simple definitions in terms of static quantifiers and dynamic connectives
of DPL.

Here, we note some obvious principles. As with static generalized quantifiers, dy-
namic generalized quantifiers allow renaming of the bound variable (with a fresh one):!”

Renaming. Qz(p(z),¥(x)) < Qy(e(y), ¥(¥))

Since our dynamic generalized quantifiers are externally static, the above « can be
replaced by ~.
The same should hold for variables that get bound indirectly:

Subordinate Renaming.

Qz (i, ) « Qz(¢',¥[2/y])

where y € AQV(yp), z is a fresh variable, ¢’ is the result of replacing occurrences of y
not free in ¢ by z, and ¥[z/y] is the result of replacing free occurrences of y in 3 by z.
The principle of Equivalence takes the following form. If {y1,...,y.} = AQV(y),

Dynamic Equivalence (DEQUI).
Va(p ~ @) AVa¥ys ... V(% o B) — (Qz(p, ) « Qa(¢, )

The dynamic effects of dynamic existential quantifiers in the first argument of Q reach
into the second argument. This requires the extra quantifiers Vy; ...Vy, in the second
conjunct of the antecedent. Just as with dynamic implication of DPL, internal dynamics
of dynamic generalized quantifiers goes only one way; the dynamic effects of the second
argument does not matter, whence only the static equivalence « is required with respect
to the second argument. (Compare (24).)

The above three principles always hold for internally dynamic but externally static
generalized quantifiers.

4.1 Chierchia’s Two Definitions of Dynamic Generalized Quantifiers

Here we follow Chierchia (1990) and explore ways of defining dynamic generalized quan-
tifiers within the resources of DPL with static generalized quantifiers. Chierchia (1990)
has two schemata for defining a dynamic generalized quantifier in terms of a static coun-
terpart. One schema is used to represent the weak reading of donkey sentences, and the
other is used to represent the strong reading. In our present set-up of dynamic predicate
logic with generalized quantifiers, they come out as follows. For any static generalized
quantifier @, define two dynamic generalized quantifiers Qw and Qs by:1®

"Here, we must have z & AQV(p(z)). (y is fresh, so we also have y € AQV(¢(y)).)

18 Chierchia’s (1990) own schemata are cast in a higher-order framework. Also, for some mysterious
reason, he does not use = in (27), and instead uses an ‘adverb of quantification’ of universal force. It is
clear that => does the same job. Essentially the same definitions as (26) and (27) are also found in van
Eijck and de Vries 1992.
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(26) Qwz(p,¥) < Qz(p ;)
(27) Qsz(p, ) < Qz(p,p = ¢)

(26) is for the weak reading, and (27) is for the strong reading.!®
Let us work out an example:

(28) Most farmers who own a donkey beat it.

The first argument of most, farmers who own a donkey, is translated into DPL as:

(29) farmer(z) ; £y(donkey(y) ;own(z, y)).
The second argument, beat it, is translated as:
(30) beat(z,y).
The two readings of (28) are represented by the following two formulas:
(31) MOSTwz(farmer(z) ; Ey(donkey(y) ;own(z, y)), beat(z,y))
(32) MOST sz(farmer(z) ; Ey(donkey(y) ;own(z, y)), beat(z,y))
By definition, (31) and (32) are equivalent to (33) and (34), respectively.
(33) MOSTz(farmer(z) ; Ey(donkey(y) ; own(z, y)),

(farmer(z) ; Ey(donkey(y) ;own(z, y))) ; beat(z, y))
(34) MOSTz(farmer(z) ; Ey(donkey(y) ; own(z, y)),

(farmer(z) ; Ey(donkey(y) ;own(z, y))) = beat(z,y))
By several validities in DPL mentioned earlier, we get

farmer(z) ; Ey(donkey(y) ; own(z, y))
« farmer(z) A Jz(donkey(y) A own(z, y)).

Similarly, we have

(farmer(z) ; Ey(donkey(y) ; own(z, 1)) s beat(z, y)
« farmer(z) A Jy(donkey(y) A own(z,y) A beat(z,y))

and

(farmer(z) ; Ey(donkey(y) ; own(z, y))) = beat(z, y)
« farmer(z) — Vy(donkey(y) A own(z,y) — beat(z,y)).

Using EQUI, then, we see that (33) and (34) are equivalent to (35) and (36), respectively:

(35) MOSTz(farmer(z) A Jy(donkey(y) A own(z,y)),
farmer(z) A y(donkey(y) A own(z, y) A beat(z,y)))
(36) MOSTz(farmer(z) A Jy(donkey(y) A own(z,y)),

farmer(z) — Vy(donkey(y) A own(z,y) — beat(z,y)))

“Note that if Q satisfies CONS, and if AQV(p) N FV(y) =0,
Qwiz(p,¥) < Qsz(p,9) < Qz(p,¥).
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By CONS, (35) and (36) in turn are seen to be equivalent to (37) and (38), respectively.

(37) MOSTz(farmer(z) A Jy(donkey(y) A own(z,y)),
Jy(donkey(y) A own(z,y) A beat(z,y)))
(38) MOSTz(farmer(z) A Jy(donkey(y) A own(z,y)),

Vy(donkey(y) A own(z,y) — beat(z,y)))

Note that (37) and (38) correspond to the two paraphrases Most farmers who own a
donkey beat a donkey they own and Most farmers who own a donkey beat every donkey
they own of (28), respectively.

The equivalences like these hold in general. If Q) is conservative, z,y € AQV(x(z,¥y)),

and z ¢ AQV(p(2)),

(39) QW:E((P(‘T) ;gyX(x, y)’ 1#(:1),3/))
= Qz(p(z) A Jyx(z,y), Jy(x(z,y) A ¢¥(z,y)))
(40) Qsz(p(z); Eyx(z,v), ¥(z,y))

= Qz(p(z) A Jyx(z,v), Yu(x(z,y) = ¥(z,y)))

The formulas on the right-hand side of (39) and (40) are schematic representations of
the weak and strong readings of donkey sentences of the form (1a) in first-order logic
with generalized quantifiers.

Thus, the problem of choosing between the weak and strong readings of donkey
sentences becomes the problem of choosing between Qw and Qs. Our agenda is to
choose between Qw and Qg on the basis of monotonicity properties of (). Before turning
to this task, however, let us sidetrack a little bit and look at a different possible way of
discrimination.

4.2 Dynamic Notions of Conservativity

Chierchia (1990) claims that there is an a priori reason to favor Qw over Qg regardless
of the kind of quantifier @) is. His reason is that Qw, but not Qg, can be said to be
dynamically conservative. A dynamic generalized quantifier Q is said to be dynamically
conservative in Chierchia’s sense if the following is valid:

Dynamic Conservativity 1 (DCONS1).
Qz(p,¥) < Qz(p,¢;59)

DCONSLI is supposed to be the dynamic analogue of CONS. Given that ; is the dynamic
counterpart of A, there is a good correspondence. It is easy to see that Qw, but not Qg,
satisfies DCONS1.20

Since CONS is a fundamental property of static generalized quantifiers representing
natural language determiners, we would naturally expect some dynamic version of CONS
to hold of dynamic generalized quantifiers, and DCONSI1 is certainly one natural candi-
date. Chierchia’s mistake was to think DCONS1 is the only natural dynamic analogue

20There is a proviso that AQV(¢)NFV(p) = 0. (See (15) and footnote 13.) This condition is necessary
to make many other reasonable statements, e.g., the validity of ¢ = ¢ or ¢;p ~ ¢.

Proof of the claim. As for Qu, since ; is associative (see (12)), it is sufficient to observe ¢ ~ ¢;¢
if AQV(¢) NFV(g) = 0. As for Qg, observe that (¢ = ¢;¥) ~ (¢ — ¢;9¥) so that Qgz(p,¢;¥) «
Qz(p, 0 — ¢;¢) « Qz(p,¢;v¥) — Qwz(p, V) (assuming conservativity of Q).
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of CONS. He states: ‘I see no non-trivial sense in which [strong dynamic determiners,
our Qs—M.K.] may be said to be dynamically conservative’ (p. 21). However, there is
a non-trivial sense in which Qg may be said to be dynamically conservative. It is the
following:

Dynamic Conservativity 2 (DCONS2).
Qz(p,9) « Qa(p, ¢ = 9)

It is easy to see that Qg, but not Qy, satisfies DCONS2.
Why is DCONS2 a natural dynamic analogue of CONS? Clearly, the static schema
corresponding to DCONS2 is

CONS2. Qz(p, ) < Qz(p, ¢ — )

But CONS2 is equivalent to CONS: they express one and the same condition on Q.
Since CONS2 also expresses (static) Conservativity, DCONS2 can also be said to be a
natural dynamic version of Conservativity. If so, one cannot choose between Qw and
Qs on the basis of a criterion like conservativity, contrary to Chierchia’s claim. Unlike
CONS and CONS2, DCONS1 and DCONS2 are not equivalent. They are different, but
equally natural, dynamic versions of the notion of conservativity. I do not see any good
grounds for choosing between DCONS1 and DCONS2.2?

We saw earlier that connectives in first-order logic may have more than one dynamic
realization in dynamic predicate logic. Here, we are observing a similar phenomenon.
Conditions on static generalized quantifiers like Conservativity may have a variety of
non-equivalent dynamic counterparts.

2 Proof. Assume CONS. Then

Qz(p,p —¢) — Qz(p,p A(p—¢)) (CONS)
= Qz(p,p AY) (A (p = ¥) = pAD)
- Qz(p,¥) (CONS).

For the converse, assume CONS2. Then

Qz(p, o ANY) < Qz(p, ¢ — 9 AY) (CONS2)
= Qz(p,p—¥) (e = e AY) = (p— ¥))
o Qz(p,v) (CONS2).

(The middle steps make use of EQUL.)
220f course, viewed as inferential principles, CONS and CONS2 are not the same. One might argue
that DCONSI is ‘more natural’ since, like CONS, it corresponds to a natural form of inference in English:

Det N VP « Det Nisa N and VP

Eg.,

Det farmer who owns a donkey beats it

Det farmer who owns a donkey is a farmer who owns a donkey and beats it

Expressing DCONS2 in English is more awkward:

Det farmer who owns a donkey beats it «

Det farmer who owns a donkey is such that if he is a farmer who owns a donkey, he beats

it
(CONS2 may be expressed as ‘Det N VP — Det N VP if he (she, etc.) is a N’, but this does not work
for DCONS2.) However, unlike Monotonicity, I think Conservativity should be thought of as a principle
about interpretation, not inference. It is difficult to imagine English speakers ever resort to paraphrases
like the above. Prolix forms like ‘Det N is a N and VP’ have little use in ordinary discourse; in fact, I
even think such paraphrasability may not be immediately recognized.
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In fact, there is yet another notion of dynamic conservativity which holds of both
Ow and Qg. This third notion of dynamic conservativity, which I in fact think is the
most natural one, can be given in terms of the *-transformation defined in Section 3.

DCONS*. Qx(p,P) < Qz(p, p* A1)

Recall that ¢* is the result of erasing all potentially active occurrences of dynamic
existential quantifiers?® and

ran([elm) = [¢*]Mm,

that is, ¢* expresses the ‘dynamic effect’ of ¢. What DCONS* says is this: to know
[Qz (¢, ¥)]M, it is not necessary to look at the whole of [¢]ng; knowing ran([¢]m) N [¥]Mm
is enough. This is a very natural condition, since, like dynamic connectives of DPL,
internally dynamic generalized quantifiers are supposed to evaluate the second argument
with respect to assignments that are outputs of the first argument.2*

Three notions of Dynamic Conservativity, when confined to the case AQV(p) N
FV(¢) =0, all turn out to be equivalent and amount to:

Qz(p,9) = Qu(p,en®) if AQV(9) NEV($) = 0.

Clearly, dynamic conjunction and dynamic implication satisfy the following, which
are analogous to DCONS*:2°

(41) ;Y o @i(e*AY)
(42) p=21% o o= (*AY)

From this it follows that both DCONS1 and DCONS2 imply DCONS*.26 Therefore,
DCONS* is satisfied by both Qw and Qg.

23 As before, ¢ is assumed to be such that it satisfies (15) and (16) in Section 3, that is, AQV(p) N
FV(p) = 0 and there is for any variable £ at most one potentially active occurrence of £z. Under (15),
the second restriction (16) can be avoided by complicating the transformation (see footnote 13).

**To capture this ‘spirit’ of DCONS* without restricting ¢ to formulas that satisfy (15) and (16),
we might introduce * as a new operator in the language, so that [p*]pg = ran([e]pg) for an arbitrary
formula ¢. In fact, even this can be avoided if we adopt the following form of Dynamic Conservativity:

DCONS. V(e = (¥ « ¢¥')) = (Qz(p, ¥) « Qz(p,¥")).

DCONS implies DCONS* in its operator version, and, when ¢ satisfies (15) (AQV(p) N FV(p) = 0),
conversely. They both coincide with DCONS* in its transformation version when ¢ satisfies both (15)
and (16). We opt for the transformation version of DCONS* for simplicity.

25(41) can be turned into a full dynamic equivalence using ; instead of A:

e > o;(e*;9)

28Tor, if DCONS1,

Qz(p,p* AY) — Qz(p,p;(p* A¥)) (DCONSI)
- Qz(p,p;9) (41)
—  Qz(p,¥) (DCONS1)
and if DCONS2,
Qz(p,¢* AY) — Qz(p,p=> ¢*A9) (DCONS2)
= Qz(p,p=> V) (42)
= Qz(p,9) (DCONS2)
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I adopt DCONS* as our official version of dynamic conservativity for the follow-
ing two reasons. Firstly, DCONS1 and DCONS2 are too strong principles; they seem
to do more than what dynamic conservativity should do, since they essentially reduce
dynamic generalized quantification to static generalized quantification combined with
dynamic conjunction or implication. (On the right-hand side of DCONS1 and DCONS2,
no ‘dynamic binding’ occurs between the two arguments of Q, except in the anomalous
case AQV(¢)NFV(¢) # 0.) They restrict the class of dynamic generalized quantifiers too
narrowly—for any static generalized quantifier, a unique dynamic generalized quantifier
would be determined. In contrast, DCONS* is a principle purely about dynamic quan-
tification, and it leaves many interesting options open. For example, the hypothetical
reading of ‘Most farmers who own a donkey beat it’ paraphrased by ‘Most farmers who
own a donkey beat most donkeys they own’ can be represented by a dynamic general-
ized quantifier satisfying DCONS*. Secondly, DCONS* is sufficiently strong to establish
some elegant results in the theory of dynamic generalized quantifiers. Stronger notions
of dynamic conservativity are not necessary.??

4.3 Monotonicity for Dynamic Generalized Quantifiers

A universal property of quantifiers like Conservativity does not decide which of the
two schemata (26) and (27) should be used. Our claim is that different quantifiers
can choose different schemata, based on their monotonicity properties. To do this, we
have to formulate a suitable notion of monotonicity for internally dynamic generalized
quantifiers. Recall that in the static case, monotonicity of a quantifier @) is expressed by
the following formulas:

Static Monotonicity.
TMON  Vz(p — ¢') — (Qz(p, %) — Qz(¢', ¥))
IMON  Vz(¢' — ¢) = (Qz(p,¥) — Qz(¢', ¥))
MONT  Va(y — ¢') = (Qz(p, ¥) — Qz(p, ¥"))
MON| Vz(¢' — ¢) = (Qz(p, %) — Qz(¢, ¥))

Suitable dynamic versions of these formulas turn out to be the following. Let
{v1,-- - yn} = AQV(p).

Dynamic Monotonicity.
DMON  Va(p < ¢') — (Qu(e, %) — Qa(¢, %))
IDMON  Vz(¢' = ¢) — (Qz(p,¥) — Qz(¢',9))
DMONT  VaVyi...Vyn(¢ — ¢') — (Qz(p, %) — Qz(p,¢"))
DMON|  VaVyi...Vyn(¥' — ¥) — (Qa(ep, %) — Qz(p,¢"))

The reader should recognize an analogy with DEQUI.

In {DMON and |DMON, the static implication in the premise of TMON and |[MON
is replaced by <. This is dictated by the fact that, whereas the static denotation of
¢ exhausts its semantic contribution to Qz(¢, ), the whole dynamic denotation of ¢
matters to Qz(p, ¥). Replacing — by < effects a shift from static denotation to dynamic
denotation.?® Note that, of the two dynamic connectives in our DPL which correspond

271 should also mention that DCONS* looks natural from a semantic point of view, if we think of a
dynamic generalized quantifier as a family of polyadic quantifiers as outlined earlier. DCONS* would
correspond to Q" RS iff Q"R(R N S).

?%In the simple case where AQV(p) = AQV(¢’) = {¥1,--.,Yn}, we have

Vz(p 2 ¢') & VaVyi...ga(p* — ™).
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to static implication, the ‘meta’ connective < is the one that makes sense here. This
contrasts with the formulation of DCONS2, where = takes the place of — in CONS2.

For internally dynamic (externally static) Q, [Qz(¢p, ¥)]Mm is a function of [¢]nm and
[¥]m- (¥ does not make a ‘dynamic contribution’ to Qz(¢p,).) Hence, the implication
remains static in the premise of DMONT and DMON|. The extra universal quantifiers
Vi ...Yy, are accounted for by the fact that the free occurrences of #;,...,¥, in ¥
become bound in Qz(¢p,1)).2°

A dynamic generalized quantifier Q is said to be dynamically upward monotone in
the first argument (etc.) if it validates the TDMON formula (etc.). We say Q is TDMON
(etc.), for short.

This dynamic notion of Monotonicity is adequate to capture monotonicity inference
in donkey sentences. Let us consider the earlier non-inference from No man who owns
a house sprinkles it to No man who owns a garden sprinkles it, in models where every
man who owns a garden owns a house. Here, we have

Vz(man(z) ; £y(garden(y) ;own(z, y)) — man(z); Ey(house(y) ; own(z, y))),

but the static implication — cannot be replaced by the dynamic <.3° Therefore, we
cannot expect to derive

NOz(man(z) ; Ey(garden(y) ; own(z, y)), sprinkle(z, y))

from
N Oz(man(z) ; Ey(house(y) ;own(z, y)), sprinkle(z, y)),

even if N'O is a dynamic generalized quantifier that is |DMON. In contrast, in the case
of valid inference from No farmer who owns a donkey beats it to No farmer who owns a
female donkey beats it, the necessary premise does hold:

Vz(farmer(z) ; Ey(female(y) ; donkey(y) ; own(z, y))
< farmer(z) ; £y(donkey(y) ; own(z, y))).

Dynamic left monotonicity of Qw and Qs. Given a double monotone static quan-
tifier ), we can show either Qw or Qg, but not both, turns out to be dynamically left
monotone. First, note the following monotonicity behavior of ; and =. Let {y1,...,y.} =

AQV(9).

(43) (p2¢) = (p59—¢;9)

In the general case, the relation between the two formulas is complex.
?91f DCONS* is assumed, reference to AQV(p) in DMONT and DMON| can be avoided by adopting
the following:

DMONT Vz(p = (¥ — ¢')) = (Qz(p, ¥) — Qz(p,¥"))
DMON| Vz(p = (¢’ — ¢)) — (Qz(e, ¥) — Qz(p,?"))

- The above version implies DCONS* (or DCONS of footnote 24).
%0Note that

Vz(man(z); £y(garden(y);own(z,y)) < man(z); Ey(house(y) ;own(z, y)))
is equivalent to
VzVy(man(z) A garden(y) A own(z,y) — man(z) A house(y) A own(z, y)).

See footnote 28.
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(44) Vyi.. V(¥ = ¢') = (39— 939
(45) (P =2¢) = ((¢=>9)— (¢ =19))
(46) V.. V(P = 9") = (¢ =2>9) = (= ¢))

For example, let ¢) be [MONT. Since

Va(¢' 2 9) — Va(¢' — ¢)
and by (45),
Va(¢' 2 9) — Va((p = ¥) = (¢ = ¥)),
we get
Ve(o' 2 9) — (Qz(p,p=> %) = Qz(¢, ¢’ = ¢))

by |MON and MONT. This means that Qg is |DMON.
Table 4 shows the dynamic monotonicity properties of Qw and Qg for double mono-
tone .31

I @ | 9w | 9s |
TMONT || {DMONT | JDMON{
TMON| || /DMON] | {DMON]
IMONT || /DMONT | |DMON{
IMON| || |DMON] | /DMON]

Table 4: Dynamic monotonicity of Qw and Qg.

Left Monotonicity Principle. We are now in a position to be able to formulate a
principle about interpretations of donkey sentences that explains the correlation given in
Table 1 precisely in terms of dynamic predicate logic with generalized quantifiers. The
interpretation of a donkey sentence of the form

Det N VP,
where Det ‘means’ @, is assumed to be represented by a formula of DPL(Q, Q)

Qz(p, ),

where Q is either Qw or Qg, and ¢ and ¥ are the translations of N and VP, respectively,
in DPL. (Assume that indefinite noun phrases are translated using £.) The principle is
the following:

(47) Left Monotonicity Principle. If @ is TMON (JMON), the suitable dynamic version
Q of @ should be TDMON (|DMON).

By Table 4, this correctly explains the correlation given in Table 1. The Left Monotonic-
ity Principle ensures that the interpretation of a donkey sentence with a left monotone
determiner validates monotonicity inference like (3) and (4).

Note that right monotonicity is preserved by both Qw and Qg. Hence we can also
say:

(48) Monotonicity Principle. The suitable dynamic version Q of ) should preserve the
monotonicity properties of @ (as dynamic monotonicity).

31 YDMON ( /DMON) here means that the TDMON (|DMON) formula is not in general valid.
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4.4 Double Monotonicity Characterization of Dynamic Generalized
Quantifiers

We have shown that dynamic left monotonicity can be used to discriminate between
Qw and Qg. In fact, we do not have to restrict our attention to Qw and Qg from the
start. Under minimal assumptions, it can be shown that dynamic monotonicity in both
arguments uniquely determines a dynamic counterpart Q of a given static generalized
quantifier Q. Of course, such a Q must be either Qw or Qgs.

An obvious condition to impose on the relationship between @) and Q is the following,
which we call Agreement.

Agreement. If AQV() NFV(y) = 0,
Qz(p, ¥) < Qz(p,9)

It says that dynamic quantification should reduce to static quantification when there is
no ‘dynamic binding’ involved. Recall that analogous situations obtained for ; and =
((19) and (20)). Obviously, Qw and Qg both satisfy this condition if @ satisfies CONS.

Agreement looks like a very innocuous principle; dynamic Q should certainly be a
‘conservative extension’ of static ). Nevertheless, combined with other natural princi-
ples, it implies rather strong consequences. In the following, DEQUI is always assumed.
(See Section 4.6 for proof of the results of this section.)

LEMMA 1. If Q satisfies DCONS* and Agreement, then the following holds:

Va((p = ¥) V =~(p;9)) —
(Qz(p,¥) « Qwz(p, ¥)) A (Qz(p,¥) = Qsz(p,P))

Lemma 1 corresponds to the fact that, with respect to sentences like Most farmers
who own a donkey beat it, ‘people have firm intuitions about situations where farmers are
consistent about their donkey-beating’ (Rooth 1987), that is, when each donkey-owning
farmer beats either all of their donkeys or none of them. In such situations, both the
weak reading and the strong reading—which become equivalent—adequately capture the
intuitions.

As a special case of Lemma 1, we have

COROLLARY 1. Under the same conditions, the following holds:

Vedzy...3zn(@=> =21 A - AYp = 2,) —
(Qe(p,¥) « Qz(p,dz1.. . Fzm((@p=> 1 =21 A - - AYn = 2n)
A '¢1[2’1/?/1, (RS Zn/yn])))

Here, {y1,.-..,yn} = AQV(e¢) N FV(¥), 2,...,2, are new variables, and
¥lz1/y1, - ., 2n/Yn) is the result of replacing all free occurrences of y; in 9 by 2z; (1 < i <

Corollary 1 says that if the value for the ‘donkey variable’ is unique per value for the
‘farmer variable’, then the donkey variable can be replaced by an appropriate definite
description, and the quantification can be taken to be static. Notice that the antecedent
expresses the uniqueness condition, and the quantification in the second argument of
() amounts to a Russellian treatment of definite description. This corresponds to the
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empirical fact that when the ‘uniqueness presupposition’ of the donkey pronoun is met,
then there is no question whatsoever about the truth conditions of the donkey sentence,
and the paraphrase with a definite description is entirely adequate. It is interesting that
this automatically follows from Agreement and DCONS*.

Now with Agreement and DCONS*, dynamic double monotonicity is sufficient to pin
down Q uniquely from Q.

PROPOSITION 2. Assume that Q satisfies Agreement and DCONS*. If Q is moreover
DMONT,

Qsz(p,¥) — Qu(p, ) — Qwa(p,¥).
If Q is DMON|, the reverse implication holds.

ProPOSITION 3. Assume that Q satisfies Agreement and DCONS*. Then if Q is
TDMON,

wa((P’ ¢’) - Q(II((P, ¢) and QS(B(‘P, "p) - Q.’L‘((P, "»b)
If Q is [DMON, the reverse implication holds.

Proposition 3 uses Lemma 1. By the two Propositions, if @ is TMONT, Qw is
the only TDMONT Q which satisfies Agreement and DCONS*. Likewise for the other
three double monotonicity patterns. In this way, dynamic double monotonicity uniquely
determines a dynamic generalized quantifier corresponding to a given static one.

The significance of the results in this section can be summarized as follows. Rather
than thinking of Qw and Qg as two possible options to choose from, we may think that
no concrete choice for a dynamic counterpart Q of a static @ is given in advance, but
that there are minimal conditions to be satisfied by any possible dynamic counterpart of
a static @, namely Agreement and DCONS*.32 Imposing dynamic double monotonicity
as a further requirement then amounts to an implicit definition of Q out of Q).

The consequence of this to the semantics of donkey sentences is that we need not
think that the weak and strong readings are the two possible interpretations of donkey
sentences that would be allowed in principle, of which one or the other is picked by the
Left Monotonicity Principle when the determiner is double monotone. Instead, we may
think that in the absence of information about specific properties of the determiner,
the grammar would not assign any concrete interpretation to a donkey sentence at all.
The Monotonicity Principle (48) can then be considered as a principle that forms a
concrete interpretation, fleshing out a schematic, partially specified meaning provided
by the grammar.33

4.5 Monotonicity and Preservation

In Section 2, we mentioned an equivalence between left monotonicity on the one hand and
preservation under extensions/submodels of a sentence of a certain form on the other. It
turns out that this can be extended to the dynamic setting. Firstly, in first-order logic
with generalized quantifiers, one half of Proposition 1 can be strengthened:

32 Another natural condition is a suitable dynamic version of EXT. See Section 4.5.
33More discussion on this point will be found in Kanazawa 1992.
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PRrROPOSITION 4. Assume that @ has EXT and CONS. Then @ is TMON ({MON) if and
only if any sentence of the form Qz (¢, 1), where ¢ is existential and 9 is quantifier-free,
is preserved under extensions (submodels).34

Now let us define a dynamic notion of Extension as follows:

Dynamic Extension (DEXT).
For any M and N and s: VAR - M NN,
if { (a’bb .. -7bn> € Mt | s(a/z) [[‘ID]IMS(G/mabl/yl, .. 7bn/yn)}
={(a,by,...,b,) € N"*t1 | s(a/z)[eln s(a/z,01/¥y1,- - -, bn/yn) }
and {(a,by,...,b,) € M"*' | M |= ¢[s(a/z,b1/y1,- -, bn/yn)] }
= {<a’7b17' "’bn) € N7t | N |: ¢[s(a/x7b1/y17 .. )bn/yn)]},
where {yla LR yn} = AQV((P)7
then M |= Qa(e, ¥)[s]iff N £ Qa(e, 9)[s].*®

Then we have a straightforward dynamic version of Proposition 4:

PROPOSITION 5. Assume that Q satisfies DEXT and DCONS*. Then @ is JDMON
(IDMON) if and only if any sentence of the form Qz(y,), where ¢ is existential and
1 is quantifier-free, is preserved under extensions (submodels).

A DPL formula ¢ is ezistential if it is of the form £zq...fzxp,qTpq1 ... F2pem P for a
quantifier-free 1. (See Section 4.6 for proof of Proposition 5.) Proposition 5 may be seen
as an indication that our DEXT, DCONS*, and DMON are natural dynamic analogues
of the corresponding static conditions.

The fact that a sentence is preserved under extensions or submodels means that
the truth of the sentence in one model may be inferred from the truth of the same
sentence in another model. Such inference can be regarded as a model-theoretic mode
of monotonicity inference. The relevance of this to the semantics of donkey sentences is
discussed at length in Kanazawa 1992.

4.6 Proofs

In what follows, ¢ stands for a formula of dynamic predicate logic with generalized
quantifiers such that AQV(¢) N FV(p) = @ and there is at most one potentially ac-
tive occurrence of £z in ¢ for any variable . 1 stands for an arbitrary formula. Let
{y1,..-,yn} = AQV(p). ¢* is the result of erasing all potentially active occurrences of
dynamic existential quantifiers in . Note the following equivalences:

o =~ Eyr...Eynp*

< Jy; ...y p*
;% =~ Eyi...Eyn(p*;9)
< Jyr..Fye(e* A YD)
p=P = V.. Vy(p* = ¢)

34 A first-order formula ¢ is called existential if it is of the form 3z ...z, for a quantifier-free 1.
35As usual, z ¢ AQV(yp) is assumed.
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LEMMA 1. If Q satisfies DCONS* and Agreement, then the following holds:

Vz((p = P)V =(¢;9)) —
(Qz(p, V) & Qwz(p,¥)) A (Qx(p,¥) « Qsz(p,v))

Proof. By DCONS*,

Qz(p,9) < Qz(p,p*ANY)
and by Agreement and DCONS*,

Qw (¢, ) Qz(p, ;%)

Qz(p, 3 9)
Qz(p,* A (93 9))
Qz(p, 0= )
Qz(p, 0 = 7)

Qz(p, e* A (¢ = ¥)).

QS(II((,D, ')b)

rtr1tv1ze

Therefore, it suffices to show that

Vz((o = ¥) V-(9;9))
implies
VaVyr .. Vyn(@* A & o* A (p;9))
and
VaVyy .. .Vyn(* A« o* A (o = ),
which, by DEQUI, imply
Qz(p, p*ANY) < Qz(p,p*A(p;%))

and

Qz(p,p* A Y) « Qz(p,*A(p = ¥)).
Notice that
NP — o* A (p;59)
and
PN (p=>P) = e*AY

are valid. It remains to show that

(1) PN (p3) — P*AYP

(2) P*ANY = A (p =)
follow from

(3) (p=9)V-(p;¥).

As for (1), if (¢ = ¥), then ¢* implies ¢* A ¢ and if (¢ ;9), then the antecedent of (1)
is false. So (1) holds under (3). As for (2), if (¢ = ), ¢* implies the consequent of (2),
and if ~(¢; ), the antecedent of (2) is false. So (2) holds under (3).
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PROPOSITION 2. Assume that Q satisfies Agreement and DCONS*. If Q is moreover
DMONT,

If Q is DMON|, the reverse implication holds.

Proof.
Qsz(p,) < Qz(p,p=>1) (Definition of Qg)
— Qz(p,p=>1) (Agreement)

~ Qu(p,¢* — ) (DMONT)

o Qu(p¥)  (DCONS¥)
(Note Va¥ys ... Yyn((9 = ¥) — (9% — ¥)).)
Qz(p,¥) © Qu(p,@*AY) (DCONS*)
— Qz(p,e;9)  (DMONT)
< Qz(p,p;9)  (Agreement)
= Qwz(p, ) (Definition of Qw)

(Note VaVy ... Vyn((0* A ¥) — (05 9)).)
The DMON| case is similar.

PROPOSITION 3. Assume that Q satisfies Agreement and DCONS*. Then if Q is

TDMON,
Qwe(p,¥) — Qa(p,¥) and Qsz(p,¥) — Qz(p,¥)
If Q is [DMON, the reverse implication holds.

Proof. The crux of the proof consists in finding formulas x and o that satisfy the following
conditions:

(1) Vz(x 2 ¢) (5) Vz(o X ¢)
(2) Vz(x < ¢) (6) Vz(o < @)
(3) Va(x;v < ¢;9) (7) V(o= o p=>1)

(4) Ve((x = ¥)V-(x;9)) (8)

If such x and o are found,

Vz((o = ¥) V ~(a;9))

Qwe(p,¥) < Qz(p,p;v¢) (Definition of Qw)
< Qz(x,x;¥) by (2),(3), and EQUI
~ Qwz(x,¥) (Definition of Qw)
o Qz(x,v) by (4) and Lemma 1
—  Qz(p,7) by (1) and TDMON
and
Qsa(¢,%) = Qa(¢, = 1) (Definition of Qs)
= Qz(o,0 = ) by (6),(7), and EQUI
~ Qgz(o,v) (Definition of Qg)
—  Qx(o,) by (8) and Lemma 1
- Qz(p, ) by (5) and TDMON.
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(If @ is |DMON, the last implication is reversed.) Let

X*=(e* AP)V (=(p;¥) A ¢*)
and
o* = (p* A=)V (¢ = ) A o¥).

Then x = Ey1...Eynx* and 0 = €y ...y, 0* are the desired formulas. We leave the
verification of (1)—(8) to the reader.

PROPOSITION 5. Assume that Q satisfies DEXT and DCONS*. Q is TDMON (|DMON)
if and only if any sentence of the form Qz (¢, 1), where ¢ is existential and ¥ is quantifier-
free, is preserved under extensions (submodels).

Proof.
Only if. Suppose Q is [DMON (the TDMON case is similar), and let

=8y ...Ey 3z ...z x

where x is a quantifier-free formula with free variables z,y1,...,Yn,21,-- -, 2m- Let ¥
be a quantifier-free formula with free variables z,y;,...,¥,. Since dynamic connectives
are equivalent to corresponding static connectives when they combine quantifier-free
formulas, ¢* = 32 ...32,x is equivalent to a first-order existential formula, and 1 is
equivalent to a first-order quantifier-free formula. Let N C M. Then, as in first-order
logic, for all a,by,...,b, € N,

N E ¢*[a,b1,...,b,] implies M |= ¢*[a,by,...,b,]
and
N E ¢[a,by,...,b,] if and only if M [ ¢¥[a, by, ..., by].

Expand the language by adding a new unary predicate P, and expand M and N to M’
and N’ by putting PM' = PN' = N (M’ and N are otherwise the same as M and N).
Note that N’ C M'. Let

¢ =&y ...y Tz ... 32 (P APy A .. .APYy, APz A...A Pz AX)

and
Y =Pz APy A...APy, NPz A...A Pz, A
Then for all a,by,...,b, € M,
M’ ¢'*[a,by,...,b,] iff N ¢*a,by,..., b
iff N'E ¢'*a,by,...,bn)
M' & '[a,by,...,b,] iff Nk la,by,..., b
iff N’ ¢'[a,by,...,bys).

This implies that the preconditions of DEXT hold for Qz(¢’, %) (and for an arbitrary
s: VAR — N). So

M' [ Qaz(¢',9") iff N[ Qu(¢,¢).
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Clearly,

M’ | Vz (o' < @)
M’ | VaV¥yr ... Vyu(@™* A & o A ).

Therefore,

M = Qz (¢, ) M’ |= Qz(p,¥)

M’ Qz(¢,¢) (IDMON)

M’ | Qz(¢',9') (DCONS*, DEQUI)
N’ = Qz(¢/,9’) (DEXT)

N’k Qa(p,4) (DEQUI)

N | Qz(e,¥).

If. Suppose that any sentence of the form Qz(¢p,1), where ¢ is existential and %
quantifier-free, is preserved under extensions. (The submodel case is similar.) Let

M E Vz(p 2 ¢')[s].

We treat the simple case where z ¢ AQV(¢) = AQV(¢') = {y1,...,y} and FV(p) =
FV(¢') = {z}. (It is possible to reduce the general case to this special case by us-
ing Subordinate Renaming and a trick of expanding the model by adding new con-

stants.) Take the language having four predicate symbols R, S, T, and U, and let
M; = (M, RM: sMi My M1y where

RMi = {(a,by,...,b,) € M™ | s(a/z)[elms(a/z,b1/Y1s- - bu/yn) },
SM] = { <a> bl) ceey bn) € Mn+l I s(a/a:)l[go’]lMs(a/x, bl/yla ey bn/y'n) }7
™ - ¢,
M1 = {(a,by,...,b,) € M™ | M E ¢[s(a/z,b1/y1,- ., bn/yn)] }-

We have RM1 € §Mi_ Let Ny = (M U {c}, RN, N1 N1 N1y (¢ ¢ M), where

t111l1

RN: - pMi
SNI — SMI,
TNI = {C}’
vNe = M,

We have M; C Nj. Let
X=E&yp...EynIz(R(z, 915, Yn) V (S(2, 415 -, Yn) AT(2))).
X is an existential formula. Clearly,

{(a,b1,...,b2) € M™ | s(a/2)[xIm, 5(a/z,01/91,-- -, ba/¥n)} = RM,
{(a,b1,...,bn) € N"*' | s(a/z)[X]IN,5(a/2,b1/91,- - -, bn/yn) }

Therefore,

M ': Qz(‘P, ¢)[3] - M, ‘: Q(B(X, U((B, Y1, - .,yn))[s] (DEXT)
< M, l= QCB(X, U(z’ylvﬂ"yn))
— N; E Qz(x,U(z,v1,-.-,Yn)) by assumption
= Ny |= QC'J(X, U("E, Yi,- -+ yn))[s]
o ME Qz(p,8)ls] (DEXT).
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