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Abstract

Recently M.Szabolcs [8] has shown that many substructural logics including Lambek
Calculus L are complete with respect to relativized Relational Semantics. The current
paper proves that it is sufficient for L to consider a relativization to the relation "z divides
y” in some fixed semigroup G.

1 Introduction

J. Lambek in [5] introduced a formal system L for deriving reduction laws for syntactic
types. This calculus was investigated from different semantical points of view (see [1], [2],
(3], [4], [6], [7]). In particular, the notion of relational model was introduced in [6].

For a nonempty set D, a function f evaluates types of Lambek Calculus in the set of
relations on D so that:

f(A-B) {(a,) : 3c((a,c) € f(A) & (c,b) € f(B))}
f(A\B) {(a,0) : Ve((c,a) € f(A) = (c,b) € f(B))},
J(BIA) = {(a,b) : Ve((b,c) € f(A) — (a,c) € f(B))},

A sequent X = z is true on this model iff f(X) C f(z).

Lambek Calculus is correct with respect to this semantics ([1], [2]), but is not complete
(cf. [4]). There are examples of formulas which are not derivable in L, but are true under
any evaluation f. Indeed, for any valuation f we have:



f(A)C f(A-(B\B)) and f((B\B)\A)C f(A)

whereas neither A = A - (B\B) nor (B\B)\A = A is provable in L.

In 8] the notion of Representable Relational Structure was introduced which is relativiza-
tion of the notion of relational model to some relation W. In our terms, for a nonempty set
D and some relation W C DxD, a function f is defined such that:

f(A-B) = {(a,b) € W:3c((a,c) € f(A) & (c,0) € f(B))},
f(A\B) = {(a,b) € W:Vc((c,a) € f(A) = (c,b) € f(B))},
f(B/A) = {(a,b) € W :Vc((b,c) € f(A) — (a,¢) € f(B))}.

And, as it follows from the results of [8], any residuated semigroup (cf.[3]) can be iso-
morphically embedded into the corresponding Representable Relational Structure with ap-
propriate relation W and thus L is complete with respect to some special W.

The goal of the present paper is to find natural algebraic relation W corresponding to
the Lambek Calculus. We prove completeness of the Lambek Calculus with respect to the
class of relational models relativized to the following relation W:

For a given semigroup (G,-) and any z,y € G we define tWy = (3z € G(z - z = y)). i.e.
W is a divisibility relation in some semigroup G.

Such a choice of W looks very natural from the algebraic viewpoint and has attractive
philosophical interpretation. The elements of the semigroup (G,-) may be thought of as
information states and the relation W links by arrows any information state z with all
information states y such that y = z - z for some z € G, i.e. with all states which are more
informative.

The main result of this paper is the following.

There exists semigroup (G,-) such that Lambek Calculus ts complete with respect to re-
lational model based on G and relativized to the relation W described above.

Our semigroup (G, ) is obtained by modification from the semigroup of types introduced
in [3].

2 Lambek Calculus

Let us describe the formalism of the Lambek Calculus L.
We fix a denumerable set Pr, of constants, called primitive types. The set T'p, of types,
is the smallest one, satisfying:

(¢) Pr CTp,
(i1) if x,y € Tp then (z - y),(z\y),(y/z) € Tp.

The variables z,y,z (resp. p,q,7; resp. X,Y, Z) with or without indices, will range over

types (resp. primitive types; resp. finite sequences of types). Any sequent X = z (X # 0)
will be called a formula.



The system L is given by the following axiom schema and rules:
axiom schema: z = z,

rules (all sequents are formulas):

(\2) X=>a Y, b Z=c (/2) X=>a Y, bZ=c
Y, X, (a\b), Z = ¢ Y, (b/a), X, Z = ¢
a, X =>b X,a=0

1) 22— T~ )

(1) X = a\b (/1) X =>b/a
X,a,bY=>c¢c X=>a Y=0b

(1) X,a-b,Y =>c (2) —xvsa

For any sequent by L - X = z we denote derivability of X = z in L.

3 Semigroup (G, ")

We turn now to the description of the semigroup (G,-) which plays essential role in our
investigation. As the set of elements of (G,-) we take the set of irreducible terms,defined
below, which is modification of the corresponding notion from [3].

Definition 1 The set of terms denoted by Tr is defined by induction:
1. each lype is a term,
2. ift is a term and z,y € Tp, then (t,z-y,1) and (t,z - y,2) are terms,
3. ift is a term and z € Tp, then [t,z] is a term,
4. if t,u are terms then tu is a term.

As a measure of complezity of term t we choose the number c(t) of all occurrences of primitive
types in t.

Below it will be convenient to consider another measure of complexity m(-). The corre-
sponding notion is introduced by the Definition 4.

Definition 2 By redez we shall call any term of the form
(t,:l:"y,].)(t,:l,‘-y,?) or [t,x]il).

The term t will be called the reduct of those redexes. We say that t directly reduces to u
(and write t — u) if u arises from t by replacing a single occurrence of a redez by the reduct
of this redex. We say that t reduces to u (and write t —* u) if there exist ty...t, such that
=ty =uand t; — tiyq, for all1 <1< n. A term is said to be irreducible if it contains
no redez.

In the similar way as in [3], we can prove that our notion of the reduction of terms
satisfies the Church-Rosser condition.



Lemma 1 Ift—* u; and t =* uq, then u; —* w and ugy —* w for some w.

Proof. First of all we prove the following claim:

if t — uq and t — ug, then uy —* w and uy —* w for some w.

We proceed by induction on the complexity of the term ¢. According to our definition of
the set T'r we have four possibilities:

o teTp,

e t = (ty,2-y,1) provided i = 1 or 2,
o t = [t1,2],

o t=1t't".

As the first three cases are easy we only deal with the last one. There are also three
possibilities of different occurrences of redexes in the term t = t't":

1. Both the redexes are subterms of t’ or t”, or one of them is a subterm of ¢’ while
another is a subterm of t”.

2. One of the redexes is a subterm of ¢’ or t” while another is a subterm of neither ¢/, nor
L”
3. Both the redexes are subterms of neither t’, nor t”.

The first case is obvious.
As it follows from our definition of the set T'r, a term t't” contains a redex which is a
subterm of neither ¢/, nor ¢” if and only if

' = v(v,z-y,1), t" = (v,z-9y,2)v,
or
v = vl " = zv,.

Let t' = vy(v,2-y,1); t" = (v,2-y,2)v,.

e If the second redex occurs in vy then, moving the first redex, we get v;vv, and, mov-
ing the second, we get vi(v,z-y,1)(v,z-y,2)ve. Moving the redex in v, we get
V10V — v} vv2 and, moving the redex (v, - y,1)(v,z - y,2) in v{(v,z -y, 1)(v,z -y, 2)ve,
we obtain the same term v]vv,.

e If the second redex occurs in v, then we proceed in the similar way as in the previous
case.

o If the second redex occurs in v then, moving the first redex, we get v;vv, and, moving
the second, we get vy (v',z - y,1)(v',z - y,2)ve. Then

v1vv2 +— vv'vy by moving the redex in v and
/o, | I ’
v (v, y, D,z -y,2)vy = v10'vs.

Let ' = vy[v,2];  t" = zv,.



o If the second redex occurs in vy then, moving the first redex, we get v1vv2 and, moving
the second, we get v{[v,z]zvy. Then we have

VvV, +— Vjvvy by moving the redex in vy,
vi[v,z]zvy — vjvv, by moving the redex [v,z]z.

o If the second redex occurs in v, then we proceed in the similar way.

e If the second redex occurs in v then, moving the first redex, we get v;vv, and, moving
the second, we get v1[v',z]zve. Then we have

v1vv, +— v1v'vy by moving the redex in v,
n[v',z]zv, — vv'vy by moving the redex [v/,z]z.

According to our definition of the set Tr, both the redexes are subterms of neither t’,
nor t” iff both redexes are equal.This case is obvious.

To complete the proof of the lemma we proceed by standard induction on ¢(t).

The basis of induction is trivial.The following is induction step.

If t —> uy and t =™ uy then there are terms t; and t; such that ¢ — ¢, ¢t — o and
ty —* uy, to —= uy. (We omit the trivial case ¢t = uy or t = uy, which is straightforward.)

By the first part of the proof we can find v such that ¢t; —* v and t, —™ v. Since
c(t1) < ¢(t) and ¢(2) < ¢(t), by induction hypothesis, there are wy and w, such that

uy —* w;, v —* w; and

Uy % wy v =Y wsg.

Since ¢(v) < ¢(t), we can apply the induction hypothesis again. We get a term w such
that

wy =" w and wy —* w.

Since uq —* wy and ug —* wy, we have also u; —* w and ugy —* w. O
Corollary 1 Fach term t has a unique irreducible term ir(t) such that t —* ir(t).

It easily follows from Lemma 1 if we notice that each application of reduction decreases
the complexity of term.
Definition 3 We define the semigroup (G,-) in the following way

1. G consists of all irreducible terms.

2. For u,v € G we define u-v = ir(uv).

Associativity of the operation - follows from the Church-Rosser property for reduction.
Indeed,

w-(v-w) =ir(u ir(vw)) = ir(uow) = ir(ir(uw)w) = (u-v) - w.

Definition 4 In addition to c(-), we define the measure of complezity m(-) on the set of
terms by induction:



1. m(z) =0 1ifz € Tp,
2. m(s)=m(t)+1if s=(t,a-b,i) (i=0,1) or s = [t,a],
3. m(s) = m(u) + m(v) if s = uv.

The following two lemmas express properties of the semigroup (G, -) we shall need in the
sequel.

Lemma 2 Lel s,l,u,v € G, term u cannot be divided into two subterms uy,uy such that
U = U Uz, uv- irreducible term.
If st —* uv then m(u) < m(s).

Proof. Since s and t are irreducible terms, the reduction process, which leads from st
to uwv is deterministic. Therefore, we can use induction on the number n of steps in the
reduction process.

If n = 0 then st = uwv and, taking into account that u is subterm of s, we get m(u) < m(s).

Let the assertion of Lemma 2 hold for n < k and assume that st —* uv and the reduction
process takes k + 1 steps (k > 1).

Since s and t are irreducible terms, we have:

»
I

d(wya-0,1), t = (w,a-b,2)t" or
s = sw,al, t = at for some terms s’,t', w and types a,b.

We get a chain of reductions:
st =" ir(s'w)t’ =" uv.

The reduction 7r(s"w)t’ —* uv has a number of steps less than (k + 1).
Therefore,
m(u) < m(ir(s'w)).
On the other hand,
m(ir(s'w)) < m(s'w),

because elimination of redex decreases the measure m(-) of term.
So we have
m(u) < m(s'w) < m(s).0

Lemma 3 Let u,v,v, be irreducible terms. If ir(uvy) = ir(uve) then vy = vs.

Proof. We proceed by induction on parameter m(u).

e Let m(u) = 0. It means that u is a type and terms uv; and uv; do not contain redexes.
Therefore, we conclude that uv; = uv, and, obviously, v; = vs.

e We assume that the assertion of lemma holds for each term t such that m(t) < n, and
for all terms vy, vs.

Let u be any term with m(u) = n + 1.

Let wy, wy be arbitrary terms such that ir(uw;) = ir(uwy).



o If both terms uw; and uw, do not contain redexes then w; = w, obviously follows
from ir(uw;) = ir(uws).

o If both terms uww; and uw, contain redexes then, taking into account that u,w;,ws
are irreducible terms, we have:

v = u(t,a-b,1),
wy = (tya-b,2)wy,
wy = (tya-b,2)ws,

or

v o= u[t,al,

w; = aw,
wy = aw.
Therefore,

ir(uwy ) = ir(vtwy) = ir(u'twy) = ir(uws).
We can apply the induction hypothesis to the equality ir(u'tw]) = ir(u'tw)) because
m(u't) < m(u'(t,a-b,1)) = m(u).
We deduce w] = w) and, therefore, wq = w,

o If uw; contains a redex and uw, does not, then we have:

v = u(tya-b,1); wy = (t,a-b,2)wy or

u = [t al; wy = awj.

Therefore,

ir(uwy) = ir(utw)) = ir(v(t,a-b,Dwe) = ir(uwy) or
ir(uwy) = ir(vtw)) = ir(u'[t, ajwy) = ir(uwe).

Applying the induction hypothesis to the equality

ir(u'twy) = ir(u'(t,a - b, 1)wy)

or
ir(u'tw)) = ir(u'[t, ajw,),
we get
ir(tw)) = (t,a - b,1)w,
or

ir(tw)) = ir([t, a)w)).

We can do that because m(u') < m(u).



But, as it follows from Lemma 2, we obtain
m((t,a-b,1)) < m(t)

m([t,a]) < m(2)

in contradiction with our definition of the measure m(-).

So if we are within conditions of Lemma 3 and uw; contains redex then uwy contains
redex too. O

4 System ND

We shall use the system ND, introduced in [3], which conservatively extends the Lambek
Calculus. Let us describe the formalism of ND.

Its formulas are to be of the form tez, where t € Tr, z € Tp.
The system ND is given by the following axiom schema and rules:
axiom schema: z ez for all z € T'p,

rules:

tez/y uey tex  uez\y

tuex tuey
tyex Ttey
tez/y tez\y

tex -y tex -y

(t,z-y,1)ex (t,z-y,2)ey
tex UEY tex t—u

tuex -y UET

For justification of this system the reader is referred to [3].

In fact, the notion of term introduced in the present paper is larger than that from [3],
including terms of the form [t, a], where ¢ is a term and a is a type. We have also an extra
reduction rule: [t,a]a — t. But we can easily conclude by inspecting the inference rules of
ND that if ND F tcz then this derivation does not contain any term [q,b]. So the system
ND with extended notion of reduction introduced in this paper coincides with that from [3].
This remark justifies applicability of results from [3] to the system ND with our notion of

reduction.

Lemma 4 For any typesz andy if NDF zey then L+ 2z = y.

Proof. For the proof the reader is referred to (3] (p.21, lemma 8). O



5 Completeness
Definition 5 For a given semigroup (S,-) we define binary relation Ws on S such that
Va, b€ S aWgb=(3c€ S:a-c=0b)

Definition 6 By a relational model relativized to Ws we mean the couple (P(Ws), f) where
f is a map from the set of finite sequences of types of the Lambek Calculus into P(Ws)
satisfying the following properties. For any types z,y we have:

f(A-B) = {(a;b) € W:3c((a,c) € f(A) & (c,0) € f(B))},

f(A\B)

{(a,b) € W:Ve((c,a) € f(A) = (c,b) € f(B))},

J(BJ/A) = {(a,b) € W :Vc((b,c) € f(A) = (a,c) € f(B))}.
We extend this map on the set of finite sequences of syntactic types by putting:

flzr...zn) = flzy- ... zy)
Jorallne N.

For a given semigroup (.5, -) we shall denote by RM (S, f) the relational model relativized
to Ws. We say that a sequent X = z is true in a model RM(S, f) and write RM (S, f)
X =zif f(X) C f().

By RM we denote the set of all models RM (S, f). A formula of the Lambek Calculus
is said to be valid with respect to the class of models RM iff it is true in every model

RM(S, f).

Theorem 1 (Completeness of Lambek Calculus with respect to RM) For any se-
quent X = z of Lambek Calculus

LFX =2 iff X = z isvalid with respect to RM.

Proof. Soundness follows from the Soundness Theorem for Lambek Calculus with respect
to Relational Semantics (see [2]).

To prove Completeness we construct a universal model from the class RAM where all
underivable sequents fail.

As such a model we take RM(G, f), where G is the semigroup of irreducible terms
introduced above and f is a valuation such that

for any atomic type p  f(p) = {(u,ir(uv)) : ND Fvep}
and it is canonically extended on arbitrary types.
Lemma 5 For anyx € Tp

f(z) = {(u,ir(uv)) : NDF vez}.



Proof. We proceed by induction on ¢(z).
e For atomic types the assertion of [,emma 5 follows from the definition of f.
o Let z =12y - z9.

1. If (u,ir(uv)) € f(z1-z2) then it means that there exist irreducible terms s and w
such that

(u,1r(us)) € f(z1), (1)
(ir(us),ir(ir(us)w)) € f(z2) (2)
ir(ir(us)w) = ir(uv) (3)

By the Church-Rosser property for reduction and Lemma 3 we have from (3):
v = ir(sw).

By induction hypothesis, the Church-Rosser property and Lemma 3 we have
from (2):
ND F wezs,.

We have from (1):
ND | sex;.

By rules of ND we get
ND F swezy - xq.

and
ND & ir(sw)ezy - ;.

2. Let v be a term such that ND F vezy - zo. Then we have:
NDF (v,zq - z9,1) €24,
ND & (v,zq - x2,2) € To.

By induction hypothesis

(u, ir(u(v, 21 - 22,1))) € f(21) (4)

(ir(u(v, 1 - 22,1)), ir(ir(u(v, 21 - T2, 1)) (v, 21 - 22,2))) € f(z2) (5)
From (4) and (5) we obtain (u,tr(uv)) € f(z1 - z2).

o Let z = zq\2z2.

10



1. If (u,ir(uv)) € f(z1\z2) then it means that for any w such that (w,u) € f(z1)
we have

(w,ir(uw)) € f(z2).
As a term w we take [u,z1]. Then we get by induction hypothesis
([w,z1],17([u, 21]21)) € f(1). (6)
Therefore, there exists a term 7 such that
([uaxl]’ ir([u, z1]7')) € f(m2) (7)
ir([u, z1]r) = ir(uv) (8)
and
ND F rex, (9)
We can rewrite (8) as
ir([u, z1]r) = ir([u, 1]z10). (10)

By Lemma 3 from (10) we get 7 = ir(zyv) = z1v (because z; is a type and v is
irreducible term).
So we have from (9)

ND F zivezs

and, therefore,
ND F vezq\z2.

2. Let v be a term such that ND + vez;\z,. Take any term w such that (w,u) €
f(z1). Then by induction hypothesis there exists a term 7 such that:

u = ir(wr) (11)

NDF rexy (12)
By (11) we get ir(uv) = ir(ir(wr)v) = ir(wrv).
Taking into account (12) and ND F vez;\z, we have

ND F rvezx,

and, therefore,
ND F ir(rv) € z,.
By induction hypothesis,
(w,ir(wrv)) € f(z2)

and
ir(wrv) = ir(uv).

So (w,ir(uv)) € f(z2) and, therefore, (u,ir(uv)) € f(z1\z2).

11



o Let z = 29/2;.

1. If (u,ir(uv)) € f(z2/z1) then it means that for any term w such that (ir(uv), w) €
f(z1) we have

(vw) € f(22)- (13)
As a term w we take ir(uv)z;. Then we get by induction hypothesis
(ir(uv), ir(uv)z1) € f(z1). (14)
By (13) we have
ir(uw) = ir(uvey) (15)
and
ND F vz €z,.

Therefore, ND F vezy/z;.

2. Let v be a term such that ND F vezy/x,. Take any term w such that

(ir(uv),w) € f(z1).
Then by induction hypothesis there exists a term r such that
w = ir(ir(uv)r), (16)
ND * rez. (17)

By the Church-Rosser property we have
w = ir(ir(uv)r) = ir(uir(vr)).
By (17) we have also
ND Fovrexs

and
ND F ir(vr) €x2
Therefore, by induction hypothesis (vw) € f(z2)

O

To conclude the proof of Theorem 1 we notice that if we take a sequent z = y such that
LV z = y then by Lemma 4 ND I/ z ey. Then by Lemma 5 we have

(2,er(zz)) € f(z)

but
(z,ir(zz)) € f(y).0
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