=

Institute for Logic, Language and Computation

ON THE EQUIVALENCE OF LAMBEK CATEGORIAL
GRAMMARS AND BASIC CATEGORIAL GRAMMARS

‘Wojciech Buszkowski

ILLC Prepublication Series
for Logic, Semantics and Philosophy of Language LP-93-07

%
&
%

University of Amsterdam



The ILLC Prepublication Series

1990 Logic, Semantics and Philosophy of Language

LP-90-01 Jaap van der Does A Generalized Quantifier Logic for Naked Infinitives

LP-90-02 Jeroen Groenendijk, Martin Stokhof Dynamic Montague Grammar i

LP-90-03 Renate Bartsch Concept Formation and Concept Composition

LP-90-04 Aarne Ranta Intuitionistic Categorial Grammar

LP-90-05 Patrick Blackburn Nominal Tense Logic

LP-90-06 Gennaro Chierchia The Variablity of Impersonal Subjects

LP-90-07 Gennaro Chierchia Anaphora and Dynamic Logic

LP-90-08 Herman Hendriks Flexible Montague Grammar

LP-90-09 Paul Dekker The Scope of Negation in Discourse, towards a Flexible Dynamic Montague grammar
LP-90-10 Theo M.V. Janssen Models for Discourse Markers

LP-90-11 Johan van Benthem General Dynamics .

LP-90-12 Serge Lapierre A Functional Partial Semantics for Intensional Logic

LP-90-13 Zhishexnguang . . Logics for Belief Dependence

LP-90-14 Jeroen Groenendijk, Martin Stokhof Two Theories of Dynamic Semantics

LP-90-15 Maarten de Rijke The Modal Logic of Ine%uality .

LP-90-16 Zhisheng Huang, Karen Kwast Awareness, Negation and Logical Omniscience .
LP-90-17 Paul Dekker Existential Disclosure, Implicit Arguments in Dynamic Semantics

Mathematical Logic and Foundations
ML-90-01 Harold Schellinx Isomorphisms and Non-Isomorphisms of h Models

ML-90-02 Jaap van Oosten A Semantical Proof of De Jongh's Theorem

ML-90-03 Yde Venema Relational Games

ML-90-04 Maarten de Rijke Unary Interpretability Logic

ML-90-05 Domenico Zambella Sequences with Simple Initial Ssﬁments .

ML-90-06 Jaap van Oosten Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a
Problem of F. Richman

ML-90-07 Maarten de Rijke A Note on the Int%%retabil.ity Logic of Finitely Axiomatized Theories

ML-90-08 Harold Schellinx . Some Syntactical Observations on Linear Logic

ML-90-09 Dick de Jongh, Duccio Pianigiani  Solution of a Problem of David Guaspari

ML-90-10 Michiel van balgen Randomness in Set Theory

ML-90-11 Paul C. Gilmore The Consistency of an Extended NaDSet

Computation and Complexity Theory

CT-90-01 John Tromp, Peter van Emde Boas _ Associative Storage Modification Machines

CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette A Normal Form for PCSJ Expressions

CT-90-03 Ricard Gavalda, Leen Torenvliet, Osaglu Watanabe, José L. Balc4zar Generalized Kolmogorov Complexity in Relativized
eparations

CT-90-04 Harry Buhrman, Edith Spaan, Leen Torell)lvljet Bounded Reductions

CT-90-05 Sieger van Denneheuvel, Karen Kwast Efficient Normalization of Database and Constraint Expressions

CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial

CT-90-07 Kees Doets Greatest Fixed Points of Logic Programs

CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas  Physiological Modelling using RL

CT-90-09 Roel de Vrijer Unique Normal Forms for Combinat:;f Logic with Parallel

Other Prepublications Conditjonal, a case study in conditional rewritin . . .

X-90-01 K.S. Troelstra Remarks on Intuitionism and the Philosophy of ematics, Revised Version

X-90-02 Maarten de Rijke Some Chapters on Interpretability Logic

X-90-03 L.D. Beklemishev On the Complexity of Arithmetical Interpretations of Modal Formulae

X-90-04 Annual Report 1989

X-90-05 Valentin Shehtman Derived Sets in Euclidean Spaces and Modal Logic

X-90-06 Valentin Goranko, Solomon Passy ~ Using the Universal Modality: Gains and Questions

X-90-07 V.Yu. Shavrukov The Lindenbaum Fixed Point Algebra is Undecidable

X-90-08 L.D. Beklemishev Provability Logics for Natural Turing Progressions of Arithmetical Theories

X-90-09 V.Yu. Shavrukov On Rosser's Provability Predicate

X-90-10 Sieger van Denneheuvel, Peter van Emde Boas An Overview of the Rule Language RL/1

X-90-11 Alessandra Carbone Provable Fixed points in IAy+Q,, revised version

X-90-12 Maarten de Rijke Bi-Unary Intergretabi]ity Logic

X-90-13 K.N. Ignatiev PDrz‘:)hapau'ldze's olymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's
e

X-90-14 L.A. Chagrova Ungecritydable Problems in Correspondence Theory

X-90-15 A.S. Troelstra Lectures on Linear Logic

1991 Lolgic, Semantics and Philosophy of Langauge

LP-91-01 Wiebe van der Hoek, Maarten de Rijke Generalized %antiﬁers and Modal Logic
LP-91-02 Frank Veltman Defaults in Update Semantics
LP-91-03 Willem Groeneveld amic Semantics and Circular Propositions

LP-91-04 Makoto Kanazawa e Lambek Calculus enriched with Additional Connectives

LP-91-05 Zhisheng Huang, Peter van Emde Boas The Schoenmakers Paradox: Its Solution in a Belief Dependence Framework:
LP-91-06 Zhisheng Huang, Peter van Emde Boas_Belief Dependence, Revision and Persistence

LP-91-07 Henk Verkuyl, Jaap van der Does ~ The Semantics of Plural Noun Phrases

LP-91-08 Victor Sdnchez Valencia Categorial Grammar and Natural Reasoning

LP-91-09 Arthur Nieuwendijk Semantics and Comparative Logic

LP-91-10 Johan van Benthem Logic and the Flow of Information

Mathematical Logic and Foundations

ML-91-01 Yde Venema Cylindric Modal Logic . .

ML-91-02 Alessandro Berarducci, Rineke Verbrugge On the Metamathematics of Weak Theories . .
ML-91-03 Domenico Zambella On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders

ML-91-05 A.S. Troelstra History of Constructivism in the Twentieth Century

ML-91-06 Inge Bethke Finite Structures within Combinatory Algebras

ML-91-07 Yde Venema Modal Derivation Rules

ML-91-08 Inge Bethke Going Stable in Graph Models

ML-91-09 V.Yu. Shavrukov A Note on the Diagonalizable Algebras of PA and ZF

ML-91-10 Maarten de Rijke, Yde Venema Sahlqvist's Theorem for Boolean Algebras with Operators

ML-91-11 Rineke Verbrugge Feasible Interpretability

ML-91-12 Johan van Benthem Modal Frame Classes, revisited

Computation and Com lexizITheo . . .
CT-91-01 Ming Li, Paul M.B. ‘?ﬁényi Kolmogorov Complexity Arguments in Combinatorics

CT-91-02 Ming Li, John Tromp, Paul M.B. Vitdnyi How to Share Concurrent Wait-Free Variables .
CT-91-03 Ming Li, Paul M.B. Vitdnyi Average Case Complexity under the Universal Distribution Equals Worst Case Complexity
CT-91-04 Sieger van Denneheuvel, Karen Kwast Weak Equivalence i

CT-91-05 Sieger van Denneheuvel, Karen Kwast  Weak E%ujil\jralence for Constraint Sets

CT-91-06 Edith Spaan Census Techniques on Relativized Space Classes

CT-91-07 Karen L. Kwast The Incomplete Database

CT-91-08 Kees Doets Levationis Laus o .
CT-91-09 Ming Li, Paul M.B. Vitdnyi Combinatorial Properties of Finite Sequences with high Kolmogorov Complexity
CT-91-10 John Tromp, Paul Vit4nyi A Randomized Algorithm for Two-Process Wait-Free Test-and-Set

CT-91-11 Lane A. Hemachandra, Edith Spaan Quasi-Injective Reductions
CT-91-12 Krzysztof R. Apt, Dino Pedreschi ~ Reasoning about Termination of Prolog Programs

Computational Linguistics
CL-91-01 J.C. Scholtes Kohonen Feature Maps in Natural Lalgguage Processing
CL-91-02 J.C. Scholtes Neural Nets and their Relevance for Information Retrieval



Institute for Logic, Language and Computation
Plantage Muidergracht 24

1018TV Amsterdam

Telephone 020-525.6051, Fax: 020-525.5101

ON THE EQUIVALENCE OF LAMBEK CATEGORIAL
GRAMMARS AND BASIC CATEGORIAL GRAMMARS

Wojciech Buszkowski

Department of Mathematics
Adam Mickiewicz University, Poznari

ILLC Prepublications
for Logic, Semantics and Philosophy of Language
ISSN 0928-3307

Coordinating editor: Dick de Jongh received July 1993






On the Equivalence of Lambek Categorial Grammars
and Basic Categorial Grammarsl

Wojciech Buszkowski
Institute of Mathematics
Adam Mickiewicz University
Matejki 48/49
Poznat
60-769 Poland
email: buszko@plpuam11.bitnet

Abstract

Due to M. Pentus [19], we know that LCG's are weakly equivalent to Context-Free Grammars,
hence also to BCG's (by Gaifman's theorem [2]). Here we show that, for any product-free LCG
G, there is an equivalent BCG G’ which results from expanding the initial type assignment of
G by means of some Lambek derivable formulae, as it has been expected by many authors and
erroneously proven by some of them. Our construction uses a modification of Pentus' argument
and the interpretation of Gaifman's theorem on the basis of the Lambek Calculus given in
[10]. The latter is presented here more carefully than in [10]; as a result, a new proof of
Gaifman's theorem is obtained in which the Lambek Calculus is essentially involved.

1. Introduction and preliminaries

Categorial grammars are formal grammars which describe a language by
assigning logical types to atoms and deriving types of complexes from types
of atoms by means of some systems of type change. These systems produce
sequents aj...a, — a, where ay,...,a, and a are types. Formally, a categorial
grammar is a quadruple G =(Vg,Ig,5G,Rg), such that Vg is a nonempty
finite lexicon (alphabet), I is a mapping which assigns a finite set of types
to each atom v € Vg, sg is a distinguished atomic type, and Rg is a system
of type change; one refers to these four components as the lexicon, the
initial type assignment, the principal type, and the system, respectively, of
the grammar G. We say that G assigns type a to string v;...v, (v;€ V), if, for
some a; € Ig(vy), i =1,...,n, sequent aj...a,— a is derivable in Rg. The set L(G),
called the language of G, consists of all the strings on Vg which are assigned

1The paper has been written during the author's stay at the University of
Amsterdam in summer 1993 due to a grant from the Commission of the
European Communities for the project "Mathematical Linguistics and Proof
Theory" (no. 1506).



type sg by G. Two grammars are said to be equivalent, if they yield the same
language (this notion is also applied to other kinds of formal grammars,
provided the concept of language is defined for them).

Types are formed out of some constants (atomic types) by means of binary
symbols /, \, and *, called right residuation, left residuation, and product,
respectively. We denote types by a,b,c, atomic types by p,q,7, and finite strings
of types by X,Y,Z (also with subscripts, primes, etc.). Basic Categorial
Grammars (BCG's) admit the system B which deals with product-free types
and can be axiomatized as follows:

(Ax) a —>a,
(/1) XaZ —-c,Y ->b + X(@/b)YZ —c,
(\1) XbZ —¢c, Y -at XY@a\b)Z —c.

Actually, sequent X — a is derivable in B if, and only if, string X reduces to
type a by the reduction procedure based on the rules:

®R/) (a/b)b =a,
(R\) a(a\b) =P,

and consequently, BCG's are precisely the categorial grammars in the sense
of Bar-Hillel et al. [2].

Lambek Categorial Grammars (LCG's) are based on the system L which
results from enriching B with two additional rules:

(/2) Xb »>a + X —>alb,
(\2)aX —-b FX —a\p,

where X is nonempty (dropping this constraint leads to a stronger system
L1). The original Lambek Calculus [16] admits types with product and can be
axiomatized by (Ax), (/1),(\1),(/2),(\2) together with the product-
introduction rules:

(*1) XabY = c FX(a#b)Y —¢,
(x2) X —>a,Y ->b XY - (a+b);

we denote the latter system by LP, and LP1 is defined in a similar way as L1.
In each of the four variants of the Lambek Calculus, axioms (Ax) can be
restricted to atomic types a. Their axiomatizations are Gentzen-style ones
without structural rules, and B admits introduction-in-antecedent only. In
particular, each of the systems mentioned above is decidable and closed
under the cut rule :

(CUT) XaZ —-b,Y -a =XYZ —b,

which has been established for LP by Lambek [16] (the decidability of B may
be credited as far as to Ajdukiewicz (1935)).

The Lambek Calculus and its sub- and super-systems are closely related to
several issues of current interest in logic, as e.g. linear logics (Girard),
concatenation logics (Gabbay), action logics (Pratt), substructural logics
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(Dosen), and some more philosophical topics like natural logic and
inference based on monotonicity (see Sanchéz [21] for a historico-logical
analysis). In this paper we follow the linguistic thread applying them to the
account of type change in syntax and semantics of natural language (E. Bach,
J. van Benthem, B. Hall-Partee, M. Moortgat, R. T. Oehrle, F. Zwarts), which
justifies their suitability for categorial grammars (this linguistic perspective
was in focus in the research of our Poznan group in that area, since the late
seventies, though our mathematical investigations were concerned with
logical fundamentals as well). A profound discussion of logical aspects of
these systems is given in van Benthem [3], [5], while the linguistic side is
extensively studied in e.g. Moortgat [17] and Oehrle et al. [18].

From the standpoint of type-theoretic semantics, B is a purely applicative
system (rules (R/) and (R\) correspond to function application), while
Lambek-style systems also employ some forms of lambda abstraction (see
[5]). A problem which has quite early appeared in the history of the
discipline is whether introducing lambda abstraction essentially affects
generative capacity. In other words, the question is of whether LCG's are
equivalent to or stronger than BCG's with respect to the generation of string
languages. In [2], BCG's are shown to be equivalent to Context-Free
Grammars (CFG's) (we refer to that result as the Gaifman theorem), and the
authors conjecture the same equivalence holds for LCG's. This conjecture,
repeated in Chomsky [12], is now addressed to as the Chomsky conjecture by
some authors. Since the late sixties, there were undertaken several attempts
to prove the conjecture. Cohen [13] shows that each BCG is equivalent to
some LCG, and presents a proof of the converse statement which contains
essential errors (see [7]). There were obtained partial results in this direction:
for LCG's restricted to /-types or \-types [7] and for LCG's of order at most 2
[11]. There was also established the equivalence (even a kind of strong
equivalence) of BCG's and categorial grammars based on the Nonassociative
Lambek Calculus [8], [15]. Finally, Pentus [19] has found a splendid proof for
the full calculus LP (also for LP1), using quite fundamental logical properties
of these systems and a bit of combinatorics. It follows from Pentus' theorem
that each LCG is equivalent to some CFG, hence to some BCG, and the same
holds for categorial grammars based on L1, LP and LP1. (No kind of strong
equivalence is possible here, by structural completeness of Lambek-style
systems; see [9].) ‘

The way Pentus proceeds in his proof is completely different from that
advocated by Cohen and successfully used in [8], [15] for the nonassociative
case. Let us refer to the latter as the natural way. It consists in the following.
Given an LCG G, one looks for a BCG G’ such that L(G) =L(G’). First, one
constructs an infinite grammar G* whose lexicon and principal type are
those of G, while its system is B, and its initial type assignment I* is an
infinite extension ofl; (consequently, G* is "an infinite BCG"). Namely, for
any v € Vg, I*(v) consists of all types b such that a — b is derivable in L, for
some a € Ig(v). It is easy to see L(G) =L(G*). For, 2 holds, since B is a
subsystem of L, and L is closed under (CUT). To show C it suffices to observe
that LFaX — b entails LFa — b/X, and BF (b/X)X — b, where b/X is
recursively defined, as follows:

(1) /A =b, b/(Xc) =(b/c)]X (A denotes the empty string).



Now, one wants to transform G* into a real (i.e. finite) BCG by restricting
I* to its finite part without changing generative capacity. So, a natural BCG
G’ equivalent to the given LCG G must satisfy the following conditions:

Vg =V, Ig(v) CI* (v), for all v € Vg, sg' =sg , and, of course, L(G’) =L(G).

Cohen [13] constructs I (v) by affixing to Ig(v) all the types which result
from applying precisely once an axiomatic rule of his axiomatization of L
(restricted to formulae a4 — b) to each type from Ig(v). As shown in [7], this
yields, in general, a too poor initial type assignment, and one merely gets
L(G’) cL(G). Recently, E. Konig attempted the same route with a much
richer stock of rules, but her arguments look sticky in many details. The
present paper provides a rather smooth proof of the existence of a natural
BCG equivalent to any given LCG. We essentially use Pentus' construction
of a CFG equivalent to a given LCG and a construction of a BCG equivalent
to a given CFG. The latter construction is based on the Lambek Calculus,
while all the earlier approaches to the Gaifman theorem (and the closely
related Greibach normal form theorem from the theory of Context-Free
Grammars) use some purely combinatorial tools. Actually, for our main
construction of a natural BCG equivalent to a given LCG, it is quite crucial
to derive in the Lambek Calculus what is needed for the Gaifman theorem.

The paper consists of four sections. In section 2 the Gaifman theorem is
proven with the aid of L; actually, the proof differs from the original proof
from [2] but resembles the simplified proof given by Gladkij [14]. As we have
already noticed in [9], [10], Gladkij's key construction, though typically com-
binatorial in spirit, admits nonetheless an interesting interpretation on the
basis of L, and we draw here further consequences of this fact. Section 3
adapts the Pentus theorem to the product-free case; in particular, Roorda's
Interpolation Lemma [20] is adapted to L (M. Pentus announced indepen-
dent results in this direction). The main construction is provided in section
4 which also contains some final comments.

2. The Gaifman theorem

Recall that a CFG is a quadruple I' =(V,Nr,sr,Rp) such that Vris a
nonempty finite set of terminal symbols, Nr is a nonempty finite set of
nonterminal symbols which is disjoint with V, sre N is the initial
symbol, and R is a finite set of production rules, each of them is of one of
the forms:

(2) p =p;1...pn, where p, p1,..., PneNF,
(3) p =>v, where peNp,veVp

We symbolize nonterminal symbols of a CFG and atomic types of a
categorial grammar by the same letters, since we identify them in what
follows. The relation p = X, where p € Np X e N+, is recursively defined
as follows:

4) p=rp, forallp eNr, _
G ifpi=rX;, fori=1,.,nthenp =rX;.. X,,
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for any production rule (2) from Rr. The language of I" is the set L(I') which
consists of all strings v1...v,, n 21, such that, for some nonterminal symbols
P1,..-Pn, there holds sy =rp;...pn ,and p;=v;isin Rp,fori=1,...,n . Itis
well known that each CFG is equivalent to a CFG in the Chomsky Normal
Form whose production rules (2) have always n = 2.

The Gaifman theorem establishes the equivalence of BCG's and CFG's. It
can be formulated as the conjunction of the following statements:

(I) Each BCG is equivalent to some CFG.
(I) Each CFG is equivalent to some BCG whose initial type assignment uses
at most types of the form p, p/q, (p/q)/r, where p, q, r are atomic.

Statement (I) is easy to prove. Given a BCG G, we obtain an equivalent
CFG I' in the following way. The terminal symbols of I" are the symbols
from Vg . The nonterminal symbols of I" are all subtypes of the types
appearing in Ig . The initial symbol of I" equals the principal type of G. The
production rules (2) of I" are simply the rules (R/), (R\) restricted to
nonterminal symbols of I' and written in the reverse direction. The
production rules (3) of I are all clauses a =v such that v € Vg and a € Ig(v).

Statement (II) is much less trivial; it is equivalent to the Greibach normal
form theorem in the theory of CFG's (so, the Greibach theorem is due to H.
Gaifman). In this section we prove it with the aid of the Lambek Calculus
(see also [10] for an algebraic proof based on congruences and
transformations in the algebra of phrase structures).

We need, actually, not the pure Lambek Calculus but its axiomatic
extensions, first introduced in [6]. Let R be a set of product-free formulae
X—a (X #A). By L(R) we denote the system axiomatized by axioms (Ax) and
all the formulae from R (as new axioms) and the inference rules of L with
(CUT). An equivalent Gentzen-style axiomatization can be given as follows.
First, observe that each formula is equivalent to a formula X - p (p is
atomic!) on the basis of L (equivalence means mutual derivability). So, we
assume R consists of formulae of the latter form. The system GL(R) is
axiomatized by (Ax), (/1), (\1), (/2), (\2), and the special rules:

R.AX) X7 —ag,.. X, —»a, FX1.. X, —p,
one for each formula a;...a, = p from R.

Lemma 1. GL(R) is closed under rule (CUT).

Proof. The proof goes by triple induction: (1) on the complexity of type a
in (CUT), (2) on the derivation of the first premise, (3) on the derivation of
the second premise. The crucial point is that the conclusion of (R.Ax)
cannot be the second premise of (CUT), if 2 in the first premise results from

(/1) or (\1).

Corollary 1. The same formulae are derivable in GL(R) and L(R).



Proof. By (CUT), L(R) is closed under each rule (R.Ax), hence it is not
weaker than GL(R). By (Ax) and (R.Ax), each formula from R is derivable in
GL(R), hence we obtain the converse, using lemma 1.

Let us note that corollary 1 does not imply the decidability of systems L(R),
even for finite R (rules (R.Ax) may forget information). It has been shown
in [6] that every recursively enumerable language can be generated by a
categorial grammar based on some system L(R) with R finite.

We are interested here in especially simple sets R which consist of finitely
many formulae of the form:

Np1...pn—p,

which are directly related to production rules (2). For those sets R, systems
L(R) are decidable (see [6]). By RI" we denote the set of all formulae (7)
corresponding to production rules (2) of the CFG TI.

Lemma 2. For anyp,pi1,...,pn € Nr,p = rpi...pn if, and only if,
LRDFp1...pn—p.

Proof. Since L(RT) admits (CUT), then "only if" holds. For "if", it is
enough to notice that each derivation of p;...p;, = p in GL(RT) uses at most
(Ax) and (R.Ax), hence it is simply a derivation in I" (up to the direction of
arrows).

Now, with each CFG I" we associate a categorial grammar G(I') whose
system is L(RT) and other components are defined as follows: Vg =V,
sg(r)=sr , and Igr) (v) consists of all nonterminal symbols (atomic types) p
such that (3) belongs to R . As an immediate consequence of lemma 2, we
obtain:

Corollary 2. L(G(I)) = L(I).

Let G be a BCG. We say that G is derivable from I" if the lexicon and the
principal type of G are those of G(I'), and the initial type assignment of G
fulfils the condition:

® ifa eIg(v), then L(RT )p —a , for some p € Ign(v),

for any v e Vg . If G is derivable from I" then L(G) < L(G(I)) (since L(RT)
admits (CUT) and is stronger than B), hence, by corollary 2, we obtain:

Lemma 3. If a BCG G is derivable from a CFG I', then L(G) <L(T).

Accordingly, we shall succeed in constructing a BCG equivalent to a given
CFG T, if we find a BCG G derivable from I' such that L(I') < L(G). To
accomplish this goal we need the following properties of the Lambek
Calculus:



9) if LRFgr —»p,then LR)Fr —g\p,
(10) LF g\p — (4\1)/(p\t),

(11) Lkq - p/(q\p),

(12) if L(R)Fa —» b, then L(R)Fa/c — b/c,

for all types p, g, 1,t,a,b,c (p, g, r,t need not be atomic). (9) holds by (\2).
(10) follows from LI g(g\p)(p\t) = ¢, by (\2) and (/2). (11) is a consequence
of L-p(p\q) — q, by (/2). For (12) (a/c)c — a is derivable in L, hence a = b
entails (a/c)c — b , by (CUT), which yields a/c — b/c , by (/2).

Now, fix a CFG I' in the Chomsky Normal Form. First, we define a
mapping I which to any nonterminal symbol of I" assigns a finite set of
types and satisfies the condition:

(13) if a €I(p), then LIRDFp —a .

We set I(p) =I1(p) UI,(p), where I; and I, are defined, as follows. For any
production rule:

(14) p =9r,
from R, we put types:
(15) g\p and (q\t)/(p\t), for all t € N,

into I;(r) ; additionally, we also put sy into I;(sp). Further, for all types 4, p, g,
if a eI1(p), then we put the type:

(16) a/(q\p),

into I»(g). This finishes the construction of I. Observe that (13) holds, by (9)-
(12). We only consider type (16). Since L(RDFp — a, as a € I1(p), then
L(RDFp/(g\p) = a/(q\p), by (12), hence L(RD)} q — a/(q\p), by (11) and
(CUT). Second, we define a BCG G derivable from I" by setting: Ig(v), for
ve V¢ , equals the set of all types a such that, for some p € Ign(v) (that
means, p =v isin Rr),a €l(p).

We must show L(I') CL(G). To do it we need some simple properties of I-
derivability. Observe that condition (5) takes the form:

(17)if g=rX and r =rY, then p = XY,

for any production rule (14) from R A derivation in I" is said to be regular,
if Y =7 in each application of rules (17) (that means, only the left-hand part
of the derivation tree is to be expanded). The next lemma exhibits regular
subderivations of each I'-derivation.

Lemma 4. If p = ¢X, then there are a number k>0, nonterminal symbols
q1,....9k , and strings Xj,...,Xj such that X=X7... Xy, g;=r X;, forall i =1,...k,
and p =rqq;...qx has a regular derivation.




Proof. Induction on the length of X. For X =A, we have p =q and k =0.
Assume X #A. Then, for some production rule p =rs, there hold r = qY
and s = Z, for some strings Y, Z such that X =YZ. Since Z #A, then Y is
shorter than X. By induction, there are k20, qy,...,9x and Xj,..., Xk such that
Y=X;... Xy, qi=rX; fori=1,...k, and r =rqq;...qx has a regular derivation.
We take gx1=s and Xj.1=Z.

Lemma 5. Let p =1 441...9% (k 20) have a regular derivation. Then, for any
type a €I1(p), there are types b €I(q) and b; € I1(q;), for i =1,...,k, such that
Bl bb;g...by —a, and rule (\1) (equivalently: (R\)) is not applied in the latter
derivation.

Proof. For k =0, we take b =a. Assume k 22. The regular derivation
proceeds by a sequence of production rules:

(18) p =71k , Tk =Tk-19k-1, --- » T3 =122, T2 =>441,

for some nonterminal symbols r,,...,rx . By (15), we obtain the following
assignment:

(19) ri\p e In(qx), (ria\p)/(ri\p) € I1(qx-1), ... , (g\p)[(r2\p) €I1(q1);
denote these types by by,..., by, respectively. Evidently:
(20) BEb1...bx = q\p,

and (R\) is not applied in this derivation. Now, choose a € I;(p). By (16), we
have a/(q\p) €I»(q), which yields the thesis with b =a/(q\p). Case k =1 is
particular: p =4q; is the only rule in (18), and we set b; =g\p and b as above.

Thus, the BCG G constructed above can simulate regular derivations in I
We show it is so for arbitrary derivations.

Lemma 6. Assume p = p;j...p,. Then, for any a € I;(p), there are types
cieI(p;), for i =1,...,n, such that Bl-c;...c, — a, and rule (\1) is not applied in
the latter derivation.

Proof. Induction on n. For n =1, the derivation is regular, hence lemma 5
yields the thesis. Assume n >1. By lemma 4, there are k,q3,... 4% and Xj,..., Xk
such that p,...p, =X1... Xk (so, k 20), q; =X;, for i =1,....k, and p =p191...9%
has a regular derivation. Choose a € I;(p). By lemma 5, there are types
ci€I(p;) and b;el4(qy),i=1,...,k, such that Bl-c1b;...by — a without (\1). By
induction, since b;€I1(g;) and g;=rX;, then we can find a string Y; , of types
assigned by I to the corresponding symbols from X;, such that B Y;— b;
without (\1). Consequently, BFc;Y;...Yy—a holds by (CUT), and we set
Y71...Yg=c3...c, (clearly, (\1) is not applied).

Corollary 3. L(I') cL(G).



Using lemma 3, we infer L(G) =L(I'), so G is a BCG equivalent to I'. As a
matter of fact, we have proven statement (II) in its full strength. For rule
(\1) need not be used in G to establish corollary 3. Accordingly, we may
assume the system of G skips this rule (then, of course, lemma 3 holds as
well). In B lacking (\1) types of the form a\b are treated as atomic types (they
never appear as functors in reductions (R\)), hence they can be replaced by
different atomic types. Write p 9for p\q in the definition of I, and regard p 4
as an atomic type. Thus, (15) and (16) obtain the form:

(15) pa,ptlqt, (16" algq P, where a =sr ora is of the form (15,

which fulfils the constraint in (II). The latter move, however, makes the
connection with the Lambek Calculus less transparent, while to illuminate
this connection has been our main goal in this section. The above proof of
the Gaifman theorem has been presented in detail just to illustrate the
possibility the Lambek Calculus can serve as a device which transforms one
grammar (here a CFG) into another grammar (here a BCG) of the same
language. We believe linguistics will exploite this function of Lambek style
systems in further developments, since perspectives seem much promising.

3. Interpolation and binary reductions in L

By p(a) we denote the complexity of type a, i.e. the number of all
occurrences of atomic types in a. We also set:

(21) p(a;z...a,) = plag) +...+p(a,), p(X —a)=p(X) +p(a).

By I(X) we denote the length of string X. For a set P of atomic types, TP,(P)
denotes the set of all types 2 formed out of atomic types from P and such
that p(a) <n, and Tp,(P) denotes the restriction of the latter to product-free
types.

The key lemma in Pentus [19] is the following: For any set P and any
number n 21, if LP+ X — a, where I(X) 22, X e TP,(P) *, a € TP,,(P), then there
exist types b,c,d € TP,(P) and strings Y, Z such that X =YbcZ, LP+bc—d and
LPFYdZ — a. We refer to this lemma as the binary reduction lemma (the
BR-lemma). The BR-lemma had been proven in [7], [11] for some special
families of product-free types only, while M. Pentus succeeded in
establishing it for arbitrary types (with product), by a deeper penetration into
the logical structure of LP.

The BR-lemma yields one direction of the equivalence between categorial
grammars based on LP (LP-grammars) and CFG's, namely, the fact that each
LP-grammar is equivalent to some CFG. Let G be an LP-grammar. We
construct a CFG I in the following way. Let P be the set of all atomic
subtypes of the types appearing in I¢ (also sg € P ), and let n be the maximal
complexity of the latter types. We set V=V, Ny = TP,(P) and sr=sg. The
production rules of I" are:



(22) d =bc , for b,c,d e Nr such that LP+bc — d,
a =b, fora,b e Nr such that LPFb — g,
(23) a =v, fora e N, v € Vi such that a € Ig(v).

L(I') L(G) holds, since LP is closed under (CUT). L(G) CL(I) holds by the
BR-lemma (the second rules in (22) are used for one-step derivations only).

The other direction of the equivalence in question is an easy consequence
of the Gaifman theorem. Let I" be a CFG. By statement (II) from section 2, I"
is equivalent to a BCG G whose initial type assignment uses at most types of
the form p, p/q, (p/q)/r. These types are of order not greater than 1, where
the order of product-free types is defined, as follows:

(24) ord(p) =0, ord(a/b) = ord(b\a) = max(ord(a), ord(b) +1).

Now, for any sequent X — p such that all types in X are of order not
greater than 1, there holds:

(25)if LPFX —p, then BFX —p,

since rules (/2), (\2), (*1) and (*2) are not used in any derivation of X - p in
LP. Consequently, LP is equivalent to B for such sequents, and the LP-
grammar G’ which differs from G in just admitting LP instead of B as its
system is equivalent to G. So, G’ must also be equivalent to I

An alternative argument for the existence of an LCG equivalent to a given
CFG can also be provided by methods from section 2. Let G be the BCG
derivable from I" with the initial type assignment resulting from I, the latter
mapping being defined according to (15), (16). We have shown L(G) = L(T).
By G’ we denote the LCG which results from G by replacing B by L. Clearly,
L(I') =L(G) €L(G’), since L is an extension of B. On the other hand, L(G’)
CL(G(I')) =L(T), since L(R]) is an extension of L. So, L(G’) =L(I).

LP is a conservative extension of L, that means, the same product-free
sequents are derivable in LP and L. As a consequence, we obtain the
equivalence of LCG's and CFG's. However, production rules (22) appearing
in the CFG I', equivalent to a given LCG G and constructed by the Pentus
method, may contain types with product. If we transformed I" into a BCG
with the aid of type transformations described in section 2, we would obtain
an "ugly BCG", employing types with product, treated as atomic types in
derivation procedures. To construct a natural BCG equivalent to a given
LCG we should prove a variant of the BR-lemma for L. That is our main
goal in this section.

Unfortunately, the Pentus way of establishing the BR-lemma cannot
directly be adapted to L. The matter is tightly connected with interpolation,
which we are to explain now. By p(p,a) we denote the number of
occurrences of the atomic type p in type a, and p(p,X), p(p,X — a) are defined
like (21). Let LPFXYZ —a with Y #A. The type y is called an interpolant of
string Y with respect to the latter context, if the following conditions are
satisfied:

(26) LPFY -y and LPFXyZ —a,
(27) p(p,y) < min(p(p,Y), p(p, XZ — a) ), for any atomic type p.
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As shown in [20], interpolants in the above sense exist for all strings Y
satisfying the required assumption. The proof of the BR-lemma given in [19]
heavily uses this interpolation property of LP. Actually, the type d in the
BR-lemma is an interpolant of string bc in the context LPF YbcZ — a. Yet,
for the case of L, one cannot proceed this way. Consider the following
example:

(28) LE-pgr — (s/pqr)\s,

which holds by (Ax), (/1) and (\2). Let y be an interpolant of string qr with
respect to (28). By (27), we obtain p(q,y),p(r,y) <1, and p(t,y) =0, for any atomic
type t different from q and r. The only types satisfying this constraint areg,
r, q/r, r/q, q\r, r\q, q*r, r#q, and only g+*r fulfils (26), hence y = g*r.
Therefore, there is no product-free interpolant of string gr with respect to
(28). On the other hand, (28) admits product-free binary reductions:

(29) gr — (s/qr)\s and p((s/qr)\s) — (s[pqr)\s,

but type (s/qr)\s is not an interpolant of string qr with respect to (28),
although it satisfies the complexity constraint of the BR-lemma.
Consequently, the BR-lemma cannot be proven for L by finding an
interpolant d of string bc which satisfies the complexity constraint.

We do not know if the BR-lemma holds for L, though we cannot find any
counterexample. Fortunately, its weaker version with type a supposed to be
atomic can be proven by a modification of Pentus' argument, which will be
shown here, and that is enough for the desired equivalence results.

First, the notion of an interpolant must be adjusted to L. By an interpolant
of string Y (Y #A) with respect to the context L+XYZ —a we mean a string
Y1...Yn, of product-free types, such that there are nonempty strings Y7...Y,,
satisfying Y =Y7...Y,, and the following conditions:

BO0)LFY; >y, fori=1,...n,

B LFXy;...ynZ —a,

(32) P(P/yz) < min(P(P,Yi); P(P: XY1..Yi1Yi1.. . YnZ — a) ), fori=1,...,n,
(33) p(p.y1...yn) <minp(p,Y), plp, XZ —a) ),

for all atomic types p. That means, each type y; is an interpolant of the
corresponding string Y; and type y;*...#y, is an interpolant of string Y with
respect to this context in the previous sense. We prove an analogue of the
interpolation lemma from [20] (pp. 84-86).

Lemma 7. If L XYZ —a, Y #A, then there is an interpolant of string Y
with respect to this context.

Proof. We proceed by induction on derivations of XYZ —a in L.

If XYZ > a is (Ax), then Y =a, XZ =A, and y =a is an interpolant of Y.
Rules (/2) and (\2) are easy: we take an interpolant of Y with respect to the
premise. Rule (/1) must be examined in detail (\1) is dual).

Let the rule be TbV —a, U — ¢ F T(b/c)UV — a. We consider several cases.
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(D Y is contained in T or V. We take an interpolant with respect to the
left premise.

(ID Y is contained in U. We take an interpolant with respect to the right
premise.

(D) Y =T»(b/c)UVq, T =T1T,, V =V1V,. We take an interpolant of T,bV;
with respect to the left premise.

1\20% =U2V1, u =LI1 qu \%4 =V1V2, uZ #A, V1 #A. Let U* be an interpolant
of U, with respect to the right premise, and let V* be an interpolant of V;
with respect to the left premise. We take U*V* as an interpolant of Y.

(V) Y =T»(b/c)Uy, T =T1T,, U =U;1U,, Uy #A. Let U* be an interpolant of U,
with respect to the right premise, and let T* be an interpolant of T>b with
respect to the left premise. Then, T* =5d, T, =T'T’’ and type d is an
interpolant of T''b with respect to the left premise. We take the string
5(d/U*) as an interpolant of Y.

We have checked all possible cases, which finishes the proof.

Following [19], we introduce some auxiliary notions. By 7n(a) we denote
the set of all atomic subtypes of type a. The type a is said to be thin, if p(p,a)
=1, for any p € n(a), and the sequent X —a is said to be thin, if (1) L- X —a,
(2) every type appearing in X —a is thin, 3)p(p,X — a) €{0,2}, for any atomic

typep.

Lemma 8 ([19]). Let a;3...a, — a,4+1, n 22, be a thin sequent. Then, for some
2<k <n, m(ax) Sr(ag-1) Un(ageg).

Proof. Actually, we need not prove this lemma which immediately
follows from lemma 4 in [19] establishing the same for LP, due to the fact
that LP is a conservative extension of L. It is, however, noteworthy this the
only place Pentus [19] essentially uses an interpretation of LP in a free group
in the following sense. Consider the free group generated by atomic types.
Define g(a) by setting: g(p) =p, g(a+b) =g(a)g(b), g(a/b) =g(a)g(b)1, g(a\b) =
g(a)1g(b). Then, sequent aj...a, = b is derivable in LP only if g(a;)...g(a,)
=g(b) in the free group.

The next lemma is, actually, the BR-lemma for thin sequents with an
atomic succedent. In the proof we use the fact that each sequent derivable in
L must contain an even number of occurrences of any atomic type.

Lemma 9. If a3...a, — p, n 22, is a thin sequent such that a; € Tp,,(P), for all
i=1,...,n,and p € P, then there are a number 1<k <n and type b € Tp,(P)
such that LFawgy; — b and LEajy...ax1bagy)...a, = p.

Proof. The proof applies similar tools as that of lemma 6 from [19], but
case (2) below is treated in a different way. Also, we need additional
elimination of "long" interpolants. If n =2, then type b =p fulfils the thesis.
Assume n >2. Let k be the number satisfying the thesis of lemma 8. Two
cases are to be considered.

(1) k <n. Then n(ay) Cn(ax-1) Un(ax+1). By card(K) we symbolize the
cardinality of the set K. We consider two subcases.
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(1a) card(m(ay-1) Nn(ax)) 2card(n(ay) N"m(ag+1)). Let Y be an interpolant of the
string ax.1ax. We show p(Y) <p(aj.1). First, observe that each atomic type
occurs at most once in Y. We obtain:

(34) p(Y) = card(n(ay.1) -mlay.1) "may) + card(n(ay) -n(ax.1) Nn(ag)) =
= card(n(ay.1) -max.1) Nrlax) + card(mlay) Nmlage1)) <
< card(m(ay.1) -m(ax.1) Nrlay)) + card(mlay-1) Nnlay)) =
= card(m(ax-1)) =p(ax-1),

where the first equality holds by (33), since ax.; and a; are thin, the second
equality by the inclusion established in lemma 8, the inequality by the
assumption of case (la), and the remainder is obvious. Now, either Y isa
single type, or Y =ab, where 4, b are interpolants of a;.; and ax , respectively.
We exclude the latter possibility. For ax.; and ax are thin, hence p(a) =p(a.1)
and p(b) =p(ax), by (32),which yields p(Y) >p(ak-1), contrary to (34).
Consequently, Y is a single type which belongs to Tp,,(P), again by (34). We
set b =Y, and our thesis follows from (30), (31).

(1b) card(n(ax-1) Nmlay)) <card(n(ay) Nn(ax+1)). The argument is similar; one
interchanges the roles of a;.; and ag,;.

(2) k =n. Then n(a,) Cn(a,-1) U{p}. Let Y be an interpolant of the string
ay-14,. As above, we obtain:

(35) p(Y) =card(n(a,.1) -n(a, 1) "may,)) + card(ma,) -m(a,1) Nma,)).

Now, n(a,.1) Nn(a,) # &; otherwise a, =p, but no sequent Xp — p , such
that X #A4 and p does not occur in X , is derivable in L (easy induction on
derivations in L). Consequently:

(36) p(Y) <p(an.1) -card(n{a,.1) Nnla,)) +1<p(a,.1).
As above, we infer that Y is a single type fulfilling the thesis.

We are ready to prove a version of the BR-lemma for L, restricted to
sequents with atomic succedents.

Lemma 10. f L+ X — p, where I(X) 22, X € Tp(P), p € P, then there exist
types b,c,d € Tp,y(P) and strings Y, Z such that X =YbcZ, LF-bc —-d and
L-YdZ —p.

Proof. Let X — p satisfy the assumptions, X = a;...a,. We choose a
derivation D of X —p in L; we assume axioms (Ax) in D use atomic types
only. For each atomic type q appearing in D, we form a set P, containing as
many different copies of ¢, as many occurrences of axiom g — g are there in
D. Next, different occurrences of this axiom are replaced by different
formulae 4° = g, q’ € Py, for any atomic type 4, which transforms D into a
new derivation D’. The final sequent of D’ isa;”" ...a," = p’ which is related
to X — p in the same way as D’ to D. Clearly, each atomic type has precisely
two, if any, occurrences in any sequent from D’. Let by,...,b, be interpolants
of types ay',...,a,', respectively, with respect to the last sequent of D’. One
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easily sees that by...b, = p’ is a thin sequent. By lemma 9, we find 1<k <n
and type b’ € Tp,(P’) such that LFbybye; — b as well as
LFb;y...bk-1b"bg42... by —> p’, where P’ denotes the join of all sets P,
constructed above (we use p(a;) =p(a;') 2p(b;) , for i =1,...,n ). Now, substitute
again g for every q’ € Py, for any atomic type g, in the two sequents from the
preceding sentence. Since L is closed under substitution, we obtain L cxcys1
—d and Ll-cj...ck-1dck42...c, > p, where d € Tp,,(P). It remains to show LFa;
—¢j, for i =1,...,n. That follows from LFa;" — b; by the latter substitution.
Since L is closed under (CUT), the thesis is true.

Let G be an LCG. We construct a CFG I" equivalent to G in a similar way
as at the beginning of this section. We set V=V, Nr =Tp,(P), where m is
the maximal complexity of types appearing in I, and P is the set of all
atomic subtypes of these types (we add sg to P if it does not appear in I;),
sr=sc , and the production rules of I" are (22) (binary rules only) and (23) (L
replaces LP). By lemma 10, since L is closed under (CUT) and admits no
derivable sequents a —»p witha #p (that eliminates unary rules (22)), we
eventually obtain:

Theorem 1. If G is an LCG, and I is the CFG constructed from G in the
way described above, then L(G) =L(T) .

4. Main construction and final comments

In this section we construct, for any LCG G, an equivalent BCG G’ in the
natural way. That means, the initial type assignment of G’ associates with
each v e Vg =V a finite collection of types b such that, for some a € Ig(v),
LFa—b (so, G’ is a natural BCG equivalent to the LCG G in the sense of
section 1). To reach the goal we join main constructions from the preceding
sections.

Let G be an LCG, and let I" be the CFG equivalent to G which is referred to
in theorem 1. Since the approach of section 2 relies on the assumption
nonterminal symbols of a CFG are atomic types, we need a slight
modification of I'. Namely, for each non-atomic type a e Nr, we introduce a
new atomic type p,, and by N we denote the set of all atomic types from Nr
and all new types p,. The modified CFG I’ is defined as follows. Its
terminal symbols and initial symbol are those of I, while N is its set of
nonterminal symbols. The production rules of I are obtained from those
of I' by replacing each non-atomic type a by p;. Clearly, nonterminal
symbols of I'” are in a one-one correspondence with nonterminal symbols
of I, and production rules of both grammars are the same up to this
correspondence, which yields L(I"") =L(I).

Now, let G* be the BCG derivable from I according to the construction
from section 2 (before lemma 4). We know that L(G¥) =L(I""). We need an
auxiliary notion. A substitution is a mapping ¢ of the set of atomic types
into the set of product-free types. Each substitution ¢ is uniquely extended
to a mapping defined on the set of all product-free types by the clauses:

(37) o(a/b) =o(a)/o(b), o(a\b) =c(a)\o(b).
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For any BCG H and any substitution ¢ such that o(sy) =sy, the BCG o(H)
is defined by setting: Vom) =V, Ior)(v) = {o(a) : a € In(v) }, sor) =su- Clearly:

(38) L(H) cL(o(H)),
since B is closed under substitution, that means:
(39) Bt-ay...a, = b implies Bl o(ay)...0(a,) — o(b),

for all types ay,...,an,b.
We define G’ =0(G¥), where the substitution o is given by:

(40) o(p,) =a, for all non-atomic types a e N,
ol(q) =4, for all atomic types 4 e N

Of course, G’ is well defined, because the principal type of G* equals s,
and we have s =sp =sg, hence o(sy~) =sp. By (38), we obtain L(G*) CL(G’),
and consequently, L(G) CL(G’) , since L(G) =L(I') =L(I"") =L(G¥). We show:

(41) for any b €I-(v), there is a € Ig(v) such that Lla — b,

forallv e V' (clearly, Vg =V ). Let b e Ig«(v). Then, b = o(b’), for some type
b’ € Ig#(v). Since G* is derivable from I, then there exists an atomic type
p €N such that p =v isin R and L(RI" )p — b’ . The following fact:

(42) L(R)*-ay...a, = a implies L(o(R) )+ o(ay)...o(a,) — o(b),

where 6(R) results from replacing each type a in formulae from R by o(a),
can be proved by an easy induction on derivations in L(R) (with (CUT),
without (R.Ax)). Applying (42) to our argument, we obtain:

(43) L(o(RT) )= o(p) — otb’).
Now, by definitions of I” and o:

(44) p =v isin R if, and only if, o(p) =v isin Rp,
(45) s =qr isin Ry~ if, and only if, o(s) =0o(q)o(r) isin Rp

Denote a =o(p). By (44) and the definition of I', we obtain a € Ig(v). By (45)
and the definition of I" again, each formula from o(RI") is derivable in L,
hence each formula derivable in L(o(RI") ) is also derivable in L. Therefore,
(41) follows from (43), using b =o(b’).

According to (41), G’ is constructed from G in the natural way. We have
already shown L(G) CL(G’). The converse inclusion is an easy consequence
of (41). For assume v;1...v,, € L(G’) (v; € Vg ). Then, BFb;...b, > sg, for some
bijelg(v;), i=1,...,n, which implies L+ b;...b, — sg, for these types. By (41),
Lt a; — b;, for some a; € Ig(vy), i =1,...n.So, LFa;y...a, = sg, by (CUT), which
yields v;...v, € L(G). We have proven L(G’) =L(G) . As a result, we obtain
our main theorem:
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Theorem 2. For any LCG G, there is a natural BCG G’ equivalent to G.

To explain the construction of G° we recall the construction steps for Ig-
without referring to auxiliary grammars I, I" and G*. Fix an LCG G. We
consider the set Tp,(P), where m is the maximal complexity of types
appearing in Ig, and P contains s¢ and all atomic subtypes of the latter
types. The mapping I, of Tp,,(P) into the powerset of Tp(P), is the join of two
mappings I; and I, defined as follows:

(46) s e I1(sg),
47) if Lkab — ¢ then (a\c), ((a\d)/(c\d)) €I;(b),
(48) if a € I;(b) then (a/(c\b)) €I)(c),

for all a,b,c € Tp,,(P). By (9)-(12), if b € I(a) then LFa — b. Now, Ig-(v) is
defined as the join of all sets I(a), for a € Ig(v).

The equality L(G) =L(G’) will remain true, if one adds to Ig«(v) other types
b satisfying (41), for instance, all types from Ig(v) (thus, G’ can be
constructed as an expansion of G). An interesting open problem is to
characterize minimal expansions G’ of G which fulfil L(G) =L(G").

The number of types involved in (46)-(48) polynomially depends on
card(Tp,(P)) , the latter being majorized by a function polynomial in card(P)
and exponential in m. That is not quite bad, since m need not be expected
very large for grammars used in linguistics; a main advantage of LCG's, as
compared with BCG's, is the possibility of reducing the size of types
appearing in the initial type assignment, as more complex types can be
derived from simpler ones by the machinery of L. However, (47) appeals to a
decision algorithm for L. As far, as we know, a polynomial algorithm has
been found only for the fragment of L restricted to types of order at most 2
(Aarts [1]).

The practical efficiency of both constructions, i.e. that of a CFG I" and that
of a BCG G’ , is nonetheless essentially weakened by the fact that binary
rules LFab — ¢, for a,b,c € Tpy,(P), are not given in an explicit way. Linguists
certainly need a transparent axiomatization of these rules, which will also
yield a transparent description of type transformations leading from Ig to
Ig'. Maybe, such an axiomatization can be found by close examining the
interpolation lemma (lemma 7), but one cannot exclude the invention of
an essentially different proof of the equivalence in question be necessary.

Another reason for seeking an equivalence proof different from the
Pentus-style argument, presented in section 3, is that the latter cannot be
applied to axiomatic extensions of L. We have seen in section 2 that systems
L(R), where R consists of production rules of a CFG (up to the direction of
arrows), are quite useful in grammar transformations (for a further
discussion of L(R)'s, see [6], [9]). We conjecture categorial grammars based on
these systems (with R restricted to context-free formulae) are context-free,
but this conjecture cannot be proven by the methods of section 3. For
neither lemma 8 (using an interpretation of L in a free group), nor the
transition to thin sequents, exploited in lemmas 8, 9 and 10, remains
plausible for axiomatic extensions of L.
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The argument also fails for the system LP* (the Lambek Calculus with
Permutation) which results from enriching LP with the rule:

(PER) XabY —c FXbaY — ¢,

characteristic of semantic systems studied in [3], [4], [5] and Girard's linear
logics (see [5], [20]). The counterexample is:

(49) LP* - (p/q)/r,(r[s)[t,(t*a)|u — (p[s)|u;

the sequent in (49) is thin, but each interpolant of any two antecedent types
(not necessarily adjoint) must contain four atomic subtypes, which exceeds
m =3 (a product-free example can also be produced). Many properties of LP*
are, however, quite similar to those of LP, hence one may expect a
modification of the Pentus method will prove that LP*-languages equal
permutation closures of context-free languages (a problem discussed in [4],
[9D.

As observed by Pentus [19], the equivalence of LP1-grammars and CFG's
can be established in the same way as for LP-grammars. Also, our
construction of a natural BCG equivalent to a given LCG can easily be
adapted to the case of L1. Alternatively, one may follow the line of [11],
where L1-derivability has been reduced to L-derivability. We recall this
reduction for the case of LP1 and LP. For any type 4, one defines two finite
sets A(a) and S(a), of types, such that LP1Fa — b, for all b € A(a), and
LP1Fb — g, for all b € S(a), by the following recursion:

(50) A(p) =S(p) ={p }, for atomic types p,
A(a*b) ={c*d :ce€A(a), d € A(b) }, S(a*b) ={c*d : c € S(a), d € S(b) },
A(alb) ={c/d : c € A(a), d € S(b) }UC(a/b),
A(a\b) ={c\d : c € S(a), d € A(b) }uC(a\b),
S(a/b) ={c/d : ce S(a),d € A(b) }, S(a\b) ={c\d : c € A(a), d € S(b) },
C(a/b) = [if LP1-A — b then A(a) else J],
C(a\b) = [if LP1FA —a then A(b) else J].

By induction on derivations, one proves LP1}a3...a, — b if, and only if,
there exist types c; € A(a), i =1,...,n, and d € S(b) such that LP}c;...c, —>d, for
n >0, and the same holds for L1 versus L. Consequently, each grammar
based on LP1 (resp. on L1) can effectively be transformed into an equivalent
grammar based on LP (resp. on L), and to the latter one applies the methods
considered above in order to find an equivalent CFG or BCG.
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