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Abstract
I present a complete calculus for mixed inference [1] with composition and prove
that it has the finite model property and is therefore decidable. I also present a
variant of the calculus complete with respect to functional models, and mention the
completeness and (un)decidability of other styles of inference involving composition,
including dynamic inference [1].

A recent trend in one corner of logic is to regard the meaning of a sentence as
a relation on information states. As discussed in [1], this ‘dynamic’ perspective
gives rise to a number of new conceptions of inference, allowing different answers
to the question of what it means for conclusion C to follow from premises
Py,...,P,. Onesuch dynamic notion of inference is what van Benthem [1] calls
mized inference, which is of particular interest for its connection to Veltman'’s
[8] update semantics. In this paper, we investigate mixed inference with respect
to such standard logical questions as axiomatizability and decidability. Other
dynamic styles of inference will be discussed briefly in the last section of the
paper.

1 Van Benthem’s Mixed Inference
1.1 Calculus M

In (1], van Benthem introduces the following calculus M, to capture the general
properties of the style of inference that he calls mized inference. M is a calculus
for deriving a sequent from a set of sequents. In M, a sequent is an expression
of the form X = d, where X is a finite sequence of atomic formulas, and d is an
atomic formula. In what follows, p, ¢, ¢, d (with or without subscripts) range
over atomic formulas, and X, Y, Z, W, V (with or without subscripts) range
over finite sequences of formulas.

Calculus M.

— Axioms: M has no axioms.

*I would like to thank Johan van Benthem for his guidance.
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— Rules of Inference: M has two rules of inference:!

=d
X=d

Left Monotonicity

X=>c¢c XcY=>d
XY =>d

We write I' by Z if T is a finite set of sequents and 7 is a sequent derivable
from sequents in I" using the two rules of inference of M.

Left Cut

1.2 Semantics

The intended semantics for M is as follows. A model for M is a structure
M = (|M|,Ro,R1,R,,...), where |M| is a non-empty set and each R; is a
binary relation on |M|.

— The interpretation [g;]as of the i-th atomic formula g¢; is R;.

~ M [ py...pn = d if and only if range([pi]m o --- o [pr] M) C fix([d]m),
where fix(R) = {z | (z,z) € R}.

Wewrite M =T if M =T forall Zin I.
- T'EZTiff for all M, M =T implies M = T.

M is complete with respect to the intended semantics in the sense that
'ty Z if and only if T' = Z. This is proved in [1], by showing a method of
constructing for any finite set I' of sequents a canonical model Mt such that
for every sequent Z, M =7 if and only if T' Fpg Z.

1.3 Decidability

It is easy to see that M has the finite model property; i.e., M is complete
with respect to the class of finite models. This is so because the definition of
M = T translates into a universal first-order sentence without function symbols.
Suppose M =T and M f p)...pn = d, so that there are xg,...,z, such
that (zo,z1) € [P1]m,-- -, (Tn=1,2n) € [pn]M and (z,,z,.) & [d]pr. Then the
finite submodel My of M such that |My| = {zo,...,2»} has My = T and
My ¥ py...pn = d. That M has the finite model property implies that it is
decidable.

Grigori Mints (p.c.) has shown the decidability of M using an equivalent
natural deduction type calculus NDM, for which he proves a normalization
theorem. (See my notes [5, 6].)

'In (1], the following version of Left Cut was used:

X=2>c YXcZ=d
YXZ=>d

In the presence of Left Monotonicity, the two versions of Left Cut are equivalent.

Left Cut




2 Adding Connectives

The language of M has no connective, so M does not deal with complex formu-
las. It would be interesting to see how M can be extended to languages with
various connectives. Here we consider two conjunctions, N and e, which are
interpreted as intersection and composition, respectively. Let M be a model in
the above sense. The interpretation of a complex formula is given as follows.
(Below, P, C, D (with or without subscripts) range over (possibly complex)
formulas.)

- ﬂDl ﬂDz]‘M = HDI]]M N [[DQ]IM.

— [D1 e Do]m = [Di]m o [D2] m-
A sequent is now an expression of the form X = D, where X is a finite sequence
of (possibly complex) formulas, and D is a (possibly complex) formula. The
definition of truth and semantic consequence remains the same, except that we
are now dealing with complex formulas as well as atomic ones.

— M E P, ... P, = Difand only if range([Pi]aro- - -o[Pr]ar) C fix([D] ).

- T'ETZiff forall M, M =T implies M = T.

The problem now is to find a complete set of rules governing the newly
introduced connectives.

2.1 Intersection

As usual, intersection is the easier one to deal with. It is quite straightforward
to extend M to the language with N as its only connective. (Below, P[C]
denotes a formula with a specified subformula occurrence C.)

Calculus M(N).
— Axioms: M(N) has no axioms.
— Rules of Inference: M(N) has the following rules of inference:
X=D
Left Monotonici —_—
e onotonicity PX=D

X=C XCY=D

Left Cut XV =D

(=) = % =D>101)r(-1 32D2

(= N2) i—}}%lﬁ i=1,2

(Assoc. N =) XP(GNG)NG)Y > D 1T both ways

X P[(Cin(CaNnCs)Y =D



X P[(CiNCy)]Y =D
X P[(C2nC1)Y = D
XP[(CNC)Y=D
X P[ClY =D
The completeness of M(N) can be shown by a minor modification of van
Benthem’s [1] construction. The finite model property of M(N) is also obvious.

(Perm. N =)

(Contr. N =)

2.2 Composition

Let us now consider the language with e as its only connective. Although it
is not immediately obvious, the following set of rules turns out to constitute a
complete calculus for this language.

Calculus M(e).
— Axioms: M(e) has no axioms.

— Rules of Inference: M(e) has the following rules of inference:

X=D
Left Monotonicity PXoSD

X=C XCY=D

Left Cut XV =D
(o 1) XPPRY=D
! XPePY=D
( :>) XPePY =D
* =2 XP PY =D
X=D, X=D,
(= 1) X = Dy e D;
(:>.) XD;=Dy X =D;eD;
2 X = (D, @ Dy) e Ds
X = D[((C,eC3) e C
(= Assoc. o) [(C1 2 Ca) » Co)l 1T both ways

X = D[(Cy e (Cy0C3))]

Moreover, M(e) also enjoys the finite model property, and is therefore de-
cidable. This requires a slightly more elaborate argument than before.?

We prove the completeness and finite model property of M(e) in the follow-
ing three sections. Here, let us note

Lemma 2.1 The following rule is derivable in M(e):
XDi=Dy, X=D

($.3) X =DjeDs

2That M(e) is decidable is perhaps mildly surprising, as it is easy to show that the corre-
sponding calculus for dynamic inference [1] with composition is undecidable. See Section 8.



PROOF.
XﬁDl XDI =>D2 Left Cut
X=D X=>D2(=>.1)
X = DieDy

Remark (= ;) and (= e3) can be thought of as special cases of (= e3),
where Dy and Dj are ‘empty’, respectively.

3 Calculus My

In proving the completeness and finite model property of M(e), it is convenient
to work with an equivalent calculus My with multiple succedents, whose lan-
guage has no connective. An My sequent is of the form X = Y, where X is
a finite sequence of atomic formulas and Y is a non-empty finite sequence of
atomic formulas.

Calculus My.

— Axioms: My has no axioms.
— Rules of Inference: My has three rules of inference:

X=Y
Left Monotonicity SXSY
X=Y XYZ=W
Left Cut T
X=YZW

The definition of truth for My sequents is as follows:

- M Ep1...pn = di...dn, if and only if range([p1]ar o -+ o [pa]m) C
ﬁx(ﬂdI]IMo"'o‘[dm]lM)'

If 7 is an M(e) sequent, let Z# be the My sequent which results from erasing
all occurrences of e and parentheses in Z.

Lemma 3.1 M =7 if and only if M = T%.
Lemma 3.2 T tygq) Z of and only if rt FMy Y, where TV = {J¥| T € r}.

By the above lemmas, to show the completeness and finite model property
of M(e), it is enough to show the completeness and finite model property of
M. In what follows, we write - for Fpg,,.

4 Completeness

Given a finite set I of My sequents, we construct a model Mr such that for all
My sequents Z, Mp =7 if and only if I' + 7.
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Definition For any finite set I" of My sequents, M is the model such that

— |Mr| consists of all finite sequences X of atomic formulas and all expres-
sions of the form X | Y, where X is a non-empty finite sequence of atomic
formulas and Y is any finite sequence of atomic formulas.

— For a, 3 € |[Mr|, {a, B) € [p]um; if and only if one of the following holds:

(i) B=ap
(i) a =X and 8 = X p| for some X.
(iii) a=XY,f=X,and T+ X = Y p for some X, Y.
(iv) a=X|YZ,8=X|Y,andTHFXY = Zp for some X, Y, Z.

In what follows, a, 8, v (with or without subscripts) range over elements of
|Mr|. We use A to denote the empty expression (which is in |Mr|). For every
ae Ml let (@) =XYifa=X]|Y,and (o)t =X ifa = X. Let 1h(a) be
the number of occurrences of atomic formulas in (a)T.

Definition An expression of the form
dn

dy
Qg — o —> Qp
is called a path (from og to ay) (in Mr) if (@, 1) € [di]mp,---» {(@n—1,an) €
ldn]mp- The label of this path is d; ... dn.

The bar | in X | Y € |Mr| is there to indicate that there is no way to get

back from X | Y to an initial segment X' of X. If ag (= X | Y) 4, .. G, an
is a path, X | is an initial segment of each ¢; (0 <7 < n).

Definition A path ap ﬂ» —df-> oy, is called non-shrinking if 1h(ag) < lh(w;)

for 0 < ¢ < n. A non-shrinking path oy ill—» e i'ir ay is called a loop if n > 1

and ag = an. A mintmal loop is a loop with no proper subloop (i.e., a loop
such that no proper subpath of it is a loop).

If o -d—1+ e Eﬁ» oy is a non-shrinking path, ap is an initial segment of each
a; (0 <1< n). The following lemma is straightforward.

Lemma 4.1 Let a and 3 be elements of |Mrp| such that 3 = a v for some
v € |Mr|. Then there erists a unique shortest path from a to B, and the label
of this path 1is (’y)T.

Lemma 4.2 A non-shrinking path from « to (3 that does not contain a loop is
the shortest path from a to (.

PROOF. Let

be a non-shrinking path. (1) is the shortest path from ag to a, if and only if

Ih(ait+1) = lh(a;) + 1 for 0 < 7 < n. Suppose that (1) is not the shortest path
from ap to an, so that for some ¢ such that 0 < ¢ < n, lh(e;) > lh(aiyq). Pick



the smallest such i. Then (1) must begin with

d d d;
ap (= av) —2 oy —2 - —5 ap i

where ('yk)Jr =d;...d; (0 £k <), and a;4; must be ag y; for some j such
that 0 < j < 4. Thus,

dj+l d; d;

i+1
QoY — T QY T QoY
is a loop, which is contained in (1). [
d d . "
Lemma 4.3 If o =L o 2 4, is @ minimal loop, then T + (ao)\L =

dy...dn.

d dn— . - .
PROOF. The path ag 4,0 Q-1 is non-shrinking and does not contain
a loop, so by Lemma 4.2, it is the shortest path from oy to a,—1. Then it must

be that a,—1 = agdj...dn-1, and the lemma follows. |

Lemma 4.4 If ag 41, n, ay, 15 a loop, then T' - (ao)Jr =d;...dn.
PrRoOOF. By induction on the number £ of proper subloops in ag —c—l—la e ﬁ» Qn.
CASE 1. k =0. By Lemma 4.3.

di+1 d_‘]

CASE 2. k > 1. Take the leftmost minimal subloop a; — -+ — aj(= ®;)
of ap -d‘l* '(12* an. The path o9 id—lv _‘fz_, a; is non-shrinking and does

not contain a loop, so by Lemma 4.2, it is the shortest path from o to ;.
Note that a; = ag 7 for some 4. Then, by Lemma 4.1, dy...d; = (7)T, 1)
(a,-)T = (010)]L dy ...d;. Hence by Lemma 4.3,

Tr(ao) dy...di = dipy...d; (2)

. d.
Moreover, ag 4, 4 a; (= o) 24 -d—"> oy, is a loop with no more than
k — 1 subloops, so by the induction hypothesis,

TH(ao) = dy ... didjs1...dn (3)
From (2) and (3), we get

I‘"(ao)f=>dl...didi+1...djdj+1...dn
by (= o). .

Corollary 4.5 If
dy dn

ao_)..._.)an

s a path and ag = a, = X | for some X, then

X =4d...dy.
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- d
PROOF. Every path that starts from X | must be non-shrinking, so ap =L
. —%-» an is a loop. ]
Lemma 4.6 If T T, then Mr E=T.

PROOF. Assume that '+ p;...p, = d; ...d,n and there is a path
P1 Pn

Qg — - — oy

Given the construction of My, it suffices to show

T (o) =di... dn (4)
for, then, there is a loop
dm—
an —qi»andl —d—2+ mol apdy...dm-1 fd'—"»an.

Since'F py...pn = di...dn, by assumption, I' (ao)Tpl...pn =dy...dnby
Left Monotonicity. Note that, by Lemma 4.1, (ao)T is the label of the shortest

path from A to ag, and so (ao)]L p1...Pn is the label of a path from A to an,.
Thus, to prove (4), it suffices to show that if there is a path

bo(=4) L g (5)
and

I'kep...og=dy...dp (6)
then

@) =di... dn (7)

We prove this by induction on the number & of loops in (5).
CASE 1. k = 0. Then, by Lemma 4.2, (5) is the shortest path from A to §;
and, by Lemma 4.1, ¢;...¢ = (B;)T. So (6) is (7).
CASE 2. k > 1. Take a leftmost loop
¢ ¢
B =5 By (= By)
in (5). Since by Lemma 4.2 Gy S N B; must be the shortest path from
Bo(=A)to Bi,cr...¢, = (B,-)t by Lemma 4.1. By Lemma 4.4, then,
I‘I—cl...ci=>c,-+1...cj (8)
From (6) and (8),
I‘I—cl...cicjﬂ...cl =d...dn
by Left Cut. But

fo(=A4) L Sp(=p) T8 g

is a path with no more than k£ — 1 loops, so the induction hypothesis applies to
give (7). n
Theorem 1 Mr =7 if and only if T+ T.
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PROOF. The if direction is Lemma 4.6, and the only if direction follows from

Corollary 4.5, noting that py ...p, |€ range([pi]mp o - o [pn]arr), and the fact
that every path starting from A must be non-shrinking (to take care of the case
of empty antecedent). [ |

5 Filtration

That My has the finite model property can be shown by the method of filtra-
tion.

Let a finite set I' of My sequents and an My sequent p;...py = dy...dL
be given, and suppose that M =T and M (£ p;...py = dy...dL. Below, we
shall describe a method of constructing a finite model My such that My T
and My #pl...pN $d1...d[,.

In this section, we write

g Y
to mean (z,y) € [¢]ar. Let P be the (finite) set of atomic formulas that appear
inTU{p...on=>d;...dL}.

Definition Let w € |M| be such that w € range([pi]ar o --- o [pn]) and
w & fix([di]ar o - -0 [dr]m)- For each natural number n, define an equivalence
relation =, on |M| by induction as follows. For every z,y € |M|,
z=y ff r=y=worz#w,y#w
T=pn1y ff (i) z=,yand
(ii) for all z € |M| and all ¢ € P,
if z -1, z, then for some v € | M|,
v -1 yand z =, v
and vice versa.

Lemma 5.1 For each n, =, has only finitely many equivalence classes.

PROOF. Induction on n. The basis n = 0 is obvious. For the induction step,
assume that =, has f(n) equivalence classes. The clause (ii) of the definition

of =41 can be rewritten as

{ald=) lgePze M,z Do} = {(gld=) g€ Pz € M|,z Loy},

([zl=, = {v € |M| | z =, v}.) This makes it clear that =,,; has at most
f(n) - 2c2rd(P)-f(n) equivalence classes. (card(A) is the cardinality of A.) |
Lemma 5.2 Let k <n. If

_ C1 _ C2 Ck _
To=n Yo — T1 =n Y1 — - — Tk =n Yk,

then there are 2, ...,z such that
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PROOF. Induction on k. The case k = 0 is obvious. Let ¥ > 1 and suppose

— C1 — C2 Ck —
To=nY — X1 =p Y1 — - — Tk =n Yk-

By induction hypothesis, there are 21, ..., 2 such that

= €2 Ck —
T1 =n—k+1 21 = — Zk =n Yk-

Sincen —k+12>1 and yg 4, x1 and r7 =,_k41 21, there must be a zp such

that zg 4, 21 and Yo =n—k 20- Since x¢ =, Yo, we have rg =, 20.
Corollary 5.3 Let k <n. If

— €1 _ C2 Ck —
W=T0=nY —T1=n¥Y1 — " — Tk =n Yk =W,
then there are zg,...,zr such that
C1 C2 Ck
wW=120 — 2] —> - — 2 = W.

Definition For each n, define a model M /=, as follows:
- |M/=,| ={]z]=, | z € |M]}.
= [dlmy=. = {{[z]=.. W]=a) | (2,9) € [g]m }-

By Lemma 5.1, M/=,, is a finite model for each n.
Let K be the maximal length of antecedents in I

Lemma 54 If n> K, M/=, ET.

PROOF. Let c;...ck = q1...¢; € T, and let [yx]=, € range([c1]apr/=, 0 ---

lek]ay=,)- Then there must be yo,z1,¥1,---,Tk—1,Yk-1, Tk such that

C1 _ C2 Ck —
Yo * X1 =n Y1 P oo > Tk =n Yk-

k < K <n. Then, by Lemma 5.2, there are zg, ..., zx such that

C1 Ck —
20 — 1 — 2k =n Yk

Since M =T, there must be vy, ..., v; such that

_ q1 q; _
g =V — + -+ — VU = Zg.

It follows that [yi]=, € fix([q1]ar/=, © -~ © [¢5]m/=.)-
Lemma 5.5 If n 2 L, [w]=, € fix([di]s)=, o+ o [de]my=,)-

PROOF. Immediate from Corollary 5.3 and the assumption about w.

o

Theorem 2 If n > max(K,L), then M/=, is a finite model such that

M/=, =T and M/=,Ep1...p8n = dy ... dL.

PROOF. By Lemmas 5.1, 5.4, 5.5, and the fact that [w]=, € range([p1]r/=, ©

oo [pnlmy=,)-
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6 Reduction to Propositional Dynamic Logic with
Intersection

Decidability of My can also be shown by a translation into propositional dy-
namic logic with intersection, which is known to be decidable [2]. In what
follows, I assume familiarity with propositional dynamic logic.

Definition Let tr(py...pn = di...dm) = [p1] - [pr]{(d1;- - ;dm) N (T))T.
Let tr({Z1,...,Zk}) = tr(Z1) A -+ - A tr(Zk).

Lemma 6.1 Let T be an My sequent. M | =T in mized inference if and only
if M = tr(Z) in propositional dynamic logic with intersection.

Lemma 6.2 Let [’ be a finite set of My sequents, T be an My sequent, and
q1,---,q be the atomic formulas occurring in T' U {Z}. Then T = T in mized
inference if and only if = [(q1U---Uq)*|tr(T") — tr(Z) in propositional dynamic
logic with intersection.

PROOF. The if direction is clear. For the only if direction, assume that M, w =
[(qU---Uq)*]tr(T) and M, w = —tr(Z). Let Mg be the submodel of M whose
states are those that can be reached from w via (g1 U---Ugq;)*. Then My = tr(T)
and My, w = —tr(Z). This means that My =T and My - Z,so I' = 7. ]

7 Functional Models

Let us call a model M = (|M|, Ry, R1, Rz, . ..) where each R; is a partial function
a functional model. It is interesting to consider mixed inference with respect
to the class of functional models, because of the close connection with update
semantics of Veltman (8].3

In the simple case where there is no connective and the succedent of the
sequent is a single formula, addition of the following rule to M results in a
calculus complete with respect to functional models. Let us call the resulting
calculus U.
X=c XY=d

XcY=d

In the multiple succedent case (which is equivalent to having composition),
more rules become necessary:

X=Y XZ=W

Cautious Monotonicity

Cautious Monotonicity

XYZ=W
(= oY) XY=>27 X=>YZW
X=>YW
Rotation i:}_Y_Z
XY=>ZY

3A difference between update semantics and mixed inference with respect to functional mod-
els is that Reflexivity P = P holds in the former, but not in the latter.
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The calculus which results from adding the above three rules to My is called
Up. Up can be shown to be complete with respect to functional models. I
state the necessary results without proof.

Definition For any finite set T' of multiple-succedent sequents, M;J H is the
model such that

- |Mly“| = { X | X is a finite sequence of atomic formulas and
‘13X1X2X3(X =X1 X0 XgAX9#AAT l"U” X = .XQ) }

- Ipl,u. = {{XX PV | X, X p e IMPH| } U
T{(XYX) | XY e|MPHTHFX =>Yp).

Lemma 7.1 In Mlp“, the interpretation of each atomic formula is a total
function.

Below, I write

di...dn

x Hsfny

to mean (X,Y) € [[d1]]M[p,, 0---0 ﬂdn]Mlpp-

Lemma 7.2 If A Y X, then TU{X = Y} Fy, W = Y for any Y.

Lemma 7.3 If X —Y;» X, then Thy, X =Y.
Lemma 7.4 If MP* = X =Y, then Thy, X = Y.

Lemma 7.5 If A Y X, then TU{W = Y} by, X = Y for any Y.

Lemma 7.6 If T Fy, X = Y and X € [MP¥|, then X 2 X.
Lemma 7.7 If T ky, X = Y, then MP* = X = Y.

Theorem 3 T'ty, X = Y if and only if MP* =X =Y.

Theorem 3 shows that Uy is complete with respect to models where the
interpretation of each atomic formula is a total function.

The calculus U for the single succedent case is decidable. As in the case of
M, this is easy to see by translation into first-order logic, noting that the partial
functionality of the relevant relations can be expressed by universal first-order
sentences. On the other hand, I have been unable to prove the decidability
of Up. The method of filtration used in Section 5 does not necessarily lead to

functional models, so proof of the finite model property would require additional
work.

“Note also that the problem of whether or not a formula of propositional dynamic logic with
intersection has a deterministic model is £}-hard [4].
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8 Other Styles of Inference

Let us consider the styles of inference determined by the following stipulations:

(a) MEP,...P,=Cifand only if [Pi]ar o o [Pu]m C [Clm-
(b) M  P,...P, = C if and only if range([Pi]a o --- o [P]m) C
dom([C]m).
(c) ME P,...P, = Cifand only if dom([Pi]aro- - -o[Pr]am) C dom([C}ar).
The first notion (a), called dynamic inference in (1], is axiomatized as fol-

lows. The first calculus L is for the single succedent (connective-free) case, and
the second calculus Ly is for the multiple succedent case.

Calculus L.

— Axiom: Reflexivity p=p
— Rule of Inference:
X=c¢c YecZ=d

Cut YXZod

Calculus L.

— Axiom: Reflexivity X = X
— Rule of Inference:
X=Y ZYW=V
ZXW=V

One can extract from Ly the calculus L(e) for dynamic inference with compo-
sition. L and L(e) are fragments of the Lambek calculus, and the completeness
of L and L(e) (or Lyu) is a consequence of the known strong completeness of
the Lambek calculus with respect to relational semantics [7].

The problem ‘T Ff, X = d?7’ is decidable in cubic time, while the prob-
lem ‘T kg, X = Y7 (or, equivalently, ‘T k) X = D?’) is undecidable.
This follows from the observation that the first problem is equivalent to the
universal membership problem for context-free grammars, and the second to
that for semi-Thue systems (Type 0 grammars). That is, if we reverse the
arrows of sequents, single-succedent sequents behave just like rules of context-
free grammars, and multiple-succedent sequents behave just like unrestricted
rewriting rules. Reflexivity and Cut have the effect of taking the reflexive tran-
sitive closure of one-step rewriting, and derivations in the two calculi precisely
correspond to the derivations in the respective types of grammars. The un-
" decidability of Ly (or, equivalently, of L(e)) contrasts with the situation with
mixed inference and the other two styles of inference considered below.

The remaining two styles of inference, (b) and (c), are axiomatized by the
following calculi Gu and Ey, respectively (in the multiple succedent case).?

Cut

5The style of inference given by (b) is related to dynamic predicate logic of Groenendijk and
Stokhof (3].
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Calculus Gygu.

— Axioms: Gp has no axioms.
— Rules of Inference:

- X=Y
Left Monotonicity P XY
. . .. X=Yd
Right Anti-Monotonicity S
XY=>7Z X=Y
(= *) X=>YZ

Calculus Epu.

— Axiom: Reflexivity X = X

— Rules of Inference:
X=Y

Right Monotonicity m
X=Y ZY =W
ZX=>W

The completeness of Gp and of Ex can be shown by a canonical model con-
struction. Here, I only note the definitions of canonical models.

Right Cut

Definition For any finite set ' of multiple-succedent sequents, Mlg # is the
model such that

- |M§"‘| consists of all finite sequences X of atomic formulas and all ex-
pressions of the form X | Y where X and Y are finite sequences of atomic
formulas.

— For a,8 € IMFG“I, (a, B) € [[p]]MGP if and only if one of the following
holds: i

(i) a= X and 3 = X p for some X.
(ii) =X and 8 = X p| for some X.
(i) a=X|Y,8=X|Yp,and T g, X = Y p for some X, Y.

Definition For any finite set I' of multiple-succedent sequents, MI]«B " is the
model such that

- IMII\3 #| consists of all expressions of the form X | Y where X and Y are
finite sequences of atomic formulas.

~ For o, 8 € [ME#|, (0, 8) € [r], k. ifand only if a = X | Y, =X | Y p,
and I' g, X = Y p for some X§, Y.

The finite model property of Gu can be proved in exactly the same way
as for My, using the same definition of =,. As for Eu, a minor modification
(using the ‘forward’ version of =,,) works. Also, the decidability of Gy and Ep



15

can be shown by reduction to propositional dynamic logic (this time using only
regular program constructions).
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