

Institute for Logic, Language and Computation

COMPLETENESS AND DECIDABILITY OF THE MIXED STYLE OF INFERENCE WITH COMPOSITION

Makoto Kanazawa

ILLC Prepublication Series for Logic, Semantics and Philosophy of Language LP-93-09

University of Amsterdam

The ILLC Prepublication Series

```
The ILC Prepublication Series

1990 Logic, Semantics and Philosophy of Language
LP-90-01 Jaap van der Does
LP-90-02 Jeroen Groenendijk, Martin Stokhof
LP-90-03 Renate Bartsch
LP-90-04 Aarne Ranta
LP-90-05 Patrick Blackburn
LP-90-06 Gennaro Chierchia
LP-90-07 Gennaro Chierchia
LP-90-08 Herman Hendriks
LP-90-09 Paul Dekker
LP-90-10 Theo M.V. Janssen
LP-90-11 Johan van Benthem
LP-90-12 Serge Lapierre
LP-90-13 Zhisheng Huang
LP-90-14 Jeroen Groenendijk, Martin Stokhof
LP-90-15 Maarten de Rijke
LP-90-16 Zhisheng Huang, Karen Kwast
LP-90-17 Paul Dekker
MIL-90-01 Harold Schellinx

A Generalized Quantifier Logic for Naked Infinitives
Dynamica Montague Grammar
Concept Formation and Concept Composition
Intuitionistic Categorial Grammar
Nominal Tense Logic
The Variablity of Impersonal Subjects
Anaphora and Dynamic Logic
Flexible Montague Grammar
The Scope of Negation in Discourse, towards a Flexib
Models for Discourse Markers
General Dynamics
A Functional Partial Semantics for Intensional Logic
Logics for Belief Dependence
Two Theories of Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynami
                                                                                                                                                                                                                                                                                                                       Intuitionistic Categorial Grammar
Nominal Tense Logic
The Variablity of Impersonal Subjects
Anaphora and Dynamic Logic
Flexible Montague Grammar
The Scope of Negation in Discourse, towards a Flexible Dynamic Montague grammar
Models for Discourse Markers
General Dynamics
A Functional Partial Semantics for Intensional Logic
Logics for Belief Dependence
Two Theories of Dynamic Semantics
The Modal Logic of Inequality
Awareness, Negation and Logical Omniscience
Existential Disclosure, Implicit Arguments in Dynamic Semantics
Mathematical Logic and Foundations
Isomorphisms and Non-Isomorphisms of Graph Models
A Semantical Proof of De Jongh's Theorem
             ML-90-01 Harold Schellinx
           ML-90-01 Harold Schellinx
ML-90-02 Jaap van Oosten
ML-90-03 Yde Venema
ML-90-04 Maarten de Rijke
ML-90-05 Domenico Zambella
ML-90-06 Jaap van Oosten
                                                                                                                                                                                                                                                                                                                              A Semantical Proof of De Jongh's Theorem Relational Games
                                                                                                                                                                                                                                                                                                                              Neithional Games
Unary Interpretability Logic
Sequences with Simple Initial Segments
Extension of Lifschitz' Realizability to Higher Order Arithmetic, and a Solution to a
        ML-90-06 Jaap van Oosten

ML-90-07 Maarten de Rijke
ML-90-08 Harold Schellinx
ML-90-09 Dick de Jongh, Duccio Pianigiani
ML-90-10 Michiel van Lambalgen
ML-90-11 Paul C. Gilmore
CT-90-01 John Tromp, Peter van Emde Boas
CT-90-02 Sieger van Denneheuvel, Gerard R. Renardel de Lavalette
CT-90-03 Ricard Gavaldà, Leen Torenvliet, Osamu Watanabe, José L. Balcázar Generalized Kolmogorov Complexity in Relativized
Separations
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet

ML-90-10 Marten de Rijke
A Note on the Interpretability Logic of Finitely Axiomatized Theories
Some Syntactical Observations on Linear Logic
Solution of a Problem of David Guaspari
Randomness in Set Theory
The Consistency of an Extended NaDSet
Computation and Complexity Theory
Associative Storage Modification Machines
CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet
Bounded Reductions
          CT-90-04 Harry Buhrman, Edith Spaan, Leen Torenvliet Bounded Reductions
CT-90-05 Sieger van Denneheuvel, Karen Kwasst Efficient Normalization of Database and Constraint Expressions
CT-90-06 Michiel Smid, Peter van Emde Boas Dynamic Data Structures on Multiple Storage Media, a Tutorial Greatest Fixed Points of Logic Programs
CT-90-08 Fred de Geus, Ernest Rotterdam, Sieger van Denneheuvel, Peter van Emde Boas Physiological Modelling using RL
CT-90-09 Roel de Vrijer Unique Normal Forms for Combinatory Logic with Parallel Conditional, a case study in conditional rewriting
X-90-01 A.S. Troelstra Remarks on Intuitionism and the Philosophy of Mathematics, Revised Version Some Chapters on Interpretability Logic
           Other Prepublications
X-90-01 A.S. Troelstra
X-90-02 Maarten de Rijke
X-90-03 L.D. Beklemishev
                                                                                                                                                                                                                                                                                                                             Remarks on Intuitionism and the Philosophy of Mathematics, Revised Versic Some Chapters on Interpretability Logic
On the Complexity of Arithmetical Interpretations of Modal Formulae Annual Report 1989
Derived Sets in Euclidean Spaces and Modal Logic
Using the Universal Modality: Gains and Questions
The Lindenbaum Fixed Point Algebra is Undecidable
Provability Logics for Natural Turing Progressions of Arithmetical Theories
On Rosser's Provability Predicate
die Boas An Overview of the Rule Language RL/1
           A-90-05 L.D. Beklemislev
X-90-05 Valentin Shehtman
X-90-06 Valentin Goranko, Solomon Passy
X-90-07 V.Yu. Shavrukov
X-90-09 V.Yu. Shavrukov
X-90-09 V.Yu. Shavrukov
          X-90-10 Sieger van Denneheuvel, Peter van Emde Boas
X-90-11 Alessandra Carbone Provable
X-90-12 Maarten de Rijke Bi-Unar
X-90-13 K.N. Ignatiev Dzhapar
                                                                                                                                                                                                                                                                                                                             On Rosset's Flovability Fredheid
de Boas An Overview of the Rule Language RL/1
Provable Fixed points in I\Delta_0+\Omega_1, revised version
Bi-Unary Interpretability Logic
Dzhaparidze's Polymodal Logic: Arithmetical Completeness, Fixed Point Property, Craig's
        X-90-14 L.A. Chagrova
X-90-15 A.S. Troelstra
Undecidable Problems in Correspondence Theory
Lectures on Linear Logic

1991 LP-91-01 Logic, Semantics and Philosophy of Language Wiebe van der Hoek, Maarten de Rijke Generalized Quantifiers and Modal Logic
LP-91-02 Frank Veltman
LP-91-03 Willem Groeneveld
LP-91-04 Makoto Kanazawa
LP-91-05 Zhisheng Huang, Peter van Emde Boas
LP-91-05 Zhisheng Huang, Peter van Emde Boas
LP-91-06 Verkuyl, Jaap van der Does
LP-91-07 Henk Verkuyl, Jaap van der Does
LP-91-08 Víctor Sánchez Valencia
LP-91-09 Arthur Nieuwendijk
LP-91-10 Johan van Benthem

Propérty
Undecidable Problems in Correspondence Theory
Lectures on Linear Logic
Defaults in Update Semantics
Dynamic Semantics and Circular Propositions
The Lambek Calculus enriched with Additional Connectives
LP-91-05 Zhisheng Huang, Peter van Emde Boas
The Schoenmakers Paradox: Its Solution in a Belief Dependence Framework
LP-91-07 Henk Verkuyl, Jaap van der Does
LP-91-08 Víctor Sánchez Valencia
LP-91-08 Víctor Sánchez Valencia
LP-91-09 Arthur Nieuwendijk
LP-91-10 Johan van Benthem

Propérty
Undecidable Problems in Correspondence Theory
Lectures on Linear Logic
Lectures on Linear Logic
Defaults in Update Semantics
The Lambek Calculus enriched with Additional Connectives
Lectures on Linear Logic
The Lambek Calculus enriched with Additional Connectives
The Schoenmakers Paradox: Its Solution in a Belief Dependence Framework
LP-91-07 Henk Verkuyl, Jaap van der Does
Categorial Grammar and Natural Reasoning
Semantics and Comparative Logic
Logic and the Flow of Information
                                                                                                                                                                                                                                                                                                                               Property
Undecidable Problems in Correspondence Theory
LF-91-10 Johan van Benthem

ML-91-01 Yde Venema
ML-91-02 Alessandro Berarducci, Rineke Verbrugge
On the Metamathematics of Weak Theories
On the Proofs of Arithmetical Completeness for Interpretability Logic
ML-91-03 A.S. Troelsra
ML-91-04 Raymond Hoofman, Harold Schellinx Collapsing Graph Models by Preorders
ML-91-05 A.S. Troelsra
ML-91-06 Inge Bethke
ML-91-07 Yde Venema
ML-91-08 Inge Bethke
ML-91-08 Inge Bethke
ML-91-09 V.Yu. Shavrukov
ML-91-10 Manten de Rijke, Yde Venema
ML-91-11 Rineke Verbrugge
ML-91-12 Johan van Benthem
CT-91-01 Ming Li, Paul M.B. Vitányi
CT-91-02 Ming Li, John Tromp, Paul M.B. Vitányi
CT-91-03 Ming Li, Paul M.B. Vitányi
CT-91-04 Kees Doets
CT-91-06 Edith Spaan
CT-91-07 Karen L. Kwast
CT-91-08 Kees Doets
CT-91-09 Ming Li, Paul M.B. Vitányi
CT-91-11 Lane A. Hernachandra, Edith Spaan
CT-91-12 Krzysztof R. Apt, Dino Pedreschi
CL-91-01 J.C. Scholtes
CT-91-03 Hub Prüst, Remko Scha, Martin van den Berg
A Formal Discourse Grammar tackling Verb Priase Anaphora
X-91-03 V. Yu. Shavrukov
X-91-04 K.N. Ignatiev

Logics and the Flow of Intormations

Mathematical Logic and Foundations
On the Protofs of Weak Theories
On the Hetamathematics of Weak Theories
On the Protofs of Arithmetical Completeness for Interpretability Logic
On the Protofs of Arithmetical Completeness for Interpretability Logic
On the Protofs of Arithmetical Completeness for Interpretability Logic
On the Protofs of Arithmetical Completeness for Interpretability Logic
On the Protofs of Weak Theories for Weat Theories for Pa and ZF
Sallywist Theorem for Boolean Algebras of PA and ZF
Sallqwist Theorem for Boolean Algebras with Operators
Feasible Interpretability
Modal Frame Classes, revisited
Computation and Complexity Theory
Kolmogorov Complexity Arguments in Combinatorics
Cropical Reduction and Complexity Theory
Kolmogorov Complexity Arguments in Combinatorial Sets
Cropical Reduction and Complexity Theory
Kolmogorov Complexity Arguments of 
        X-91-03 V. Yu. Shavrukov
X-91-04 K.N. Ignatiev
X-91-05 Johan van Benthem
                                                                                                                                                                                                                                                                                                                             Subalgebras of Diagonalizable Algebras of Theories containing Arithmetic Partial Conservativity and Modal Logics
Temporal Logic
```


Institute for Logic, Language and Computation Plantage Muidergracht 24 1018TV Amsterdam

Telephone 020-525.6051, Fax: 020-525.5101

COMPLETENESS AND DECIDABILITY OF THE MIXED STYLE OF INFERENCE WITH COMPOSITION

Makoto Kanazawa Department of Linguistics Stanford University

ILLC Prepublications for Logic, Semantics and Philosophy of Language ISSN 0928-3307

Coordinating editor: Dick de Jongh

Completeness and Decidability of the Mixed Style of Inference with Composition

Makoto Kanazawa*
Department of Linguistics
Stanford University
Stanford, CA 94305-2150, USA
kanazawa@csli.stanford.edu

Abstract

I present a complete calculus for mixed inference [1] with composition and prove that it has the finite model property and is therefore decidable. I also present a variant of the calculus complete with respect to functional models, and mention the completeness and (un)decidability of other styles of inference involving composition, including dynamic inference [1].

A recent trend in one corner of logic is to regard the meaning of a sentence as a relation on information states. As discussed in [1], this 'dynamic' perspective gives rise to a number of new conceptions of inference, allowing different answers to the question of what it means for conclusion C to follow from premises P_1, \ldots, P_n . One such dynamic notion of inference is what van Benthem [1] calls mixed inference, which is of particular interest for its connection to Veltman's [8] update semantics. In this paper, we investigate mixed inference with respect to such standard logical questions as axiomatizability and decidability. Other dynamic styles of inference will be discussed briefly in the last section of the paper.

1 Van Benthem's Mixed Inference

1.1 Calculus M

In [1], van Benthem introduces the following calculus M, to capture the general properties of the style of inference that he calls mixed inference. M is a calculus for deriving a sequent from a set of sequents. In M, a sequent is an expression of the form $X \Rightarrow d$, where X is a finite sequence of atomic formulas, and d is an atomic formula. In what follows, p, q, c, d (with or without subscripts) range over atomic formulas, and X, Y, Z, W, V (with or without subscripts) range over finite sequences of formulas.

Calculus M.

- Axioms: M has no axioms.

^{*}I would like to thank Johan van Benthem for his guidance.

- Rules of Inference: M has two rules of inference:1

Left Monotonicity
$$X \Rightarrow d \over X \Rightarrow d$$

Left Cut $X \Rightarrow c \quad X c Y \Rightarrow d \over X Y \Rightarrow d$

We write $\Gamma \vdash_{\mathbf{M}} \mathcal{I}$ if Γ is a finite set of sequents and \mathcal{I} is a sequent derivable from sequents in Γ using the two rules of inference of \mathbf{M} .

1.2 Semantics

The intended semantics for M is as follows. A model for M is a structure $M = \langle |M|, R_0, R_1, R_2, \ldots \rangle$, where |M| is a non-empty set and each R_i is a binary relation on |M|.

- The interpretation $[\![q_i]\!]_M$ of the *i*-th atomic formula q_i is R_i .
- $-M \models p_1 \dots p_n \Rightarrow d \text{ if and only if } \operatorname{range}(\llbracket p_1 \rrbracket_M \circ \dots \circ \llbracket p_n \rrbracket_M) \subseteq \operatorname{fix}(\llbracket d \rrbracket_M),$ where $\operatorname{fix}(R) = \{ x \mid \langle x, x \rangle \in R \}.$

We write $M \models \Gamma$ if $M \models \mathcal{I}$ for all \mathcal{I} in Γ .

 $-\Gamma \models \mathcal{I}$ iff for all $M, M \models \Gamma$ implies $M \models \mathcal{I}$.

M is complete with respect to the intended semantics in the sense that $\Gamma \vdash_{\mathbf{M}} \mathcal{I}$ if and only if $\Gamma \models \mathcal{I}$. This is proved in [1], by showing a method of constructing for any finite set Γ of sequents a canonical model M_{Γ} such that for every sequent \mathcal{I} , $M_{\Gamma} \models \mathcal{I}$ if and only if $\Gamma \vdash_{\mathbf{M}} \mathcal{I}$.

1.3 Decidability

It is easy to see that **M** has the finite model property; i.e., **M** is complete with respect to the class of finite models. This is so because the definition of $M \models \mathcal{I}$ translates into a universal first-order sentence without function symbols. Suppose $M \models \Gamma$ and $M \not\models p_1 \dots p_n \Rightarrow d$, so that there are x_0, \dots, x_n such that $\langle x_0, x_1 \rangle \in \llbracket p_1 \rrbracket_M, \dots, \langle x_{n-1}, x_n \rangle \in \llbracket p_n \rrbracket_M$ and $\langle x_n, x_n \rangle \not\in \llbracket d \rrbracket_M$. Then the finite submodel M_0 of M such that $|M_0| = \{x_0, \dots, x_n\}$ has $M_0 \models \Gamma$ and $M_0 \not\models p_1 \dots p_n \Rightarrow d$. That **M** has the finite model property implies that it is decidable.

Grigori Mints (p.c.) has shown the decidability of M using an equivalent natural deduction type calculus NDM, for which he proves a normalization theorem. (See my notes [5, 6].)

Left Cut
$$X \Rightarrow c \quad Y \ X \ c \ Z \Rightarrow d$$

 $Y \ X \ Z \Rightarrow d$

In the presence of Left Monotonicity, the two versions of Left Cut are equivalent.

¹In [1], the following version of Left Cut was used:

2 Adding Connectives

The language of M has no connective, so M does not deal with complex formulas. It would be interesting to see how M can be extended to languages with various connectives. Here we consider two conjunctions, \cap and \bullet , which are interpreted as intersection and composition, respectively. Let M be a model in the above sense. The interpretation of a complex formula is given as follows. (Below, P, C, D (with or without subscripts) range over (possibly complex) formulas.)

$$- [D_1 \cap D_2]_M = [D_1]_M \cap [D_2]_M.$$
$$- [D_1 \bullet D_2]_M = [D_1]_M \circ [D_2]_M.$$

A sequent is now an expression of the form $X \Rightarrow D$, where X is a finite sequence of (possibly complex) formulas, and D is a (possibly complex) formula. The definition of truth and semantic consequence remains the same, except that we are now dealing with complex formulas as well as atomic ones.

- $-M \models P_1 \dots P_n \Rightarrow D \text{ if and only if } \operatorname{range}(\llbracket P_1 \rrbracket_M \circ \dots \circ \llbracket P_n \rrbracket_M) \subseteq \operatorname{fix}(\llbracket D \rrbracket_M).$ $-\Gamma \models \mathcal{I}$ iff for all $M, M \models \Gamma$ implies $M \models \mathcal{I}$.
- The problem now is to find a complete set of rules governing the newly

introduced connectives.

2.1Intersection

As usual, intersection is the easier one to deal with. It is quite straightforward to extend M to the language with \cap as its only connective. (Below, P[C]denotes a formula with a specified subformula occurrence C.)

Calculus $M(\cap)$.

- Axioms: $\mathbf{M}(\cap)$ has no axioms.
- Rules of Inference: $\mathbf{M}(\cap)$ has the following rules of inference:

$$(\text{Perm.} \cap \Rightarrow) \qquad \frac{X P[(C_1 \cap C_2)] Y \Rightarrow D}{X P[(C_2 \cap C_1)] Y \Rightarrow D}$$

$$(\text{Contr.} \cap \Rightarrow) \qquad \frac{X P[(C \cap C)] Y \Rightarrow D}{X P[C] Y \Rightarrow D}$$

The completeness of $\mathbf{M}(\cap)$ can be shown by a minor modification of van Benthem's [1] construction. The finite model property of $\mathbf{M}(\cap)$ is also obvious.

2.2 Composition

Let us now consider the language with • as its only connective. Although it is not immediately obvious, the following set of rules turns out to constitute a complete calculus for this language.

Calculus M(•).

- Axioms: $\mathbf{M}(\bullet)$ has no axioms.
- Rules of Inference: M(•) has the following rules of inference:

Moreover, $\mathbf{M}(\bullet)$ also enjoys the finite model property, and is therefore decidable. This requires a slightly more elaborate argument than before.²

We prove the completeness and finite model property of $\mathbf{M}(\bullet)$ in the following three sections. Here, let us note

Lemma 2.1 The following rule is derivable in $\mathbf{M}(\bullet)$:

$$(\Rightarrow \bullet_3) \quad \frac{X \ D_1 \Rightarrow D_2 \quad X \Rightarrow D_1}{X \Rightarrow D_1 \bullet D_2}$$

²That M(•) is decidable is perhaps mildly surprising, as it is easy to show that the corresponding calculus for *dynamic inference* [1] with composition is undecidable. See Section 8.

Proof.

$$\frac{X \Rightarrow D_1 \quad X D_1 \Rightarrow D_2}{X \Rightarrow D_1 \bullet D_2} \text{ Left Cut}$$

$$\frac{X \Rightarrow D_1 \bullet D_2}{X \Rightarrow D_1 \bullet D_2} (\Rightarrow \bullet_1)$$

Remark $(\Rightarrow \bullet_1)$ and $(\Rightarrow \bullet_3)$ can be thought of as special cases of $(\Rightarrow \bullet_2)$, where D_1 and D_3 are 'empty', respectively.

3 Calculus $M\mu$

In proving the completeness and finite model property of $\mathbf{M}(\bullet)$, it is convenient to work with an equivalent calculus $\mathbf{M}\mu$ with multiple succedents, whose language has no connective. An $\mathbf{M}\mu$ sequent is of the form $X \Rightarrow Y$, where X is a finite sequence of atomic formulas and Y is a non-empty finite sequence of atomic formulas.

Calculus $M\mu$.

- Axioms: $\mathbf{M}\mu$ has no axioms.
- Rules of Inference: $\mathbf{M}\mu$ has three rules of inference:

Left Monotonicity
$$\frac{X\Rightarrow Y}{p\:X\Rightarrow Y}$$
 Left Cut
$$\frac{X\Rightarrow Y\quad X\:Y\:Z\Rightarrow W}{X\:Z\Rightarrow W}$$

$$(\Rightarrow \bullet) \qquad \frac{X\:Y\Rightarrow Z\quad X\Rightarrow Y\:W}{X\Rightarrow Y\:Z\:W}$$

The definition of truth for $M\mu$ sequents is as follows:

$$-M \models p_1 \dots p_n \Rightarrow d_1 \dots d_m \text{ if and only if } \operatorname{range}(\llbracket p_1 \rrbracket_M \circ \dots \circ \llbracket p_n \rrbracket_M) \subseteq \operatorname{fix}(\llbracket d_1 \rrbracket_M \circ \dots \circ \llbracket d_m \rrbracket_M).$$

If \mathcal{I} is an $\mathbf{M}(\bullet)$ sequent, let \mathcal{I}^{\sharp} be the $\mathbf{M}\mu$ sequent which results from erasing all occurrences of \bullet and parentheses in \mathcal{I} .

Lemma 3.1 $M \models \mathcal{I}$ if and only if $M \models \mathcal{I}^{\sharp}$.

Lemma 3.2
$$\Gamma \vdash_{\mathbf{M}(\bullet)} \mathcal{I}$$
 if and only if $\Gamma^{\sharp} \vdash_{\mathbf{M}\mu} \mathcal{I}^{\sharp}$, where $\Gamma^{\sharp} = \{ \mathcal{J}^{\sharp} \mid \mathcal{J} \in \Gamma \}$.

By the above lemmas, to show the completeness and finite model property of $\mathbf{M}(\bullet)$, it is enough to show the completeness and finite model property of $\mathbf{M}\mu$. In what follows, we write \vdash for $\vdash_{\mathbf{M}\mu}$.

4 Completeness

Given a finite set Γ of $\mathbf{M}\mu$ sequents, we construct a model M_{Γ} such that for all $\mathbf{M}\mu$ sequents \mathcal{I} , $M_{\Gamma} \models \mathcal{I}$ if and only if $\Gamma \vdash \mathcal{I}$.

Definition For any finite set Γ of $\mathbf{M}\mu$ sequents, M_{Γ} is the model such that

- $-|M_{\Gamma}|$ consists of all finite sequences X of atomic formulas and all expressions of the form $X \mid Y$, where X is a non-empty finite sequence of atomic formulas and Y is any finite sequence of atomic formulas.
- For $\alpha, \beta \in |M_{\Gamma}|, \langle \alpha, \beta \rangle \in [p]_{M_{\Gamma}}$ if and only if one of the following holds:
 - (i) $\beta = \alpha p$
 - (ii) $\alpha = X$ and $\beta = X p \mid \text{ for some } X$.
 - (iii) $\alpha = X Y$, $\beta = X$, and $\Gamma \vdash X \Rightarrow Y p$ for some X, Y.
 - (iv) $\alpha = X \mid Y \mid Z$, $\beta = X \mid Y$, and $\Gamma \vdash X \mid Y \Rightarrow Z \mid p$ for some X, Y, Z.

In what follows, α , β , γ (with or without subscripts) range over elements of $|M_{\Gamma}|$. We use Λ to denote the empty expression (which is in $|M_{\Gamma}|$). For every $\alpha \in |M_{\Gamma}|$, let $(\alpha)^{\dagger} = X Y$ if $\alpha = X \mid Y$, and $(\alpha)^{\dagger} = X$ if $\alpha = X$. Let $lh(\alpha)$ be the number of occurrences of atomic formulas in $(\alpha)^{\dagger}$.

Definition An expression of the form

$$\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$$

is called a path (from α_0 to α_n) (in M_{Γ}) if $\langle \alpha_0, \alpha_1 \rangle \in [d_1]_{M_{\Gamma}}, \ldots, \langle \alpha_{n-1}, \alpha_n \rangle \in [d_n]_{M_{\Gamma}}$. The label of this path is $d_1 \ldots d_n$.

The bar | in $X | Y \in |M_{\Gamma}|$ is there to indicate that there is no way to get back from X | Y to an initial segment X' of X. If $\alpha_0 (= X | Y) \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$ is a path, X | is an initial segment of each α_i $(0 \le i \le n)$.

Definition A path $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$ is called *non-shrinking* if $\operatorname{lh}(\alpha_0) \leq \operatorname{lh}(\alpha_i)$ for $0 \leq i \leq n$. A non-shrinking path $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$ is called a *loop* if $n \geq 1$ and $\alpha_0 = \alpha_n$. A *minimal loop* is a loop with no proper subloop (i.e., a loop such that no proper subpath of it is a loop).

If $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$ is a non-shrinking path, α_0 is an initial segment of each α_i $(0 \le i \le n)$. The following lemma is straightforward.

Lemma 4.1 Let α and β be elements of $|M_{\Gamma}|$ such that $\beta = \alpha \gamma$ for some $\gamma \in |M_{\Gamma}|$. Then there exists a unique shortest path from α to β , and the label of this path is $(\gamma)^{\dagger}$.

Lemma 4.2 A non-shrinking path from α to β that does not contain a loop is the shortest path from α to β .

PROOF. Let

$$\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$$
 (1)

be a non-shrinking path. (1) is the shortest path from α_0 to α_n if and only if $lh(\alpha_{i+1}) = lh(\alpha_i) + 1$ for $0 \le i < n$. Suppose that (1) is not the shortest path from α_0 to α_n , so that for some i such that $0 \le i < n$, $lh(\alpha_i) \ge lh(\alpha_{i+1})$. Pick

the smallest such i. Then (1) must begin with

$$\alpha_0 (= \alpha \gamma_0) \xrightarrow{d_1} \alpha_0 \gamma_1 \xrightarrow{d_2} \cdots \xrightarrow{d_i} \alpha_0 \gamma_i$$

where $(\gamma_k)^{\dagger} = d_1 \dots d_k$ $(0 \le k \le i)$, and α_{i+1} must be $\alpha_0 \gamma_j$ for some j such that $0 \le j \le i$. Thus,

$$\alpha_0 \gamma_j \xrightarrow{d_{j+1}} \cdots \xrightarrow{d_i} \alpha_0 \gamma_i \xrightarrow{d_{i+1}} \alpha_0 \gamma_j$$

is a loop, which is contained in (1).

Lemma 4.3 If $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$ is a minimal loop, then $\Gamma \vdash (\alpha_0)^{\dagger} \Rightarrow d_1 \ldots d_n$.

PROOF. The path $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_{n-1}} \alpha_{n-1}$ is non-shrinking and does not contain a loop, so by Lemma 4.2, it is the shortest path from α_0 to α_{n-1} . Then it must be that $\alpha_{n-1} = \alpha_0 d_1 \dots d_{n-1}$, and the lemma follows.

Lemma 4.4 If $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$ is a loop, then $\Gamma \vdash (\alpha_0)^{\dagger} \Rightarrow d_1 \ldots d_n$.

PROOF. By induction on the number k of proper subloops in $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$. Case 1. k = 0. By Lemma 4.3.

CASE 2. $k \geq 1$. Take the leftmost minimal subloop $\alpha_i \xrightarrow{d_{i+1}} \cdots \xrightarrow{d_j} \alpha_j (= \alpha_i)$ of $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$. The path $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_i} \alpha_i$ is non-shrinking and does not contain a loop, so by Lemma 4.2, it is the shortest path from α_0 to α_i . Note that $\alpha_i = \alpha_0 \gamma$ for some γ . Then, by Lemma 4.1, $d_1 \dots d_i = (\gamma)^{\dagger}$, so $(\alpha_i)^{\dagger} = (\alpha_0)^{\dagger} d_1 \dots d_i$. Hence by Lemma 4.3,

$$\Gamma \vdash (\alpha_0)^{\dagger} d_1 \dots d_i \Rightarrow d_{i+1} \dots d_i$$
 (2)

Moreover, $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_i} \alpha_i (= \alpha_j) \xrightarrow{d_{j+1}} \cdots \xrightarrow{d_n} \alpha_n$ is a loop with no more than k-1 subloops, so by the induction hypothesis,

$$\Gamma \vdash (\alpha_0)^{\dagger} \Rightarrow d_1 \dots d_i \ d_{j+1} \dots d_n$$
 (3)

From (2) and (3), we get

$$\Gamma \vdash (\alpha_0)^{\dagger} \Rightarrow d_1 \dots d_i \ d_{i+1} \dots d_i \ d_{i+1} \dots d_n$$

by $(\Rightarrow \bullet)$.

Corollary 4.5 If

$$\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$$

is a path and $\alpha_0 = \alpha_n = X \mid \text{for some } X, \text{ then}$

$$\Gamma \vdash X \Rightarrow d_1 \dots d_n$$
.

PROOF. Every path that starts from $X \mid$ must be non-shrinking, so $\alpha_0 \xrightarrow{d_1} \cdots \xrightarrow{d_n} \alpha_n$ is a loop.

Lemma 4.6 If $\Gamma \vdash \mathcal{I}$, then $M_{\Gamma} \models \mathcal{I}$.

PROOF. Assume that $\Gamma \vdash p_1 \dots p_n \Rightarrow d_1 \dots d_m$ and there is a path

$$\alpha_0 \xrightarrow{p_1} \cdots \xrightarrow{p_n} \alpha_n.$$

Given the construction of M_{Γ} , it suffices to show

$$\Gamma \vdash (\alpha_n)^{\dagger} \Rightarrow d_1 \dots d_m$$
 (4)

for, then, there is a loop

$$\alpha_n \xrightarrow{d_1} \alpha_n d_1 \xrightarrow{d_2} \cdots \xrightarrow{d_{m-1}} \alpha_n d_1 \dots d_{m-1} \xrightarrow{d_m} \alpha_n.$$

Since $\Gamma \vdash p_1 \dots p_n \Rightarrow d_1 \dots d_m$ by assumption, $\Gamma \vdash (\alpha_0)^{\dagger} p_1 \dots p_n \Rightarrow d_1 \dots d_m$ by Left Monotonicity. Note that, by Lemma 4.1, $(\alpha_0)^{\dagger}$ is the label of the shortest path from Λ to α_0 , and so $(\alpha_0)^{\dagger} p_1 \dots p_n$ is the label of a path from Λ to α_n . Thus, to prove (4), it suffices to show that if there is a path

$$\beta_0 (= \mathbf{\Lambda}) \xrightarrow{c_1} \cdots \xrightarrow{c_l} \beta_l \tag{5}$$

and

$$\Gamma \vdash c_1 \dots c_l \Rightarrow d_1 \dots d_m \tag{6}$$

then

$$\Gamma \vdash (\beta_l)^{\dagger} \Rightarrow d_1 \dots d_m$$
 (7)

We prove this by induction on the number k of loops in (5).

CASE 1. k=0. Then, by Lemma 4.2, (5) is the shortest path from Λ to β_l and, by Lemma 4.1, $c_1 \dots c_l = (\beta_l)^{\dagger}$. So (6) is (7).

Case 2. $k \ge 1$. Take a leftmost loop

$$\beta_i \xrightarrow{c_{i+1}} \cdots \xrightarrow{c_j} \beta_i (= \beta_i)$$

in (5). Since by Lemma 4.2 $\beta_0 \xrightarrow{c_1} \cdots \xrightarrow{c_i} \beta_i$ must be the shortest path from $\beta_0 (= \mathbf{\Lambda})$ to $\beta_i, c_1 \ldots c_i = (\beta_i)^{\dagger}$ by Lemma 4.1. By Lemma 4.4, then,

$$\Gamma \vdash c_1 \dots c_i \Rightarrow c_{i+1} \dots c_i$$
 (8)

From (6) and (8),

$$\Gamma \vdash c_1 \dots c_i \ c_{i+1} \dots c_l \Rightarrow d_1 \dots d_m$$

by Left Cut. But

$$\beta_0 (= \Lambda) \xrightarrow{c_1} \cdots \xrightarrow{c_i} \beta_i (= \beta_j) \xrightarrow{c_{j+1}} \cdots \xrightarrow{c_l} \beta_l$$

is a path with no more than k-1 loops, so the induction hypothesis applies to give (7).

Theorem 1 $M_{\Gamma} \models \mathcal{I}$ if and only if $\Gamma \vdash \mathcal{I}$.

PROOF. The *if* direction is Lemma 4.6, and the *only if* direction follows from Corollary 4.5, noting that $p_1 \ldots p_n \in \text{range}(\llbracket p_1 \rrbracket_{M_{\Gamma}} \circ \cdots \circ \llbracket p_n \rrbracket_{M_{\Gamma}})$, and the fact that every path starting from Λ must be non-shrinking (to take care of the case of empty antecedent).

5 Filtration

That $\mathbf{M}\mu$ has the finite model property can be shown by the method of filtration.

Let a finite set Γ of $\mathbf{M}\mu$ sequents and an $\mathbf{M}\mu$ sequent $p_1 \dots p_N \Rightarrow d_1 \dots d_L$ be given, and suppose that $M \models \Gamma$ and $M \not\models p_1 \dots p_N \Rightarrow d_1 \dots d_L$. Below, we shall describe a method of constructing a finite model M_0 such that $M_0 \models \Gamma$ and $M_0 \not\models p_1 \dots p_N \Rightarrow d_1 \dots d_L$.

In this section, we write

$$x \xrightarrow{q} y$$

to mean $\langle x, y \rangle \in \llbracket q \rrbracket_M$. Let \mathcal{P} be the (finite) set of atomic formulas that appear in $\Gamma \cup \{p_1 \dots p_N \Rightarrow d_1 \dots d_L\}$.

Definition Let $w \in |M|$ be such that $w \in \text{range}(\llbracket p_1 \rrbracket_M \circ \cdots \circ \llbracket p_N \rrbracket)$ and $w \notin \text{fix}(\llbracket d_1 \rrbracket_M \circ \cdots \circ \llbracket d_L \rrbracket_M)$. For each natural number n, define an equivalence relation \equiv_n on |M| by induction as follows. For every $x, y \in |M|$,

$$x\equiv_0 y$$
 iff $x=y=w$ or $x\neq w, y\neq w$ $x\equiv_{n+1} y$ iff (i) $x\equiv_n y$ and (ii) for all $z\in |M|$ and all $q\in \mathcal{P},$ if $z\xrightarrow{q} x$, then for some $v\in |M|,$ $v\xrightarrow{q} y$ and $z\equiv_n v$ and vice versa.

Lemma 5.1 For each $n, \equiv_n has$ only finitely many equivalence classes.

PROOF. Induction on n. The basis n=0 is obvious. For the induction step, assume that \equiv_n has f(n) equivalence classes. The clause (ii) of the definition of \equiv_{n+1} can be rewritten as

$$\{ \langle q, [z]_{\equiv_n} \rangle \mid q \in \mathcal{P}, z \in |M|, z \xrightarrow{q} x \} = \{ \langle q, [z]_{\equiv_n} \rangle \mid q \in \mathcal{P}, z \in |M|, z \xrightarrow{q} y \}.$$

$$([z]_{\equiv_n} = \{ v \in |M| \mid z \equiv_n v \}.) \text{ This makes it clear that } \equiv_{n+1} \text{ has at most } f(n) \cdot 2^{\operatorname{card}(\mathcal{P}) \cdot f(n)} \text{ equivalence classes. } (\operatorname{card}(A) \text{ is the cardinality of } A.)$$

Lemma 5.2 Let $k \leq n$. If

$$x_0 \equiv_n y_0 \xrightarrow{c_1} x_1 \equiv_n y_1 \xrightarrow{c_2} \cdots \xrightarrow{c_k} x_k \equiv_n y_k$$

then there are z_0, \ldots, z_k such that

$$x_0 \equiv_{n-k} z_0 \xrightarrow{c_1} z_1 \xrightarrow{c_2} \cdots \xrightarrow{c_k} z_k \equiv_n y_k.$$

PROOF. Induction on k. The case k = 0 is obvious. Let $k \ge 1$ and suppose

$$x_0 \equiv_n y_0 \xrightarrow{c_1} x_1 \equiv_n y_1 \xrightarrow{c_2} \cdots \xrightarrow{c_k} x_k \equiv_n y_k.$$

By induction hypothesis, there are z_1, \ldots, z_k such that

$$x_1 \equiv_{n-k+1} z_1 \xrightarrow{c_2} \cdots \xrightarrow{c_k} z_k \equiv_n y_k.$$

Since $n-k+1 \ge 1$ and $y_0 \xrightarrow{c_1} x_1$ and $x_1 \equiv_{n-k+1} z_1$, there must be a z_0 such that $z_0 \xrightarrow{c_1} z_1$ and $y_0 \equiv_{n-k} z_0$. Since $x_0 \equiv_n y_0$, we have $x_0 \equiv_{n-k} z_0$.

Corollary 5.3 Let $k \leq n$. If

$$w = x_0 \equiv_n y_0 \xrightarrow{c_1} x_1 \equiv_n y_1 \xrightarrow{c_2} \cdots \xrightarrow{c_k} x_k \equiv_n y_k = w,$$

then there are z_0, \ldots, z_k such that

$$w = z_0 \xrightarrow{c_1} z_1 \xrightarrow{c_2} \cdots \xrightarrow{c_k} z_k = w.$$

Definition For each n, define a model M/\equiv_n as follows:

$$- |M/\equiv_n| = \{ [x]_{\equiv_n} \mid x \in |M| \}.$$

$$- \llbracket q \rrbracket_{M/\equiv_n} = \{ \langle [x]_{\equiv_n}, [y]_{\equiv_n} \rangle \mid \langle x, y \rangle \in \llbracket q \rrbracket_M \}.$$

By Lemma 5.1, M/\equiv_n is a finite model for each n.

Let K be the maximal length of antecedents in Γ .

Lemma 5.4 If $n \geq K$, $M/\equiv_n \models \Gamma$.

PROOF. Let $c_1 \ldots c_k \Rightarrow q_1 \ldots q_j \in \Gamma$, and let $[y_k]_{\equiv_n} \in \text{range}(\llbracket c_1 \rrbracket_{M/\equiv_n} \circ \cdots \circ \llbracket c_k \rrbracket_{M/\equiv_n})$. Then there must be $y_0, x_1, y_1, \ldots, x_{k-1}, y_{k-1}, x_k$ such that

$$y_0 \xrightarrow{c_1} x_1 \equiv_n y_1 \xrightarrow{c_2} \cdots \xrightarrow{c_k} x_k \equiv_n y_k.$$

 $k \leq K \leq n$. Then, by Lemma 5.2, there are z_0, \ldots, z_k such that

$$z_0 \xrightarrow{c_1} \cdots \xrightarrow{c_k} z_k \equiv_n y_k.$$

Since $M \models \Gamma$, there must be v_0, \ldots, v_j such that

$$z_k = v_0 \xrightarrow{q_1} \cdots \xrightarrow{q_j} v_j = z_k.$$

It follows that $[y_k]_{\equiv_n} \in \operatorname{fix}(\llbracket q_1 \rrbracket_{M/\equiv_n} \circ \cdots \circ \llbracket q_j \rrbracket_{M/\equiv_n}).$

Lemma 5.5 If $n \geq L$, $[\boldsymbol{w}]_{\equiv_n} \not\in \operatorname{fix}(\llbracket d_1 \rrbracket_{M/\equiv_n} \circ \cdots \circ \llbracket d_L \rrbracket_{M/\equiv_n})$.

PROOF. Immediate from Corollary 5.3 and the assumption about w.

Theorem 2 If $n \ge \max(K, L)$, then M/\equiv_n is a finite model such that $M/\equiv_n \models \Gamma$ and $M/\equiv_n \not\models p_1 \dots p_N \Rightarrow d_1 \dots d_L$.

PROOF. By Lemmas 5.1, 5.4, 5.5, and the fact that $[\boldsymbol{w}]_{\equiv_n} \in \text{range}(\llbracket p_1 \rrbracket_{M/\equiv_n} \circ \cdots \circ \llbracket p_N \rrbracket_{M/\equiv_n})$.

6 Reduction to Propositional Dynamic Logic with Intersection

Decidability of $\mathbf{M}\mu$ can also be shown by a translation into propositional dynamic logic with intersection, which is known to be decidable [2]. In what follows, I assume familiarity with propositional dynamic logic.

Definition Let
$$\operatorname{tr}(p_1 \dots p_n \Rightarrow d_1 \dots d_m) = [p_1] \dots [p_n] \langle (d_1; \dots; d_m) \cap (\top)? \rangle \top$$
. Let $\operatorname{tr}(\{\mathcal{I}_1, \dots, \mathcal{I}_k\}) = \operatorname{tr}(\mathcal{I}_1) \wedge \dots \wedge \operatorname{tr}(\mathcal{I}_k)$.

Lemma 6.1 Let \mathcal{I} be an $\mathbf{M}\mu$ sequent. $M \models \mathcal{I}$ in mixed inference if and only if $M \models \operatorname{tr}(\mathcal{I})$ in propositional dynamic logic with intersection.

Lemma 6.2 Let Γ be a finite set of $\mathbf{M}\mu$ sequents, \mathcal{I} be an $\mathbf{M}\mu$ sequent, and q_1, \ldots, q_l be the atomic formulas occurring in $\Gamma \cup \{\mathcal{I}\}$. Then $\Gamma \models \mathcal{I}$ in mixed inference if and only if $\models [(q_1 \cup \cdots \cup q_l)^*] \operatorname{tr}(\Gamma) \to \operatorname{tr}(\mathcal{I})$ in propositional dynamic logic with intersection.

PROOF. The *if* direction is clear. For the *only if* direction, assume that $M, w \models [(q_1 \cup \cdots \cup q_l)^*] \operatorname{tr}(\Gamma)$ and $M, w \models \neg \operatorname{tr}(\mathcal{I})$. Let M_0 be the submodel of M whose states are those that can be reached from w via $(q_1 \cup \cdots \cup q_l)^*$. Then $M_0 \models \operatorname{tr}(\Gamma)$ and $M_0, w \models \neg \operatorname{tr}(\mathcal{I})$. This means that $M_0 \models \Gamma$ and $M_0 \not\models \mathcal{I}$, so $\Gamma \not\models \mathcal{I}$.

7 Functional Models

Let us call a model $M = \langle |M|, R_0, R_1, R_2, \ldots \rangle$ where each R_i is a partial function a functional model. It is interesting to consider mixed inference with respect to the class of functional models, because of the close connection with update semantics of Veltman [8].

In the simple case where there is no connective and the succedent of the sequent is a single formula, addition of the following rule to M results in a calculus complete with respect to functional models. Let us call the resulting calculus U.

Cautious Monotonicity
$$X \Rightarrow c \quad X Y \Rightarrow d$$

 $X c Y \Rightarrow d$

In the multiple succedent case (which is equivalent to having composition), more rules become necessary:

Cautious Monotonicity
$$\frac{X \Rightarrow Y \quad X \ Z \Rightarrow W}{X \ Y \ Z \Rightarrow W}$$

$$(\Rightarrow \bullet^{-1}) \qquad \frac{X \ Y \Rightarrow Z \quad X \Rightarrow Y \ Z \ W}{X \Rightarrow Y \ W}$$
 Rotation
$$\frac{X \ Y \Rightarrow Z \ X \Rightarrow Y \ Z}{X \ Y \Rightarrow Z \ Y}$$

³A difference between update semantics and mixed inference with respect to functional models is that Reflexivity $P \Rightarrow P$ holds in the former, but not in the latter.

The calculus which results from adding the above three rules to $\mathbf{M}\mu$ is called $\mathbf{U}\mu$. $\mathbf{U}\mu$ can be shown to be complete with respect to functional models. I state the necessary results without proof.

Definition For any finite set Γ of multiple-succedent sequents, $M_{\Gamma}^{\mathbf{U}\mu}$ is the model such that

$$- |M_{\Gamma}^{\mathbf{U}\mu}| = \{ \, X \mid X \text{ is a finite sequence of atomic formulas and } \\ \neg \exists X_1 X_2 X_3 (X = X_1 \ X_2 \ X_3 \land X_2 \neq \mathbf{\Lambda} \land \Gamma \vdash_{\mathbf{U}\mu} X_1 \Rightarrow X_2) \, \}.$$

$$- [p]_{M_{\Gamma}^{\mathbf{U}^{\mu}}} = \{ \langle X, X p \rangle \mid X, X p \in |M_{\Gamma}^{\mathbf{U}^{\mu}}| \} \cup \{ \langle X Y, X \rangle \mid X Y \in |M_{\Gamma}^{\mathbf{U}^{\mu}}|, \Gamma \vdash X \Rightarrow Y p \}.$$

Lemma 7.1 In $M_{\Gamma}^{\mathbf{U}\mu}$, the interpretation of each atomic formula is a total function.

Below, I write

$$X \stackrel{d_1 \dots d_n}{\longrightarrow} Y$$

to mean $\langle X, Y \rangle \in \llbracket d_1 \rrbracket_{M_{\Gamma}^{\mathbf{U}_{\mu}}} \circ \cdots \circ \llbracket d_n \rrbracket_{M_{\Gamma}^{\mathbf{U}_{\mu}}}$.

Lemma 7.2 If $\Lambda \xrightarrow{W} X$, then $\Gamma \cup \{X \Rightarrow Y\} \vdash_{\mathbf{U}_{\mu}} W \Rightarrow Y$ for any Y.

Lemma 7.3 If $X \xrightarrow{Y} X$, then $\Gamma \vdash_{\mathbf{U}_{\mu}} X \Rightarrow Y$.

Lemma 7.4 If $M_{\Gamma}^{\mathbf{U}\mu} \models X \Rightarrow Y$, then $\Gamma \vdash_{\mathbf{U}\mu} X \Rightarrow Y$.

Lemma 7.5 If $\Lambda \xrightarrow{W} X$, then $\Gamma \cup \{W \Rightarrow Y\} \vdash_{\mathbf{U}\mu} X \Rightarrow Y$ for any Y.

Lemma 7.6 If $\Gamma \vdash_{\mathbf{U}\mu} X \Rightarrow Y$ and $X \in |M_{\Gamma}^{\mathbf{U}\mu}|$, then $X \xrightarrow{Y} X$.

Lemma 7.7 If $\Gamma \vdash_{\mathbf{U}\mu} X \Rightarrow Y$, then $M_{\Gamma}^{\mathbf{U}\mu} \models X \Rightarrow Y$.

Theorem 3 $\Gamma \vdash_{\mathbf{U}_{\mu}} X \Rightarrow Y \text{ if and only if } M_{\Gamma}^{\mathbf{U}_{\mu}} \models X \Rightarrow Y.$

Theorem 3 shows that $U\mu$ is complete with respect to models where the interpretation of each atomic formula is a *total* function.

The calculus U for the single succedent case is decidable. As in the case of M, this is easy to see by translation into first-order logic, noting that the partial functionality of the relevant relations can be expressed by universal first-order sentences. On the other hand, I have been unable to prove the decidability of $U\mu$. The method of filtration used in Section 5 does not necessarily lead to functional models, so proof of the finite model property would require additional work.⁴

⁴Note also that the problem of whether or not a formula of propositional dynamic logic with intersection has a deterministic model is Σ_1^1 -hard [4].

8 Other Styles of Inference

Let us consider the styles of inference determined by the following stipulations:

- (a) $M \models P_1 \dots P_n \Rightarrow C$ if and only if $[\![P_1]\!]_M \circ \dots \circ [\![P_n]\!]_M \subseteq [\![C]\!]_M$.
- (b) $M \models P_1 \dots P_n \Rightarrow C$ if and only if $\operatorname{range}(\llbracket P_1 \rrbracket_M \circ \dots \circ \llbracket P_n \rrbracket_M) \subseteq \operatorname{dom}(\llbracket C \rrbracket_M)$.
- (c) $M \models P_1 \dots P_n \Rightarrow C$ if and only if $\operatorname{dom}(\llbracket P_1 \rrbracket_M \circ \dots \circ \llbracket P_n \rrbracket_M) \subseteq \operatorname{dom}(\llbracket C \rrbracket_M)$.

The first notion (a), called *dynamic inference* in [1], is axiomatized as follows. The first calculus \mathbf{L} is for the single succedent (connective-free) case, and the second calculus $\mathbf{L}\mu$ is for the multiple succedent case.

Calculus L.

- Axiom: Reflexivity $p \Rightarrow p$
- Rule of Inference:

$$\text{Cut} \quad \frac{X \Rightarrow c \quad Y c Z \Rightarrow d}{Y X Z \Rightarrow d}$$

Calculus L μ .

- Axiom: Reflexivity $X \Rightarrow X$
- Rule of Inference:

Cut
$$X \Rightarrow Y \quad Z \mid Y \mid W \Rightarrow V$$

 $Z \mid X \mid W \Rightarrow V$

One can extract from $\mathbf{L}\mu$ the calculus $\mathbf{L}(\bullet)$ for dynamic inference with composition. \mathbf{L} and $\mathbf{L}(\bullet)$ are fragments of the Lambek calculus, and the completeness of \mathbf{L} and $\mathbf{L}(\bullet)$ (or $\mathbf{L}\mu$) is a consequence of the known strong completeness of the Lambek calculus with respect to relational semantics [7].

The problem ' $\Gamma \vdash_{\mathbf{L}} X \Rightarrow d$?' is decidable in cubic time, while the problem ' $\Gamma \vdash_{\mathbf{L}\mu} X \Rightarrow Y$?' (or, equivalently, ' $\Gamma \vdash_{\mathbf{L}(\bullet)} X \Rightarrow D$?') is undecidable. This follows from the observation that the first problem is equivalent to the universal membership problem for context-free grammars, and the second to that for semi-Thue systems (Type 0 grammars). That is, if we reverse the arrows of sequents, single-succedent sequents behave just like rules of context-free grammars, and multiple-succedent sequents behave just like unrestricted rewriting rules. Reflexivity and Cut have the effect of taking the reflexive transitive closure of one-step rewriting, and derivations in the two calculi precisely correspond to the derivations in the respective types of grammars. The undecidability of $\mathbf{L}\mu$ (or, equivalently, of $\mathbf{L}(\bullet)$) contrasts with the situation with mixed inference and the other two styles of inference considered below.

The remaining two styles of inference, (b) and (c), are axiomatized by the following calculi $G\mu$ and $E\mu$, respectively (in the multiple succedent case).⁵

⁵The style of inference given by (b) is related to dynamic predicate logic of Groenendijk and Stokhof [3].

Calculus $G\mu$.

- Axioms: $G\mu$ has no axioms.
- Rules of Inference:

Left Monotonicity
$$\frac{X \Rightarrow Y}{p \ X \Rightarrow Y}$$
Right Anti-Monotonicity
$$\frac{X \Rightarrow Y \ d}{X \Rightarrow Y}$$

$$(\Rightarrow \bullet_3) \qquad \frac{X \ Y \Rightarrow Z \quad X \Rightarrow Y}{X \Rightarrow Y \ Z}$$

Calculus $\mathbf{E}\mu$.

- Axiom: Reflexivity $X \Rightarrow X$
- Rules of Inference:

Right Monotonicity
$$X \Rightarrow Y \\ X p \Rightarrow Y$$
Right Cut $X \Rightarrow Y \\ Z Y \Rightarrow W$

The completeness of $G\mu$ and of $E\mu$ can be shown by a canonical model construction. Here, I only note the definitions of canonical models.

Definition For any finite set Γ of multiple-succedent sequents, $M_{\Gamma}^{\mathbf{G}\mu}$ is the model such that

- $-|M_{\Gamma}^{\mathbf{G}\mu}|$ consists of all finite sequences X of atomic formulas and all expressions of the form $X \mid Y$ where X and Y are finite sequences of atomic formulas
- For $\alpha, \beta \in |M_{\Gamma}^{\mathbf{G}\mu}|$, $\langle \alpha, \beta \rangle \in \llbracket p \rrbracket_{M_{\Gamma}^{\mathbf{G}\mu}}$ if and only if one of the following holds:
 - (i) $\alpha = X$ and $\beta = X$ p for some X.
 - (ii) $\alpha = X$ and $\beta = X p \mid \text{ for some } X$.
 - (iii) $\alpha = X \mid Y, \beta = X \mid Y p$, and $\Gamma \vdash_{\mathbf{G}_{\mu}} X \Rightarrow Y p$ for some X, Y.

Definition For any finite set Γ of multiple-succedent sequents, $M_{\Gamma}^{\mathbf{E}\mu}$ is the model such that

- $|M_{\Gamma}^{\mathbf{E}\mu}|$ consists of all expressions of the form $X\mid Y$ where X and Y are finite sequences of atomic formulas.
- For $\alpha, \beta \in |M_{\Gamma}^{\mathbf{E}\mu}|$, $\langle \alpha, \beta \rangle \in \llbracket p \rrbracket_{M_{\Gamma}^{\mathbf{E}\mu}}$ if and only if $\alpha = X \mid Y, \beta = X \mid Y p$, and $\Gamma \vdash_{\mathbf{E}\mu} X \Rightarrow Y p$ for some X, Y.

The finite model property of $G\mu$ can be proved in exactly the same way as for $M\mu$, using the same definition of \equiv_n . As for $E\mu$, a minor modification (using the 'forward' version of \equiv_n) works. Also, the decidability of $G\mu$ and $E\mu$

can be shown by reduction to propositional dynamic logic (this time using only regular program constructions).

References

- [1] van Benthem, Johan. 1991. Logic and the Flow of Information. CSLI Report No. CSLI-91-160. Center for the Study of Language and Information, Stanford University. (Also in D. Prawitz, B. Skyrms, and D. Westerståhl, eds., Proceedings 9th International Congress of Logic, Methodology and Philosophy of Science, North Holland, Amsterdam.)
- [2] Danecki, Ryszard. 1985. Nondeterministic Propositional Dynamic Logic with Intersection is Decidable. In A. Skowron, ed., Computation Theory, Lecture Notes in Computer Science 208, pp. 34-53, Springer, Berlin.
- [3] Groenendijk, Jeroen and Martin Stokhof. 1991. Dynamic Predicate Logic. *Linguistics and Philosophy* 14, 39-101.
- [4] Harel, David. 1983. Recurring Dominoes: Making the Highly Undecidable Highly Understandable. In *Proceedings of the Conference on Foundations of Computing Theory, Lecture Notes in Computer Science* 158, pp. 177-194, Springer, Berlin.
- [5] Kanazawa, Makoto. 1993. Decidability of the Mixed Style of Inference. Manuscript, Stanford University.
- [6] Kanazawa, Makoto. 1993. Natural Deduction for the Mixed Style of Inference. Manuscript, Stanford University.
- [7] Mikulás, Szabolcs. 1992. The Completeness of the Lambek Calculus with Respect to Relational Semantics. ITLI Prepublication Series LP-92-03. Institute for Language, Logic and Information, University of Amsterdam.
- [8] Veltman, Frank. 1991. Defaults in Update Semantics. ITLI Prepublication Series LP-91-02. Institute for Language, Logic and Information, University of Amsterdam.

```
The ILLC Prepublication Series

Annual Report 1990
Lectures on Linear Logic, Errata and Supplement
Logic of Tolerance
Colleged Browth litts Logic for H. exicancting
Annual Report 1991
LP-92-01 Victor Sanchez Valencia
LP-92-05 David I. Beaver
LP-92-06 Maarten de Rijke
LP-92-09 Maarten de Rijke
LP-92-10 Maarten de Rijke
LP-92-10 Maarten de Rijke
LP-92-10 Maarten de Rijke
LP-92-10 Maarten de Rijke
LP-92-11 Johan van Benthem
LP-92-12 Heinrich W
LP-92-13 Johan van Benthem
LP-92-11 Johan van Benthem
LP-92-12 Heinrich W
LP-92-10 Maarten de Rijke
LP-92-10 Maarten d
                         X-91-06
X-91-07 A.S. Troelstra
X-91-08 Giorgie Dzhaparidze
X-91-09 L.D. Beklemishev
X-91-10 Michiel van Lambalgen
X-91-11 Michael Zakharyaschev
                    1992 Logic, Semantics and Philosophy of Langauge
LP-92-01 Víctor Sánchez Valencia
LP-92-02 Patrick Blackburn
LP-92-03 Szabolcs Mikulás
LP-92-04 Paul Dekker
LP-92-05 David I. Beaver
LP-92-05 David I. Beaver
LP-92-06 Patrick Blackburn, Edith Spaan
LP-92-07 Jeroen Groenendijk, Martin Stokhof
LP-92-08 Maarten de Rijke
LP-92-09 Johan van Benthem
LP-92-10 Maarten de Rijke
LP-92-11 Johan van Benthem
LP-92-12 Heinrich Wansing
LP-92-13 Dag Westerstähl
LP-92-14 Jeroen Groenendijk, Martin Stokhof
LP-92-15 Jag Westerstähl
LP-92-16 A.S. Troelstra
Mathematical Logic and Attribute Value Structures
The Completeness of the Lambek Calculus with respect to Relational Semantics
An Update Semantics for Dynamic Predicate Logic
The Kinematics of Presupposition
A Motal Perspective on the Computational Complexity of Attribute Value Grammar
A Note on Interrogatives and Adverbs of Quantification
A System of Dynamic Modal Logic
Quantifiers in the world of Types
Meeting Some Neighbours (a dynamic modal logic meets theories of change and knowledge representation)
A note on Dynamic Arrow Logic
Sequent Caluli for Normal Modal Propositional Logics
Iterated Quantifiers
Interrogatives and Adverbs of Quantification
ML-92-01 A.S. Troelstra
Mathematical Logic and Foundations
Comparing the theory of Representations and Constructive Mathe
ML-92-02 Dmitrij P. Skvortsov, Valentin B. Shehtman Maximal Kripke-type Semantics for Modal and Superintuitionistic Predicate
                        ML-92-01 A.S. Troelstra

Mathematical Logic and Foundations

ML-92-02 Dmitrij P. Skvortsov, Valentin B. Shehtman

ML-92-03 Zoran Marković

ML-92-04 Dimiter Vakarelov

ML-92-05 Domenico Zambella

ML-92-06 D.M. Gabbay, Valentin B. Shehtman

Mathematical Logic and Foundations

Comparing the theory of Representations and Constructive Mathematics

Maximal Kripke-type Semantics for Modal and Superintuitionistic Predicate Logics

On the Structure of Kripke Models of Heyting Arithmetic

A Modal Theory of Arrows, Arrow Logics I

Shavrukov's Theorem on the Subalgebras of Diagonalizable Algebras for Theories containing IA<sub>0</sub> + EXP

ML-92-06 D.M. Gabbay, Valentin B. Shehtman

Undecidability of Modal and Intermediate First-Order Logics with Two Individual
                                                                                                                                                                                                                                                                                                                                                                                                                                  Variables
How to Broaden your Horizon
Information Systems as Coalgebras
                         ML-92-07 Harold Schellinx
ML-92-08 Raymond Hoofman
ML-92-09 A.S. Troelstra
ML-92-10 V.Yu. Shavrukov
                         ML-92-09 A.S. Troelstra
ML-92-10 V.Yu. Shavrukov

CT-92-01 Erik de Haas, Peter van Emde Boas Compution and Complexity Theory Object Oriented Application Flow Graphs and their Semantics CT-92-02 Karen L. Kwast, Sieger van Denneheuvel Weak Equivalence: Theory and Applications

CT-92-03 Krzysztof R. Apt, Kees Doets

X-92-01 Heinrich Wansing

A new Definition of SLDNF-resolution

Other Prepublications

The Logic of Information Structures
                    CT-92-03 Krzysztof R. Apt, Kees Doets X-92-01 Heinrich Wansing X-92-02 Konstantin N. Ignatiev X-92-03 Willem Groeneveld X-92-04 Johan van Benthem X-92-05 Erik de Haas, Peter van Emde Boas 1993 LP-93-01 Martijn Spaan LP-93-02 Makoto Kanazawa LP-93-03 Nikolai Pankrat'ev LP-93-04 Jacques van Leeuwen LP-93-05 Jaap van der Does LP-93-06 Paul Dekker LP-93-07 Wojciech Buszkowski LP-93-08 Zisheng Huang, Peter van Emde Bo
                                                                                                                                                                                                                                                                                                                                                                                                                                   Other Prepublications

The Logic of Information Structures

The Closed Fragment of Dzhaparidze's Polymodal Logic and the Logic of \Sigma_1 conservativity Dynamic Semantics and Circular Propositions, revised version
                                                                                                                                                                                                                                                                                                                                                                                                                                   Modeling the Kinematics of Meaning
Object Oriented Application Flow Graphs and their Semantics, revised version
Logic, Semantics and Philosophy of Language
Parallel Quantification
                    1993 LP-93-01 Martijn Spaan
LP-93-02 Makoto Kanazawa
LP-93-03 Mikolai Pankrat'ev
LP-93-04 Jacques van Leeuwen
LP-93-05 Jaap van der Does
LP-93-06 Paul Dekker
LP-93-06 Paul Dekker
LP-93-08 Zisheng Huang, Peter van Emde
LP-93-09 Makoto Kanazawa
LP-93-10 Makoto Kanazawa
ML-93-01 Maciej Kandulski
ML-93-01 Maciej Kandulski
ML-93-01 Maciej Kandulski
ML-93-02 Lebes van Benthem
Notacha Alechina Modal Quantification over Structured Domains

LONG Semantics and Philosophy of Langaüge
Parallel Quantification
Dynamic Generalized Quantifiers and Monotonicity
Completeness of the Lambek Calculus with respect to Relativized Relational Semantics
Ldenîty, Quarrelling with an Unproblematic Notion
Sums and Quantifiers
Updates in Dynamic Semantics
On the Equivalence of Lambek Categorial Grammars and Basic Categorial Grammars
Completeness and Decidability of the Mixed Style of Inference with Composition
Weak vs. Strong Readings of Donkey Sentences and Monotonicity Inference in a Dynamic Setting
Mathematical Logic and Foundations
Commutative Lambek Categorial Grammars
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Parallel Quantification
                  LP-93-10 Makoto Kanazawa
ML-93-01 Maciej Kandulski
Mathematical Logic and Foundations
ML-93-02 Johan van Benthem, Natasha Alechina Modal Quantification over Structured Domains
ML-93-03 Mati Pentus
ML-93-04 Andreja Prijatelj
ML-93-05 Raymond Hoofman, Harold Schellinx Models of the Untyped \(\lambda\)-calculus in Semi Cartesian Closed Categories
ML-93-05 I. Zashev
ML-93-07 A.V. Chagrov, L.A. Chagrov
ML-93-08 Raymond Hoofman, Ieke Moerdijk
ML-93-08 Raymond Hoofman, Ieke Moerdijk
ML-93-09 A.S. Troelstra
ML-93-10 Vincent Danos, Jean-Baptiste Joinet,
ML-93-10 Vincent Danos, Jean-Baptiste Joinet,
ME-93-10 Vincent Danos, Jean-Baptiste Joinet,
MI-93-10 Vincent Danos, Jean-Baptiste Joinet,
Mathematical Logic and Foundations
Commutative Lambek Categorial Grammars
The Conjoinability Relation in Lambek Calculus and Linear Logic
Bounded Contraction and Many-Valued Semantics
Categorial Generalization of Algebraic Recursion Theory
Algorithmic Problems Concerning First-Order Definability of Modal Formulas on the
Class of All Finite Frames
Remarks on the Theory of Semi-Functors
Natural Deduction for Intuitionistic Linear Logic
MI-93-10 Vincent Danos, Jean-Baptiste Joinet,
         ML-93-10 Vincent Land ML-93-11 Lex Hendriks
ML-93-12 V.Yu. Shavrukov
ML-93-13 V.Yu. Shavrukov
ML-93-14 Dick de Jongh, Albert Visser
ML-93-15 G.K. Dzhaparidze
ML-93-16 Maarten de Rijke
ML-93-17 Alexander Chagrov, Michael Zakharyaschev On the Independent Axiomatizability of Modal and Intermediate Logics
ML-93-18 Jaap van Oosten
ML-93-19 Raymond Hoofman

M
                      CT-93-01 Marianne Kaisbeek

CT-93-02 Sophie Fischer

CT-93-03 Johan van Benthem, Jan Bergstra

CT-93-04 Karen L. Kwast, Sieger van Denneheuvel The Meaning of Duplicates in the Relational Database Model

CT-93-05 Erik Aarts

CT-93-06 Krzysztof R. Apt

CT-93-01 Noor van Leusen, László Kálmán

CL-93-01 Theo M. V. Janssen

A Note on the Complexity of Local Search Problems

Logic Frograms and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

A Note on the Complexity of Local Search Problems

Logic Programs and Ambivaient

Log
                  CI-93-06 Krzysztof R. Apt
CL-93-01 Noor van Leusen, László Kálmán
CL-93-02 Theo M.V. Janssen
X-93-01 Paul Dekker Other Prepublications
X-93-02 Maarten de Rijke
X-93-03 Michiel Leezenberg
X-93-04 A.S. Troelstra (editor)
X-93-05 A.S. Troelstra (editor)
X-93-06 Michael Zakharyashev
                                                                                                                                                                                                                                                                                                                                                                                                                                An Algebraic View On Rosetta
Existential Disclosure, revised version
What is Modal Logic?
                                                                                                                                                                                                                                                                                                                   Gorani Influence on Central Kurdish: Substratum or Prestige Borrowing

Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Corrections to the First Edition

Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Second, corrected Edition

Canonical Formulas for K4. Part II: Cofinal Subframe Logics
```