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Weak vs. Strong Readings of Donkey
Sentences and Monotonicity Inference in a
Dynamic Setting*

Makoto Kanazawa

Abstract

In this paper, I show that the availability of what some authors have
called the weak reading and the strong reading of donkey sentences with
relative clauses is systematically related to monotonicity properties of the
determiner. The correlation is different from what has been observed in
the literature in that it concerns not only right monotonicity, but also left
monotonicity (persistence/antipersistence). I claim that the reading se-
lected by a donkey sentence with a double monotone determiner is in fact
the one that validates inference based on the left monotonicity of the de-
terminer. This accounts for the lack of strong reading in donkey sentences
with TMONT determiners, which have been neglected in the literature. I
consider the relevance of other natural forms of inference as well, but also
suggest how monotonicity inference might play a central role in the ac-
tual process of interpretation. The formal theory is couched in dynamic
predicate logic with generalized quantifiers.

1 Introduction

Of the two types of donkey sentences, I confine myself to donkey sentences with
determiners and relative clauses, which I will simply call ‘donkey sentences’ in
what follows. (1)—(3) are standard examples involving farmers and donkeys,
which share the general form (4) (Q stands for a quantificational determiner):

(1) Every farmer who owns a donkey beats it.
(2) No farmer who owns a donkey beats it.

(3) Most farmers who own a donkey beat it.

*I would like to thank the following people for their comments and/or judgments: Alessandro
Zucchi, Stanley Peters, Charles Lee, Jane Aronson, Johan van Benthem, Peter Sells, Ivan Sag,
Will Leben, Gillian Ramchand, Chris Pifién, Bill Poser, Dorit Ben-Shalom, Eric Jackson, David
Beaver, Mary Dalrymple, Ray Flournoy, Mats Rooth, and Lynn Cherny, as well as the audiences
at Stanford University and at UCLA.



(4) @ farmer who owns a donkey beats it.

For convenience, let us use (4) as the general form of donkey sentences with
relative clauses in the following preliminary discussion. Of course, the choice of
specific lexical items farmer, own, donkey, and beat is not important.

Two questions about (4) concern us in this paper:

(Ql) What is the correct descriptive generalization about the interpretation of
sentences of the form (4)?

(Q2) Why do sentences of the form (4) mean what they mean?

Previous treatments of donkey sentences have generally regarded them as
a challenge to compositional semantics; the main problem has been to devise
appropriate semantic rules for indefinites, quantifiers, etc., that assign donkey
sentences the interpretation that they are supposed to have. However, even as
a descriptive issue, the truth conditions of sentences of the form (4) have not
been given a fully general, satisfactory characterization. Our first question (Q1)
addresses this problem. To give a definitive answer to it is not a simple matter,
as even native speakers’ intuitions about specific donkey sentences are often less
than clear-cut; nevertheless, an interesting generalization does seem to emerge.

Our second question (Q2) seeks an explanation for the answer given to the
first. It is not the sort of question one usually asks in semantics, but in the
context of donkey sentences, it turns out to be an interesting and important one,
as we shall see below.

In the literature, one can recognize at least four proposals as to the interpre-
tation of sentences of the form (4):

(5) E-type reading:
Q@ farmer who owns a donkey beats the donkey he owns.

(6) Pair quantification reading:
Q { (z,y) | farmer(z) A donkey(y) A own(z,y) } { (z,y) | beat(z,y) }.

(7)  Weak reading:
Q@ farmer who owns a donkey beats a donkey he owns.

(8) Strong reading:
Q@ farmer who owns a donkey beats every donkey he owns.

Note that these four ‘readings’ do not always conflict with each other. Depending
on the choice of ) and the type of situation under consideration, they may yield
the same truth conditions/truth value.

The E-type reading (5) is the interpretation assigned to (4) by the approach
originally proposed by Evans (1977). It is intuitively correct when the uniqueness
condition for the donkey pronoun is met, i.e., when each farmer who owns a
donkey owns no more than one donkey. Otherwise, it often yields counterintuitive



results.! Although Kadmon (1990) strongly argues for the presence of uniqueness
presupposition in sentences like (1) and (3), i.e., the presupposition to the effect
that the uniqueness condition is satisfied, her claim that donkey sentences with
‘asymmetric quantification’ generally come with such a uniqueness presupposition
seems to have gained relatively little support.?

The pair quantification reading (6) is the interpretation assigned to (4) by
the classical DRT/file change semantics (Kamp 1981, Heim 1982). Here, the
quantifier ) counts farmer-donkey pairs: (6) is true if and only if @ holds of the
set consisting of farmer-donkey pairs which stand in the owning relation and the
set consisting of pairs which stand in the beating relation. This seems to give
the correct truth conditions for sentences like (1) and (2), but, as is well-known,
it does not work with (3). Consider the following situation:

9) [farmer] = {f1, fo}
[donkey] = {di,ds,ds}

IIO'U)TL]] = {<f17d1>7<f1)d2>7<f27d3>}
[beat] = {{f1,d1),{f1,d2)}

In this model, there are three farmer-donkey pairs that stand in the owning
relation, and two of them, the majority, stand in the beating relation. However,
(3) is intuitively false in such a situation. In the literature, this is known as
the ‘proportion problem’ for the classical DRT/file change semantics account of
quantification and indefinites.?

In fact, the term ‘proportion problem’ is a misnomer, as it suggests that the
problem is limited to donkey sentences with proportional quantifiers like most.*
On the contrary, the problem is quite general. The following sentence, involving
a cardinality quantifier at least two, is intuitively false in the above model (9),
although the pair quantification reading would render it true:

(10) At least two farmers who own a donkey beat it.

Here, we might say that we have a ‘cardinality problem’. As we see below, almost
all quantifiers give rise to a problem of this sort.

The interpretations (7) and (8) have been recognized by various authors, in-
cluding Rooth (1987), Schubert and Pelletier (1989), Heim (1990), and Chierchia
(1990, 1992). The terms ‘weak reading’ and ‘strong reading’ are apparently due

'Depending on how the phrase ‘the donkey he owns’ is analyzed, the E-type reading assigns
(4) either a counterintuitive truth value or no truth value at all when the uniqueness condition
is not met.

%In addition to Heim’s (1982) celebrated sage plant example, which is treated by Kadmon,
donkey sentences with no like (2), and sentences like those considered by Schubert and Pelletier
(1989) are noteworthy counterexamples. See the references cited above and Rooth (1987), Heim
(1990), Neale (1990), and Chierchia (1992).

3See, for example, Rooth (1987), Heim (1990), or Kadmon (1987, 1990).

4The term was coined by Kadmon (1987, 1990), and has since become standard.



to Chierchia (1990).> The weak reading (7) seems to give the intuitively correct
truth conditions for (2) and (10). (2) and (10) can be paraphrased as ‘No farmer
who owns a donkey beats a donkey he owns’ and ‘At least two farmers who own
a donkey beat a donkey they own’, respectively. On the other hand, the truth
conditions standardly associated with (1) are given by the strong reading ‘Every
farmer who owns a donkey beats every donkey he owns’. Note that when @ is
no, the weak reading is equivalent to the pair quantification reading, and when
Q is every, the strong reading is.

Turning to (3), we see that neither the weak reading (11a) nor the strong
reading (11b) is clearly the right interpretation for this sentence.

(11) a. Most farmers who own a donkey beat a donkey they own.

b. Most farmers who own a donkey beat every donkey they own.

Heim (1982) reports that her intuitions ‘vacillate’ between the two readings.
Rooth (1987) is ‘simply not sure’ whether (3) means (11a) or (11b), or even

(12) Most farmers who own a donkey beat most of the donkeys they own,

and his informants ‘have not expressed strong or consistent opinions.” According
to Kamp (1991), (3) ‘makes clear sense [to many speakers| only in circumstances
in which no farmer owns more than one donkey’.

In contrast to (3), however, intuitions about the following sentences with most
seem fairly clear:”

(13) Most people that owned a slave also owned his offspring.
(14) Most men that have a quarter will put it in the parking meter.

(15) Most men that have a nice suit will wear it to church tomorrow.

The natural interpretation of (13) seems to be the strong reading, i.e., ‘Most
people that owned a slave owned the offspring of every slave they owned’. For
the other two examples, the weak reading seems to give the right interpretation.
(14) seems to say that most men that have a quarter will put (at least) one of
their quarters in the parking meter, and (15) seems to say that most men that
have a nice suit will wear one of their nice suits to church tomorrow.

Perhaps donkey sentences with most are all vague or ambiguous, and prag-
matics selects the most sensible interpretation. Whether or not this is so, the

5The terms are actually misleading, since when the determiner is downward monotone in
the second argument, as is the case with (2), the weak reading is the logically stronger of the
two. Apparently for this reason, Chierchia (1992) switches to ‘3-reading’ and ‘V-reading’. I do
not adopt this terminology because of the difficulty in pronunciation. Van Eijck and de Vries
(1992) and de Swart (1991) also use ‘strong reading’ and ‘weak reading’.

6 As has been mentioned, Kadmon (1987, 1990) strongly argues for the presence of uniqueness
presupposition in (3).

7(13) is originally Heim’s (1990) example. (14) is modeled on a sentence used by Schubert
and Pelletier (1989). (15) is a slight modification of an example from Chierchia (1990).



point here is that intuitions about clear cases like (13), (14), and (15) are captured
by either the weak reading or the strong reading.

It is important to observe that, unlike the other two readings, the weak reading
and the strong reading have the virtue of accounting for the clear intuitions people
seem to have about donkey sentences with respect to a certain class of situations.
These are situations where each farmer beats either every donkey he owns or no
donkey he owns. The relevant observation is explicitly stated in Rooth (1987):
‘people have firm intuitions about situations where farmers are consistent about
their donkey-beating.” In such situations, the weak reading and the strong reading
turn out to be equivalent, and they seem to match the intuitions. For example,
(9) is an instance of a consistent donkey-beating situation. Even though the exact
truth conditions of (3) may be unclear, it is certainly false in (9), and this is the
truth value assigned to it by both the weak reading and the strong reading in
this situation. In general, we have the following

(16) Empirical observation: People’s intuitions about donkey sentences with re-
spect to consistent donkey-beating situations accord with the truth condi-
tions given by the weak reading and the strong reading.®

The E-type reading can account for only a small subset of the consistent
donkey-beating situations, namely, situations where the uniqueness condition is
met. Otherwise, it diverges from both the weak reading and the strong reading,
and consequently fails to capture (16).

The pair quantification reading goes against (16) in another dimension. It can
capture (16) only with respect to a small set of determiners. As we have seen, the
pair quantification reading is equivalent to the strong reading if @ is every, and
to the weak reading if @ is no, so it conforms to (16) as far as donkey sentences
with determiners like every and no are concerned. However, consistent donkey-
beating situations like (9) show that this is not the case with donkey sentences
with determiners like most and at least two. In fact, the ‘proportion problem’ is
intimately connected to the observation (16), as it is typically illustrated by the
unintuitive truth value that the pair quantification reading yields in consistent
donkey-beating situations. It is the pair quantification reading’s failure to capture
the intuitions stated in (16) that is responsible for the proportion problem. As
was anticipated above, determiners like every and no that do not give rise to the
proportion problem are among a few exceptions. It is easy to prove that the pair
quantification reading contradicts (16) with respect to all quantifiers @ satisfying
Permutation Invariance, Conservativity, and Extension (see van Benthem 1986 or

81t is worth pointing out that for some sentences, every situation is a consistent donkey-
beating situation. Such is the case with a sage-plant example like (i) and a sentence like (ii):

(i) Most men who bought a beer bought five others along with it.
(i) Most farmers who own exactly one donkey beat it.

(For (ii), every situation satisfies the uniqueness condition.) Intuitions about these sentences
seem accordingly robust.



Westerstahl 1989) except those that can be expressed as Boolean combinations
of some and every.®

To sum up the preceding discussion, none of the four putative readings (5)-
(8) can account for all cases. The E-type reading (5) and the pair quantification
reading (6) are only of a limited use in describing the interpretation of donkey
sentences, as they fail to capture the important observation (16) in full generality.
When intuitions are clear about the truth conditions of donkey sentences, they
seem to always accord with either the weak reading or the strong reading.

Thus, let us henceforth disregard the E-type reading and the pair quantifica-
tion reading, and assume the following:

(17) The interpretation of a donkey sentence is given by either the weak reading
or the strong reading.

Our question (Q1) now becomes the following:°

(Q1') How are the weak reading and the strong reading distributed among dif-
ferent donkey sentences? What determines which reading is the right one
in specific cases?

2 Factors That Determine the Interpretation

In this section, we identify and discuss some possible factors that are relevant
to the interpretation of donkey sentences. First, as should be clear from the
examples in Section 1, the choice of determiner is a particularly important fac-
tor (Section 2.1). In Section 2.2, I claim that, contra Schubert and Pelletier
(1989), genericity has little to do with the availability of the strong reading. In
Section 2.3, we briefly discuss other possible factors.

2.1 Choice of Determiner

The choice of determiner is probably the most important factor that affects the
possible reading(s) of donkey sentences. The only difference among (1), (2), (3),
and (10) was the determiner.

1) Every farmer who owns a donkey beats it.

2) No farmer who owns a donkey beats it.

(
(
(3) Most farmers who own a donkey beat it.
(

10) At least two farmers who own a donkey beat it.

9Namely, some, every, no, not every, some but not every, either no or every, etc. Up to
equivalence, there are only 16 of them.

19In this form, the question has also been asked by Heim (1990), Chierchia (1992), and
Gawron, Nerbonne, and Peters (1991).



As we have seen, (1) seems to have the strong reading, and (2) and (10) have the
weak reading, while (3) is vague or perhaps ambiguous. Let us look at a wider
range of data to see the effects of different determiners.

2.1.1 FEvery

First, let us consider sentences with every. The first thing to note is that, al-
though the strong reading is the one standardly ascribed to (1), people’s intuitions
about (1) seem to be a bit shaky.!* Chierchia (1990, 1992) even claims that (1)
can have the weak reading as well in appropriate contexts.

The following example, modeled on one of Geach’s (1965), clearly has the
strong reading:

(18) Every student who borrowed a book from Peter eventually returned it.

(18) is false if there is one book some student borrowed from Peter but didn’t
return. Likewise, the following sentence is false if there is one girl in the neigh-
borhood who has a younger brother taller than her, even if she is taller than her
other younger brothers.

(19) Every girl in this neighborhood who has a younger brother is taller than
him.

Not all examples with every, however, take the strong reading. The following
example is modeled on one in Schubert and Pelletier 1989 and is now standard:

(20) Every man who had a quarter put it in the parking meter.

The natural interpretation of (20) is the weak reading.'?

In Section 1, we saw that the interpretations of examples with most vary:
some have the weak reading (e.g., (14) and (15)), and others the strong (e.g.,
(13)), while there are some unclear cases as well (e.g., (3)). The examples we
just saw above show that there is a similar variation among donkey sentences
with every. As compared to most, however, every seems to have a stronger bias
toward the strong reading. Consider the following minimal pair:

(21) Every student who took a course from Peter last year liked it.

1A couple of my informants gave me mixed judgments about (1), while another judged the
the sentence to have the strong reading. Rooth (1987) considers a situation in which one farmer
owns ten donkeys and beats exactly nine of them, while all other farmers beat every donkey
they own. He reports that ‘[ijnformants have given me varied and guarded judgments about
this case’, although the strong reading dictates that (1) is false in such a situation.

12T should perhaps mention that one native speaker has informed me that he does not get
the weak reading for (20), insisting that one should instead say ‘Every man who had a quarter
put one in the parking meter’. He does not entirely like (20) (or Most men who had a quarter
put it in the parking meter) if the men have more than one quarter, and if he thinks about the
fact that they have more than one. (The same speaker accepts (18) without the uniqueness
condition.)



(22) Most students who took a course from Peter last year liked it.

Responses I got from native speakers indicate that while (21) clearly requires
every student to like every course he or she took from Peter, (22) can be judged
true even in situations where half of the students who took a course from Peter
didn’t like some of the courses they took from him.!® In general, it seems that
when a donkey sentence with every is felt to have the strong reading, the inter-
pretation of the corresponding sentence with most tends more towards the weak
reading, or at least is less clear.

Thus, compared to other determiners, every seems to have the effect of favor-
ing the strong reading.*

2.1.2 No and Rooth’s Generalization

Let us turn to sentences with no. As for (2), there seems to be no problem
about the accuracy of the weak reading, and the strong reading ‘No farmer who
owns a donkey beats every donkey he owns’ is simply unavailable. (2) is clearly
falsified by a single farmer-donkey pair such that the farmer owns and beats
the donkey. This seems to hold generally with donkey sentences with no. The
following sentences clearly have the weak reading:!®

(23) No student who borrowed a book from Peter returned it.

(24) No parent with a son still in high school has ever lent him the car on a
weeknight.

Intuitions about donkey sentences with no are remarkably robust.!®

Rooth (1987) observes that this property of no is shared by other determiners
which are downward monotone in the second argument (MON|), like few and at
most n.'" The following sentences seem to have the weak reading, rather than

13Responses from my informants did not indicate that (22) has the weak reading, however.
The exact truth conditions of (22) seem unclear.

14My sense is that donkey sentences with every have a default preference for the strong
reading (see Sections 2.3 and 2.4 below). As an anonymous referee and the subject editors
of the journal have suggested, however, such a claim is perhaps dubious, since the bare facts
are that there are clear examples of both readings. Nonetheless, it seems safe to conclude
that the effect of every, relative to other determiners like most, no, and at least two, on the
interpretation of donkey sentences is to make the strong reading more readily available.

15(24) is due to Rooth (1987).

16 A sentence like the following might perhaps be an exception to this robustness of intuitions:

(i) No man who had a credit card failed to use it.

This does not seem to mean ‘No man who had a credit card had at least one credit card he
failed to use’.

17A determiner is said to be downward monotone in the second argument if its denotation
Q@ in any model (with universe M) satisfies the following:

For all A,B,B' C M, QuAB and B’ C B imply QyAB'.



the strong reading. (The intuition may be somewhat less clear than in the case
of no.)

(25) Few farmers who own a donkey beat it.

(26) Few students who borrowed a book from Peter returned it.

(27) At most three farmers who own a donkey beat it.

(28) At most ten students who borrowed a book from Peter returned it.

Although Rooth does not explicitly endorse it, it is convenient for our purposes
to express his observation in the form of a principle:

(29) Rooth’s Generalization: Donkey sentences with a MON| determiner only
have the weak reading.

It should be noted that the determiners that Rooth considered are all sym-
metric determiners which are |[MON as well as MON|.!® Therefore, it would be
interesting to see how TMON| determiners behave in donkey sentences. Unfortu-
nately, there is no lexical TMON| determiner in English. We have to use complex
determiners for this purpose.

(30) Not every farmer who owns a donkey beats it.
(31) Not every man who had a quarter put it in the parking meter.

(32) Not all students who borrowed a book from Peter returned it.

These sentences seem to have the same type of interpretation as the corresponding
sentences with every or all—that is, (30) and (32) seem to have the strong reading
(‘Not every farmer who owns a donkey beats every donkey he owns’; ‘Not all
students who borrowed a book from Peter returned every book they borrowed
from Peter’), and (31) the weak reading (‘Not every man who had a quarter
put one of their quarters in the parking meter’). To the extent that intuitions
about (30) and (32) are clear, not every and not all constitute counterexamples
to Rooth’s Generalization.

We write MON| for ‘downward monotone in the second argument’. If we replace B’ C B in the
above definition by B C B’ we get the definition of upward monotonicity in the second argu-
ment (MONT). Monotonicity in the first argument ({MON, |MON) is defined analogously. The
terms ‘left monotonicity’ and ‘right monotonicity’ are often used for the wordy ‘monotonicity in
the first argument’ and ‘monotonicity in the second argument’, respectively. In the literature,
upward and downward monotonicity in the first argument have also been called ‘persistence’
and ‘antipersistence’.

18Tt is not entirely clear whether few is |MON; it could be argued that it has a ‘proportional’
meaning similar to most:

fewAB iff |AN B| < ¢|A]

(where € is some small constant). Partee (1989) argues that few and many are in fact ambiguous
between the ‘cardinal reading’ and the ‘proportional reading’.
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2.1.3 MONT Determiners

Rooth’s Generalization does not say anything about determiners which are not
MON|. Let us now look at how MONT determiners behave.

Fvery, which is |[MONT, favors the strong reading, as we have seen, although
it does not exclude the weak reading. All seems to behave the same way as
every.'® Most, which is MONT, but not monotone in the first argument, does
not seem to have a clear preference for either reading. As for TMONT determiners,
we have seen one example, namely, (10), which has the weak reading. A notable
fact is that sentences with TMONT determiners in general have only the weak
reading, just like |MON| ones.

w
w

A farmer who owned a donkey beat it.

w
~

A student who borrowed a book from Peter returned it.

w
ot

Some farmers who own a donkey beat it.

w
(=)}

Some students who borrowed a book from Peter returned it.
Several farmers who own a donkey beat it.

Several students who borrowed a book from Peter returned it.

w
Nej

At least five farmers who own a donkey beat it.

> w
o ~
N’ e e e e S S S N N

At least three students who borrowed a book from Peter returned it.

SN
—

Many farmers who own a donkey beat it.

"o
[\)

Many students who borrowed a book from Peter returned it.?°

N N N AN AN AN AN /N /N /N /N
w
oo

33) and (34) are not normally considered donkey sentences, since giving the
indefinite a donkey or a book wide scope yields the desired reading, but there
is no reason to think that the indefinite in (33) and (34) must take wide scope.
Rather, the semantics should predict that the ‘donkey anaphora’ reading of (33)
and (34) is equivalent to the wide scope existential reading. For (35)-(42), the
wide scope analysis of the relevant reading is not available. The reading of (35)
that we are interested in does not imply the existence of a single donkey owned by
multiple farmers, and likewise for the other examples. Strangely enough, donkey
sentences like these with TMONT determiners have not been discussed in the
literature. It seems fairly clear that all of the above examples, except perhaps
ones with many, lack the strong reading.

19Free choice any, though limited in distribution, seems to show a similar behavior. Any
man who owns a donkey beats it was Geach’s (1962) original example.

20Intuitions about many may be less clear, but the following sentence seems to sound OK to
the speakers I have consulted.

(i) Many students who borrowed a book from Peter returned it, but only a few returned
every book they borrowed.

Like few, left monotonicity of many might be questioned. See footnote 18.
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2.1.4 Summary

Rooth’s generalization, even if valid as far as it goes, seems to be only part
of the story about the effects of determiners on the interpretation of donkey
sentences. The data considered in this section suggest that it is not just the
monotonicity property in the second argument, but monotonicity properties in
both arguments taken together that are relevant to determining the interpretation
of donkey sentences. In Table 1, I summarize the data we have seen so far about
the effects of determiners.

Interpretation Determiners
TMONT  Weak reading only a, some, several, at least n, many
TMON|  Strong reading preferred? not every, not all
IMONT  Strong reading preferred  every, all, FC any
IMON|  Weak reading only no, few, at most n
TAMONT Both most

Table 1: Monotonicity of determiners and interpretations of donkey sentences.

2.2 Genericity

Schubert and Pelletier (1989) were the first to point out that donkey sentences
like the following can have weaker truth conditions than was standardly assumed:

(43) Everyone who has a donkey must donate its services for one day during the
festival.

(44) Everyone who owns a donkey will ride it to town tomorrow.

They observe that the standard strong reading (what they call the Universal
Reading) is a pretty implausible reading for these sentences.?! They claim that
the weak reading (what they call the Indefinite Lazy Reading) ‘expresses the
correct truth conditions (under certain assumptions about constraints imposed
by the context of utterance)’ for donkey sentences in general, and ‘although . ..
there are some types of readings for donkey sentences other than the Indefinite
Lazy Reading, ... the Universal Reading is just plain wrong.” According to them,
‘what makes it seem correct in certain cases is its confounding with a “generic”
or “habitual” or “gnomic” understanding of these sentences’ (p. 201).

Their claim is two-fold: (i) only when a donkey sentence is understood ‘gener-
ically’ can it have anything other than the weak reading, and (ii) even when a
donkey sentence is understood generically, the truth conditions given by the uni-
versal quantification in the strong reading is not accurate, and the actual reading
involves quantification which allows exceptions, as is always the case with generic
sentences. We shall see that (i) is untenable.

21 According to one informant, the strong reading is quite plausible for (43).
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Schubert and Pelletier’s claim is meant to apply to all donkey sentences, but
the analysis they propose is limited to conditional donkey sentences. I think
conditional donkey sentences often allow generic reading, and some standard
examples, which appear to have the strong reading, are such cases. However, some
conditional donkey sentences which are not understood generically do possess the
strong reading. Consider the non-generic reading of the following sentence:?*

(45) If I have a quarter in my pocket, I will keep it.

Also, more importantly for our purposes, there is no obvious way to extend
Schubert and Pelletier’s claim and analysis to donkey sentences with relative
clauses, our main concern in this paper. To take (1) as an example,

(1) Every farmer who owns a donkey beats it

even though beats is in the simple present tense and expresses a habitual disposi-
tion, there is no obvious sense in which one can say that the sentence (1) itself is
a generic statement. It is a universal statement, which does not allow any excep-
tions with respect to farmers who own a donkey. It is true that (1) can (but need
not) be understood as an ‘eternal’ statement about all donkey-owning farmers
of all times, or as a statement about all donkey-owning farmers in the ‘extended
present’. However, if the apparent strong reading of (1) were to be reduced to a
generic reading, the generic reading would have to involve ‘generic quantification’
over donkeys, and it is not at all clear how Schubert and Pelletier’s analysis can
be extended to achieve it in a non-ad-hoc way.

At any rate, it is clear that generic understanding is out of the question for
some donkey sentences with relative clauses which appear to have the strong
reading. Earlier examples (18), (19), and (21) are cases in point.?3

(18) Every student who borrowed a book from Peter eventually returned it.

(19) Every girl in this neighborhood who has a younger brother is taller than
him.

(21) Every student who took a course from Peter last year liked it.

I conclude that genericity has little to do with the interpretation of donkey
sentences with relative clauses.?*

22Dekker (1993) considers a similar example and reaches the same conclusion.

Z3Neale (1990) also denies that the universal force associated with donkey anaphora only
arises in sentences with a generic reading. An example of his is Every man who bought a
donkey vaccinated it.

243chubert and Pelletier’s claim about the inaccuracy of the universal quantification in the
strong reading is plausible for the generic reading of conditional donkey sentences, and might
also apply to some relative clause donkey sentences. Recall that native speakers’ intuition about
(1) is not entirely clear (see footnote 11). However, not all relative clause donkey sentences
with the strong reading are like (1). Sentences like (18), (19), and (21), as well as the following,
do not seem to allow exceptions.
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2.3 Other Factors

That the head determiner is not the sole factor that influences the interpretation
of donkey sentences is clear from the variation we saw among sentences with
most and every. I do not fully understand exactly what other factors there are.
In this section, I will try to make some pertinent observations, focusing on the
variation among donkey sentences with every. I proceed under the assumption
that the effect of every is to favor the strong reading, and some other factors are
responsible for the apparent weak reading of some donkey sentences with every.
An example like (44) has a straightforward explanation:

(44) Everyone who owns a donkey will ride it to town tomorrow.

Under normal circumstances, a person who has two or more donkeys will not ride
all of them to town, so the strong reading of (44) will always be false if somebody
has more than one donkey. This is probably why the sentence is felt to have the
weak reading rather than the strong reading.

It is tempting to apply the same explanation to (20):

(20) Every man who had a quarter put it in the parking meter.

It would be bizarre for every man who had a quarter to put all of his quarters in
the parking meter, no matter how many he had; a rational man would use just
as much money as is necessary to park his car without getting a ticket. Even so,
it is quite possible for the strong reading of (20) to happen to be true. Moreover,
the following variations of (20) still seem to take the weak reading:

(46) Every man who had a coin put it in the charity box.

(47) Every man who had a coin put it in the slot machine.

For these sentences, the situation described by the strong reading is not so un-
likely.

Compare (20), (46), and (47) with the following sentences, which clearly have
the strong reading:

(48) Every man who had a quarter kept it.
(49) Every boy who had a quarter got it from his father.

Apart from the difference in pragmatic plausibility of the claim made by the two
putative readings of the sentences, it seems to me that there is something about
the semantic properties of the main verb that is at least partly responsible for
the difference between (20), (46), and (47), on the one hand, and (48) and (49),
on the other, but it is difficult to pinpoint it.

(1) Every graduating student who has a book checked out from the library must return it
by June 13 to avoid penalty.
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Note that, although intuitions about the weak reading of sentences like (20),
(46), and (47) seem pretty clear, it is possible to make the context force the
strong reading on these sentences. The following dialogue is due to David Beaver

(p.c.):
(50) A: John has a silver dollar. He didn’t put it in the charity box.
B: No, everybody who had a coin put it in the box.

Here, the preceding linguistic context makes the strong reading of the donkey
sentence the only sensible interpretation.

In general, when a sentence is vague or ambiguous, context can make clear
what is intended, and there is no question that this principle applies to some
donkey sentences.?> However, the interpretation of some donkey sentences with
every seems to resist manipulation by context. Compare (50) with the following:

(51) A: John doesn’t have any quarters. He used all his quarters to buy a Coke.

B: No, everybody who had a quarter kept it, so he must have at least one
quarter left.

Although the surrounding context demands it, it is difficult to interpret ‘every-
body who had a quarter kept it’ in this dialogue in the weak sense of ‘everybody
who had a quarter kept one’, and consequently the dialogue sounds odd.

To summarize this inconclusive discussion, we observed the following about
donkey sentences with every: (i) the absurdity of the situation described by the
strong reading gives rise to the weak reading, (ii) context can force the strong
reading on sentences which otherwise take the weak reading, and (iii) some sen-
tences, which have the strong reading out of context, are simply unhappy in
contexts that require the weak reading. I take these observations to be conso-
nant with the assumption that the default interpretation of donkey sentences
with every is the strong reading.

2.4 Summary of the Data

In an area like the semantics of donkey sentences where intuitions are often less
than clear-cut, a certain amount of idealization of the data is inevitable before
one can try to give a theoretical account of it. With a certain bias, I summarize
the facts as follows.

25Gawron, Nerbonne, and Peters (1992) discuss the following example:
(i) Anyone who catches a Medfly should bring it to me.

The interpretation is supposed to be different depending on whether the speaker is ‘a biologist
looking for samples on a field trip to Northern California’ (weak reading) or ‘a health department
official engaged in eradicating the Medfly from Northern California’ (strong reading).
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(52) i. The only possible interpretation of a donkey sentence whose Det is
TMONT or |[MON| is the weak reading, while the default interpreta-
tion of a donkey sentence with a TMON| or |[MONT determiner is the
strong reading. Most, which is not monotone in the first argument,
favors neither the weak reading nor the strong reading.

ii. There are pragmatic and possibly other factors associated with specific
donkey sentences that favor the weak reading (in particular contexts).
When the default interpretation of a donkey sentence determined by the
determiner is the strong reading, but those other factors favoring the
weak reading are present, they may override the effect of the determiner,
and the sentence can be understood in the sense of the weak reading.

I will express the correlation between the monotonicity properties of the determin-
ers and the interpretation of donkey sentences mentioned in (52i) by saying that
the interpretation is selected by the determiner. Thus, I assume that TMON| and
IMONT determiners by default select the strong reading, and the weak readings
of donkey sentences with these determiners are exceptions, triggered by idiosyn-
cratic properties of particular sentences and contexts. This way of presenting the
facts may perhaps be controversial, but it seems to be at least consistent with
the data we have looked at so far (see Sections 2.1.1 and 2.3). Since there are so
few TMON| and |MONT determiners, the generalization about them mentioned
under (i) may be questioned.?®

I take (52) to be an answer to our first question (Q1), modulo the lack of good
understanding of the nature of factors other than the monotonicity properties of
the determiner. Our next step is to answer (Q2), that is, to give an explanation
for the observed patterns summarized in (52). In doing so, I will concentrate on
the aspect that has to do with the determiner, namely (52i). The main thread
of our explanation will be that the interpretation that is selected is the natural
one in that it shares some logical characteristics of the interpretation of ordinary
quantified sentences. This takes up Sections 3 and 4.

The ‘naturalness account’ is still short of an ultimate explanation; it has no
theoretical commitment and can be fleshed out in different ways. In the last part
of the paper (Section 5.3.2), I will briefly describe a highly speculative model of
how it is that donkey sentences get interpreted the way they are.

What to make of (52ii) will be a vexing problem in the explanations I provide.
It is difficult to give a satisfying picture of how the effect of the determiner
interacts with other factors. Also, the asymmetry between TMONT and |[MON|
determiners, on the one hand, and TMON| and |[MONT determiners, on the
other, calls for an explanation. Why is it that the former group of determiners
infallibly selects the weak reading, while the latter group of determiners only

260ne might include in the list, however, complex determiners formed with all, like all but
three (in the sense of all but at most three), as in All but three farmers who own a donkey beat
it. I am not clear about the data here.
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makes the strong reading the default interpretation? I will briefly touch on these
two issues in Section 5.

3 Monotonicity Inference and Interpretations
of Donkey Sentences

How can one explain the correlation between the monotonicity properties of deter-
miners and the interpretations of donkey sentences, given in (52i) in the previous
section? The key to answering this question is understanding of what monotonic-
ity means in donkey sentences. This section presents the intuitive idea; a precise
formulation appears in the next section.

3.1 Monotonicity Inference in Dynamic Contexts

Monotonicity is defined in general terms as follows. Let Y'(... X ...) be an expres-
sion containing X as a subexpression. We say that X occurs in an upward (down-
ward) monotone position in Y(...X ...), if for any two expressions X; and X,
of the same category as X, [X;] C [Xz] implies [Y(... X1.. )] C[Y (... X5...)]
(IY(..Xe. )] E[Y(..X1..)]). (We also say that Y is upward (downward)
monotone in the position occupied by X.) Here, [X] stands for the interpreta-
tion of X, and C is a suitable generalized notion of inclusion, covering material
implication in the truth value (¢#) domain and the subset relation in the (e,t)
domain as special cases.

Monotonicity properties of determiners are correlated with certain patterns
of inference. Suppose everyone who owns a garden owns a house, so that
[man who owns a garden] C [man who owns a house] (the set of men who own
a garden is a subset of the set of men who own a house). Then the downward
monotonicity of no in the first argument licenses inference from No man who
owns a house is poor to No man who owns a garden is poor. However, a naive
application of monotonicity inference of this kind can fail in the presence of an
anaphoric link. For example, under the same assumption, the following inference
is invalid (cf. van Benthem 1987):

(53)  No man who owns a house sprinkles it
No man who owns a garden sprinkles it

Despite this kind of failure, monotonicity inference can still make good sense
in donkey sentences. Let us look at the monotonicity behavior of subexpressions
of N’ in sentences of the form Det N’ VP.

Monotonicity marking (see van Benthem 1986 for complete exposition). There
is a syntactical method of computing the monotonicity property of positions
within a given expression. Figure 1 is an example involving no donkey anaphora.

Explanation. If the semantics of a phrase structure rule is function applica-
tion, the functor gets +.
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///S\
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((e,t),t) NP VP
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Figure 1: Monotonicity Marking.

+ + +
S— NP VP, NP — Det N, VP — VNP
+/- +/=
(In the last case, ((e,t),t) must ‘type-shift’ to ((e, (e, t)), (e, t)).) In phrase struc-
ture rules with ‘conjunctive’ semantics, both daughters get +.

STy
N — N &

I + .
(The remaining rules, S — who VP, and N’ — N are trivial.) Also, the semantic
type of certain lexical items have markings in some argument positions, and these
markings get transferred to actual arguments they combine with. (For example,

no has type ((e, t), ((e, t),t)), so that the N’ and the VP it combines with get —.)
Finally, the global marking on a lexical item indicating its monotonicity property
is computed according to the following rules, tracing the path from the root node
down to the lexical node.

t+=++—=—, —+=—, ——=+.

We see farmer, owns, and donkey in the above example all get negative
marking. In the ordinary setting, this procedure of monotonicity marking is
sound in the sense that positive (negative) marking implies upward (downward)
monotonicity. Thus, the following inferences are valid:
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(54) No farmer who owns a donkey is poor
No young farmer who owns a donkey is poor

(55) No farmer who owns a donkey is poor
No farmer who owns and feeds a donkey is poor

(56) No farmer who owns a donkey is poor
No farmer who owns a female donkey is poor

These use the fact that [X and Y] C [X], etc.

Now let us look at a donkey sentence, No farmer who owns a donkey beats it.
If we simply apply the above procedure, the lexical markings on farmer, owns,
and donkey remain the same.

No farmer who owns a don_key beats it.
This means that the following inferences should be valid:

(57) No farmer who owns a donkey beats it
No young farmer who owns a donkey beats it

(58) No farmer who owns a donkey beats it
No farmer who owns and feeds a donkey beats it

(59) No farmer who owns a donkey beats it
No farmer who owns a female donkey beats it

And indeed they are intuitively valid. Thus, monotonicity marking on lexical
items produces the right results, even in donkey sentences.

The difference between the earlier invalid case of monotonicity inference (53)
and the present valid ones can be understood as follows.?” In (53), there is a sense
in which the meanings of the substituted expressions, man who owns a house
and man who owns a garden, do not really stand in the appropriate C relation,
because of their different ‘dynamic’ effects. When there is an anaphoric link of
the donkey variety, sentences of the form Det N’ VP can no longer be understood
in terms of the simple scheme [Det]([N], [VP]), where the denotations [N'] and
[VP] of N" and VP are sets of individuals. In a donkey sentence, the contribution
of the N’ to the truth conditions of the sentence is not exhausted by the set of
individuals which is ordinarily taken to be its denotation; part of the semantic
function of N’ is to provide, for each individual z in this set, the set of ‘witnesses’
for z, as the range of possible values for the subsequent donkey pronoun. For
example, in No farmer who owns a donkey beats it, the N', farmer who owns a
donkey, not only specifies the set of farmers who own a donkey, but also, for each

2TNotice that it will not do to simply say that the antecedent of the donkey pronoun must
remain intact; witness (59). Nor will it do to assume that the logicality of the understood
premise of (57)—(59) is essential. In all models with [keeps] C [owns], No farmer who owns a
donkey beats it will imply No farmer who keeps a donkey beats it.
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donkey-owning farmer, the set of donkeys owned by that farmer, from which
it can pick its values. In the case of No man who owns a house sprinkles it
and No man who owns a garden sprinkles it, even though the ordinary ‘static’
denotation of man who owns a garden and man who owns a house may stand in
the C relation, the whole ‘dynamic’ meaning of them does not, since they specify
disjoint sets of entities as the possible range of values for the subsequent donkey
pronoun. In this sense, the necessary premise of monotonicity inference is not
fulfilled here.

In the above valid cases of monotonicity inference (57)-(59), on the other
hand, the substituted expressions (farmer/young farmer, owns/owns and feeds,
donkey/female donkey), containing no noun phrase to serve as a potential an-
tecedent of a pronoun, have no dynamic effect. Their ordinary denotation (set
of /relation between individuals) simply exhausts their semantic content. Hence
the necessary premise of monotonicity inference ([X;] T [X2]) holds, and the
inference goes through. (Note that (53) cannot be thought of in terms of replace-
ment of house by garden, because the required premise [garden] T [house] is
absent.)

The inferences in (57)—(59) can also be viewed as substitution of the first
argument of the determiner, licensed by its left monotonicity. Thus, farmer who
owns a donkey is replaced by young farmer who owns a donkey in (57), by farmer
who owns and feeds a donkey in (58), and by farmer who owns a female donkey
in (59). Here, unlike the earlier invalid case (53), the ‘dynamic effect’ of the
substituted expressions is also being restricted. To take (58) for example, for
each farmer z who owns a donkey, the set of donkeys owned and fed by z is a
subset of the set of donkeys owned by x, so the dynamic denotation of farmer
who owns and feeds a donkey stands in the appropriate C relation to the dynamic
denotation of farmer who owns a donkey.

Let us distinguish two notions of denotation, which we already made an in-
tuitive use of in the above discussion. The static denotation of an expression is
what is usually considered its denotation. If an expression is of type (e, t), its
static denotation is a set of individuals, if it is of type ((e, ), t), its static denota-
tion is a set of sets of individuals, etc. A more enriched notion of meaning is the
dynamic denotation of an expression. The dynamic denotation of an expression
determines its static denotation as well as the expression’s anaphoric properties.
For example, the dynamic denotation [a] of an expression « of type (e, t) can
be taken to be something like a binary relation consisting of pairs of the form
(,{x,Y1,...,Yn)), where n is the number of indefinite noun phrases in o which
can potentially serve as antecedents of upcoming pronouns. The domain of this
relation is the static denotation of a. The range is its ‘dynamic effect’. The
general, precise characterization of the notion of dynamic denotation is not given
here (see Section 4).

The distinction between static and dynamic denotations has repercussions for
the notion of monotonicity, defined in general terms earlier in this section. If we
take [X], the interpretation of X, to be its dynamic denotation, we get a more
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restricted notion of monotonicity than the usual one where [X] is taken to be
static. It is the dynamic notion of monotonicity that makes sense in the presence
of anaphora. The earlier non-inference (53) from No man who owns a house
sprinkles it to No man who owns a garden sprinkles it is a failed case of static
monotonicity inference, which is in general valid only in non-donkey contexts.
(57)-(59) are valid instances of dynamic monotonicity inference.?

3.2 Explanation in Terms of Monotonicity Inference

Now, what does this all have to do with our problem, the correlation between
the monotonicity properties of the determiner and the interpretation of the don-
key sentence? What is of crucial importance here is the fact that the dynamic
monotonicity inferences based on the left monotonicity of the determiner (left
monotonicity inferences, for short) are validated only by one of the two interpre-
tations, and that interpretation coincides with the reading that we observed to
be selected by the monotonicity properties of the determiner.

Thus, of the two putative interpretations of donkey sentences with no, only
the weak reading accords with the validity of the inferences in (58) and (59).%°

(58) No farmer who owns a donkey beats it
No farmer who owns and feeds a donkey beats it

(59) No farmer who owns a donkey beats it
No farmer who owns a female donkey beats it

The following model would invalidate (58) and (59) if the sentences involved had
the strong reading.

(60) [farmer] = {Pedro, Hans}
[donkey] {di,d2,d3, ds}
[owns] {(Pedro, d;), (Pedro, dy), (Hans, d3), (Hans, d4)}
[beats] = {(Pedro,d,), (Hans,d,s)}
[feeds] = {(Pedro,d,), (Hans,ds)}
[female] = {di,ds}

In this model, neither Pedro nor Hans beats every donkey he owns. However,
Pedro beats every donkey he owns and feeds, and Hans beats every female donkey
he owns.

280Qur fundamental assumption in the paper is that a donkey pronoun is like a variable. It
is not considered to be a shorthand for some contextually recoverable definite description or
quantifier expression, to which it must be ‘rewritten’ at some level. Otherwise, when we replace
a certain part of the N’ of the donkey sentence, we are in effect changing the VP as well, and
the inference in question cannot be explained in terms of monotonicity with regard to a single
position.

29The inference in (57) goes through under both interpretations.



21

In general, if the Det of a donkey sentence is |[MON| or TMONT, the weak
reading preserves the validity of inferences based on the left monotonicity of
the determiner, but the strong reading does not. That is, the interpretation of
donkey sentences with TMONT and | MON| determiners is the one that validates
left monotonicity inferences. On the other hand, if the Det of the donkey sentence
is TMON| or |[MONT, it is the strong reading that validates left monotonicity
inferences. And our assumption was that the strong reading is the interpretation
selected by these determiners.

(61) Every farmer who owns a donkey beats it
Every farmer who owns and feeds a donkey beats it

(62) Every farmer who owns a donkey beats it
Every farmer who owns a female donkey beats it

Given the strong reading, both of the above inferences are valid. However, (60)
would serve as a countermodel for (61) and (62) if the sentences involved had the
weak reading.

Thus, the correlation between the monotonicity properties of the determiner
and the interpretation of the donkey sentence is explained if we postulate that
the interpretation selected by a left monotone determiner is the one that val-
idates dynamic monotonicity inferences based on the left monotonicity of the
determiner.?® I contend that this is the basic principle about the interpretation
of donkey sentences.

(63) Left Monotonicity Principle: A determiner upward (downward) monotone
in the first argument selects the reading of a donkey sentence that makes
the N’ position upward (downward) monotone in the dynamic sense.

This principle makes no prediction about non-left-monotone determiners like
most. This is consistent with the fact that most does not seem to favor either
interpretation.>!

We can, if we wish, formulate our claim in more general terms as ‘preservation
of monotonicity’, since monotonicity inferences based on the right monotonicity
of the determiner are validated by both the weak reading and the strong reading,
and thus do not discriminate between them.

(64) Monotonicity Principle: Donkey sentences are (in the default case) inter-
preted in such a way that the monotonicity property of the determiner in
the usual sense guarantees the dynamic monotonicity of the corresponding
argument position.

30Note that even though we are interested in inferences licensed by the left monotonicity
of the determiner, which reading validates such inferences also depends on the determiner’s
monotonicity property on the right.

31Also, if the Det of a donkey sentence is left monotone but not right monotone, the N’
position will not be dynamically monotone on either reading. However, no such determiner
seems to exist in English.



22

In fact, we may talk more abstractly of ‘preservation of inferential patterns’:
inferential patterns that hold in non-donkey sentences are generally preserved in
donkey sentences (see the discussions in Section 5.3.1).

In Section 4, we turn to the formalization of the idea of this section, using dy-
namic predicate logic with generalized quantifiers. As we shall see in Section 5.1,
when the determiner is double monotone (monotone in both arguments), the ef-
fect of the Monotonicity Principle (64) is to pick out a unique interpretation out
of all logically conceivable ones that satisfy some reasonable conditions related
to the earlier empirical observation (16).

4 Dynamic Predicate Logic, Generalized
Quantifiers, Monotonicity

Dynamic predicate logic (DPL) of Groenendijk and Stokhof (1991) augmented
with generalized quantifiers turns out to be convenient in formalizing the ideas
in Section 3. Perhaps the contents of the Left Monotonicity Principle (63) and
the Monotonicity Principle (64) are already clear, but formalization will have an
additional virtue of allowing us to state some further observations. In the interest
of space, the following presentation will have to be sketchy, but the technical
details are completely spelled out in Kanazawa 1993, to which the reader can
turn for more information.

The general idea here is to model donkey sentences using what Groenendijk
and Stokhof would call internally dynamic generalized quantifiers, i.e., quantifiers
that can create ‘indirect binding’ relation between dynamic existential quantifiers
in their first argument and corresponding free variables in their second argument.
Thus, donkey sentences with relative clauses of the form (65a) are modeled by
formulas of DPL with generalized quantifiers of the form (65b):

(65) a. Det N’ [S’ ce [NP,’ a N’] .. ] [VP e [NP{ pI’OIlOllIl] .. ]

b. Quz(p(x);Eyx(z,y), ¥(z,y))

In (65b), £ is the dynamic existential quantifier of DPL, and Q is an internally
dynamic generalized quantifier corresponding to Det in (65a). The first argument
of Q is the translation of N’ [s ...[xp, @ N'] ...] in (65a) ((x) corresponds to
the head N’ and Eyx(z,y) to the relative clause), and the second argument is
the translation of the VP containing the pronoun. The donkey anaphora in
(65a) is captured in (65b) by the ‘indirect binding’ relation between £y and the
occurrence of y in the second argument of Q. Given this representation, the Left
Monotonicity Principle can be stated in precise terms as a condition on Q.

4.1 Dynamic Predicate Logic

In this section, I present my version of DPL. Familiarity with Groenendijk and
Stokhof 1991 will be presupposed, but I will try to explain most important ideas.



23

4.1.1 Language

The language of DPL is obtained by adding some new connectives to the language
of first-order logic. Thus, unlike Groenendijk and Stokhof (1991), I retain all
static connectives from first-order logic

_|, /\7 V’ _—)7 H’ V? 3

with their usual meaning. Dynamic connectives of DPL are symbolized as in
Groenendijk and Stokhof 1990:

5 =, £

These connectives are called dynamic conjunction, dynamic implication, and dy-
namic existential quantifier, respectively. In addition, the language contains two
more binary connectives, which I call meta connectives:

4.1.2 Semantics

The notions of models and assignments for the language of DPL are the same as
in first-order logic. I adopt the convention of writing M to denote the universe
of model M.

The main idea of DPL semantics is to associate with each formula ¢ a binary
relation [¢]nm on assignments to variables as its denotation in model M. For our
purposes, it is expedient to define the usual satisfaction conditions

M = ¢s]

at the same time as the transition conditions

s[elm s'.
Semantics of DPL.

1. The interpretation t™* of a term t with respect to a model M and an

assignment s is defined in the same way as in first-order logic.

2. For Y= h = t2, R(tl)"'atn)7 ﬁlﬁa w/\X, ¢VX> 'l/} - X5 ZZJ =X V.T’l/), 3$¢,
(a) M [= ¢l[s] is defined just as in first-order logic.
(b) s[plms" iff s=s5 and M E ¢ls].
3. For p =15 x,
(a) M = ¢[s] iff for some ¢, s[p]m s
(b) s[elm s’ iff for some s”, s[¢]m s” and s” [x]m s
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4. For ¢ =9 = ¥,

(a) M = ¢[s] iff for all &, s[¢]m s’ implies M = x[s'].
(b) sfelm s’ iff s=¢" and M E ¢[s].

5. For o = Ex,

(a) M E p[s] iff for some s, s[¢]m -
(b) sle]m s’ iff for some a € M, s(a/x) [¢]m s

6. For ¢ = ¢ ~ ¥,

(a) M [ ¢[s] iff for all &, s[¢]m s’ just in case s [x]m s
(b) s[elm s iff s=s and M = ¢ls].

7. For p =9 =2 x,

(a) M = p[s] iff for all &', s[¢]m s’ implies s [x]m '
(b) s[p]lm s iff s=5 and M = ¢[s]

The notions of truth and validity are defined in the usual way in terms of
satisfaction: M = ¢ (p is true in M) if and only if for every s: VAR — M,
M E ¢[s]; and = ¢ (p is valid) if and only if for all M, M |= ¢.

The semantics of the meta connectives given in clauses 6 and 7 can be seen
as Groenendijk and Stokhof’s (1991) equivalence (~) and meaning inclusion (=)
relativized to models and assignments. ¢ ~ 9 (¢ < 1) in their sense if and only
if Fo >~ (FE ¢ =1)in my sense. The connective < is used to express dynamic
monotonicity.

By clause 2, if ¢ is a formula of first-order logic, M = ¢[s] in DPL if and only
if M = ¢[s] in first-order logic.

The (b) part of clauses 2, 4, 6, and 7 shows that all formulas except those of
the form 1 ; x and £z are tests, and all connectives except ; and £ are externally
static, in the sense of Groenendijk and Stokhof (1991).

The following are some of the most important validities in DPL:

(66) (0;9)ix =~ ¢©;(®;x)
(67) ;v =>x = o= (Y=X)
(68) Exp;v ~ Ex(p;v)
(69) Exp =Y =~ V(o= 1)

These properties of dynamic connectives are used to represent intersentential
and donkey anaphora in natural language. See Groenendijk and Stokhof 1991 for
examples.
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The set of active quantifier variables in ¢, AQV(p), and the set of free vari-
ables in ¢, FV(yp), are defined as in Groenendijk and Stokhof 1991. The im-
portant thing is that dynamic existential quantifiers introduce active quantifier
variables, and variables in AQV () NFV(y) behave like bound variables in ¢ ;9
and ¢ = 9 at their occurrences in 7). If the main connective of ¢ is externally
static, AQV(p) = 0.

The following equivalences are also important.

(70) p;Exp = Ex(p;7) if z ¢ AQV(p) UFV(yp)
(71) i = AP if AQV(p) NFV(y) =0
(72) =Y 2 op—Y if AQV(e)NFV(y) =10
(73) Exp < dzp

4.2 Static Generalized Quantifiers

Static generalized quantifier symbols taking two formulas as arguments can be
introduced into DPL in the following way, just like other static connectives.

8. For ¢ = Qz(¥, x),

(a) M= o[s] iff
({ae MM E ¢[s(a/z)] },{a € M [M = x[s(a/2)] }) € Qum,
(b) s[elm s’ iff s=s" and M [ ¢]s].

The (a) part is the satisfaction conditions from ordinary first-order logic with gen-
eralized quantifiers. Here, it is assumed that each generalized quantifier symbol
Q is associated with a functional AM.Q ), mapping a universe M to a two-place
monadic generalized quantifier on M, Qs C pow(M) x pow(M).

The above semantics makes any static generalized quantifier  behave in DPL
with generalized quantifiers just like it does in first-order logic with generalized
quantifiers. In particular, the following equivalence is always valid:

Equivalence (EQUI).
V(e < @) AVE( = ¢) = (Qz(p, ¥) < Qu(¢, ¢))

Moreover, if ) stands for a quantifier satisfying Conservativity, the following
schema is valid:

Conservativity (CONS).
Qz(p,¥) = Qz(p, o A1),

Monotonicity properties of @) correspond to validity of the following schemas:
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Monotonicity.
TMON  Vz(p — ¢') — (Qz(p,¥) — Qz(¢',¥))
IMON  Vz(¢' — ¢) — (Qz(p,¥) — Qz(¢',¥))
MONT  Vz(¢ — ¢') — (Qz(p, ¥) — Qz(p,¥'))
MON| Vz(¢' — ¥) — (Qz(p, ) — Qz(p,¢"))

That is, if @ is a symbol for a TMON quantifier, the first schema in the above
list is valid, etc.

Note that the weak reading and the strong reading of a donkey sentence of
the form (65a), repeated here as (74), can be expressed by formulas of first-order
logic with generalized quantifiers of the form (75) and (76), respectively.

(74) Det N’ [S' . [NPi a NI] .. ] [Vp SN [NPi pI‘OIlOllIl] .. ]
(75) Qz(p(x) A Jyx(z,y), Iy(x(z,y) Ad(z,y)))
(76) Qz(p(x) A Jyx(z,y), Yy(x(z,y) — ¥(z,9)))

Here, @ is the two-place generalized quantifier corresponding to the Det in (74),
and ¢ represents the head N’ of the subject, Jyx(z,y) the relative clause, and ¥
the VP.

4.3 Dynamic Generalized Quantifiers

To model donkey sentences in DPL, we need to introduce dynamic generalized
quantifiers. Such quantifiers must be internally dynamic in the way ; and =
are; they must allow ‘indirect binding’ between dynamic existential quantifiers in
their first argument and corresponding free variables in their second argument.
(I assume that our dynamic generalized quantifiers are externally static.)

I use script Q as a symbol for internally dynamic generalized quantifiers. It is
not necessary or important for our purposes to specify the format for the seman-
tics of formulas of the form Qz(y,%). All we need is to state some conditions
that such formulas should satisfy.

I assume that all internally dynamic generalized quantifiers must validate the
following schema:*?

Dynamic Equivalence (DEQUI).
Vz(p = @) AVIVy1 .. V(¥ < ¢) — (Qz(e, ¥) « Qu(¢', ¥))

where {y1,...,Yn} = AQV(p). This is the dynamic version of EQUI. The fact
that the dynamic effects of the first argument of Q reach into the second argument
requires ‘dynamic equivalence’ ~ for the first argument and the extra quantifiers
Yy; ... Vy, for the second argument. Since the dynamic effects of the second
argument should not matter (donkey anaphora works only from left to right),
static equivalence « suffices for the second argument.

32There is another condition concerning renaming of bound variables. See Kanazawa 1993.
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4.3.1 Chierchia’s Two Definitions of Dynamic Generalized Quantifiers

It is possible to define dynamic generalized quantifiers in terms of static ones and
dynamic connectives of DPL. The following two schemata, which are essentially
due to Chierchia (1990), define dynamic generalized quantifiers corresponding to
the two interpretations of donkey sentences.

(78) Qsz(p,¥) < Qu(p,p =)
(77) is used to represent the weak reading of donkey sentences, and (78) the
strong reading.

Let us see how the two dynamic generalized quantifiers MOSTy and

MOSTg, defined in terms of MOST by (77) and (78), can be used to repre-
sent the two readings for (79).

(79) Most farmers who own a donkey beat it.

The two readings of (79) are represented by the following two formulas:

(80) MOST yz(farmer(zx) ; Ey(donkey(y) ; own(z, y)), beat(x,y))
(81) MOST gzx(farmer(z) ; Ey(donkey(y) ; own(z, y)), beat(x,y))

By definition, (80) and (81) are equivalent to (82) and (83), respectively.

(82) MOSTz(farmer(z) ; Ey(donkey(y) ; own(z, y)),
(farmer(z) ; Ey(donkey(y) ; own(z,y))) ; beat(z, y))
(83) MOSTzx(farmer(zx) ; Ey(donkey(y) ; own(z, y)),

(farmer(z) ; Ey(donkey(y) ; own(zx,y))) = beat(z,y))

By the conservativity of MOST and the properties of dynamic connectives, (82)
and (83) turn out to be equivalent to (84) and (85), which express the two readings
of (79) in first-order logic with generalized quantifiers.

(84) MOSTz(farmer(z) A Jy(donkey(y) A own(z,y)),
Jy(donkey(y) A own(z,y) A beat(z,y)))
(85) MOSTz(farmer(x) A Jy(donkey(y) A own(zx,y)),

Vy(donkey(y) A own(z,y) — beat(zx,y)))

The equivalences like these hold in general. If ) is conservative, z,y &
AQV(x(z,y)), and = & AQV(p(z)),

(86) Qwr(p(z); Eyx(x,y), ¥(z,y))
= Qu(p(x) A yx(z,v), Jy(x(z,y) AY(z,y)))
(87) QSJ:(QO(Q:) ; SyX(xa y)? w(x’ y))

< Qu(p(z) A Jyx(z,y), Yy(x(z,y) — ¥(z,y)))
Compare (75) and (76).
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4.3.2 Dynamic Conservativity

Given that Qw and Qg are adequate for the purpose of representing the weak
and strong readings of donkey sentences, our task now is to formulate the Left
Monotonicity Principle as a condition that chooses between Qy and Qg on the
basis of the monotonicity properties of ). Before turning to this task, however,
let us briefly discuss Chierchia’s (1990) claim that Qw is to be uniformly favored
over Qg, for any . His reason is that Qy,, but not Qg, satisfies the following
dynamic version of Conservativity.3®

Dynamic Conservativity 1 (DCONS1).
Qz(p,¥) « Qz(p, ;)

Since ; is the dynamic connective corresponding to A, it might seem natural to
impose DCONSI as a basic condition on dynamic generalized quantifiers. How-
ever, his argument is inconclusive, for DCONSI is not the only natural dynamic
version of CONS.34

Since there are clear cases where the strong reading given by Qg is the right
interpretation, and Chierchia’s alternative explanation for those cases does not
seem to work,?® it would be unreasonable to insist on his notion of dynamic
conservativity.

In fact, there is a natural notion of dynamic conservativity which, unlike
Chierchia’s, does not have the unwanted consequence of excluding Qg. This is
the dynamic version of Conservativity which we adopt:

Dynamic Conservativity (DCONS).
Vi(p = (¥ < ¢) = (Qu(p,¥) < Qu(p, )

Note that if we replace = by — and Q by @, we get a condition equivalent to
CONS. It is easy to see that DCONS is satisfied by both Qy and Qg.3¢

Unlike DCONS1, DCONS is reasonable on intuitive grounds. In contrast to
(88), an equivalence like (89), which corresponds to an immediate consequence
of DCONS, seems to be undeniable, even when the exact truth conditions of the
sentences involved are not clear, e.g., when @ is most.

(88) @ farmer who owns a donkey beats it «
Q@ farmer who owns a donkey owns a donkey and beats it

(89) @ farmer who owns a donkey beats it «
Q farmer who owns a donkey owns it and beats it

33There is a proviso that AQV(¢) NFV(p) = 0.

34As I show in Kanazawa 1993, there is a natural dynamic version of CONS which is satisfied
by Qg, but not by Qw .

35Chierchia (1992) tries to explain the presence of strong reading in some donkey sentences
by assuming that donkey pronouns are ambiguous between ‘dynamically bound variables’ and
‘E-type pronouns’. The inadequacy of this proposal is shown in the Appendix.

36 An analogue of DCONS is also satisfied by the internally dynamic connectives of DPL (;
and =). :
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4.4 Dynamic Monotonicity and Formalization of the
Left Monotonicity Principle

In Section 3, the dynamic notion of monotonicity was defined in terms of the
inclusion relation between dynamic denotations. Let us first consider how to
express the latter in dynamic predicate logic.

When two natural language expressions « and ( of type (e,t) are trans-
lated into DPL as formulas ¢(z) and ¢'(x) with one free variable z, the con-
dition that the static denotation of « includes that of § is expressed by the
formula Vz(¢'(z) — ¢(x)). For example, if « is man who owns a house and
B is man who owns a garden, then ¢ = man(z);Ey(house(y);own(z,y)), and
¢ = man(x) ; Ey(garden(y) ;own(z,y)), and the following formula says that the
static denotation of § (the set of men who own a garden) is a subset of the static
denotation of « (the set of men who own a house):

(90) Vz(man(z) ; Ey(house(y) ; own(z,y))
— man(z) ; £y(garden(y) ; own(z, y))).

Note that (90) is equivalent to the following:

(91) Vz(man(z) A Jy(house(y) A own(z,y))
— man(z) A Jy(garden(y) A own(z,y))).

The inclusion of dynamic denotations is a stronger condition. In the above
example, it should amount to the inclusion between the set of man-house pairs
and the set of man-garden pairs. It turns out that this is expressed by the
following formula, which is obtained from (90) by replacing — by <.

(92) Vz(man(zx); Ey(house(y) ; own(z,y))
=< man(z); Ey(garden(y) ;own(z,y))).

(92) is equivalent to the following:

(93) VzVy(man(z) A house(y) A own(z,y)
— man(z) A garden(y) A own(z,y)).

(Of course, in the model we considered in Section 3.1, (92) does not obtain.) In
general, if natural language expressions a and 3 of type (e, t) are translated into
DPL as ¢(z) and ¢'(z), Vz(¢'(z) X ¢(x)) expresses the fact that the dynamic
denotation of a includes that of 3 ([3] C [«]).

These considerations lead to the formulation of Dynamic Monotonicity in
terms of the validity of the following schemas in dynamic predicate logic with
generalized quantifiers.®” Let {y1,...,yn.} = AQV(p).

37Indeed, dynamic monotonicity with respect to an arbitrary position, not just for the argu-
ment positions of dynamic generalized quantifiers, can be defined along the same line.
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Dynamic Monotonicity.
TDMON  Vz(p 2 ¢') — (Qz(p,¥) — Qz(¢',¥))
IDMON  Vz(¢' 2 ¢) — (Qz(p,v) — Qxz(¢',¥))
DMONT  VaVy, .. ¥ya(t) — o) — (Qa(ep, ¥) — Qu(p, v'))
DMON|  VaVy;...Vy.(¢" — ¥) — (Qz(p,¥) — Qz(p,¢'))

Compare these formulas with the corresponding formulas for static monotonicity
(see Section 4.2). The TDMON and |[DMON formulas differ from the TMON
and |MON formulas in that the first occurrence of — in the latter formulas
is replaced by < in the former. In DMONT and DMON|, the extra universal
quantifiers Yy . .. Vy, are required because the free occurrences of yy,...,y, in ¢
(‘donkey variables’) become bound in Qz(p,%). On the other hand, we do not
need < there because the dynamic effects of the second argument do not matter.

As summarized in Table 2, if Qy and Qg are defined by (77) and (78) from
a double monotone static quantifier @), either Qy or Qs, but not both, turns
out to be dynamically left monotone. (When we say that Q is TDMON, etc.,
we mean that a dynamic generalized quantifier Q validates the schema TDMON,
etc.)

L @ [ 9w [ 9 |

TMONT || TDMONT | /DMONT
TMON] || /DMON| | {DMON|
IMONT | /DMONT | |DMONT
IMON| | |DMON]| | /DMON|

Table 2: Dynamic monotonicity of Qy and Qg.

For example, since NO is |[MON|, N Oy defined from NO is |[DMON. This
means that (94) and (95) imply (96), which corresponds to the valid inference
(58):

(94) N Oy z(farmer(z) ; Ey(donkey(y) ;own(z, y)), beat(z,y))
(95) Vz(farmer(z) ; Ey(donkey(y) ; (own(z, y) ; feed(z, v)))
< farmer(z) ; Ey(donkey(y) ; own(z,y)))
(96) NOwz(farmer(z) ; Ey(donkey(y) ; (own(z, y) ; feed(z, y))), beat(z,y)).

Recall that we are representing donkey sentences of the form Det N’ VP
by formulas of the form Qz(p,), where Q is a dynamic generalized quantifier
corresponding to the Det, and ¢ and v are the translations of the N’ and VP in
DPL, respectively. Given the above formulation of Dynamic Monotonicity, the
Left Monotonicity Principle (63) can be stated in the following way:

(97) If the Det of a donkey sentence is TMON (|MON), the dynamic generalized
quantifier appropriate for representing its (default) interpretation is the
TDMON (|DMON) one.

The Monotonicity Principle (64) can be stated in a similar way.
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5 Discussions and Speculations

5.1 The Monotonicity Principle as an Implicit Definition

So far, our concern has been to choose between the weak reading and the strong
reading using dynamic left monotonicity as a criterion. We simply assumed that
the correct interpretation is given by one of these two readings (cf. (17)), and did
not ask why only these, not some other logically conceivable interpretations, are
the possible options. In fact, the Monotonicity Principle can answer this latter
question, too, if we make some additional reasonable assumptions. When the
determiner is double monotone (monotone in both arguments), either the weak
reading or the strong reading is the only logically possible interpretation that
satisfies the Monotonicity Principle and a few other natural conditions.

As in the previous section, the relevant observation is stated in precise terms
using dynamic predicate logic with generalized quantifiers. Under certain minimal
conditions, the Monotonicity Principle uniquely determines a dynamic general-
ized quantifier Q corresponding to a double monotone quantifier Q.

In addition to DEQUI, which holds of all dynamic generalized quantifiers by
definition, I assume two minimal conditions on Q. One is the earlier condition of
Dynamic Conservativity:

Dynamic Conservativity (DCONS).
Vi(p = (Y = ¢)) = (Qz(p, ) < Qz(p,9"))

As we have seen, this roughly corresponds to an equivalence like the following:

(98) @ farmer who owns a donkey beats it <
Q@ farmer who owns a donkey owns it and beats it

The other condition is what I call Agreement. It is a condition on the relation
between a static quantifier @) and its dynamic counterpart Q:

Agreement. If AQV(p) NFV(y) =0,
Qz(p,¥) « Qz(v,¥)

This condition says that Q must agree with ) when there is no ‘indirect binding’
between the first argument and the second argument.3® It roughly corresponds
to the requirement that the semantics of donkey sentences should also work for
non-donkey sentences:

(99) @ farmer who owns a donkey is rich.

The two dynamic generalized quantifiers Qw and Qg defined from a conser-
vative ) by Chierchia’s schemas satisfy DCONS and Agreement. If the E-type
reading and the pair quantification reading were to be formulated in terms of

38Recall that analogous equivalences hold for two dynamic connectives of DPL (cf. (71) and

(72)).



32

dynamic generalized quantifiers, they would satisfy DCONS, but not Agreement.
The dynamic generalized quantifier corresponding to the putative reading ‘Most
farmers who own a donkey beat most of the donkeys they own’ of Most farmers
who own a donkey beat it would satisfy both DCONS and Agreement.

In fact, DCONS and Agreement have the effect of excluding any interpretation
that contradicts the empirical observation (16) about consistent donkey-beating
stated in Section 1. This is the content of the following lemma (see Kanazawa
1993 for proof):

LEMMA 1. If Q satisfies DCONS and Agreement, then the following holds:

Va((p = ¥) V ~(p; ) —
(Qz(p, %) < Qwz(p, V) N (Qr(p, V) < Qsz(p, 7))

Note that the antecedent of the formula in Lemma 1 states the condition of
consistent donkey-beating.
The Monotonicity Principle is formulated as follows:

(100) Monotonicity Principle.
If @ is TMON (|MON), then Q must be TDMON (|DMON).
If @ is MONT (MON]), then Q must be DMONT (DMON]).

The following two propositions give the combined effect of the Monotonicity
Principle, DCONS, and Agreement (see Kanazawa 1993 for proof).

PROPOSITION 2. Assume that Q satisfies DCONS and Agreement. If Q is
moreover DMONT,

If @ is DMON|, the reverse implications hold.

PROPOSITION 3. Assume that Q satisfies DCONS and Agreement. Then if Q is
TDMON,

Qwa(p,¥) — Qu(p,¥) and Qsz(p,¥) — Qz(p,¥).
If @ is |DMON, the reverse implications hold.

By the two propositions, any Q which is, say, TDMONT and satisfies DCONS
and Agreement implies and is implied by Qy . That is, if @ is a TMONT static
generalized quantifier, Qy is the only TDMONT dynamic generalized quantifier Q
that satisfies DCONS and Agreement with respect to Q. Similarly with the other
three double monotonicity patterns: among the dynamic generalized quantifiers
that satisfy DCONS and Agreement, there is a unique one picked out by dynamic
double monotonicity. Thus, given DCONS and Agreement, the requirement of the
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Monotonicity Principle amounts to an implicit definition of a dynamic generalized
quantifier corresponding to a given double monotone static quantifier.

This formal result allows us to shift our perspective on donkey sentences.
Instead of stating the possible interpretations of donkey sentences explicitly by
certain paraphrases or specific dynamic generalized quantifiers (and choosing one
of them by some principle), it is possible to characterize the interpretation of don-
key sentences ‘implicitly’ by a set of conditions that it has to satisfy. In fact, the
present characterization in terms of three conditions may have some advantages.
First, the conditions used here—Dynamic Conservativity, Agreement, and the
Monotonicity Principle—are all natural ones in that (i) they basically say that
donkey sentences should share certain semantic characteristics of non-donkey sen-
tences, and (ii) they are backed up by clear intuitions, namely, intuitions about
equivalences like (98), intuitions stated in (16) with regard to consistent donkey-
beating, and intuitions about the validity of monotonicity inference. Second,
the characterizing conditions underspecify the interpretation of donkey sentences
with non-left-monotone determiners like most; they allow much more possibilities
than just the weak reading and the strong reading,® while still predicting the
clear intuitions about consistent donkey-beating situations. This seems to mirror
people’s reactions to some donkey sentences with most.

A similar perspective will be elaborated in Section 5.3.2.

5.2 Exactly n

We have so far failed to consider determiners of the form ezactly n, which are not
monotone in either argument. Since the Left Monotonicity Principle does not
apply to these determiners, we would predict that they do not favor either the
weak or the strong reading when they appear as the Det of donkey sentences. The
facts seem to be that they select the weak reading, and this presents a problem
for our account:

(101) Exactly three farmers who own a donkey beat it.

(102) Exactly four students who borrowed a book from Peter returned it.
There are two possible lines of solution here. One approach makes an extended

use of the Left Monotonicity Principle. First of all, notice that although ezactly

n is not itself left monotone, it is a conjunction of two left monotone determiners,
namely, at least n and at most n.

EXACTLY nz(p,v) < AT_-LEASTnz(p,%) A AT-MOST-nz(p, )

Since at least n is TMONT and at most n is |[MON]|, they are both supposed
to select the weak reading; the adequate dynamic counterparts of AT_LEAST n

39In particular, the putative reading ‘Most farmers who own a donkey beat most of the
donkeys they own’ of Most farmers who own a donkey beat it satisfy the three conditions.
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and AT_-MOST-n are AT LEAST nw and AT_MOST_ny. Now it is not unrea-
sonable to suppose that the above factorization of ezxactly n into at least n and
at most n should be preserved in donkey sentences; i.e., the suitable dynamic
version EXACTLY-n of EXACTLY n should satisfy:

EXACTLYnx(p, ) « AT_LEAST nwzx(p, V) N AT_MOST nwx(p, )

If this is so, it is easy to see that EXACTLY.n should be EXACTLY ny rather
than EXACTLY ng.*0

There is a different, more ‘semantical’ way of looking at this same explanation,
in terms of left continuity of exactly n. At the level of denotation, a quantifier @
is said to be left continuous if it satisfies the following:

Foral ACBCCCMandallDC M,
QumAD and QpCD imply QuBD.

Now ezactly n is left continuous. In fact, a quantifier is left continuous if and
only if it can be expressed as a conjunction of a TMON quantifier and a |MON
quantifier. Then we can suppose that a somewhat weaker principle than the Left
Monotonicity Principle applies to left continuous determiners.

(103) Left Continuity Principle: A left continuous determiner selects the reading
of a donkey sentence given by a dynamic generalized quantifier which is
dynamically left continuous.

The dynamic notion of Left Continuity can be defined by an obvious analogy
with Dynamic Monotonicity. It is easily checked that EXACTLY.nw, but not
EXACTLY. ng, is dynamically left continuous.*!

A second explanation is the following. Ezactly n, like the TMONT and |[MON |
determiners we have considered, is symmetric; it satisfies the following condition
(Symmetry):

Forall AABC M, QuAB ifft QuBA

Now under CONS, Symmetry is equivalent to the following condition, which I

call Intersection:*?

40The same explanation might be more plausible for donkey sentences with complex deter-
miners like some but not all:

(i)  Some but not all farmers who own a donkey beat it.

Interestingly, the interpretation predicted by the factorization of some but not all into some and
not all would be neither the weak reading nor the strong reading, but the pair quantification
reading. I do not know if this is supported by intuitions.

41Even when @ is left monotone, either Qy or Qg generally fails to be dynamically left
continuous.

42This is slightly different from, but equivalent (under CONS) to, what Barwise and Cooper
(1981) called ‘intersection condition’.
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Forall AABC M, QuAB iff Qu(ANB)M
In terms of first-order logic with generalized quantifiers, it comes out as follows:
Intersection. Qz(p, ) « Qz(p A1, true)

Unlike Symmetry, Intersection can be expressed in English very naturally as
follows, assuming Barwise and Cooper’s (1981) semantics for there-sentences.*3

Det N’ VP« There is/are Det N’ who/which VP
For example,
(104) Two boys are crying « There are two boys who are crying

It is not an unnatural requirement that this paraphrasability should be preserved
in donkey sentences. Witness:

(105) No farmer who owns a donkey beats it
There is no farmer who owns a donkey who beats it

This leads us to a dynamic version of Intersection:

Dynamic Intersection.

Qx(p, ) « Qx(¢; ¥, true)

Interpreting relative clause modification naturally as dynamic conjunction, as we
have been, we see that Dynamic Intersection does guarantee paraphrasability
by there-sentences. Our pattern of explanation should now be familiar. If @
satisfies Intersection, Qu, but not Qg, satisfies Dynamic Intersection.** The
relevant principle about interpretations of donkey sentences is:

(106) Intersection Principle: A determiner satisfying Intersection selects the
reading of a donkey sentence given by a dynamic generalized quantifier
satisfying Dynamic Intersection.

As it turns out, the Intersection Principle has an additional virtue. Since
the TMONT and |[MON| determiners we have considered are all symmetric, the
Intersection Principle provides another explanation for the weak readings of don-
key sentences with these determiners. The fact that those donkey sentences never
seem to allow strong readings and the intuitions about their weak readings seem
much clearer than the intuitions about strong readings of some donkey sentences
may be due to the fact that their weak readings are, so to speak, doubly guaran-
teed by the Left Monotonicity Principle and the Intersection Principle.

43 According to Barwise and Cooper (1981), a sentence of the form ‘There is/are Det N’ is
true in a model with universe M iff [Det]([N'], M).
44Note that, given Agreement, Dynamic Intersection uniquely determines Q out of Q.
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5.3 Inference and Interpretation

In this section, I engage in highly speculative discussions about the role of infer-
ence in the interpretation of donkey sentences.

5.3.1 Preservation of Inferential Patterns

What is the status of the Left Monotonicity Principle? The discussion in Sec-
tion 5.2 suggests that it may be more fruitful to understand the Left Monotonicity
Principle in the context of a more general tendency: the interpretation of donkey
sentences should preserve the valid inferential patterns of non-donkey sentences.
As we have seen, Monotonicity and Intersection properties of a quantifier corre-
spond to very natural patterns of inference in English.*> Another natural class
of inferences are those based on the Square of Opposition. Like inferences based
on Monotonicity and Intersection, they are felt to be valid even in the case of
donkey sentences:

(107) a. Some student who borrowed a book from Peter didn’t return it «
Not every student who borrowed a book from Peter returned it

b. Every student who borrowed a book from Peter didn’t return it «
No student who borrowed a book from Peter returned it

Indeed, the above inferences are validated by the readings we have assumed. No-
tice that if, for instance, all donkey sentences had the weak reading, equivalences
like these would not hold. Similarly, the following sentences are intuitively felt
to be contradictory:

(108) a. Every student who borrowed a book from Peter returned it
b. Some student who borrowed a book from Peter didn’t return it
Given that the first sentence has the strong reading and the second the weak

reading, as we have been granting, they are indeed contradictory. In fact, it was
a contradiction like this which led Geach (1962) to conclude that it is inadequate

45Note that some properties of quantifiers do not directly correspond to any natural forms
of inference. For example, to express Symmetry in English, one has to resort to circumlocution
(cf. van Benthem 1987):

(1) Some boy is crying «
*Some is crying boy «
Someone who is crying is a boy
(The second line is what results from the first line by a simple interchange of N’ and VP.) In

the case of donkey sentences, Symmetry doesn’t even make sense, since conversion of N’ and
VP destroys the possibility of donkey anaphora:

(ii) No farmer who owns [a donkey]; beats it; <
*No person who beats it; is a farmer who owns [a donkey];

Thus, there is no place for a dynamic notion of Symmetry in donkey sentences.
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to paraphrase Any man who owns a donkey beats it by Any man who owns a
donkey owns a donkey and beats it.

Thus, there seems to be a general tendency that certain types of inferences
are preserved in donkey sentences. The types of inferences in question are mono-
tonicity inferences (cf. (61) and (62)), paraphrasing by there sentences (cf. (105)),
and inferences based on the Square of Opposition (cf. (107) and (108)). In fact,
it would seem that the intuitions about the validity of these inferences with don-
key sentences—the feeling that they must be valid, or the inclination to draw
such inferences—are stronger than the intuitions about the truth conditions of
individual donkey sentences.

If we look at inferences with ordinary quantified sentences based on Mono-
tonicity, Intersection, and the Square of Opposition, we see that they are ex-
pressed in natural sentences, and involve only a simple manipulation of form.
Their validity is felt obvious, and most likely people rely on such inferences in
everyday linguistic activities. It would not be so unreasonable to suppose that
language users are actually resorting to some sort of formal ‘calculi’ for these
inferences, skipping over laborious computations involved in comparing two sets
of truth conditions. For monotonicity inference, the calculus might involve some-
thing like the system of monotonicity marking sketched in Section 3.1.%6 Then,
the intuitions about certain inferences involving donkey sentences might perhaps
be the result of mechanically applying such calculi to donkey sentences.

If the above model of how people draw certain inferences mechanically is
on the right track, then the facts about the interpretation of donkey sentences
might receive some sort of functional explanation: it comes as no surprise if the
semantics of donkey sentences is set up in such a way that inferential mechanisms
that are primarily designed to apply to ordinary quantified sentences of a certain
form are also safely applicable to sentences that have the same superficial form
except that they involve donkey anaphora.

5.3.2 Inference as a Basis of Judgment

So far, we have not proposed any concrete model of the mechanism that assigns
interpretations to donkey sentences. Although it would not be difficult to extract
a compositional semantics from my treatment of donkey sentences in dynamic
predicate logic with generalized quantifiers, our interest in this paper is not in
finding the right set of compositional semantic rules that give donkey sentences
the interpretation that they actually have (in the default case). Such a set of

46Consider the following inference, which is valid due to the left continuity of ezactly three:

(i) Exactly three farmers who own a donkey are rich
Exactly three young farmers who own a female donkey are rich
Therefore, exactly three farmers who own a female donkey are rich

Unlike monotonicity inferences like (54)—(56), the validity of (i) is not immediately obvious; it
requires some thought to arrive at the conclusion that it is valid. It would be unreasonable to
suppose the existence of a calculus tailored for inferences like (i).
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rules would not answer the main question of this paper—the question why it
is that donkey sentences have the interpretation that they do have. Why is it
that the weak reading and the strong reading are distributed in the way they are
rather than the other way around, when it is just as easy to write an alterna-
tive set of rules that yields the opposite distribution? Such a question usually
does not arise in semantics; it would be futile to ask why in English and means
conjunction and or disjunction, rather than the other way around. However, the
systematic correlation between the monotonicity properties of the determiner and
the interpretation of donkey sentences is interesting and does seem to be the kind
of phenomenon that calls for an explanation. Our finding, in abstract terms, is
that given the semantics of non-donkey sentences, the actual (default) interpre-
tation of donkey sentences is the logically natural one in that it preserves certain
important characteristics of the interpretation of non-donkey sentences.

This finding, however, is in a way just a ‘meta-level’ observation; one might
say that we have only observed that the pattern uncovered in the interpretations
of different donkey sentences has a distinguishing characteristics that separates
itself from other conceivable patterns. At the end of Section 5.3.1, I suggested that
our finding might be exploited to provide some kind of functional explanation.
In this section, I would like to try a completely different line, and suggest a
speculative model of how people assign interpretations to donkey sentences in
actual language use. The model turns out to highlight the central importance of
left monotonicity after all. What follows is a pure speculation without any firm
evidence. Whether or not one finds it appealing will depend on one’s taste.

The primary assumption I make is the following:

(109) The grammar rules in general underspecify the interpretation of a donkey
sentence.

Thus, I assume that, for any donkey sentence, the grammar only partially charac-
terizes its meaning, with which a range of specific interpretations are compatible.
So the truth value of donkey sentences in particular situations may be left unde-
cided by the grammar. This may not be such an outrageous idea; it may explain
the lack of robust intuitions about donkey sentences.*’

For the sake of concreteness, I assume that the underspecified interpretation
of a donkey sentence Det N’ VP assigned by the grammar can be represented
using an indeterminate dynamic generalized quantifier Q which is related to the

4TPeople often do not have a very clear idea of what donkey sentences mean—I took this
to be a relatively uncontroversial point, but a few people, including an anonymous referee
and the subject editors of the journal, have expressed doubt. Certainly, what is claimed by
Every student who took a course from Peter liked it is less clear than what is claimed by its
purported paraphrase Every student who took a course from Peter liked every course he or she
took from him, isn’t it? Relative clarity of the intuitions about donkey sentences with no seems
to be an exception rather than the rule, and even here, native speakers sometimes give guarded
judgments like ‘I would say that this is misleading’ instead of downright ‘False’. Conversations
about my work with native speakers have generally reinforced my assessment that judgments
about donkey sentences are subtle.
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static generalized quantifier () denoted by Det and which satisfies certain natural
properties. Using the notions from Sections 4 and 5.1, let us say that the cor-
relation between Q and @ is given by Agreement, and Q is supposed to satisfy
DEQUI and DCONS.

Even if its interpretation is underspecified, a sentence may be assigned a
definite truth value in special circumstances. As shown in Section 5.1, all specific
interpretations compatible with the underspecified interpretation of a donkey
sentence agree on truth-value in consistent donkey-beating situations. It is not
unreasonable to suppose that people are capable of assessing the truth value of
a donkey sentence without resolving the ‘vagueness’ of the meaning given by the
grammar when there is no need to do so. For our purposes, it is enough to assume
that underspecification causes no problem for people in assigning a truth value
to a donkey sentence in situations where the uniqueness condition for the donkey
pronoun is met. These are a special class of consistent donkey-beating situations,
and the uniqueness condition can be checked just by looking at the extensions of
the predicates in the N’ of the sentence.

Let us take (1) as an example.

(1)  Every farmer who owns a donkey beats it.

Under the present assumption, the truth value of (1) in situations where all
farmers own at most one donkey is clearly and immediately recognized by the
language user. In those situations, (1) is assigned the same truth value as Fvery
farmer who owns a donkey beats the donkey he owns. Now I want to suggest that,
given the distribution of truth values in those situations, a certain very natural
inference based on the downward left monotonicity of every allows one to assign
truth values to (1) in situations where the uniqueness condition is not met.

The inference in question has to do with a correspondence between left mono-
tonicity of a quantifier and the preservation behavior of sentences of a certain
form. In first-order logic with generalized quantifiers, we have the following:

PROPOSITION 4. Assume that @ satisfies CONS and Extension. Then, @ is
TMON (|MON) if and only if every sentence of the form Qz(p, ), where ¢ is
existential and v is quantifier-free, is preserved under extensions (submodels).*8

This means that the following patterns of ‘inference from submodels’ are valid.
Let ¢ and 9 be as in Proposition 4, and let us indicate left monotonicity of @ by

1Q and |Q.

48 A first-order formula ¢ is called ezistential if it is of the form 3z ...z, for a quantifier-
free ¥. A model M (with universe M) is called a submodel of a model N (with universe N) (in
symbols, M C N) if M C N and PM — pN q p7 for all n-ary relation symbols P, FM _
FN [ M™ (restriction of F N o M ™) for all n-ary function symbols F, and M =N e M for
all constant symbols ¢. If M C N, N is called an extension of M. A sentence ¢ is said to be
preserved under extensions (submodels) if M |= ¢ implies N = ¢ whenever M C N (N C M).
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Confirmation: NCM N E 1Qz(p, )
M E 1Qz(p,¥)

Refutation: NCM N K |Qx(pv)
M ¥ |Qz(p, )

Confirmation and Refutation are the ‘transmodel’ version of monotonicity
inference. I think people may in fact use this sort of inference when they try
to determine the truth value of quantified sentences on the basis of limited
information.*® For instance, suppose you are trying to determine the truth value
of (110), which is represented in first-order logic with generalized quantifiers as
(111):

(110) Every farmer who owns a donkey is rich.
(111) EVERY z(farmer(x) A Jy(donkey(y) A own(z,y)), rich(z))

Notice that the first argument of EVERY in (111) is equivalent to an existential
formula, and the second argument is quantifier-free. Now suppose that in the
given ‘model’ M you have found a farmer f and donkey d such that f owns d
and f is not rich. Consider the submodel N of M which consists of just f and d.°
You have complete information about this submodel with respect to predicates
appearing in (110) = (111), and you know that the sentence is false in N. Then,
by Refutation, you can conclude that the sentence must be false in the entire
model M.

Now I want to assume that language users are disposed to apply the same
sort of reasoning ‘blindly’ to donkey sentences when they are trying to evalu-
ate their truth value. The idea here is similar to the one suggested at the end
of Section 5.3.1. Given the importance and simplicity of (the natural language
counterparts of ) Confirmation and Refutation, it is possible that their application
is governed by some mechanical procedure, sensitive only to the left monotonic-
ity of the determiner and a certain formal property of the rest of the sentence.
What is significant here is the fact that donkey sentences typically have the same
superficial appearance as the sentences for which Confirmation or Refutation is
valid. It would not be so unreasonable to suppose that language users are prone
to apply the inferential mechanism for Refutation to (1) just like they do to
(110), given the formal similarity of the two sentences—in particular, their N’ is
‘existential’ and their VP ‘quantifier-free’.

If this picture is true, we can understand why (1) is judged to be false when
the condition required by its strong reading does not obtain. Suppose that in
the ‘actual model’ M there is a farmer f and a donkey d such that f owns d but
f does not beat d. Now one can form the submodel N of M consisting of just

49Barwise and Cooper’s (1981) discussion of ‘witness sets’ is related.

50To be precise, one first needs to form the reduct M’ of M to the language consisting of
expressions in (111), and then take the submodel N’ of M’ whose universe is {f,d}, which is
guaranteed to exist. I forego such technicalities here.
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f and d.' This is a model in which all farmers own at most one donkey, and
we know that (1) is clearly false in N. Then, by Refutation, one can infer that
(1) must also be false in M, where the uniqueness condition may not be met.
Something like this might come close to capturing what people do when they try
to understand what (1) says and ask themselves ‘What if some farmer doesn’t
beat a donkey he owns?’

A similar story can be told about other | MON determiners and TMON de-
terminers (in the latter case, with ‘true’ and ‘false’ switched). In fact, it turns
out that the assumption that Confirmation and Refutation apply has the same
effect as the Left Monotonicity Principle.®? This is not a complete picture and
requires elaboration and refinement, but I think it is a pretty attractive one.

Finally, let me very briefly address the question of how factors other than the
monotonicity properties of the determiner might come into the picture. In the
above speculative model, the story might go as follows. If the function of prag-
matic factors is to make clear the intended interpretation or ‘speaker’s meaning’
of a donkey sentence, then they naturally take effect immediately. If the speaker’s
meaning is clear from the beginning, then the person processing the sentence does
not have to try to ‘figure out’ what is meant by the sentence, and consequently
he or she will not go into the trouble of invoking inference.5?

Appendix: On Chierchia’s E-Type Strategy

Chierchia (1990, 1992) decides to discard the definition (78) for Qg and use Qw
for all @. He has three reasons for doing so. His first reason was explained earlier

51Gee footnote 50.
52Formally, the correspondence between left monotonicity and preservation under submod-
els/extensions given in Proposition 4 carries over to dynamic predicate logic with generalized

quantifiers. If we define a suitable dynamic notion of Extension, we have the following (see
Kanazawa 1993):

PROPOSITION 5. Assume that Q satisfies DCONS and Dynamic Extension. Then Q is TDMON
(JDMON) if and only if every sentence of the form Qz(p,1), where ¢ is existential and % is
quantifier-free, is preserved under extensions (submodels).

A DPL formula ¢ is existential if it is of the form £x; ... £xp3xp41 . . . 3Tn+m ¥ for a quantifier-
free 1. Typically, if a donkey sentence is translated into dynamic predicate logic with gener-
alized quantifiers, the translation of the N’ will be equivalent to an existential formula in this
sense.

53Note that sometimes pragmatic effects having to do with plausibility of the claim are so
strong as to create an illusory interpretation. The following sentence seems to say exactly the
opposite of what it should say:

(i)  No eye injury is too trivial to ignore.

From the meaning of too ... to one would expect it to mean ‘no eye injury is so trivial that you
can’t ignore it’ or ‘every eye injury is serious enough that you can ignore it’ (Gillian Ramchand
(p.c.), who got the sentence from George Boolos).
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in connection with dynamic notions of Conservativity. We saw that the failure
to satisfy DCONSI did not constitute a persuasive argument to reject Qg. His
second reason is the systematic gap in the distribution of the strong reading: for
some determiners, the definition (78) for Qg is just not adequate. Chierchia seems
to think that enough context can always bring out the weak reading, even when
the determiner involved usually favors the strong reading. By saying that Qw
always gives the ‘dynamic meaning’ of the determiner, Chierchia can predict the
availability of the weak reading in such cases. Of course, he has to come up with
an explanation of what makes the strong reading available when it is. For this,
he adopts his ‘E-type strategy’, which I discuss below. His third reason is that
having two definitions would make all determiners systematically ambiguous. I
hope the foregoing discussions have made it clear that this last reason does not
have much force either.

To explain the existence of strong reading, Chierchia resorts to the idea
that donkey pronouns are sometimes ‘E-type pronouns’ rather than ‘dynami-
cally bound variables’. So he shifts the locus of ambiguity from the determiner
to the pronoun. He holds that postulating the E-type use of pronouns as distinct
from their use as dynamically bound variables is necessary to account for other
independent phenomena.

For Chierchia, E-type pronouns are something like function terms, where ‘the
nature of the function is contextually specified.” For example, (112a) is inter-
preted like (112b) (ignoring the irrelevant dynamic aspects):

(112) a. Every man who has a donkey beats it
b. EVERY x(man(zx) A Jy(donkey(y) A have(z,y)), beat(x, f(z)))

f is supposed to be a contextually determined function which maps a man who
owns a donkey to one of his donkeys. If every man owns at most one donkey, there
is only one such function, and (112a) is assigned a definite truth value. Now when
there can be more than one function from donkey-owning men to their donkeys,
Chierchia (1992) interprets (112b) as if f is universally quantified (relative to the
class of such functions). In essence, what he gets is:

(113)Vf(Vz(man(z) A Jy(donkey(y) A have(z,y))
— donkey(f(x)) A have(z, f(z)))
— EVERY z(man(z) A Jy(donkey(y) A have(z,y)), beat(z, f(x))))

This turns out to give the strong reading of (112a).

Let us call the reading of a donkey sentence represented by a formula like (113)
(with a universally quantified function variable) the universal function reading.
Schematically, the universal function reading of a donkey sentence is expressed
by a formula of the following form:

(114) Vf(Vz(e(z) A 3yx(z,y) — x(z, f(z)))
— Qz(p(x) A Jyx(z,v), ¥(z, f(x))))
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As Chierchia (1992) believes, an added bonus to this E-type analysis of the
strong reading is that if the determiner (or @ in the above formula) is MON/, the
universal function reading comes out equivalent to the weak reading—the only
reading for donkey sentences with |[MON| determiners. So it seems as if he can
maintain the E-type strategy as generally available while being able to explain
the non-existence of the strong reading in certain cases.

The pitfall here is obvious from our discussion in Section 2.1. Chierchia’s
E-type strategy makes the wrong prediction when the determiner is TMONT or
TMON|. He would predict existence of the strong reading in the former case, and
non-existence of it in the latter case. In fact, if we define the existential function
reading to be the reading expressed by a formula of the following form,

(115) 3f(Vz(p(x) A Jyx(z,y) — x(=, f(2)))
A Qx(p(x) A Jyx(z,y), ¥(z, f(x))))

we can show the following correlation between the universal and existential func-
tion readings on the one hand and the weak and strong readings on the other.

Fact. Assume that @ satisfies CONS. If @ is MONT,

universal function reading (114) +« strong reading (76)
existential function reading (115) <« weak reading (75)

If Q is MON],

universal function reading (114) « weak reading (75)
existential function reading (115) < strong reading (76)

This brief discussion should suffice to establish that Chierchia’s ‘weak schema
only’ thesis combined with his E-type strategy is seriously inadequate to explain
the distribution of the strong reading. Such a radical deficiency was obviously
caused by his neglect of TMONT determiners.
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