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Abstract

The present paper is an attempt to extend the treatment of unary generalized quan-
tifiers proposed in [van Lambalgen 1991] and [van Benthem & Alechina 1993] to the
binary case. A binary quantifier Ilz(¢p, %) can be understood as ”typically, ¢’s are 1’s”.
After investigating some formal properties of these quantifiers, I define an embedding
of predicate conditional logic into a logic with binary quantifiers and discuss possible
applications of binary quantifiers in formalizing defeasible reasoning.

1 Introduction

This paper consists of three parts, which - hopefully - have some connection to each other.
On the one hand, I am going to give one more suggestion concerning a formal way to treat
statements like ”¢’s are (normally, typically) %’s”: common sense generalizations which can
be used as premises in defeasible reasoning. The common feature of those statements is that
they can be true while some exceptions (’s which are not v’s) are present. In the paper
they are formalized with the use of a binary generalized quantifier I, with Iz (¢(z), ¥ (z))
informally meaning ”for all typical ¢’s 1 is true”. A related work in this respect is, first
of all, [Badaloni & Zanardo, 1990,1991,1992]. (A more detailed comparison is given in
section 6.) Another obvious connection is the way such statements are formalized in the
theory of circumscription: if ¢(z) and z is not abnormal, then 9 (z). In section 6 I discuss
possible applications of the logic with generalized quantifiers to defeasible reasoning.

On the other hand, in its formal approach, this paper departs from a very different
work ([van Lambalgen 1991, 1992], [van Benthem & Alechina 1993]) concerning alternative
semantics for generalized quantifiers. This semantics and some properties of the correspond-
ing logic (completeness theorems, facts concerning definability) are the subject of the first
three sections.

Finally, in section 5 an analogy between relational binary generalized quantifiers and
conditionals, suggested by J. van Benthem, is investigated. I show that first-order condi-
tional logic can be embedded in a logic with binary quantifiers. After that two possible
readings of commonsense generalizations: "normally, ¢ implies 9” and ”all typical ¢’s are
1’s” and the corresponding intensional and extensional semantics are compared.

2 Unary relational quantifiers

In the paper [van Lambalgen 1991] some well-known generalized quantifiers (like ”for almost
all”, ”for uncountably many”, "for many”) were translated into the language of the first-
order logic enriched with a relational symbol R of indefinite arity (or a family of relational



symbols, for every arity n) in the following way:

(Qzp(2,9))" = Ve (R(z,3) = ¢(x, 7)),

where Q is a universal generalized quantifier (say, ”almost all” or the dual of ” (uncountably)
many”), and the § are all the free variables of Qzy. It was proved that if a formula
is provable in an axiom system for a given generalized quantifier, than its translation is
provable in first-order logic with some additional axioms for R, and conversely. In the case
of the quantifiers studied in [van Lambalgen 1991], R can be intuitively understood as an
independence relation (with properties resembling those of a linear independence relation).

It is a natural move to consider new models for the generalized quantifiers, with a relation
R of indefinite arity on the domain and a truth definition

M % Qup(x,5) & VA(R(d,d) = M | ¢ld, d)),

where d is a sequence of elements assigned by the variable assignment o to 3. An analogy
with modal logic becomes quite transparent now. Those (to be called relational) generalized
quantifiers were studied in the paper [van Benthem & Alechina 1993]. In general, not
every relational quantifier also has a standard semantics. (In standard semantics Q is
interpreted as a set of subsets of the domain, Q. Qzy(z) is true if {d : ¢[d]} € Q.) For
example, the minimal logic based on the above truth definition lacks extensionality: if
{d : p[z/d]} = {d : ¢¥[z/d]}, but if ¢ and + have different free variables, under some
variable assignment Qz¢(z) can be satisfied and Qz¥(z) not; this means that a standard
semantics is not possible.

The quantifiers, studied by Michiel van Lambalgen, have both standard and relational
interpretations. Although these quantifiers are not first-order definable, the relational in-
terpretation provides a translation into first-order logic: quantifier properties correspond to
first-order conditions on R. This is used in [van Lambalgen 1991] to construct a natural de-
duction system for these quantifiers, where variable restrictions correspond to R-conditions.

3 Weak and strong binary relational quantifiers

Consider a first-order language Ly with a binary generalized quantifier II. A well-formed
formula is defined as usual; if ¢ and 1 are well-formed formulas, so is IIz(p, ). A standard
semantics for this language would interpret II as a binary relation on the powerset of
the domain. We shall now look at a relational semantics (II is interpreted by means of
some relations between the elements of the domain). The intended interepretation of II is
described in the introduction to this paper: it means something like ”for all typical”.

For every formula ¢(z) in the language, let R,,) be a relation on the domain. The
intuitive understanding of R,(,)(d,€) is: d is a typical ¢(z) with respect to €. 1 1 would
like to mention here that "typicality relative to other elements” is a different notion from
the one which involves considering typical tuples of elements (and which corresponds to a
polyadic quantifier). For example, the fact that a is a typical brother of b does not imply
that a pair < a,b > belongs to the set of typical brothers, and vice versa. I will not consider
quantification over (typical) tuples of objects in this paper, although it can be very useful
in formalizing generics about polyadic properties (cf. section 6.5).

! Another option (suggested by Johan van Benthem) is to have a property R, (z,z)(d). This would amount
to the same result given that the order of argument places in every formula is somehow fixed (€ is a sequence).



We shall look at the following two readings of IIz(¢,%). Let § be the free variables of
¢ (other than ), and % - the free variables of ¥ (other than z).

e "all p-typical (with respect to § and z) z’s satisfy ¥(z)”, and
e 7all p-typical (with respect to §) x’s satisfy ¢ (z)”

We shall consider both of them, and call the quantifiers ”sensitive” to the free variables of
the first and second arguments "weak quantifiers” and those which take into account only
the variables of the first argument ”strong quantifiers”. The second reading is more or less
clear: cf. the example about brothers. The first one is less intuitively appealing: what can
“typicality with respect to Z” mean, if those parameters are not in the formula? I must
confess that I don’t have a good answer to this question; only that weak quantifiers provide
a natural generalization of unary quantifiers with relational semantics.

The first example below is meant to show that the free variables are important in
reasoning about typical objects.

Example 1 Consider the sentence ”Some people are liked by their colleagues”. It can be
formalized as JxIly(Colleague(y, z), Likes(y, z)), and the informal understanding suggested
above is that there exists some x such that for all typical colleagues of x it is true that those
colleagues like . We could not quantify just over ”typical colleagues”: for example, this set
can be empty, if it is defined as an intersection of all sets of typical colleagues of anybody,
or typical colleagues of z can be extremely untypical as colleagues, and so on.

The second example shows the difference between weak and strong quantifiers:

Example 2 The sentence ”Usually, cats and dogs don’t like each other” can be formalized
by means of Lyyy (of course, a good formalization requires a polyadic quantifier) in two
different ways:

Iz (Cat(z),y(Dog(y), ~Likes(z,y) A " Likes(y,x)))

and
Iy(Dog(y),Nz(Cat(x),~Likes(z,y) A " Likes(y,z)))

For the weak quantifiers they have different truth conditions: informally, the first one is true
if for all typical cats and for all relatively typical (with respect to the chosen cat) dogs the
statement is true; the second one is true if it holds for all typical dogs and for all relatively
typical cats. For the strong quantifiers the two sentences are equivalent: one quantifies over
typical cats and typical dogs, and the order does not matter.

Formally, the semantics for weak and strong quantifiers looks as follows.

A model for strong generalized quantifiers is a triple < D, R,(),I >, where D is a
domain, I an interpretation function, and R, - for every w.ff. ¢ with n free variables
and for every variable z, free in ¢, is a n-ary relation between an element from D and a
sequence of elements. 2). If z is not free in ¢, there are several options to define R (2);
I choose for the minimal logic R,,) to be an arbitrary n + l-ary relation. Of course, a
reasonable option is to postulate R(z) to be a trivial relation, if « is not free in ¢. This
condition corresponds to an additional axiom (see Appendix 8.2, Proposition 7).

The truth definition for the strong generalized quantifier reads as follows:

2The order of the elements in the sequence is fixed. It is important because d; can be typical with
respect to d» ds, but not with respect to d; d». Example: let P(z,y,z) denote the property "z is a
citizen of y willing to emigrate to z”. Obviously, {d : Rp(,)(d, Russia, USA)} is a set different from
{d: Rp(s)(d, USA, Russia)}.



Strong M = Ilz(p, ) & Vd(R,)(d,d) A M |= ¢[d,d] = M |= ¢[z/d]), where « assigns
d to the free variables of ¢ other than z. :

A model for the weak generalized quantifiers is a triple < D, R,(;),I >, where D is a
domain, I an interpretation function, and R, ;) - for every w.ff. ¢ of the language - is a
relation (of indefinite arity) between an element from D and a sequence of elements. The
truth definition reads as follows:

Weak M =2 1lz(p,v) © Vd(Ry()(d,de) A M = p[d,d] = M = 1[d, &]), where « assigns
d to the free variables of ¢ and & to the free variables of .

In both models a semantic condition, corresponding to the axiom of Alphabetic Variants
below, holds: if ¢(y) is a result of correct substitution of y instead of = in ¢(z), then
Ry2) = Ry(y)- (Which means, basically, that only the argument place in ¢, and not the
variable x itself, is important in determining R,(;).) The semantics described above is not
extensional: if two properties ¢(z) and ¥ (z) denote the same sets of objects, it is still not
necessarily true that typical ¢’s and typical ’s constitute the same sets. This seems rather
natural, because typicality is an intensional property. Below I shall also consider logics with
full or restricted extensionality for the first argument.

If the notion of an element d being ¢ (z)-typical taken to presuppose ¢[d], then the truth
definitions become (for weak and for strong quantifiers, respectively)

M l:a‘ H:r((p,'gb) & Vd(Rw(z)(d,Jé) =M l: ’l,b[d, é])

and

M ':a H.’E((p, "p) < Vd(Rqo(m)(daJ) =M |= ";b[d’ é])
In the sequel it will become clear that the former two truth definitions and the latter
two truth definitions plus the semantic conditions

R(P(z)(d,cf) = M = ¢ld,d] (for strong quantifiers)

and

Rye)(d,d) = M |= plz/d] (for weak quantifiers),

in the latter case given that all parameters of ¢ are among d, give rise to the same logics.
(See Appendix 8.1 and 8.2.) But until that time we shall apply the former ones (because
they make the relation to unary quantifiers more transparent).

The notions of truth, validity and semantic consequence are standard.

Now, let us consider the logical systems corresponding to the described semantics. In
the sequel, given a formula IIz(p, ), I shall use notation F'V(¢) (resp., FV(2)) to denote
the free variables of ¢ (1) other than z.

Definition 1 The minimal logic Min; for weak quantifiers is the least set of formulas
closed under first-order derivability and

Reflexivity F IIz(p, )
Restricted Distribution for the Second Argument

F Tz (e, 1) Alz(p,2) — z(p, 91 A va),

giwven that FV (o) U FV (2) = FV () U FV (31);
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Restricted Monotonicity for the Second Argument

F Ve (p(2) = $(2)) Alz(x, @) — Oz (x, %)
given that FV (¢) U FV(x) = FV(x) U FV (3);
Tautology + Mz (¢, ¥ — ¥)
Alphabetic Variants + IIz(p,) < Iy(p, ), where y is free for ¢ in Mz (p,).

Theorem 1 Min; is complete.

Proof See Appendix 8.1.

The properties of strong binary quantifiers are somewhat different from the properties
of unary quantifiers (see [van Benthem & Alechina 1993]). For example, binary quantifiers
thus defined are monotone without any restrictions. Indeed, if

vz(¢ - ":b,)a ’
then +(d, &) — ¢'(d,€),

(Rg:(z) (d7 J) — ¢(d’ é)) — (ch(:c) (d> J) — '»b’(d? El))

and
Iz (g, %) = Mz (e, ¢').
For the same reason extensionality (and the rule of substitution) for the second argument

is unrestricted.

Definition 2 The minimal logic Mins for strong quantifiers is the least set of formulas
closed under first-order derivability and

Reflexivity F Iz (yp,¢);

Distribution for the Second Argument F Iz(p, ;) A z(p,2) — Hz(p, 11 A1)
Monotonicity for the Second Argument + Vz(p(z) = ¢¥(z)) A llz(x, ¢) — Hz(x,¥);
Exchange I— Vyllz(p, ) — z(p,Vyy), given that y is not free in ¢;

Alphabetic Variants F z(p(z),¥(z)) «< Hy(e(y),¥(y)), given that y is free for = in
Oz (p(z), ().

Theorem 2 Mingy is complete.

Proof See Appendix 8.2.
Since in both logics the only inference rules are Modus Ponens and Generalization, the
deduction theorem has the same conditions (and proof) as in classical predicate logic.
One look at the axiom systems is enough to see that Miny is a subsystem of Min,.
Man, is much closer to the unary generalized quantifiers. From this point of vieuw Ming
can be considered to be actually too strong.



If a binary quantifier IIz(p, %) is understood as Qz(p — ), the property of Exchange
corresponds to a very strong (actually, rather counterintuitive) property

VyQzo +» QzVye

It makes the connection between strong quantifiers and unary quantifiers such as ”for almost
all” rather doubtful, because for this quantifier that property is not valid. On an uncount-
able domain D, if for every d € D the set {e : ¢[e,d]} has measure 1, it does not follow that
the (uncountable) intersection of those sets has measure 1 (namely, the set {e : Vyg[e,y]}).

An intuitive counterexample against the Exchange axiom can be stated as follows. For
every specificlocation (for example, Rome), the generic ” Generally, birds live outside Rome”
seems valid, that is, (after quantifying over locations)

Vyllz(Bird(z), Lives — outside(y,x))

can be accepted. But Ilz(Bird(z),VyLives — outside(y, z)) is obviously not true.
Now we shall consider some extensions of minimal logics. The first semantic property
one can introduce is Restricted Extensionality:

Restricted Extensionality M | Vz(¢(z,d) < ¥(z,d)) = ‘v’e(R;,(z) (e,d) & Ry () (e,d)).
The logic corresponding to the strong quantifier with this property is Bin': Miny plus

Restricted Substitution on the Left - Va(p(z) + ¥(z)) Allz(p, x) — Hz(y, x), given
that ¢ and 1 have the same free variables.

Proof can be found in the Appendix 8.2, Proposition 5.
Full extensionality can be also allowed. The axiom

Substitution on the Left - Vz(p ¢ ¢) A llz(p, x) = Oz(4, x)
corresponds to the condition of

Extensionality M = Vz(¢(z,d) < 9¥(x,&)) = Ve(Ry ) (e, d) & Ry(s)(e, €))

The proof is very straightforward (it is given in the Appendix 8.2, Proposition 4).
Another possible condition is that for every non-empty property there exists a typical
element with this property:

Existence 3d(M [ ¢[z/d,d]) = 3d(Ry(,)(d,d))
For the semantics with this property Miny plus
Existence + Jzp(z) = —Iz(p, )

is complete. The proof is also given in Appendix 8.2 (Proposition 6).
If in the models for strong quantifiers R, (,) is equal to D™t in case if = is not free in
¢, the following property becomes valid:

Trivialization Ilz(p,) — Vz(p — 1), where z is not free in ¢,



and, conversely, the logic Mins with this axiom added is complete for the above class of
models. The proof is given in the Appendix 8.2, Proposition 7. (This property is not good,
however, if IIz(p,7) is to be understood as Qz(¢ — ).)

Let us now turn back to the Example 2. To make

Iz (Cat(z),My(Dog(y), ~Likes(z,y) A ~Likes(y,z)))

and
Iy(Dog(y),lz(Cat(z),~Likes(z,y) A ~Likes(y,z)))

equivalent in Minq, or, in other words, to be able to quantify over pairs, the following
semantical property is needed:

Permutation R,,(z,2) A Ry, (y,22) = Ryy) (Y, 2) A Ry(5)(z,y2)
The corresponding axiom is
Permutation F IIz(p,Iy(v,x)) — My(¢, z(e, X)),  is not free in 1.

(The completeness proof is given in Appendix 8.1, Proposition 3.)
In Miny this formula is derivable (see Appendix 8.2, Proposition 8).

4 Definability

In this section we shall consider the matters of definability of unary quantifiers via binary
and binary quantifiers via unary. A usual question asked in case of standard generalized
quantifiers is whether a binary quantifier is definable via a unary one semantically; that is,
whether the interpretation of a unary quantifier in a model determines the interpretation of
a given binary one. The way to disprove it is to show two models isomorphic with respect
to the unary quantifier and non-isomorphic with respect to the binary one. In our case, for
relational quantifiers, the corresponding result can be obtained for free and is, unfortunately,
not very informative.

Proposition 1 Not all (weak or strong) binary qudntiﬁers are semantically definable via
unary quantifiers.

Proof Consider two models of the language Lygn, M1 =< D1, R1,{R,}1,V1 > and M =<
D3y, Ry, {Ry}2,V2 >. It is clear that if < D1,R;,V; >=< Dj, Ry, V2 >, then for every
formula 6 without binary quantifiers

(*) M, ’=a1 0 < M, ’=a2 9,

where as(z) = h(ai(z)), and h is the isomorhism. If the binary quantifier is definable via
the unary one, then (%) holds for every formula (because every formula has an equivalent
one which does not contain binary quantifiers). But it is obviously wrong: consider, for
example, the case when R; and Ry are universal relations, in the first model R, (,) is empty
for every formula ¢(z), and in the second one Ry (,)(d, d) iff p[d,d]. Assume M, |= 3z P(z).
Then M; = Iz (P(z),~P(z)) and M, = z(P(z),~P(z)).
O

The same argument shows that neither weak, nor strong binary quantifiers in the sense
of Min; and Mingy, respectively, are semantically definable via a unary quantifier which
allows for models where R is a universal relation (for example, ”for almost all”).
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Another question one can ask is whether a quantifier is syntactically definable: that is,
if there is a translation from one language to another, preserving satisfiability (provability).
Below are some answers to this question.

Proposition 2 Let I be a (weak or strong) binary quantifier. A corresponding unary
quantifier can be always syntactically defined as

QIIQO((E, ?7) =df H:B(T(IU, g), QO(:I:, g)),
where T is any fized tautology (for ezample, T = z,y1 = Y1,-.-,Yn = Yn)-

Proof We show that any model for unary quantifier can be changed into a model for binary
quantifier and vice versa, so that Qz¢(z,7) is satisfiable if and only if Hz (T (z, 7), ¢(z, 7))

is. Let R(d,d) := R(s)(d,d). Note that Ry(;) = R(;) if T(2) is the result of substituting
z instead of z in T(z) (z not free in T(z)).

M E Qzo(z,d) & Vi(R(d,d) = M = ¢[d,d]) &

& Vd(Rr((d,d) A T(dd) = M | pld, d)) & M | Ta(T (3, ), ¢ (e, d)

O

If II is a strong quantifier, T can be only as described above; if I is weak, T can be any
(fixed) tautology with its free variables among {z, g} - for example, z = z.

A sufficient condition to make weak binary quantifiers syntactically definable is adding
to Min; as an axiom a formula (let us call it D for ”definability”)

lz(p,¢) & Hz(T, e = ¢)

where T is a tautology such that FV(T) = FV (¢)UFV (¢). Then Ilz(p, ) can be defined
as Qz(p — v), where @ is a unary quantifier corresponding to Il (Qz6 := IIz(T,§)).

Theorem 3 The logic with the truth definition
M [ Iz(p(z,d), ¥ (z,€)) & Vd(R(d,de) = (M [ ¢[d,d] = M k= ¢[d,é]))
s aziomatized by the azioms for Miny and

D Iz(p,v) « Oz(T,p — 1), where FV(T) = FV () U FV (¥).

Proof is given in Appendix 8.3.
The theorem shows that a sentence Ilz(y,%) of Min; + D is provable if and only if
Qz(p — ) is valid (provable) in the minimal logic for unary quantifiers.

5 Binary quantifiers and conditionals

There is a certain similarity in the behaviour of generalized quantifiers and conditionals.
In [van Benthem 1986] and [Lapierre 1991] conditional propositional statements are ana-
lyzed in the generalized quantifier perspective. A conditional connective is understood as
a relation between two sets (of possible worlds), that is, a generalized quantifier. Some
reasonable constraints on conditional quantifiers yield conditional logics corresponding to
those quantifiers.



Here another (syntactic) perspective is taken: I am going to take an existing system
of conditional logic and to define an embedding of it into the language with generalized
quantifiers. On the one hand, this approach allows to deal with iterations of conditionals as
well as with single conditionals (contrary to the "horizontal” approach mentioned above).
The motivation behind defining such an embedding is not, however, the ability to consider
iterations per se, but rather to investigate the difference between extensional and intensional
approaches to conditional statements/generics 3. More precisely, I want to investigate, what
changes if we move from the interpretation

(1) for all elements a and for all worlds w which are normal with respect to ¢(a) (in which
holds everything what is normally the case when ¢(a) is true), ¥(a) holds in w”, to

(2) ”for all typical objects having a property ¢, ¥ holds”. *

First of all we need a definition of first-order conditional logic. Let Ly~ denote the
language of first-order conditional logic (the language of the first-order predicate logic plus
binary modal operator >). M is a model for Ly~ if M =< D,W,S,I >, where D is a
non-empty universe (the same for all possible worlds), W is a non-empty set of possible
worlds, S : W x P(W) — P(W) is a selection function, and I is an interpretation function.
The truth definition for conditionals is as follows:

M,w =% ¢ > ¢  S(w,[plua) € [$]M,0;
where [p]y,a = {w' : M,w' =* ¢}. The selection function satisfies the following constraint:
ID S(w,l¢]m,a) € [¢]m,a

Definition 3 Cond is the minimal set of formulas derivable from the azioms and rules
below:

Pred First-order predicate logic;
CI ¢>¢;

CC (9> Y1) Ap > 1h2) = (¢ > b1 Atha);
E Vz(p > ¥) = (¢ > Vb)), if z is not free in @;
RCEA
Foo
Fle>x) < (¥>x)
RCM
Fo—
Fx>e) = (x>v)

%In this intention I was motivated by discussions with Michael Morreau.

*] assume that "normal” and ”typical” have more or less the same meaning: a normal (typical) ¢ is
an object which has all the properties one would expect from a yp-object without having any more specific
information about this very object. In particular, I am not making a distinction between ”normal” as
”average” and "typical” as "having all the specific features of the kind in the most condensed form”.




Cond is complete (see [Morreau 1992]).

I am going to show that Cond can be faithfully embedded into a logic with binary

generalized quantifiers which is in fact a slightly extended Miny. However, the language
of this logic is two-sorted, and in addition to the axioms of Min, it satisfies a version of
Substitution on the Left axiom.
Logic SBin. The language of SBin is the same as that of Miny, but has two sorts of
individual variables: SORT 1 (objects): z1,2,... and SORT 2 (worlds): wy, wg, .... The
definition of w.f.f. is standard: if u is a sort 1 or sort 2 variable, and ¢ and v are w.f.f’s,
so are Vuyp and ITu(p, ).

A model for SBin M =< O U W,{Ryp(u)},V >, where ONW = 0, O and W are
nonempty, O is a domain for the first sort, and W is a domain for the second sort; R
for every w.f.f. ¢(u) - is as before, and V is a valuation. Semantic constraints on R:

(u) ~

AV if u; and uy are variables of the same sort, and ¢ (u3) is a result of correct substitution

of ug instead of u; in ¢(uy), then R R

e(u1) = Llo(uz);

S if M 2 Vu(e(u) < ¢(u)) and FV ()N SORT 2 = FV () N SORT 2,
then {d : R, (d,wd)} = {d : Ry()(d,we)}, where wd is a sequence of elements
assigned by « to the free variables of ¢ (other than ), and wé - to FV (¢).

Definition 4 SBin is the minimal set of formulas derivable from the azioms and rules of
Ming (for both sorts) plus

S Vu(p + ¥) Alu(p, x) = Mu(y,x), given that FV (p) N SORT 2 = FV () N SORT 2,

and u is a variable of any sort.
Theorem 4 SBin is complete for the semantics described above.

Proof The easiest way to prove the completeness theorem is to translate the language of
SBin into the language of Miny with an additional predicate O (for object sort) in an ob-
vious way: every atomic formula P(uy,...,u,) of SBin gets translated as a conjunction of
P(uq,...,uy) and, for every u; (1 < i < n), either O(u;) or =O(u;), depending on whether
u; was a sort 1 or a sort 2 variable. The translation commutes with logical connectives. It
is easy to check that this translation gives rise to an equivalent system. We construct a
canonical model for this system in the usual way. The proof that R-conditions S and AV
hold is very much the same as the analogous proofs for the systems Bin and Bin' given in
Appendix 8.2.

0O

Now I define a translation function * from Ly~ to Lyy (two- sorted), such that
Cond F ¢ & SBin ¢*.

Definition 5 * : LY > — Ly is the following function:

- for every n-place predicate symbol P of Ly, let P** be an n+i+1-place predicate symbol of

Lyyg; (P(z1,...,20))* = P(x1,..., 20, wo); (P(z1,..., mn))*i = P*i(wl, ey Ty WO, ey W)

- ** commutes with Boolean connectives and ordinary quantifiers;

10



- (¢ > )" = Twip ()", () *F1).

* __*0

The trick of adding an extra variable (for a possible world) when translating a modal
language into a classical one is quite common. Here we need to keep count of the worlds
which occurred in the path to the given world; the deeper a subformula sits, the more
variables it accumulates. (Basically, not to make the quantification vacuous, i.e. not to
bind variables not occurring free in the formula.)

Example:

(P(z) > (Q(y) > P(e)))* = w1 (P(2)*,(Q(y) > P(z))") =
= le(P*l(w7W07W1)7HW2(Q*2(y>W07W1)W2)7P*z(a’,WO)Wl’W2)))
This example shows already a little bit how the translation works to avoid translating
unprovable formulas of Cond by provable formulas of SBin. (In this case, the similar

looking formula ITu(p(u), Oy(¥(y), ¢(u))) is provable.)
The following theorem guarantees that the method works in general.

Theorem 5 SBin - ¢* = Cond - ¢

Proof We shall show that there is a transformation mapping an Lys-model M, a world wq
and a variable assignment o to an Ly model M* and a variable assignment a* such that

M,wo =% ¢ if f M* = (¢)*°
(it will show that if something is consistent with Cond, then its translation is consistent
with SBin).
Given an L~ model M =< D, W, S,I >, a and wg € W, construct M* and a* as follows:
- O* = D; ‘
-Wr=W;
- I":<dy, .y dpywe, - W SE TP iff < dy,. .. dp >E T, (P);

- a* agrees with @ on O* and assigns wy to wy;

- Rsigwy) (W' w, ... ,wo,d) if f w' € S(w,[p[d]]), where w is standing on the argument
place of w;_;.

For other formulas 1(z) Ry(,) will be defined after the proof of the following lemma
(note that the only case when the definition of R is used in that proof is for the formulas
which are translations of conditional formulas and only for one of their free variables, and
for this case R is uniquely defined).

Lemma 1 Let o, o* be as above. For all i, for any formula ¢ of Cond, for any world
w and for any variable assignment o, which possibly differs from o* in its assignment of
values to wy,...,w;_1,

Mw E* ¢ & M*E ()" [wi/w]

The choice of o’ is due to the fact that at depth ¢ a subformula is in the scope of 7 restricted
universal quantifiers, which corresponds to any possible chain of possible worlds in M
(starting from wg). The proof goes by induction on the complexity of ¢.

11



(i) M,w E=* P(z1,...,2,) ©< a(z1),...,a(zs) >€ I,(P) &
a<alz),. .. alen), we,d (W), ..., o (wi_1),w >€ I*(P*) & M* =¥ P*[w;/w]
(ii) - (iii) —,A,V: easy (note that in ¢ and in ¢*' ordinary quantifiers bind only sort 1
variables);
(iv) M,w E* x > ¢ & V' (v’ € S(w, [x]Mo) = M,v' E*9¥) &
(from ID : S(w,[¢]) € [¢])
& Vo' (w' € S(w, [X]Ma) A M,w' E* x = M,w' E*¢) &
& V' (Rt () (W w0, . wo, a(FV (X)) A M* EY X wifw, wiya/w'] =
= M* Y 9 wifw, wit /u']) &
& M* E Twip (X wi/w], 7 wi/w]) & M*ES (x > )" [wi/w]

Now I must show that in this model S holds: if M |= Vu(e(u,@d) < v (u,wE)) and
FV(p) N SORT 2 = FV(4) N SORT 2, then {d : R,y (d,wd)} = {d : Ry(y)(d, we€)}. But
first I am going to specify the relation Ry () for the formulas ¢ which are not translations
of conditional formulas (or u is not a sort 2 variable). Since the lemma above is proved for
all possible extensions of Ry, it will still hold for one specific definition of Ry,). But to
show that this definition is correct, I need the lemma first to prove the following step: if

{w: M* = o*[w; /w,wd)} = {w : M* = ¢* [w;/w, De]},
then (by the lemma above),
{w: M,wEp[d]} = {w: M,w |=¥[e]}
and thus, for every w,w’,
w € S(w',[p[d]]) & w e S, [H[e]])

that is,
{w i Ryei(uy(w, ', ywo,d)} = {w : Ryui(yy (w,w',. .., wo, &)}
It shows that the condition S holds for the case when ¢ and v are translations of the same
depth 7 and u = w;.
Now I define Ry, () for the case 1) # 6" or u # w; as follows:

o if ¥ (u) # 6*(w;) for any formula 8*/ (w;), but
{w: M glu/w]} = {w: M | 67[w;/w]}

for some */ which depends on the same sort 2 variables as (), then Ry () = Regei(w;)-
It guarantees not only the restricted extensionality, but also the condition that if
6*[w;/w] is a result of a correct substitution of w on the argument place of wj,
Rg*j(w) = Rg*j(wj) (AV)

Note that, for every formula 1, it can have the same free variables only with a trans-
lation of one fixed depth: 9 can be satisfied by the same set of elements as §** and
6*7, 5 # 7, but it either has the same sort 2 variables as 8** does, or as §*/ does. This

guarantees (together with the fact that extensionality holds for translations of the
same depth) that R for all formulas is well defined.

12



e For all other formulas ¢ and variables u Ry ) is empty.
It follows that M* is a model for SBin; and by lemma 1, M* %" ¢*0. O
Theorem 6 Cond F ¢ = SBint (¢)*.

Proof

The proof of the theorem goes by induction on the length of the derivation of ¢. The
case when ¢ is an axiom is trivial (it is immediate to see that translations of the axioms
of Cond are axioms of SBin). Slightly more complicated is the inductive step (for every
inference rule of Cond, if the translation of the premise is provable in SBin, then so is the
translation of the conclusion).

First we need the following fact:

SBin \ ¢* & SBin I *t1

From the definition of ** we know that every predicate letter in ¢** has wy,. ..,w; as its free
sort 2 variables, that ordinary quantifiers bind only the variables of ¢ (not the new variables)
and that the generalized quantifiers bind w;11, ..., wi (if ¢ has k nested conditionals).
Assume that ¢** is an axiom of SBin. If we rename the variables bound by the generalized
quantifiers so that w;;1 becomes w;,o etc., it will remain an axiom. If we substitute for
every predicate letter P*/ (i < j < k) a predicate letter P*’*! no free variable becomes
bound and the resulting formula will be the instance of the same axiom schema. It means
that ¢**1 is also an axiom. Backwards: substitute P*'~! for every predicate letter P*/
(i+1<j<k+1)in ¢*. The result will remain an axiom. Rename the bound variables
so that j becomes j — 1. We have obtained ¢*!, which is again a substitution instance of
the same axiom schema.

The only inference rules we have in SBin are MP and Generalization: F ¢ =+ Vzo.
We assume that for the premises 8 the proof of §** can be transformed in the proof of §*+1
and backwards, and show that the application of the rule does not destroy the proof. For
MP it is obvious:

¢*i,¢*i — X*i

imply .
X*z
as well as
L ity it
imply
Naasy

For Generalization (and for subsequent use of the deduction theorem) adding or deleting
one extra free variable which never becomes bound by V also makes no change.
Now we continue the proof of

Cond F ¢ = SBin t (¢)*

RCEA Let - (p)* & (¥)*. By the above fact, - (p)*t! « (¥)**!, and thus F
Vw1 (e* 1 < 9T, Also, ©*t1 and 4***! have the same sort 2 variables. Axiom
S gives
F Twira ((9) "4, (00 & Twi ((0)4 00",
that is, ‘
Fle>x)" & @>x)"
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RCM (analogously).

O

Backward translation

It is easy to show that a very natural translation of Iz (p,%) as Va(¢ > 9) does not
work. A counterexample (not involving ordinary quantifiers) is:

SBin t- Mz(Q(z), My(P(y), Q(x)))

but
Cond i/ Vz(Q(z) > Vy(P(y) > Q(z)))

(by a straightforward semantic argument). If we somehow manage to translate the above
formula into propositional conditional logic, still

Cond t/ g > (p > q).

(This shows also that an V-free fragment of Ming, where Ilz(Q(z), IIy(P(y), Q(z))) is true,
can not be axiomatized by using just "conditional” axioms and rules.)

Embedding propositional conditional logic. It is evident that one does not need
two-sorted language to obtain an embedding of propositional conditional logic into a logic
with binary quantifiers. If IIw(¢, ) is a translation of a conditional formula, then ¢ and
1 will have the same free variables; this fact can be used to show (an easy check of the
embedding proof for the predicate case) that conditional propositional logic can be embed-
ded in the minimal logic for either weak or strong quantifiers enriched with the axiom of
Restricted Substitution.

5.1 Some comparisons

In [Morreau 1992] it is repeatedly stressed that the author understands generics as quanti-
fying over normal (typical) individuals. However, representing the sentence ”Normally, ¢’s
are 9’s” by Vz(p(z) > 9(z)) involves quantifying both over individuals and worlds and it
is not obvious that this can be reduced to quantifying only over individuals.

First I shall compare representing generic sentences by Vz(¢ > 9) and representing them
by Iz (¢, %) in a one-sorted language. The first approach can be called intensional, and the
second one - extensional. Then I shall show that the two-sorted language not only allows to
express everything about conditionals which is expressible in conditional logic (this follows
from the embedding theorem), but also the statements which are true, but not expressible
in the conditional language.

Consider a one-sorted language with generalized quantifiers. Then the difference be-
tween extensional and intensional semantics becomes clear in the following fact:

Vz(x > ¢) AVz(p — ) = Ve (x > )

is not valid in Cond, while

Vz(p = ¢) ANz(x, ¢) = Oz(x, ¥),

is valid in Mins.

One more symptom of the same difference between extensional and intensional is the fact
that Vz(p — ) — Iz (yp, ) is obviously true in Ming, whereas Vz(p — ) — Va(p > ¢)
false for conditionals.
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A special case of
Vz(p = ¢) = Hz(p,¥),

the statement that if there are no ¢’s, then anything is plausible with respect to something
being a typical ¢:
—3zp — Tz (p,9)

caused the strongest objections towards the extensional approach in [Morreau 1992]. I shall
borrow his example here: imagine a club where in principle elderly members drink on the
house, Iz (Elderly — member(z), Drinks — on — the — house(z)). But at the moment there
are no elderly members. So the following becomes trivially true: Iz (EM (z),~DH (z)). It
does not look nice indeed that a ”trivial” second generic seems to have the same status
with the ”non-trivial” first one, and that together they imply z(EM (z), L(z)). But if
one is mostly interested in using generics as premises in the defeasible reasoning, that is,
from Hz(p(z),¥(z)) and ¢(a) to 1 (a), the problem does not seem to be that grave. The
contradiction is not derivable even defeasibly because there are no elderly members! And
as soon as one appears, the second sentence is not true any more. I shall discuss some other
problems related to defeasible reasoning in the following section.
Let us turn to the two-sorted language.

Vw(p =) = Tw(p, )

is now not an "extensional principle”, but a true statement, not expressible in the language
of conditional logic. A possible way to make this statement expressible is to add to the
conditional language an absolute modality O0: M,w = Op < Yw'M,w' |= ¢. Then this
principle would become

O(p = 9) = (¢ > ).

This example shows that the two-sorted language with binary quantifiers, as it was intro-
duced in the previous section, is more expressive than the conditional language.

6 Applications to defeasible reasoning

In this section I want to give a short review of related approaches to formalizing defeasible
reasoning. By defeasible reasoning I mean using commonsense generalizations (laws with
exceptions) in order to arrive at conclusions referring to particular objects.

Whether a logic for generalizations provides a good tool for making defeasible inferences,
depends on two things: first, on how well it captures the properties of generalizations them-
selves (i.e., whether one is satisfied with logically derivable properties of generalizations,
such as, for example, the properties which were discussed in the previous section), and,
second, on how well it works as a mechanism for defeasible inference.

In what follows, I shall comment on both aspects of the problem.

The following principles of defeasible reasoning are widely accepted as the desirable
ones:

Defeasible modus ponens (the name comes from [Morreau 1992])
Normally, A's are B's
ais A
(It is plausible that) a is B
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Penguin principle Normally, A’s are B's
Normally, C's are not B's
All C's are A's
ais A
ais C
(It is plausible that) a i¢s not B

Irrelevance Normally, A's are B's
ais A
ais C
(It is plausible that) a ¢s B (if C is irrelevant or positive with respect to B).

Of course, if C is not irrelevant (for example, C = —B), the inference should not go
through.

Those principles can be used as criteria of adequacy for the systems of defeasible reasoning.

6.1 The approach of Badaloni and Zanardo

Both the logic of relational quantifiers and conditional logic, using explicit reference to
the set of typical objects or normal worlds, accept some facts about generalizations as
valid while their plausibility is doubted in other approaches. Those facts are the axioms CC
(conjunction of consequents) and Exchange. They can be shown to be not always intuitively
appealing. (Cf. the example with ”Birds live outside ...” from section 3).

In the papers [Badaloni & Zanardo 1991, 1993] a different approach was taken. Badaloni
and Zanardo give the following semantics to their high plausibility quantifier II (IIz (¢, ) to
be read as "generally, ¢’s are 9’s”, or "¢’s are highly plausible to be 1’s”). It corresponds
to a relation 7 on the powerset of the domain (to be understood intuitively as "n(X,Y) if
a relevant part of X is in Y”) with the following properties:

P1 n(X, X);

P2 7(X,Y) = (X, Y NX);

P3 7n(X,Y)and Y CY' = n(X,Y);
P4 (X,Y;) for all i € T = NicsY; # 0.

So, instead of assuming that the set of sets of X-typical objects is closed under inter-
sections, they assume only that their intersection is non-empty (P4): that there are some
typical objects, but they don’t have to be definable as an intersection of 