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Lambek calculus is L-complete

Mati Pentus

September 30, 1993

Abstract

We prove that the Lambek calculus is complete w.r.t. L-models, i.e., free semi-
group models. We also prove the completeness w.r.t. relational models over the
natural linear order of integers.

Introduction

In 1958 J. Lambek [8] introduced a calculus for deriving reduction laws of syntactic types.
Free semigroup models (also called language models or L-models) for this calculus were
considered in [2], [3], and [4]. The more general class of groupoid models has been studied
in [5], [6], and [7]. In [3] W. Buszkowski established that the product-free fragment of the
Lambek calculus is L-complete (i.e., complete w.r.t. free semigroup models), using the
canonical model. The question of L-completeness of the full Lambek calculus remained
open (cf. [1]).

This problem has attracted the attention of the group of mathematical logicians at-
tending S. Artemov’s workshops at Moscow University. In 1991-1992 N. Pankratiev pre-
sented an exposition of the latest results in the field and noticed that canonical models
can not be used for proving L-completeness of the full calculus.

In December 1992, after one of the workshops at Moscow University M. Kanovich
announced about a positive solution of the language completeness problem for the full
Lambek calculus. However, he has not presented the proof yet. A fortnight later, at the
end of December 1992, the author of this paper came up with his own proof. It has been
improved after several talks in Amsterdam and Moscow. Here we deliver the modified
proof. ' ,

Another interesting particular case of groupoid semantics considered here is relational
semantics. Sz. Mikulds proved in 1992 [9] that the Lambek calculus is complete w.r.t.
relational models (R-models for short). N. Pankratiev [10] proved the completeness w.r.t.
R-models over the left-divisor relation in a special residuated semigroup. In this paper
we prove the completeness of the Lambek calculus w.r.t. models on a very simple frame,
namely on the natural order of integers.



1 Preliminaries

1.1 Lambek calculus

We consider the syntactic calculus introduced in [8]. The types of the Lambek calculus
are built of primitive types py, ps, .. ., and three binary connectives , \, /. We shall denote
the set of all types by Tp. The set of finite sequences of types (resp. finite non-empty
sequences of types) is denoted by Tp* (resp. Tp™). The symbol A will stand for the
empty sequence of types.

Capital letters A,B,...range over types. Capital Greek letters range over finite (pos-
sibly empty) sequences of types.

Sequents of the Lambek calculus are of the form I'+A, where I' is a non-empty
sequence of types.
Axioms: A—A

Rules:
%—?\% (=\)  where I #A {;‘Q?A\E)BAA:CC (\—)
faar () where T#A Tamaane ()
AR RS
£ 5asa oo

The cut-elimination theorem for this calculus is proved in [8]. We write L - I'— A if the
sequent I'— A is derivable in the Lambek calculus.

Definition. The length of a type is defined as the total number of primitive type occur-
reces i the type.
Ilpilf =1 JlA-B|| = [[All + | B

IA\B|| = [[All+ 1Bl l|A/B|| = |lAll + || B]|
Similarly, for sequences of types we put || A;... A,|| = ||A1]] + ... + || 4.

Definition. The set of primitive types occurring in a type is defined as follows.
Var(p;) = {p;}  Var(A.B) & Var(A) U Var(B)

Var(A\B) = Var(A) U Var(B) Var(A/B) = Var(A) U Var(B)

Definition. For any integer m, we write Tp(m) for the finite set of types
Tp(m) = {A € Tp | Var(A) C{p1,p2,-..,pm} and Al <m}.

By Tp(m)* we denote the set of all non-empty finite sequences of types from Tp(m).



Definition. For any two integers m and n, we write LST,, ,, (limited sequences of types)
for the following finite subset of Tp(m)*.

LST,,,={A:...4]|1<1<n, Ay € Tp(m), ..., 4 € Tp(m)}
Definition. Sometimes we shall write o(A4;...A,) or Aje....A, instead of

(.. (AreAg)e. .. +Ay).

1.2 Partial semigroup models

Definition. We say that (W,o) is a partial semigroup iff o is a partial function from
W x W into W such that, whenever ao (boc) or (aob)ocis defined, the other expression
is also defined and ao (boc) = (aob) o c. (We do not exclude the case W = §.)

Example 1 Here are some examples of partial semigroups.
(a) Any semigroup.

(b) The free semigroup with a countable set of generators.
Here W is the set of all non-empty words over the alphabet {a; | 7 € N} (N stands
for the set of all natural numbers). The binary operator o is the concatenation of
words.

(c) The free semigroup with two generators.

(d) A binary relational frame ( R-frame for short).
Here W C D xD and W is an irreflexive transitive binary relation over a domain D.

(s1,t2) if t; = s,
t ty) = i
(s1,81) © (52, 85) {undeﬁned if £ # s9
Here s1,%1,82,%2 € D.

(e) The natural order on integers as a binary relational frame (we shall denote this
R-frame by (<z,0}).

D=2Z, W= {(s,t) | s€Z, t€Z,and s <t}
By Z we denote the set of all integers. The operation o is defined as in (d).
(f) The natural order on a finite interval of integers [p, q], where p € Z and q € Z.
Dpg=I[pg={s€Z|p<s<q}

Wyg={(s,t)|s€Z,teZ,andp<s<t<q}
The operation o is defined as in (d).



We shall denote by Sz the class! of all partial semigroups from Example 1 (f).

Definition. Let (W, o) be a partial semigroup.
We say that (V, x) is a sub-partial-semigroup of (W, o) iff

1) Vvew;
(2) V is closed under x;
(3) * is the restriction of o to V.

Remark. The associativiy law holds automatically in every sub-partial-semigroup.
Example 2 Every partial semigroup from Sz is a sub-partial-semigroup of (<z, o).

We shall use the following shorthand notation. For any sets R C W and 7 C W we
write

RoT = {yeW| thereare a € R and S €T suchthat aof =7}

Ropf=TRo{8} aoT ={a}oT.
We shall denote the set of all subsets of a set W by P(W).

Definition. A partial semigroup model (W, 0, w) is a partial semigroup (W, o) together
with a valuation w associating with each type of the Lambek calculus a subset of W (i.e.,
w: Tp — P(W)) and satisfying for any types A and B the following conditions.

(1) w(A-B) = w(A) o w(B)

(2) w(A\B) = {y € W | for all a € w(A), if a0y is defined then a0y € w(B)}
(3) w(BJA) = {y € W | for all a € w(A), if v 0 & is defined then v o0 a € w(B)}
Remark. One can reformulate (2) and (3) as follows.

(2) w(A\B) = {y € W | w(4) oy € w(B)}

(3') w(B/A) = {y € W | youw(4) € uw(B)}

For any valuation w and for any types Ay, ..., A,, we write W(A; ... A,) as a shorthand
for w(Ay) o...ow(4,).

Definition. A sequent ['— B is true in a model (W, o0, w) iff w(I') C w(B).
A sequent is false in a model iff it is not true in the model.

Definition. A patrial semigroup model (W, o, w) is called an R-model iff (W, o) is an
R-frame (cf. Example 1 (d)).

In this paper ‘class’ and ‘set’ are synonyms.



Remark. Partial semigroups form a subclass of associative ternary frames [7].

It is known that the Lambek calculus is sound w.r.t. associative ternary frames. Thus
it is also sound w.r.t. all partial semigroup models, i.e., W(I') C w(B) for any partial
semigroup model (W, o, w), whenever L - '>B. On the other hand, W. Buszkowski [5]
has proved that the Lambek calculus is complete w.r.t. models over arbitrary semigroups
(Example 1 (a)). The completeness w.r.t. models over binary relational frames (Exam-
ple 1 (d)) has been proved by Sz. Mikulds [9].

In this paper we prove that the Lambek calculus is also complete w.r.t. smaller classes
of models, namely the models over the partial semigroups presented in Example 1 (b),
(c) and (e).

The problem of completeness w.r.t. finite linear R-models (i.e., models over R-frames
from Sz) is still open.

2 Quasimodels

In this section we introduce the notion of Tp(m)-quasimodels and describe an algo-
rithm of constructing a partial semigroup model as the limit of an infinite sequence of
Tp(m)-quasimodels, which are conservative extensions of each other.

Definition. A quasimodel (W,o0,w) is a valuation w over a partial semigroup (W, o)
such that

(1) w(A+B) = w(A) ow(B) for any A € Tp, B € Tp;
(2) if L + A— B then w(A) C w(B).
Remark. Every partial semigroup model is a quasimodel.

Definition. A Tp(m)-quasimodel (W, o0, w) is a valuation w over a partial semigroup
(W, 0) such that

(1) if A«B € Tp(m), then w(A«B) = w(A) o w(B);
(2) if ' € Tp(m)*™, B € Tp(m), and L - I'—B, then w(I') C w(B).

Remark. In the definition of a Tp(m)-quasimodel the condition (1) can be replaced
by (17).

(1) If AeB € Tp(m), then w(A-B) C w(A) o w(B).
(Note that w(A4) o w(B) C w(A«B) follows from (2)).

Lemma 2.1 Every quasimodel is a Tp(m)-quasimodel for any m.



Proor. (1) is obvious. To prove (2) we assume L F A;...A;—B and verify that
w(A;)o...ow(4;) C w(B), where 4; € Tp(m), ..., A; € Tp(m), and B € Tp(m).

Evidently w(A4;) o...0ow(4;) = w(A;s...+A4;). Note that L - Ay....«A;— B, whence
w(Aze...*4) Cw(B). W

Definition. A sequent I'+A is true in a quasimodel (resp. Tp(m)-quasimodel) (W, 0, w)
iff w(I') Cw(A4).

Definition. A Tp(m)-quasimodel (W, o, w) is a conservative extension of another
Tp(m)-quasimodel (V,o,v) iff

(1) (V, o) is a sub-partial-semigroup of (W, 0);

(2) w(A)N'V =uv(A) for any type A.

Remark. The condition (2) can be reformulated in the following way.

(2’) For any a € V and for any type A, o € v(A) if and only if & € w(A).

Remark. If (W,o0,w) is a conservative extension of (V,o0,v), then v(4) C w(A) for
every A € Tp.

Lemma 2.2 If (Wy,0,ws) is a conservative extension of (W, 0,w1) and (W3, o0, ws)
is a conservative extension of (W, 0,ws), then (W3, 0,w3) is a conservative extension

Of (Wl) o, ’I,U1>.

Proor. Evidently W, is a sub-partial-semigroup of Wj.
In view of W1 Q Wg we have ’LU3(A)ﬂW1 = wg(A)ﬂ (Wznwl) = (’LU3(A) ﬂWg)ﬂWl
Flll'thel', ('LUg(A) N Wz) N Wl - wz(A) n W1 = ’UJI(A) |

Definition. We say that a sequence of Tp(m)-quasimodels (W;,0,w;) (i € N) is
conservative iff, for every i € N, (W,,1, 0, w;41) is a conservative extension of (W, 0, w;).
(Here m is constant.)

Definition. The limit of a conservative sequence (W;,0,w;) (i € N) is the
Tp(m)-quasimodel (W, 0, w,,) defined as follows.

i) Wee & U W;
ieN
(i) we(4) = U wi(4)
ieN

Lemma 2.3 The definition of the limit is correct, i.e., (W, 0,Weo) s really a
Tp(m)-quasimodel.

PROOF.
(1) Proof of C.
Let A«B € Tp(m) and v € we(A«B). Then v € w,(A4+B) = w,(A) o w,(B) for some n.



Thus v = a o3, where a € w,(A) and 8 € w,(B). Evidently a € wo,(A4) and § € weo(B),
whence 7 = a0 8 € we(A) 0 weo(B).

(1) Proof of D.
Let A«B € Tp(m) and ¥ € We(A) 0 weo(B). Then v = a o 3, where o € we(A) and
B € we(B), i.e., a € w;(A) and 8 € w;(B) for some 7 and j. Put n = max(i, j).

Note that (Wn, 0,w,) is a conservative extension of (W;,0,w;). Hence a € w,(A).
Similarly 3 € w,(B). Thus v = a o € w,(A4) o w,(B) = w,(A+B) C we(AB).

@)
Let L - A,...A—B, where A; € Tp(m), ..., 4 € Tp(m), and B € Tp(m). Assume

that v € We(A4;... 4)), ie,, v = @ 0... 0 a, Where a1 € Weo(A1), ..., & € Weo(Ar).
Then a; € w;, (4;), ..., oy € w; (A4;) for some iy,...,% € N. Put n = max(iy,..., ).
Evidently a; € w,(A41), ..., oy € w,(A;), whence y = aj0...00 € Wo(A4;... 4;) C

wn(B) C we(B). W

Lemma 2.4 The limit of a conservative sequence is a conservative extension of any of
the elements of the sequence.

PrOOF. We verify that we(4) N W; = w;(A). If i < j then w;(4) C w;(A). Thus
Weo(A) = U'w]( )= U ‘w;(A), whence woo(A)NW; = (U w;(A)NW; = U(w]( JNW;).

Note that wJ(A) ﬂW = w;(A) for any j > 1. Now | ( (A) NW,) = U wz(A) = w;(A).
j>i
n

Definition. Let (W, o0, w) be a Tp(m)-quasimodel. Let A,B € Tp, a € W, v € W, and
v ¢ w(A\B). We say that « is a witness of v ¢ w(A\B) iff a o v is defined, a € w(A4),
and a0y ¢ w(B).

Let (W,o0,w) be a Tp(m)-quasimodel. Let A,B € Tp, « € W, v € W, and
v ¢ w(B/A). We say that o is a witness of v ¢ w(B/A) iff 7y o « is defined, a € w(A),
and vy o a ¢ w(B).

Remark. Let (W o, w) be a partial semigroup model. Then for any A € Tp, B € Tp,
v € W, if v ¢ w(A\B) then there is a witness of v ¢ w(A\B) in (W, o0, w).

Definition. Let (U,o0) be a partial semigroup. Let K be a class of Tp(m)-quasimodels
over sub-partial-semigroups of (U, o). We say that the class K is witnessed iff

(1) for any (V,o0,v) € K, for any type of the form A\B from Tp(m), and for any v € V,
if v ¢ v(A\B) then there is a conservative extension (W, o, w) of (V,0,v) in K and
(W, 0, w) contains a witness of v ¢ w(A4\B);

(2) for any (V,0,v) € K, for any type of the form B/A from Tp(m), and for any vy € V,
if v ¢ v(B/A) then there is a conservative extension (W, o, w) of (V,0,v) in K and
(W, 0, w) contains a witness of v ¢ w(B/A).

Theorem 1 Let m be a positive integer and K be a witnessed class of Tp(m)-quasimodels
over sub-partial-semigroups of a countable partial semigroup (U,0). Let E € Tp(m),
F € Tp(m), and the sequent E—F be false in a Tp(m)-quasimodel from K.

7



Then E—F is also false in a partial semigroup model over a sub-partial-semigroup

of (U, 0).

PRroOF. The following proof is similar to the R-completeness proof in [9].

Evidently there is a function 0: N — Tp(m) x U such that for any v € U and for
any C € Tp(m) there are infinitely many natural numbers ¢, for which o(i) = (C,~). For
example, the function ¢ can be obtained from any bijection 7:N — Tp(m) x U x N.

Given a Tp(m)-quasimodel (W, 0, wp), in which E—F is false, we define by induction
on 7 a conservative sequence (W, o, w;) (i € N).

CAsE 1:
If a( ) = (A\B,7), v € Wi, v ¢ w;(A\B), and there are no witnesses of v ¢ w;(A\B)
n (W;,0,w;), then take (W, 1,0, w;1;) to be any conservative extension of (W;, 0, w;)

in K, containing a witness of v ¢ w;;1(A\B). Such a Tp(m)-quasimodel (W1, 0, w;;1)
exists, since K is witnessed.

CASE 2:

If o(i) = (B/A,7y), v € W,, v ¢ w;(B/A), and there are no witnesses of v ¢ w;(B/A)
in (W;,0,w;), then take (W; 1,0, w;;1) to be any conservative extension of (W;, o, w;)
in K, containing a witness of y ¢ w;1(B/A).

CASE 3:

Otherwise put (W, 1,0, w;1) = (W, 0, w;).

Let (W, 0,ws) be the limit of the conservative sequence (W;, o, w;). Evidently,
E—F is false in (W, 0,ws). Now we define a valuation v over (W, 0) by induction
on the complexity of a type.

v(pi) = weo(pi)
v(AB) = v(A4)ov(B)
v(A\B) = {y|Va € w(A)if ao+y is defined then a0y € w(B) }
v(B/A) = {y|Va€w(A)if yoais defined then yo a € w(B) }

Evidently (W, 0,v) is a partial semigroup model. Next we verify that w.,(C) = v(C)
for any C' € Tp(m).

Induction on the complexity of C € Tp(m). Induction step.
Case 1: C = A.B
Obvious, since both v and wy, are Tp(m)-quasimodels.
CasE 2: C = A\B
First we prove that if v € we(A\B) then v € v(A\B). Let v € wy(A\B). Take
any o € v(A) such that a o v is defined. By the induction hypothesis @ € wq,(A4).
Evidently a oy € Ws(A(A\B)). Hence a0 € we(B) in view of L + A(A\B)—B. By
the induction hypothesis a0y € v(B). Thus v € v(A\B).

Now we prove that if v ¢ we(A\B) then v ¢ v(A\B). If v ¢ W, then this
is obvious. Let v € W;. There exists an integer ¢ > j such that o(i) = (A\B,~).
According to the construction of (W 1,0, w; 1) there exists @ € W1 such that c o~y is



defined, a € w;;11(A), and @ oy ¢ w;1(B). Since wy, is conservative over w;;1, we have
a € we(A) and a0y ¢ we(B). By the induction hypothesis, a € v(A) and aoy ¢ v(B).
Thus v ¢ v(A\B).

Case3: C =BJA

Similar to case 2.

Now we can prove that (W, 0,v) is the desired partial semigroup model. First,
(W, 0) is a sub-partial-semigroup of (U, o). It remains to show that v(E) Z v(F).

Since wy(E) € wo(F), there is & € Wy such that a € wy(E) and a ¢ wy(F). In view
of Lemma 2.4 we have a € we(F) and & ¢ weo(F). Thus a € v(E) and a ¢ v(F). W

3 Faithful quasimodels over linear order

The aim of this section is to introduce “left” quasimodels (V¥ o ¥ ) (and “right”

m,n’ 7 “m,n

quasimodels (V¢ , 0,48 )), which will later be used in the proof of Lemma 4.1, where we

construct a Tp(m)-quasimodel containing a witness for given 6 ¢ E\F (resp. 6 ¢ F/E).

Lemma 3.1 There is a family of quasimodels (Vp,o,vr) indezed by sequences of types
I' € Tp*, such that (Vr,0) € Sz for any T’ (¢f. Ezample 1 (f)). We denote the domain
Of (Vr,O) by DF (i.e., Vp C DP X Dp)

There are designated elements ¥ € Dy and xr € Dy such that

(i) (VT € Tp*) (VC € Tp) (¥, xr) € vr(C) & L+ T—C
(ii) (VI € Tp*) (VII € Tp*) Dr € Dy and Vp € Vi
(iii) (VT € Tp*) (VII € Tp*) (VC € Tp) vr(C) C wrn(C)
(iv) (VI' € Tp*) (VB € Tp) (xr, xra) € vrs(B)

Lemma 3.1 will be proved in Section 6.5.

Lemma 3.2 If L tf E—F then there is a quasimodel (W, o, w) such that (W,o0) € Sz
and w(E) € w(F).

Proor. Consider (Vg,0,vg). In view of L I E—F we have (¢, xg) ¢ vg(F). In view
of L - E—E we have (¢, xg) € vg(F). R

Lemma 3.3 There is an R-quasimodel (V¥ o oY) over an infinite linear order
VI c DY x DY, there is a designated element g € DY, and there is a family of ele-
ments hy € DY for T € Tp*, such that

(i) (VT € Tp*) (VC € Tp) (g, hr) € o(C) & L F I—C
(ii) (VT € Tp*) (VB € Tp) (hr, hrg) € v(B)



PROOF. We construct the quasimodel (V' o,v!) using the family of quasimodels
(Vr,0,vr) from Lemma 3.1.

DY = {& |T € Tp*, s€Dr}, where ¢ are new formal symbols.

W= {(&, &) | T € Tp*, A€ Tp*, s€Dr, t €Dra, (s,t) € Vra}

Evidently W is irreflexive. Next we verify that W is transitive.

Let (¢0,&84) € W and (a0, 6kag) € W. Then (r,s) € Vpa and (s,t) € Vran.
;From Lemma 3.1 (ii) we obtain (r, s) € Vpan. Thus (r,t) = (r,s)o(s,t) € Vran. Hence
(€, &ram) € W.

We take V¥ to be any linear order on D¥ such that W C V¥, We put

v(A) = {(&,65,) | T € Tp*, A € Tp*, s € Dr, t € Dra, (s,t) € vra(4)}.

g=& hr = &F

First, we verify that (V¥ o, v!f) is a quasimodel (conditions (2) and (1) from the
definition of a quasimodel at page 5).

@)
If L - A—B, then vra(A) C vpa(B) for any T', A € Tp*, whence v(4) C +¥(B).

(1) (A.B) C v¥(A) 0 M(B)
Let (£f,&h5) € v(A4.B). Since (r,t) € vra(A+B) = vpa(A) o vpa(B), there is s such
that (r,s) € vra(A) and (s,t) € vra(B). Note that s € Dra, since (s,t) € vpa(B) C
Dra x Dra.

According to the definition of v!f, (£7,£8,) € v(A) and (&, EbA) € vH(B). Thus
(&, & a) € V1 (4) 0 (B).

(1) f(A4)o vlf(B) C v (4.B)
Let (&7, &84) € v(A) and (€4, an) € v¥(B). We have (r,s) € vra(A) and (s,t) €
’U[\AH(B). By Lemma 31 (111), ’UFA(A) g UI‘AH(A)- Thus <T', .S‘> € 'UI‘AI'I(A), Whence
(r,t) = (r,s)o(s,t) € vpan(A)ovran(B) = vran(AsB). We see that (¢}, éh o) € v (A-B).

Next, we prove that (V¥ o, v!f) has the properties (i) and (ii).

(i)
Evidently, (g, hr) € v"(C) if and only if (1), xr) € vr(C). According to Lemma 3.1 (i),
(¥, xr) € vr(C) if and only if L F T'—=C.

(ii)

By Lemma 3.1 (iv), (xr, xr8) € vrs(B), whence (X7, £&EP) € +»(B). M

Lemma 3.4 For any positive integers m and n there is a Tp(m)-quasimodel (VY |, 0,v5 |

over a finite linear order Vgl’n C DY x DY | there is a designated element g € DX

m,n’ m,n’

and there is a family of elements hr € DY | for T' € LSTp,,, such that
(i) (VT € LSTy,,) (VC € Tp(m)) (g,hr) € v ,(C) & L+T—=C
(ii) (VI' € LSTp, n—1) (VB € Tp(m)) (hr, hrp) € vE .(B)

10



ProoOF.
DY = {& |T €LSTmn, s €Dr}U{& | s € Da}
Vlf = Vlf N (le x le )
vgyn(A) = vlf(A) N (ng X Dif,,n) for any A € Tp(m)
g=€  h=g

It remains to repeat the proof of Lemma 3.3. W
Evidently, all the lemmas of this section have also inverted duals. We formulate the
dual of Lemma 3.4.

Lemma 3.5 For any positive integers m and n there is a Tp(m)-quasimodel (V€ o, vg )

over a finite linear order Vi§ C D¢ x Dif | there is a designated element g € Di§ ,

and there is a family of elements hy € D% | for ' € LST,, ., such that
(i) (VI' € LSTp) (VC € Tp(m)) (hr,g) € v (C) & L+T=C
(ii) (VI' € LSTynn-1) (VB € Tp(m)) (hpr, hr) € v (B)

4 R-completeness

In this section we demonstrate how a partial semigroup (W, o) and a Tp(m)-quasimodel
(V,o,v) satisfying certain conditions can be used to construct an ‘almost’
Tp(m)-quasimodel (W, o, u), which is ‘conservative’ over (V,0,v) (cf. Lemma 4.1).
Using this result, we are going to prove that the class of all Tp(m)-quasimodels
over finite intervals of integers is witnessed (cf. Lemma 4.2) and the class of certain
Tp(m)-quasimodels over finitely generated free semigroups is witnessed (cf. Lemma 5.1).

Lemma 4.1 Given m,n € N, let DX | = [0,k] (and thus VI, = {(s,t) [0 < s <t <
k}). Let (V,o,v) be a Tp(m)-quasimodel, (W,o) be a partial semigroup, E € Tp(m),
RCV, T CW, and 7 be a function 7: Vgl,n — W. We denote

Po = {m(s,t) |0<s<t<k}
P = {n(s,k)|0<s <k},

P P1oR;

P = PyUPLUP,.

Let the following conditions hold.
(1) The partial semigroup (V,0) is a sub-partial-semigroup of (W, o).
(2) PoNPL =90
(3) PoNPy =10

11



(8) To(PUV)CT (PUV)oT CT
7(r,s) o (s, t) = n(r,t)

)
)
)
)
)
)
10) If s # s and m(r,s) o n(s', 1) is defined, then w(r,s) o n(s',t) € T
)
)
)
)
)
)
)

ajo...oa, ¢ R, for any a,...,a, € W. (Here n is the given natural number.)

Then there is a function u: Tp(m) — P(W) satisfying the following conditions (i)-
(vii).
(i) For any AsB € Tp(m), u(A+B) C u(A) o u(B).

(i) For any Bi,...,B;,C € Tp(m), if L + By...B—C, then u(B;y) o...0ou(B;) C
u(CYUT.

iii) 7(g, k) € u(E) (Recall that g is the designated element in DY

m,n

and thus 0 < g < k.)

iv) If F € Tp(m) and Lt/ E—F, then (g, k) ¢ u(F).

vi) v(A) C u(A) for any A € Tp(m).

(

(

(v) If F € Tp(m), p € R, and p ¢ v(E\F), then m(g, k) o p ¢ u(F).
(

(vii) u(A) Cv(A)UP for any A € Tp(m).

12



ProoF. We define the function u associating subsets of W not only with single types
from Tp(m), but also with sequences of types from Tp(m), i.e., u: Tp(m)t — P(W).

UO(@)
U1 (@)
uz(0)

{n(s,t) |0 < s<t<k and (s,t) € vE _(©)}

{m(s,k) |0 <s<k and (s,hg) € m(@)}

{m(s,k)op|0<s<k, peR, and IA € LST,, 1,
p €T(A), (s,hpa) € VE (0)}

u(0) Uuq(0) Uuy(0) UT(0)

1T 11

u(©)

1

Note that ug(©) C Py, u1(©) C P1, uz(0©) C Py, and u(0) CPU V.
Lemma 4.1.1 Let © € Tp(m)*t and B € Tp(m). Then u(0©) o u(B) Cu(OB)UT.

PrROOF. Let v € u(0) o u(B). Then v = a o 3 for some a € u(0) = up(0) Uu(O) U
u2(@)UT(O) and B € u(B) = uo(B)Uu;(B)Uuy(B)Uv(B). Assume that ao 3 is defined.
We consider the corresponding sixteen cases and prove that a o 8 € uo(©B) Uwu,(O©B) U
ux(©B) Uv(O@B) UT.

CASE 1: a € 4y(0)
a=m(rs),0 <r<s<k, (rs) i (©)
CASE la: 8 € ug(B)
B=mn(s"t),0<s <t<k (st € v}fl,n(B)
If s # s, then ao B € T in view of (10).
If s =5, then aof =n(r;s)on(s,t) = w(r,t) € uo(OB), since (r,t) = (r,s) o (s,t) €
o (6) o ok ,(B) = oIl (O ). | -
CAsE 1b: (B € uy(B)
B =mn(s' k), (s',hg) € vi (B)
If s#s', then o 8 € T in view of (10).
If s = s, then o f = n(r,s) o n(s,k) = n{r,k) € u;(OB), since (r,hg) =
(r,s) o (s,hg) € VK (©) o vl (B) =L (OB).
CASE 1lc: € uy(B)
B=m(s'k)op, pER, A€LSTmn_1, p€T(A), (s, hpga) €vE (B),0<s' <k
If s# s, thenaofB =n(r,s)on(s',k)opeTopCToVCT.
If s =s', then aof = n(r,k) o p € uy(©B), since (r,hga) € Ulf:;(@) ovf (B) =

m,n

o (©B).
Case 1d: B € v(B)
Evidently ao 8 € n(r,s) ov(B) C Py oV C T in view of (12).

CASE 2: « € u1(0)

a=m7(rk), (r,hg) € %(@), 0<r<k

CASE 2ab: (8 € ug(B) Uwuy(B)

B=mn(s,t),0<s<t<k

(From (10) we obtain ao 8 = n(r,k) o w(s,t) € T, since k # s.

13.



CASE 2c: B € uy(B)

;From (10) and (8) we obtainao3 € T oV C T (cf. case 2ab and case 1c).
Case 2d: B € v(B)

If 3¢ R, then ao (B € 7 in view of (14).

Now we prove that if 3 € R then ao 8 € uy(©B). We take A = B and p = .
;From (17) we see that n > 1. Thus A € LST,,,—;. By Lemma 3.4 (ii) we have
(hg, hgp) € vf ,(B). Thus (r,hgp) = (r, hg)o(hg, hs) € v ,(©)ovl ,(B) = ,(OB),
whence a0 8 € uy(©B).

CASE 3: a € uy(0) L
a=mn(rk)op, peR, A€ LSTmn1, A#A, peT(A), (r,hpa) €V (0),0<r <k
Note that a € Po V.

CASE 3abc: B € ug(B) Uui(B) Uug(B) C P

In view of (11) and (8) we have a0 f € PoVoP CPoT CT.

Case 3d: g € v(B)

If poB¢& R, thenaof =n(rk)o(pofB) €T in view of (14).

Now we prove that if poS € R then aof € uy(©B). We take A’ = AB and p' = pof.
Evidently po € 5(A)ov(B) = 7(AB). Thus pof = a;0...0¢q, where [ is the number of
types in the sequence AB. In view of (17), AB € LST,, ,_;. By Lemma 3.4 (ii) we have
<hEA>hEAB> € vglyn(B). Thus <7‘, hEAB> = <'I°, hEA> o <hEA>hEAB> (S ’Ugl’n(@) e} ’Ugl’n(B) -
of (0B).

CaseE 4 a€9(0)

CASE 4abc: B € uo(B) Uuy(B) Uuy(B) C P
In view of (11) we have ao B € Vo P C 7.
CAsSE 4d: (€ v(B)

Evidently a0 8 € 5(0) o v(B) =7(0B). W

Lemma 4.1.2 Let B; € Tp(m), ..., B € Tp(m). Thenu(By)o...ou(B;) Cu(B;...B)U
T. :

ProoOF. Induction on !. Induction step. We must prove that if u(Bj)o...ou(B;) C
w(B;...B)UT then u(B;)o...ou(B;)ou(Bi11) Cu(B;...BBiy1) UT. It is sufficient
to verify that (u(By...B)UT)ou(Biy1) Cu(By...B B ) UT.

¢From Lemma 4.1.1 we obtain u(B; ... By)ou(Bj4+1) C u(B; ... BiBj+1)UT. According
to (8), T o U(Bl_|_1) Q U(Bl cen BlBl+1) U T |

Lemma 4.1.3 Let A:B € Tp(m) and v € u(A+B). Then there are a € u(A) and
B € u(B) such that a0 = 7.

PRroOF.

CASE 1: v € uy(AB)

y=m(rt),0 <r <t<k, (rt) vl (4.B)

Since (VY ,0,vf ) is a Tp(m)-quasimodel, there is s € [0, k] such that (r,s) € v (A)

and (s,t) € v | (B).

14



Now v = m(r,t) = w(r,s) o w(s,t) € ug(A) o ue(B).
CASE 2: v € uy(A-B)
v =m(r,k), (r,hg) € vi (A+B),0 <1 <k
Like in case 1, there is s € [0, k] such that (r,s) € vl ,(A) and (s, hg) € ve L (B).

Thus v = m(r, k) = 7(r,s) o w(s, k) € up(A) o us(B).
CASE 3: v € uy(A+B)
T = 71'(7", k) op,peE R) Ae LSTm,n-—la pe T](A)a <T7 hEA) € U}-xi,n(A'B)7 0 <r< k
There is s such that (r,s) € vt (A) and (s,hga) € v} ,(B).

Now 7 (r,s) € ug(A) and 7 (s, k) o p € up(B), whence v € ug(A) o ux(B).
CASE 4: v € v(A.B)
Obvious from v(A«B) C v(A)ov(B). M

We continue the proof of Lemma 4.1.

()
See Lemma 4.1.3.

(i)
Let By,...,B;,,C € Tp(m) and L + B;...B—C. According to Lemma 4.1.2,
u(By)o...ou(B;) C u(By...B)UT. It remains to prove that u(B;...B;) C u(C).
This follows from (B, ... B;) C v(C) and @;(Bl ...B) C vgl,n(C).

(iii)
(From Lemma 3.4 (i) we obtain (g,hg) € v (E). Thus n{g,k) € u,(E).

(iv)
Let F € Tp(m) and 7(g, k) € u(F). Evidently n(g,k) € P;. ;From (2), (4), and (5) we
see that (g, k) € uy(F). Thus (g, hg) € v ,(F) according to (15). ;From Lemma 3.4 (i)
we obtain L - E—F.

(v)
Let F € Tp(m), p € R, and n{g, k) op € u(F). Evidently (g, k)op € P,. ;From (3), (4),
and (5) we see that 7(g, k)op € uz(F). According to (16) there is A € LST,, ,_; such that
p € (A) and (g, hga) € v}fl’n(F). iFrom Lemma 3.4 (i) we obtain L - EA—F. Applying
the rule (—\) we derive L - A—E\F, whence 5(A) C v(E\F). We have proved that
p € v(E\F).

(vi) Obvious.

(vii) Obvious. W

Definition. By K7 we denote the class of all Tp(m)-quasimodels over binary relational
frames from Sz (cf. Example 1 (f)).

Lemma 4.2 Let (V,o0,v) € K7, E\F € Tp(m), 6 € V, and § ¢ v(E\F). Then
there is (W,o,w) € K7 such that (W,o,w) is a conservative extension of (V,o,v)
and (W,o,w) contains a witness of 6 ¢ w(E\F) (i.e., there is a € w(E) such that

aod ¢ w(F)).

PRroOF. Let (V,0) = (W, ,0) € Sz and § = (a,b) € V (ie,, p < a <b<gq). Put
T=0,R={aj)|a<j<q},andn=qg—a+1

15



Recall that we identify DY  with [0, k] for a suitable natural number k. We take
(W,0) to be (Wp,_iq,0).
We define
m(s,k) = (p—k+s,a);
= (p—k+s,p—Fk+t) if t<k.

Note that

Py = {(1,j)lp—k<i<j<pk
P = {(i,a) |[p—k<i<p}
Py = {(i,j) | p—k<i<p, a<j<q}
The conditions (1)—(17) from Lemma 4.1 are easy to verify. We take w to be the function u
from Lemma 4.1.
According to Lemma 4.1 (i) and (i), (W, 0,w) is a Tp(m)-quasimodel. The conser-

vativity of (W, o0, w) over (V,o,v) follows from Lemma 4.1 (vi) and (vii). The witness
of § ¢ w(E\F) is m(g, k) (cf. Lemma 4.1 (iii) and (v), note that § € R). M

Theorem 2 The Lambek calculus is complete with respect to the class of all R-models on
subsemigroups of (<z,0) (cf. Ezample 1 (e)).

Proor. Immediate from Theorem 1, Lemma 3.2, and Lemma 4.2. B

Remark. The Lambek calculus is also complete with respect to the class of all R-models

on the partial semigroup (<z, o) itself.

Open question. Is the Lambek calculus complete w.r.t. finite R-models? In particular,
does the proof of Theorem 2 give a finite countermodel for any given underivable sequent?

5 L-completeness

Definition. Let V be any alphabet, i.e., any set, the elements of which are called symbols.
We denote by V* the set of all non-empty words over the alphabet V. By V* we denote
the set of all words over the alphabet V), including the empty word €.

Definition. Let o be a word over an alphabet V. Then |a| (the length of a) is the
number of symbols in a.

Definition. By Swe. we denote the class of all free semigroups (V*,0), where V is a
finite subset of a fixed countable alphabet {a; | j € IN}.

Definition. By Kg.. we denote the class of all Tp(m)-quasimodels (V*,0,v), over free
semigroups from Spee, such that for every A € Tp(m) there is a € v(A) satisfying
la| < m.

16



Lemma 5.1 Letm € N, (V*,0,v) € K&, § € V*, and E € Tp(m).
Then there is a Tp(m)-quasimodel W+, 0,w) € K&, and there is o € Wt such that

(i) (W™, 0,w) is a conservative extension of (VT,0,v);

(i) o€ w(E);

(i) for any F € Tp(m), if LY E—F, then a ¢ w(F);

(iv) for any F € Tp(m), if 6 € V* and 6 ¢ v(E\F), then aod ¢ w(F);

PRroOOF. We are going to apply Lemma 4.1. First, we put V& V* and n = |§] + 1. Let
DY = [0,k]. Let x, z, y1, %2, ... yi be any k + 2 distinct elements of {a; | j € N},
which do not occur in V. We denote Y & {z, z,¥1,¥2, - - -, Yr} and put W = W7, where
WsVYul.

We define the function 7 as follows.
7(s,t) & (2™ 0ysr102™) 0o (2" 0ysu02™)0...0 (™ 0y, 02™)

Here ™ = zo0...0x.
N e’

m times

We define the function Subword: W — P(W™) as
Subword(8) & {a € W | B=710a07, for some 7,7, € W*}.

Thus, Subword((3) is the set of all non-empty subwords of 5. Next we introduce several
subsets of WT.

R & {peV'|poa=4¢ for some ac V*}

Py = {m(s,t)|0<s<t<k}

P = {n(s,k)|0<s<k}

P, = PioR

P = PoUPLUP,

M; 2 {aeW|a¢ V" and a ¢ Subword(n(0, k) o §)}
My &= zoW* 4
Mz = Wrozx

M = MiUMUM;

T & Mo...oM

m times

Before applying Lemma 4.1 we establish several properties of these sets of words.

Lemma 5.1.1

(1) W*OMlow*ng

17



(i) If B € WH, a € Subword(B), and o € My, then B € M;.
(i) MaoW* C M,

(iii) W* o M3 C Ms

ProoFr. Obvious. M

Lemma 5.1.2
(a) PNVt =0
by PN M =10
() VFaM =
(d) MoMC M
e) TC M
f) MoVt C M
(8) VioM C M
(h) PoMCT
i) MoPCT
To(PUVIUM)CT

(
(

(
)

k) (PUVTUM)oT CT
() If s # s' then w(r,s) om(s',t) € T.
(m) VtoPCT
(n) PooVtC T
(0) Pro{BeWT|BER}CT
(p) PoVtCPUT
(@ PoPCPUT

Proor.
(a)

Evident from P C Y+t o V*.
(b)

Let a € P. Then the leftmost symbol of « is z and the rightmost symbol of a belongs to
VU{z}. Thus a ¢ M, and a ¢ M;. Note that P C Subword(n(g, k) 06). Thus o ¢ M.

18



(c)
Obvious.

(@
Let o € M and 8 € M. We verify that cof € M. If a € M; then aoff € M;. If
a € MythenaofB e My, If 3€ My then aofB € My. If B € M3 then ao 3 € Mj.
The only complicated case is @ € M3 and § € My, i.e., a =a oz and f = z 0 3. Note
that then z o z € Subword(a o §) and z 0 z € M;. It remains to apply Lemma 5.1.1 (i°).

(o)
Follows from (d).

0
Let « € M and B € V. We verify that co 83 € M. If « € M; then o 8 € M;.
If « € My then ao 8 € Ms. The only complicated case is @ = o' o z. In this case
z o 3 € Subword(a o 3) and zo 3 € M;.

&)
Let « € V* and 8 € M. We verify that co3 € M. If 3 € M; then ao 3 € M;. If
B € M3 then a o3 € Mj;. The only complicated case is 3 = z o 3'. Note that in that
case a0 z € Subword(a o §) and a0 z € M;.

In the following part of the proof we denote by 7 (s, s) the empty word in W*.

(h)
Let y € Po M.
Case 1: y=m(s,t)of3, B e M
Evidently y =z o0... 0z 0¢, where ¢ = zoys. 102" om(s+ 1,t) o 3. We must verify that

m—1 times

¢ € M.
If B € M; then ¢ € M;. If B € M3 then ¢ € M3. Let now 8 € My, ie. B =200
Evidently z™*! € Subword(ys41 0 2™ o (s + 1,t) 0 z 0 8 and 2™ € M;.
CASE 2: y=n(s,k)opofB,BEM,peR
Evidently v = zo...0oz0¢, where ¢ = z 0oy, ;302" on(s+1,k)opo 3. The only

m—1 times

complicated case is 3 € My, i.e., B = zof'. Note that poz € Subword(¢) and poz € M;.
(i) and (m)
Let a € MUVT and 8 € P. We must prove that a o 3 € Mo...0o M.

m times

CAsE 1: B = n(s,t)
Evidently a0 = ¢ozo... 0z, where ¢ = (aon(s,t — 1)oz™oy;02). Obviously z € M,.

m—1 times

It remains to verify that ¢ € M.
CASE la: a € M,

Obvious from Lemma 5.1.1 (i).
CASE 1b: a € M,

Obvious from Lemma 5.1.1 (ii).
CASE lc: a € Mj
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Note that the rightmost symbol of v is z and the first m symbols of 7(s, ¢t — 1)oz™oy;02
are z™. Thus ™! € Subword(e). In view of ™™ € M; we have ¢ € M;.
CASE 1d: a € V*
Evidently a o z € Subword(¢). On the other hand, a0z € V* o Yt and Vo Y+ C M.
According to Lemma 5.1.1 (i°), ¢ € M;.
CasE2: B=mn(s,k)op,pER
Now aofS =¢ozo...0z0(zo0p), where ¢ is the same as in the previous case. We have

m—2 times

already verified that z € M and ¢ € M. Evidently also z0 p € M.

()
In view of (i) and (e) we have ToP = M™oP C M™ 10T C M™ = 7. From (f) we
obtain 7 o V' = M™o YVt C M™ = T. According to (d) we have 7 o M = M™*H C
M™ =T,

()
Similar. We use (h), (e), (g), and (d).

0
Evidently m(r,s) om(s',t) = pozo...0z, where ¢ = (w(r,s) on(s';t —1)oz™ 0y, 0 2).

m—1 times

We only need to prove that ¢ € M. Note that y;02™o0z™ oy, 1 € ¢. On the other hand
Ys 0 2™ 0 2™ 0 yuyq1 € My, since s # s'. According to Lemma 5.1.1 (i), ¢ € M.

()
Let @ = 7(s,t), t < k, and 8 € V*. Evidently aof8 = zo...0z0¢, where ¢ =

m—1 times

T 0 yYsp102mom(s+1,t) o 5. Note that y; 0 2™ o f € Subword(g). On the other hand,
yr0z™o 3 € My, since t # k. Thus ¢ € M.

()
Let « = n(s,k) and B8 ¢ R. Evidently a o 8 = gzo...ozop, where

m—1 times

¢ =x0ysy102mom(s+ 1,k) o 3. Note that z o3 € Subword(¢). On the other hand,

z o3 € My, since § is not a left subword of § (see the definition of R). Thus ¢ € M;.
(p) |

Let @ € P and 3 € V*. We must prove that co3 € PUT.

CASEl: ae Py

According to (n), ao B € T.

CASE2: ae€P;

IfBeRthenaoB e P, f 3¢ R, thenaof €T in view of (o).

CASE 3: a € P,

Evidently Py o VT = (PyoR) oVt =P o (Ro V) CPyoV* and we can apply case 2.
(a)

Let o € P and B € P. We must prove that o S € PUT.

CASE 11 a € PyUPy,ie, a=m(rs), where 0 <r <s<k

CASE la: B € PyUPy,ie., B=mn(st), where 0 < st <k
If s =¢', then aof = n(r,s) on(s,t) = w(r,t) € P according to the definition of the
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function m. If s # &, then a o § € T according to (1).

CASE 1b: B € P,

Evidently a0 83 € aoP; o R. According to case la, a0 € (PUT)oR C (PUT)o V*.
(From (p) and (j) we obtain (PUT)o VT CPUT.

CASE 2: a € P,

;From (m) and (k) we get P,oP=PoRoPCPio(VToP)CPioT CT.

This completes the proof of Lemma 5.1.2. W

Now we apply Lemma 4.1 and obtain a function u: Tp(m) — P (W) satisfying the
conditions (i)—(vii) from Lemma 4.1.

We define a function Substy: W — P(WT) and two valuations wq: Tp(m) — P(WT)
and w: Tp(m) — P(W™).

Substap(q) = MU{q} if geW
Substa(@oq) = Substy(a)o ({gfUM) if a€ W' and ge W

The set Subst () consists of all words that are obtained replacing some (may be
none) of symbol occurrences in a by words from the set M.

’LUQ(A) = U SubstM(a, M)
acv(A)
w(A) = u(A4)Uwy(A)
Lemma 5.1.3 Leta € WY and 8 € WT. Then Subst y(aoB) = Subst a(a)oSubst p(3).
ProOOF. Induction on |3|. W

Lemma 5.1.4 Let A € Tp(m). Then

(i) v(A) C wo(4);

(i) wo(A) C v(A) UM.

Proor. It suffices to verify that, for any a € v(A),
(i) a € Substa(e);

(ii) Substp(a) C {a} UM.

We prove this by induction on |a| for any a € W.
Induction step.
(1)
Let a € W, g € W, and a € Subst(a). Then cog € Subst () 0{g} C Substp(aogq).
(i1) |
Let o € W*, g € W, and Subst y() C {a}UM. Then Subst ys(aog) = Substy(a)o({g}U
M) € ({a} UM) o ({g} UM) ={aog}U({a} o M)U (Mo {q}) U (MoM). ;From
Lemma 5.1.2 (g), (f), and (d) we obtain Subst (a0 g) C {aocgtUM. W
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Lemma 5.1.5 Let A € Tp(m). Then T C w(A).

ProoF. Since (V*,0,v) € KR ., we can choose a word a € v(A) such that |af < m.
Evidently Mo...o M C Substy(a) C wp(4) C w(A). In view of Mo M C M
——

|| times

and taking into account that |a|] < m, we have Mo...oM C Mo...o M. Thus

N~ ~

m times |a| times
T =Mo...oMCw(a) N
LA

m times
In order to make the formulation of the next lemma more readable we introduce the

following two subsets of W* (recall that ¢ stands for the empty word).

Q & PUVTUM
Qe = {6}JUQU(QoQ)U(QoQoQ)U...

Lemma 5.1.6

(1) QwoPo0Qu CPUT

(i) QwoP0QuoM0QuCT
(iil) QoMo QuoPoQyx CT

Proor.
(1)
(From Lemma 5.1.2 (q), (m), (i) and (k) we obtain Qo (PUT) C PUT. Now we can
easily prove Qo...0 @oP C P UT by induction on I.
R ——

[ times

(From Lemma 5.1.2 (q), (p), (h) and (j) we obtain (PU7 )0 Q C PUT. By induction
on [ we see that Q. ,oPoQo...0cQCPUT.
[ —

! times
(ii)
We prove that (Qe 0P 0 Qy)oMoQo...0Q C T by induction on .
e —

! times

Induction base. First we apply (i). Further, from Lemma 5.1.2 (h) and (j) we obtain
(PUT)oMCT.
Induction step. jFrom Lemma 5.1.2 (j) we see that To Q C 7.
(i)
We prove that Qo...0 QoMo (Q, 0P o Q) C T by induction on L.
S —

! times

Induction base. jFrom Lemma 5.1.2 (i) and (k) we obtain Mo (PUT)C T.
Induction step. ;jFrom Lemma 5.1.2 (k) we see that Qo7 C 7. W

Lemma 5.1.7 (W™ o, w) is a Tp(m)-quasimodel.

22



PROOF. We verify the conditions (1’) and (2) from the definition of a Tp(m)-quasimodel
at page 5.

1)
Let A«B € Tp(m) and v € w(A+B). We must prove that y € w(A) o w(B).
CASE 1: vy € u(A+B)
Obvious from Lemma 4.1 (i).
CASE 2: v € wo(A+B)
Evidently v € Substa(y') for some v' € v(A+B) = v(A) o v(B). Thus v’ = o/ o ', where
o €v(A) and B’ € v(B). According to Lemma 5.1.3,
Subst ¢ (') = Subst (') o Subst o (8') C wo(A) o we(B).

(2)
Let Ay,...,A,B€ Tp(m), Lt A;... Ai—B, a1 € w(Ay), ... € w(A;). We must prove
that @y 0...0q; € w(B).
Case 1: (Vi <l)a; € u(A;)
According to Lemma 4.1 (ii), a;0...00y € u(B) U T.
In view of Lemma 5.1.5, a; 0... 0 a; € w(B).
Case 2: (V) <1)a; € wo(4;)
This means that for every number j < [ there is a word B; € wv(4;) such that
a; € Substu(B;). According to Lemma 5.1.3, @; 0... 0 € Substy(Bio...0 B).
Note that B10...006, € v(Ay)o...0v(4;) C v(B), since (VT,ov) is a Tp(m)-quasimodel.
Thus aj 0...0q; € we(B).
CasE 3: (W <1l)o; ¢ u(A;) and (35 <1) a; ¢ wo(A4;)
Evidently o; € wg(A4;). ;From Lemma 5.1.4 (ii) and Lemma 4.1 (vi) we obtain
a; € v(A;) UM and o; ¢ v(A;) respectively. Thus o; € M.

Evidently o; € u(A;). ;From Lemma 4.1 (vii) and Lemma 5.1.4 (i) we obtain
a; € v(A;) UP and o; ¢ v(A;) respectively. Thus o; € P.

Note that oy € Q for every k' < I. According to Lemma 5.1.6 (i) and (ii),
a10...0q € T. It remains to apply Lemma 5.1.5. W

We continue the proof of Lemma 5.1. The desired word a € W™ is taken to be
a = w(g, k).

Q)

Let A € Tp(m). We must verify that w(A4) N VT = v(A).

;From the definition of w we see that w(A4) NVt = (u(4) N V*) U (we(4) N V).
According to Lemma 4.1 (vi) and (vii), and Lemma 5.1.2 (a) we have u(4) NV = v(A).
On the other hand, in view of Lemma 5.1.4 and Lemma 5.1.2 (c), wo(4) N VT = v(A).

(i)

Immediate from Lemma 4.1 (iii).

(iii)

Immediate from Lemma 4.1 (iv), if we take into account that n(g, k) ¢ V* UM and thus
(g, k) ¢ wo(F) for any F € Tp(m).

(v)

Immediate from Lemma 4.1 (v), if we take into account that 7(g,k) 0o § ¢ V* UM and
thus 7(g, k) 0 § ¢ wo(F) for any F € Tp(m). M
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Before proving that the Lambek calculus is L-complete we have to verify that the
class Kf. is not empty.

Lemma 5.2 The class Kf,.. is not empty.

Proor.
We define the positive count # as the following mapping from types to positive integers.

#p = 1
#(A-B) = #A+#B
#(A\B) = max(l,#B —#A4)
#(A/B) = max(l,#A - #B)

The positive count of a sequence of types is defined in the natural way.
#(Ar. . A) = #A+ .+ #A
Lemma 5.2.1 For any type A, #A < ||4]|.
Lemma 5.2.2 If L+ T—A then #I' > #A.

ProoF. Straightforward induction on the length of the derivation.
CAsE 1: Axiom

Obvious. ATIB

Case 2: (—\) Given H___JW (—\) where IT # A.

By the induction hypothesis #A4 + #II > #B, whence #II > #B — #A. On the other
hand, for any non-empty sequence of types II, #II> 1.

Thus #II > max(1,#B — #A) = #(A\B).

Case 3: (—/)

Similar.

Case 4: (\—) Given %—g&\g)BAA:CC (\—)

By the induction hypothesis #& > #A4 and #I' + #B + #A > #C.

Note that #(A\B) > #B — #A.

Hence #I' + #& + #(A\B) + #A > #T + #A + (#B — #A) + #A > #C.
CAsE 5: (/=)

Similar.

CASE 6: (—+) Given %@‘—Z&TB(%')

If #T > #A and #A > #B, then #T' + #A > # A+ #B = #(A.B).
CASE 7: (s—) Given % («—)

Evidently #(I'(4.B)A) = #(TABA). &
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Now we define a Tp(m)-quasimodel (V*,0,v).

Va{a} vd)={ao...oa |k>H#A}

k times

It is immediate from Lemma 5.2.1 and Lemma 5.2.2 that (V*,0,v) € K&... This com-
pletes the proof of Lemma 5.2. W

Theorem 3 The Lambek calculus is complete with respect to the class of all language
models (L-models).

ProOF. Let L If E—F. We are going to prove that there is an L-model (W™, 0, w) such
that

(1) WC{ae;|jeN}
(ii) w(E) € w(F).

Evidently, there is a natural number m such that E € Tp(m) and F € Tp(m). We
apply Lemma 5.1 putting § = ¢ (the empty word) and taking any L-model from KR . as
(V*t,0,v) (cf. Lemma 5.2). Thus we obtain an L-model (W ,0,ws) € K&, such that
wo(E) € wo(F) (see Lemma 5.1 (ii) and (iii)).

To apply Theorem 1, we must first verify that the class K., is witnessed. This follows
from Lemma 5.1 (i), (ii), and (iv). M

Theorem 4 The Lambek calculus is complete with respect to the class of all language
models over a two symbol alphabet {b,c}.

Proor. Let L t/ E—F. Following the proof of Theorem 3 we find a free semigroup
model (V*,0,v), where V C {a; | 7 € N}, such that v(E) € v(F) and v(A4) # 0 for
every A € Tp(m). We take W = {b, c} and define a function g: Y+ — W as follows.

g(aj) = bogo...ocob  g(aof) = g(a)og(B)
j times

Now we put w(p;) = {g(7) | v € v(p;)} for every primitive type p; and define w(A) for
complex types like in the proof of Theorem 1.

By induction on ||A|| we see that w(A) = {g(y) | v € v(A)} for every A € Tp(m).
Thus w(E) € w(F). W

6 Weights

In this section we assign to every derivable sequent of the form I''>B+C a set of positive
integers. These integers are “weights” of the type B with respect to different derivations
of '=+B«C. The main properties of the weights are the following.
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o Given a fixed sequence I', there is only a finite number of possible values for the
weights of B with respect to derivations of I'+B.C.

¢ If the weights of B; and B, with respect to some derivations of I'=+B,+C; and
'~ By+Cy are equal, then the sequents I'— B;+C5 and I'— By+C'; are derivable in the
Lambek calculus (cf. Lemma 6.7).

At the end of this section we shall prove Lemma 3.1. The domain Dr of the quasimodel
(Vr € Dr x Dr,0,vr) will consist of all possible values for the weights corresponding to
the antecedent I'.

6.1 Calculus L* with multiple succedents

Here we introduce an alternative axiomatization of the Lambek calculus.
The sequents of L* are of the form I'+A, where I' and A are non-empty sequences of
types. The intended interpretation of A; ... A,,—B;...B, is Aje...sA,,—Bje...+B,.
The axiom scheme is IT—1II, where II # A.
The rules of L* are the following.

All—-B A T'BA—O
I[IA—B ® A4 T'BA—O
I'=-0ABE . TABA—O©
r56(A-B)s () T(4-B)A-06 ")

I'-0 A=E
I'A—=0O=E (CON)

We shall label L*-derivations with symbols D, Dy, D', etc. We write L¥ - T B O for
‘D is an L*-derivation of I'=@’.

6.2 Equivalence of L* and L
Lemma 6.1 L +FT—A;... A, ifand only if L-T—A;.....A,.

Proor. ‘If’ part.

Straightforward induction on the length of a cutfree derivation of I'—Aqe...+A,.
‘Only if’ part.

Induction on the length of the L*-derivation of '—A; ... A,,.
In the case of the rule
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F‘—>Cl‘... C,ABDqe...eD, (_>.)
F—)Clﬁ . OCm(AOB).D]_' ...oD,

we apply cut with the sequent
((Cro...sCppsA)sB)eDye...sDy—(Che ... oCppo(AsB))eDye ... o D,,.
In the case of the rule '

'-A,...4, A—-B;...B,
FA—}A]_ .. ~AnBl ...B,

(CON)

we apply cut with the sequent Co(...(B1eB3)...+By,)— (... ((C+B1)+B2)...+B,,), where
C :Alo...OAn.
Other cases are trivial. W

Lemma 6.2 The rule

I'—=A A-=II
r—1I (CUT)

is admissible in the calculus L*.

Proor. We derive in L*.

)

ONETA

According to Lemma 6.1 L F I'—(eA) and L I (eA)—(eII). By an application of cut we
obtain L F I'—(eII), whence L¥ + I'—II. M

6.3 Definition of weights

For any sequence I' € Tp(m) we denote by |T'| the sequence of primitive types obtained
from T' by omitting parentheses and connectives. Thus |[I¥| is a word in the alphabet
{P1,p2,ps,...}. Note that ||| = [|[T']]. :

Example 3
[Pl (Pl\(Pz'Pa)) J = P1P1P2pP3 ‘

We are going to associate with every L¥-derivation T’ 2 Ci...C, a fragmentatiou
of |I'| into n continuous subwords (i, ..., {, such that [I'| = {; 0... 0 {,. This will be
done by induction on the length of the derivation D. The weight of the type C; (where
1 < ¢ < n) w.r.t. the derivation T 2 Cy...C, is the length of (; and it is denoted by

D
1 (Cz)
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Obviously, the words (i, ..., (, are uniquely defined if WD(Cl), e WD(C’,,) and T
are given. The following definitions and lemmas are given in terms of WD(C,;), not (;.
We shall write w2 (CiCiyy ... C;) for w2 (C;) + wP(Cit1) + ... +wP(C}).
Definition. The weights are defined by induction on the length of a derivation.

Case 1: Axiom Gy ..., B .. c.
w”(C;) = ||Cil|

CaseE 2: (=) "HA—Q_I))IT;% (=\)
WP (4\B) = ||
CaAsE 3: (—/) ﬁ (=/)

WP (B/A) = |1

884 rBaB0,.. .C,

reA\B)a Bc,...c,

Case 4: (\—) (\—)

W’D(Ci)‘__\{w?(C’i)—i-H@H—l—HAH it wD(Cy ... Coy) < |IT) and w2 (Cy...C0) > |IT|

W (Cy) otherwise

~

824 BAB¢,. . .C,

CaseE 5: (/—)
re/a)ea B o, ... c,

(/=)

~

2 V__\{ wD(Co) + |l + Al if wP(Cipr ... C) < |A] and wP(Ci... Cr) > A

WD(Ci) otherwise
CASE 6: (=) FD_) OABE (=)
I' 5 O(A.B)Z
wP(4.B) = wP(4)+wP(B)
WD(C) = WD(C) for any placed type C in O or 2
IF'ABA —ﬁ) )
CASE 7: (+—) (=)

r.8a B e
wD(C’) = WD(C) for any placed type C'in ©
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rB4,...4 AZBB . . .B,

rAB 4,...4.B,.. B,

Case 8: (CON) (CON)
WD(A,; = WD(Az)
WP(B) = wP(B)

Lemma 6.3 IfI*FT B Cy...C,, thenw

Lemma 6.4 If L* T 2 Cy...C, then wP(Ci...C) = |IT).

QD

(C;) > 0 for every i < n.

Proor. Straightforward induction on the length of the proof D. The only non-trivial
rules are (\—) and (/—). We consider the following case.

3834 tBAZB .. . C,

5 (\—)
I'&(A\B)A = C;...C,

By the induction hypothesis w2 (C; ... C,) = [T BA|| > ||T||. Consequently there exists
a unique number io such that w2 (Cy . .. Ci_1) < |T| and wP(Cy ... C;) > ||T). Evidently

WP(C1...Co) =wP(Cr...Co) + [[@]| + | 4] = [TBA|| + [[2]| + ||A]l
|

6.4 Properties of weights

The aim of this section is to prove two properties (Lemma 6.7 and Lemma 6.8 (i)), which
will later be used in the proof of Lemma 3.1.

, D/l
_%

Lemma 6.5 IfIIII' = 00/, @ £ A, ©' # A, and wP (©) = ||II||, then

(i) there is a derivation D of the sequent II—© such thatwP (C) = WD”(C’) for any placed
type C in O,

(ii) there is a derivation D' of the sequent II'-®©' such that wD’(C) = wD”(C) for any
placed type C in O'.

ProoF. Induction on the length of D".

D D
- A TBA=SC(Cy...C,
CASE 1: o ! (\—=)

I&(A\B)A 2 C...C,

Note that, for all k, either w2 (C;...C%) < |IT|| or wP (C1...Cx) > T + |®] + || A]l.
Thus we have two subcases.
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~

D 1 Dt 115 !
O 5 A TI'B'A' > 00" (\ L) and Do) = |1

DI/
IT'e'(A"\B"A' = 00’
28 4 rean B oo D
CASE 1b: ~ (\—) and w~(©) = ||TBA||
I'e(A\B)AA' = 66/
Both subcases are easily reduced to the induction hypothesis.
The rule (/—) is treated similarly, other cases are trivial. M

CASE 1la:

Lemma 6.6 If L* - II,CA, 22} 0.2, LFFTI,CA, 2; 0,=,, and
0 <wP1(01) — || = wP2(6s) — ||| < |CII,
then there is a derivation D of the sequent II;CAy— 0=, such that

(i) WD(B) ! (B) for any placed type B in Oy;
(ii) WD(B) = wD2 (B) for any placed type B in Es.

ProorF. Induction on the total length of D; and D,. We distinguish three cases.
CAsSE 1: C is the main type of the last rules of both D; and D,.

CASE la: C =E\F
Given

A ~ ~

® 3 E I'FA, = 0,5, (=) ®, FE T[L,FA, 13% 0,5,
D, Dy .
T18,(B\F)A; = 0,5, T2®5(E\F)A; =5 0,5,

(\—=)

Here Hl = qu)l and H2 = P2?2.

First we verify that 0 < w?l(G)l) —|IT4]| = WDZ(GQ) —|IT2]| < ||F|| and next we apply
the induction hypothesis to D; and D,.

If WD1(91) < |IT1|| then, by the definition of the weights, WDl(@l) < ||IT4l < |ITLy .
This is in contradiction with 0 < w2t (©1) — [|T||. Thus le(@l) > ||T |-

Further, by the definition of weights, w21(0;) = wP1(0,) + ||®1]| + || E|.
Therefore

wPL(@,) — Tyl = (P1(@y) — &4 - |1Il) — IT1]l = (P1(01) — [T1&4]) — | B

and simlarly 3
WP2(02) = |2l = (WP2(03) — |22, ]) - |1 E].
By the assumption of the lemma, the right hand sides of these equalities are equal.

This proves wP1(0,) — ||T|| = wP2(0,) — ||T4||.
Now we see that
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wP1(@)) — |y = (WPL(O,) — |ITy&4])) — | Bl < |B\F| — || E]| = | F|.
By the induction hypothesis we find a derivation D of the sequent [1 FA,—01E,.
&, B E 1,FA, B 0,3,
D
Fl@l(E\F)A2 — @1:.2

(\—=)

Case lb: C=E/F

This case is treated in the same way as case la.
CAse 1lc: C = E.F

Given

ILEFA, 29 0,5 (=) II,EFA, 2—73 O35,

L (B-F)A;, 2} 0,5, L(B-F)A; 22 0,5,

(+=)

If wP1(©,) = ||I,|| + ||E|, then we find an appropriate derivation of
II;EFA;—©1E; from Lemma 6.5 applying the rule (CON), otherwise from the induction
hypothesis of this lemma. After that we derive

HlEFAz——)Glag (.__))
Hl(EOF)Ag—-)@;[Ez

CASE 2: (C is not the main type of the last rule of D;.

We consider different subcases depending on the last rule of D;.

CasE 2a: (\—)
CASE 2a.i: Given
Dy -
@1 — E1 PlFl‘I’chl —} @1:1

Dy, -

18, (B \F)¥,CA; = 0,5,

(\) -
IL,CA, =F 0,5,
It follows immediately from the definition of weights that

WD1(®1) — [T F ¥ = WDl(@l) — |IT1®1(E1\F1)¥:||. Thus we can apply the induction
hypothesis to D; and D,.

&, X E, rFU,CA, R OE,
D —_
F].@l(El\Fl)‘I’chz — @1:.2

(\—=)

Other subcases are similar to case 2a.i.
CASE 3: (' is not the main type of the last rules of Ds.
Similar to case 2. W
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Lemma 6.7 IfI* - T 2% 0,5, I# - T 2% 0,55, and wP1(0;) = wD2(0y) then there is
a derivation D of the sequent I'—0,Z, such that

(i) WD(B) = WDl(B) for any placed type B in Oq;
(i1) wD(B) = wD2 (B) for any placed type B in Z,.

PROOF. Let I'= A;...A,. Take k = min{i | ||4;... Al > wP1(0,)}.
CASE 1: ||A1... A > le(G)l)
Evidently [|A; ... Ap_1|| < wP1(0,) = wP2(0,) < [|A;. .. Au_1ll + || Axl.-

We apply Lemma 6.6 with C = A, II; = I, = A;...A;_1, and A; = A, =
Apy1... A,
CASE 2: ||A; ... Ay| = wP1(0y)
If £ =0 then take D = D,. If k = n then take D = D;.

If0<k<n,then LFA;...A4;—0;, LF Apyy...A,—E;, L A;... A4,—0,, and
Lt Apyq... A,—E; according to Lemma 6.5. Applying the rule (CON) we obtain
LEA .. . ArAr:.. . A,—0 5. W

There are several cut rules admissible in L#. We are interested in the following rule.

I'-0AE A=Y
I'sOU=

Lemma 6.8 (i) If L* T 2} OAE and L* F A P) ®, then there is a derivation D of
the sequent ' -O®E such that WD(A) = w1 (A) for any placed type A in © and
wD(B) = D1 (B) for any placed type B in Z.

() FIF F Ty 2 OAL, I8 F Ty 23 A, and IF - AjA; B @, then there is a
derivation D of the sequent I'\I'3—O®E such that WD(A) =wD1 (A) for any placed
type A in © and WD(B) = wDs (B) for any placed type B in E.

(iii) IfL* T4 2} OA,, LFF T, 2? Ay, LM T 29 As3E, and L* F A1AA; 7—)> ®, where
Ay and Ay are non-empty, then there is a derivation D of the sequent I'1T's'3— O =
such that WD(A) = wD1 (A) for any placed type A in © and WD(B) = WD3(B) for
any placed type B in =.

Proor. First we prove (iii) by induction on the total length of D; and D;. After this it
is easy to prove (ii) and (i) in the similar way.

We consider a number of cases depending on the last rules of D; and Dj in (iii).
Case 1: (CON) in D,
CASE la:

32



I—0A; TIN—A]

P1P,1—>®A1A’1 (CON) Fg—)Ag I's— A= AlAgAg—'}@
I‘II"'IPZI‘;),—-)@@E
4
F?I._}All Fz—)Az
Fl—)@Al I"1F2—>A’1A2 (CON) Fg—)AgE A1A2A3—-)q)
AN S PNYCT 3

CASE 1b:
I'N—0" I''—0A,

F’lFl—)@,@Al (CON) I‘z—-}Ag F3'~')A35 A1A2A3—>¢
FI1F1F2F3——>@'®¢E
Y
I'—0A; TIy—A, F3—+A3E AlAzAg'—)@
Fa-)@’ F1F2F3-—)®@E

Case 2: (\—=)in D,

¥—A TBII-0A; (\—)
P\I’(A\B)H—)@Al I‘z—)Az I's—As= A1A2A3-—)q)

TU(A\B)IIT,T; 088
U
FBH—)@Al Fg—)Az P3—>A35 A1A2A3-—)¢’
U—A I'BIIT, '3 — 0= (\=)
[0 (A\B)II[,T;— 08

Case 3: (/—)in Dy

v—+A TI'BII-0A; (\—)
F(B/A)QH—)@Al Fz—)Az Fg—)AgE A1A2A3—)¢

U
FBH—)(’Z‘)Al Fg—}Az Fg"?AgE AlAzAg—)Q
YA I'BI,I5—08= (\=)
T[(B/A) UL, 0&E

CASE 4: (—+) in Dy
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I'—0OVABII (=)
T, — 0¥ (AB)II Dy As T3—AsE  U(AB)IA,A3—®
F1F2F3-—>@@E

4

‘I’ABHAzAg——)q) (_) )_1
I‘l—)g\I’ABH Fg—“)Az Fg—‘)AgE \I/(AOB)HAQA?,“)@
I3 —08=

CASE 5: (+—) in Dy

Similar to case 2.

CasE 6: (CON), (\—=), (/=), (—+), or (+—) in D3

Similar to the corresponding case for D;.

Casg 7: (=) or (=/) in D; and (=) or (—/) in D,

Evidently, both © and = are empty. According to Lemma 6.2, L* - I';T2I's—®. M

6.5 Construction of the R-models (Vr,o,vr)

Proor orF LEMMA 3.1. We must construct a family of quasimodels
(Vr C Dr x Dr,o,vr) indexed by sequences of types I' € Tp*, such that (Vr,0) € Sz
for any T' (cf. Example 1 (f)).

We have to point out designated elements ¢ € D, and xr € Dr such that

(i) (VT € Tp*) (VC € Tp) (¢, xr) € vr(C) & L+T—C

(ii) (VI' € Tp*) (VII € Tp*) Dr C Drp and Vp C Vg

(iii) (VI € Tp") (VII € Tp*) (VC € Tp) vr(C) C vrn(C)

(iv) (VI € Tp*) (VB € Tp) {(xr, xrs) € vrs(B)

This is done as follows.
Dr={teNJ0o<i<|}
Ve={(i,j)) ENxN|0<i<j<|T|}
up(C) =
{{i,j) € Vr | (30 € Tp*) (32 € Tp*) (3D) L* F T B 0CE, wP(0) =i, wP(6C) = j}
p=0 xr=|T

First, we verify that for any I' € Tp*, (Vr, 0, vr) is a quasimodel.
(1) wr(A) o vp(B) C vp(4-B)

Let (i,7) € vr(A) and (j,k) € vp(B). This means that L* + T 1—)-} 0,48, LM +
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r ——? ©,B%,, wb1 (01) =1, le(G A =j,w 2(62) = ], and WDz(@zB) = k. According
to Lemma 6.7, L* - T B ©,ABZ,. Further, L+ T —> 0;(A+B)EZ,. Note that WD (01) =
i and wP' (©,(A+B)) = k. Thus (i, k) € vp(A.B).

(1) wvr(A«B) C vr(4) ovr(B)
Let (i, k) € vp(A+B). This means that L* F T 2* ©(4.B)E, wP1(0) = i, wD1(0(A-B)) =
k. Note that L* F (A+B)—AB. According to Lemma 6.8 (i) there is a derivation D such

that I# F T B ©ABS, wP(0) = i, wP(OAB) = k. Let j = wP(OA). Evidently

<Z,j) S ’Ur(A) and <], k) S 'UF(B).
(2) >
Let L - A—B and (i,5) € vp(A). This means that I* - T' = ©AE, WDl(@) = 4, and
le(GA) = j. In view of Lemma 6.1, L* - A—B. According to Lemma 6.8 (i) there is
a derivation D such that I* - T 3 OBE, WD(@) =1, WD(@B) = j. Thus (z,j) € vr(B).
Now we verify that (Vr,o,vr) satisfies (1)—(iv).
1)
Let LT —C. Then I* F T B C and wP(C) = |[T||, whence (0, |T||) € vr(C).
For the converse, let (0,||T'||) € vr(C). Then L* + T X oCz, wP(©) = 0, and
wP(0C) = ||T|| = wP(OC=). Thus © = A and = = A.
(i)
Obvious.
(iii)
Let (i,5) € vp(C), ie., I* F T 5 OCE, wP(0) = 4, and wD(G)C) = j. Applying the
/
rule (CON) we obtain L* I I'Il 1—)) OCEII, wD,(@) =4, and WD’(@C) =j.
(iv)
There is a derivation D such that L*  TB 3 I'B, WD(F) = ||T'|| = xr, and WD(FB) =
”FB” = XTB- Thus <XF7XFB> € UPB(B). ]

D
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