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1 Introduction

In this paper we will investigate the interconnections between two approaches in Arrow Logic. The
first one is developed basically by D. Vakarelov in, for example [8]. It studies multigraphs which
may be presented as structures of the following kind: (Ar, Po,1,2), where Ar is a set of arrows,
Po—a set of points, and 1, 2 are two functions from the set of arrows to that of points. These two
functions give for every arrow its beginning and its end, respectively. Using these functions we may
define four relations between arrows in the following way: for z, y € Ar, Rijjzy & i(z) = j(y).
For example two arrows are in the relation Ry if their beginnings are the same, and similarly for
the other cases. Using these relation we can define the modal frame (Ar,{R;; | 1,5 = 1,2}). It is
easy to see that such frames have the properties:

(pit) Rizz;
(O'ij) R,-j:cy = Rj,'y:l:;
(rijk) Rijzy& Rjryz = Rixzz;

From now on we will call frames satisfying these properties arrow frames. In section 2 we show
the connections between the two kinds of structures and briefly develop the modal theory of arrow
frames. Using the above relations between arrows we can define others in various ways and study
the modal theories of the frames that we get in this manner. Examples of this will be given shortly.

The second approach we consider was proposed by J. van Benthem in [2], and further inves-
tigated by Y. Venema, M. Marx and also a group of Hungarian logicians (cf. [9], [5], [6]). The
main topics of discussion in it are frames of the form (W, C, F, I), where C C W3, F C W2, and
I C W. These relations connections between members of W are interpreted as composition of ar-
rows, converse arrow, and identity. The object of study are logics which are intermediate between
the minimal logic of these structures and the logic as rich as the theory of binary relations.

The prime concern is to develop them in such a way that will enable us to prove that these
logics have some nice properties as decidability, etc.

As was mentioned it is possible to incorporate the relations from the second approach to Arrow
Logic in the first one. Since the relations—composition, converse and identity—provide a specific
configuration of the arrows which are in one of them, then some connections emerge between the



sets of relations of both approaches. The connections that we have in mind are the following

(6) Iz & Rozz,
() Fzy < Razy& Riszy,
(1) Czyz < Ryzyé& Royz & Roozz,

Combining the coincidence relations R;; of the first approach with the relation-algebraic ones of
the second approach we will get a new kind of frames which satisfy the above stated conditions -
(8), (¢), (7). We call such kind of frames relational arrow frames. Our aim in this paper is to
axiomatize the modal theory of the relational arrow frames. This will enable us to assert that the
objects we consider are arrows in the usual meaning of the word i.e. object having a beginning
and an end, and still we will have the machinery to speak of the connections typical of the theory
of binary relations.

After providing the short survey of the modal theory of arrow frames the paper further on
is organized as follows. In section 3 we develop the axiomatic system of the modal theory of
relational arrow frames and show the corresponding first-order conditions of the axioms, as well
as briefly dwell on the soundness of the system.

In section 4 we go in great detail through the completeness proof. Since it turns out to be very
long this section is divided into several subsections emphasizing on the main stages of the proof.

Finally, in section 5 we provide some final remarks and suggestions for using our method for
proving completeness in other situations.

2 Arrow frames. Basic Arrow Logic

By an arrow structure we mean any system S = (Ar, Po,1,2), where
e Ar is a nonempty set, whose elements are called arrows,
e Pois a nonempty set, whose elements are called points. We assume also that Ar N Po = 0.

e 1 and 2 are total functions from Ar to Po associating to each arrow z the following two -
points: 1(z), the first point (beginning) of , and 2(z), the last point (end) of z.

We also put the restriction that the arrow structures should satisfy the property: For each point
A there exists an arrow  such that A = 1(z) or A = 2(z). As mentioned in the introduction,
from arrow structures we can get modal frames by taking the set of arrows Ar and defining the
relations between arrows: R;jzy « i(z) = j(y). These arrow frames satisfy the properties (piz),
(1), (rijk) from the introduction.

Now we have seen that from every arrow structure A we can define an arrow frame which
we designate by S(A). An arrow frame M for which there is an arrow structure .4 such that
M = S(A) is called M standard. A main result now is the following:

Theorem 2.1 Every arrow frame is standard.

Proof. See [8] Theorem 1.7. -

This theorem in effect allows us to investigate the properties of only one class of these structures.
Since arrow frames are much more suitable for modal study we will now axiomatize the modal
theory of arrow frames.

The language in which we are going to define our logics consists of the following elements:

e VAR - a denumerable set of proposition variables,



e -, A,V — classical propositional connectives,
e (ij), i,7 = 1,2 — four modal operations,
e (,) — parentheses.

The definition of the set of all formulas F'rm for Lis the usual one. We will also use the following
abbreviations: A - B=-AV B, A~ B=(A— B)A(B— A), (ij)A = —[ij]=A. The general
semantics for that language is the Kripke semantics under relational structures. In the next lemma
we show how we can characterize the properties of arrow frames.

Lemma 2.2 Let @ = (W, R;;) be any frame. Then Q has the properly in the left side of the
following table iff the modal formula in the right side is true in Q.

Vz(R;izz) [5]A — A
Vz,y(Rijey = Rjiyz) AV [if]-[7i]A
Va,y,z(Rijey & Rjryz = Ripxz) | [ik]A — [ij][jk]A

Table 1: Modal formulas corresponding to the first-order conditions (pii), (0i;), (7ijk)

Next we will present the axiomatic system of the Basic Arrow Logic (BAL), the logic that
characterizes arrow frames as we will show shortly.

Axioms of BAL

(Bool)  All or enough boolean tautologies
(KD - [51(A — B) — ([ig]A — [ij]B)
(KC)  [C](A— B) — ([¢]4 — [C]B)
(Pii) [(]A — A
(Sii) AV [i]-[]A
(Tijk)  [ik]A — [if][5k]A

Rules of BAL

A A—
(MP) ~—’——B—B (Modus Ponens) (N; (Necessitation for [i5])

A
i) T

[ij]A

Now from the definition of arrow frame we know that every axiom of BAL is valid in every
arrow frame, so we get at once that BAL is sound in the class of all arrow frames. To prove that
it is also complete we will use the method of canonical models.

Let L be an arbitrary logic in the language of BAL which is an extension of the logic BAL
i.e. every theorem of BAL is a theorem of L. By QF = (WE, R{;-,) we mean the canonical frame
for the logic L. Then using the correspondences in Table 1 we can infer that QF satisfies the
first-order conditions in the left side of Table 1. In this way we have that QL is am arrow frame.

So, we may now conclude that the canonical frame for BAL is an arrow frame and this using
standard modal techniques allows us to derive that BAL is complete in that class of frames.

3 Axiomatization of the logic BALR

Our goal in this section is to present the axiomatic system of the logic BALR—the Basic Arrow
Logic with relation algebraic connectives added to it. To formulate the axiomatic system of this
logic we will use an extension of the language BAL by adding to it the following new elements.



e Id — a propositinal constant,

e (F) — new unary modalities,

e {e} — new binary modality,

To define the semantics of our language let us consider structure W = (W,{R;; | i,j =
1,2},C, F,I), where

W is
C
F
I

a set (of arrows)

C Wx W, foreveryi,j=1,2
C WxWxW

C WxW

c W,

and a valuation of the propositional variables in W i.e. a function V : VAR — P(W). Define the
truth value of a formula in the model M =< W,V > at a given point designated by M,z | A

as follows:

MzEpszeV(p)

eEAeMzlEA

EAAB)eM,zEA and M,z B

2 E(ij)A e (ye W) : Rjjey and M,y A

yeEIde Iz

tE(F) A (JyeW): Fzy and M,yE A

Mz (AeB) & (3y,z€ W) : Czyz and M,y A and M,z B

The notions of truth of a formula in a model and in a frame are defined in the usual way.

Next we consider a special class of frames, which satisfies some first-order conditions on the
relations. Specifically, we call a frame W =< W,{R;; | i,j = 1,2},C,F,I > standard if the
following properties are satisfied:

o < W,{Rij|i,j=1,2}> is an arrow frame,

e for every z € W: Iz & Ryjzz,

e forevery z,y € W: Fzy < Rozy & Riozy,

e forevery ¢,y,2 € W: Czyz & Ryjzy & Raoszz & Royyz.

We will axiomatize the theory of standard frames, or the set of all formulas valid in every
standard frame. We present the axiomatic system that is needed and after that investigate briefly
the first-order properties on frames that are forced by its axioms.

Axioms of BALR

General axioms
(Bool)  All or enough boolean tautologies

(K[l

(KF)

[15)(A — B) — ([i]A — [i4]B)
[F](A — B) — ([F]A — [F]B)

(KC1) As(B — C) — (AsB — AsC)

(KC2)

(B— C)"A — (B"A — C=A)



Axioms governing R;;
(FR12) (F)A — (12)A
(FR21) (F)A — (21)A
(CR11) AeB— (11)A
(CR22) AeB— (22)B
(CR21) —([21]A ¢ —A)

Axioms governing [
(11) (F)Id — Id
(12) —(Id A (Id e —Id))
(13) =(Id A (—Id e Id))

Axioms governing F'

(F1) Id — (A — (F)A)
(F2) AV [F]-[F]A
(F3) (FUF)NF)A — (F)A
(F4) Id — —([F]-Ae A)
(F5) [F]lAe Id — [F]A
(F6) Ide[F]A — [F]A
Rules of BALR
(MP) A, AB—> B
(NC1) A—’_‘lg

Basic Arrow Logic axioms

(Pii) [id]lA— A
(54) AV [ij]=[ji]A
(Tijk)  [ik]A — [if][jk]A

Axioms governing C

(Cl)  AA(LiY(IdAB)— (IdAB)e A
(C2) AA(2)(IdANB)— Ae(IdAB)
(C3) (IdeA)eB—AeB

(C4) (Aeld)eB— AeB

(C5) Ae(ldeB)— AeB

(C6) Ae(Beld)— AeB

(C7) Ide(AeB)— AeB

(C8) (AeB)eld— AeB

(C9) (F)Ae—~(AeB) — —B

(C10) —(AeB)e(F)B — —A

(C11) (F){F)(AeB)— AeB

(C12) —(Be(IdA—-(AeB))A(F)A)
(C13)  —=((IdA—(AeB))e BYA(F)A)

(Modus Ponens), (N[ij]) A (Necessitation for [ij]),

¢7]A

B o
(NC2) T8 (Necessitation for =).

The axiom system just presented may seem rather formidable, so we will try next to justify it
a little. Of course, the full justification will be provided by our completeness proof, but for the
moment we will at least show what all the above axioms amount to in terms of properties of the

frames.

Lemma 3.1 Let W = (W, R;;, Id, F, C) be any frame. Then W has the property in the left side
of Table 2 iff the modal formula in the right side is valid in W.

Vz,y(Fey = Riszy)
Va,y(Fzy = Roi1zy)
Ve,y,z(Ceyz = Riizy)
Vz,y,2(Cryz = Razz)
Vz,y,z(Czyz = Ryiyz)

(A= (I9)4
(F)A — (21)A
AeB — (11)A
AeB — (22)B
~([21]A e ~A)

Table 2: Correspondence for the axioms governing R;;.

Lemma 3.2 Let W = (W, Ryj, Id, F, C) be any frame. Then W has the property in the left side
of Table 8 iff the modal formula in the right side is valid in W.



Ve,y € W(lz & Fay = Iy)
Ve,y,z € W(Cryz & [z & Iy = I2)
Ve,y,z € W(Cryz & Iz & Iz = Iy)

(F)Id — Id
—(Id A (Id e ~1d))
=(Id A (—1d e Id))

Table 3: Correspondence for the axioms governing I.

Lemma 3.3 Let W = (W, R;;, Id, F, C) be any frame.

Then W has the property in the left side

of Table 4 iff the modal formula in the right side is valid in W.

Ve e W(lz = Fazz)

Vz,y(Fzy = Fyz)
Va,y,2,t (Fzy& Fyz& Fzt = Fzt)
Vz,y,2(Iz & Czyz = Fyz)
Va,y,2,u(Cayz & Fru& Iz = Fyu)
Vz,y,z,u(Czyz & Fru & Iy = Fzu)

1d = (A= (F)A)
AV [F]-[F]A
(FF)(F)A — (F)A
Id — ~([F]-Ae A)
[F]A e Id — [F]A

Id e [F]A — [F]A

Table 4: Correspondence for the axioms governing F'.

Lemma 3.4 Let W = (W, Ry;, Id, F, C) be any frame.

Then W has the property in the left side |

of Table 5 iff the modal formula in the right side is valid in W.

Vz,y € W(Ryzy& Iy = Cayx)

Vz,y € W(Raizy & Iy = Czay)

Ve, y,z,u,v € W(Cryz & Cyuv & Iu = Czvz)
Ve, y,z,u,v € W(Cryz & Cyuv & Iv = Cruz)
Ve, y,z,u,v € W(Cryz & Czuv & Iu = Czyv)
Vz,y,z,u,v € W(Czyz & Czuv & Iv = Czyu)
Vz,y,2,u,v € W(Czayz & Cuvz & Iv = Cuyz)
Vz,y,2,u,v € W(Czyz & Cuzv & [u = Cuyz)
Vz,y,z,u € W(Cryz & Fyu = Czuz)
Vz,y,z,u € W(Czyz & Fzu = Cyzu)
Vz,y,2,u,v € W(Cayz & Fru & Fuv = Cvyz)
Vz,y,2,u € W(Czyz & Frul Iy = Cyzu)

Vz,y,z,u € W(Czyz & Fzu & Iz = Czuy)

AN(li)(IdAB) — (IdAB)e A
AN(20)(IdAB) — Ae(IdAB)
(IdeA)eB— AeB
(Aeld)eB— AeB
Ae(IdeB)— AeB
Ae(Beld)— AeB
Ide(AeB)— AeB
(AeB)eld— AeB
(F)YAe—(AeB) — —B
“(AeB)e(F)B — A
(F){(F)(AeB)— AeB

—(B e (Id A—(Ae B))A(F)A)
~((IdA~(A + B)) « B) A (F)A)

Table 5: Correspondence for the axioms governing C relation.

Now we can state the main result of the paper.

Theorem 3.5 (Soundness and Completeness of BALR) For every formula A the following

two assertions are equivalent:
e A is a theorem of BALR

o A is valid in every standard frame




Proof. The completeness part is proved in the next section. As for the soundness part, it is easy to
check that all the properties on the left side of the tables 1, 2, 3, 4 are true in every standard frame,
so the corresponding axioms are valid in standard frames. The fact that the rules of inference
preserve validity concludes the argument.

4 Completeness Proof for the logic BALR

Now we begin the proof of completeness of BALR with respect to standard frames. First let
L=<WEL, R,-Lj, IL, FL CL > be the canonical frame of the logic BALR. It is easy to see that
this frame is not standard so we cannot use in this case the canonical construction for proving
completeness. Nonetheless, we have the following lemma the proof of which follows standard lines:

Lemma 4.1 The azioms of BALR. are canonical.

What this means is that every property in the left side of the tables 1, 2, 3 is satisfied in the
canonical frame. From now on when we say that we use a property, for example (I1), we will mean
the property governed by the axiom (I1) and similarly for the other cases. Also, since BALR is
an extension of the logic BAL from [8], the restriction (WX, RE) of the canonical frame of the
logic BALR is an arrow frame. These facts will be used extensively in our construction.

Now a few words as to how are we going to proceed: the idea is to build a standard frame
A such that the canonical frame £ will a p-morphic image of A. In this way the modal theory
of A will be the same as that of the canonical frame but since A is standard we will have our
completeness result.

Further on our exposition will consist of several subsections which try to emphasize the most
important parts of the completeness proof.

4.1 The construction

In this section we proceed to build a frame which as we will show in the following subsections will
be standard and also every formula which is not a theorem will be refuted in it. Strictly speaking,
what we are going to build is not directly modal frame, but first we will build an arrow structure
S = (Po, Ar, 1, 2) in the sense of [8] and a mapping 7 from the set Ar to the set W%. Having
such an arrow structure we can easily build a standard frame F(S) = (Ar, Ri;, I, F, C) from it
in the following way:

o Ar is the set of arrows from the arrow structure S,

o for every z,y € Ar: Rijey < i(z) = j(y),

o for every z € Ar : Iz & 1(z) = 2(z),

o for every z,y € Ar: Fay & 1(z) = 2(y) & 2(z) = 1(y),

o for every z,y,z € Ar: Czyz © 1(z) = 1(y) & 2(z) = 2(2) & 2(y) = 1(2).

This frame F(S) will be our frame A. And the bulk of the proof will be to show that the mapping
T is a p-morphism from A to L.

We will build the arrow structure S in steps. First, let Kk = 2“ and suppose we have two
disjoint sets LF and LA each of cardinality at least . We use these two sets to form the sets Po
and Ar, when we need to add a point or an arrow we will take it from these sets. We will use the
following conventions for naming the objects we deal with:



small latin letters from the beginning of the alphabet a, b, ¢, ... for points
small latin letters from the end of the alphabet z, y, 2, ... for arrows

big latin letter from the end of the alphabet X, Y, Z, ... for maximal theories
the letters 2, j, k possibly with subscripts for the elements of the set {1,2}

One more preliminary point, in the course of the construction we will also define a funcion H from
the set Ar to the set of all words over the alphabet {p, | z € LA}U{l, r, f, d}, where we impose the
restriction that {p, | z € LA} N {l,r, f,id} = 0. This function will give us what we call a history
of the creation of an arrow, i.e. since in our construction we will be adding new arrows which
will extend other ones, then this function will show us exactly how an arrow appeared. This may
sound too vague at the moment but we hope it will become clear in the course of the construction.
We will also define a function P which for a given arrow will give us its parent if it has one, or
the arrow from which it appeared in the construction. Now the construction:

Beginning of the Construction

Step 0
For every maximal theory X do the following:

o if Id ¢ X, then we remove two distinct elements a, b from L¥, and add them to Pog; and
we also remove one element z from L# and add it to Arg; further we define 1(z) = q, 2(z) =
b, T(z) = X, and H(z) = ps,

e if Id € X, then we remove one element a from L¥ and add it to Pog; and we also remove
one element z from L# and add it to Arg; again we define 1(z) = 2(z) = @, 7(z) = X, and
H(z) =id.

With that step 0 is finished, the sets Pog and Arg are defined and so are the functions 7 and H
on Arg. For the arrows in Arg the function P is not defined.

Step n+1

For every arrow z in Ar,\Ar,_; (let Ar_; = 0) do the following.

Since z in Ary, the functions 1, 2, 7, H are all defined for . For every maximal theory Y such
that R57 (z)Y or FE7(2)Y and for every two maximal theories Y, Z such that CL7T(z)Y Z carry
out one of the cases below depending on the relation.

(ij1) Suppose RiLjT(:c)Y and Id ¢ Y. Then we remove one element a from L¥ and add it to
Poy,41; we also remove one element y from L4 one element y and add it to Ar,yq; further -
we define j(y) = i(z), k(y) = a, where k # j, T(y) = Y, and H(y) = py, and P(y) = =.
What we have done can be seen in the picture below. Since we will draw a lot of pictures
from now on, we will make some conventions: an arrow drawn with a solid line is the arrow
we work with, and an arrow drawn with a dashed line is one we add at the current step.

Z | Z

\ M



(ij2) Suppose RiLjT(;z:)Y and Id € Y. Then we remove one element y from L4 and add it to
Arnyy; further we define j(y) = i(z), k(y) = j(y), T(y) =Y, and H(y) = id, and P(y) = z.
The picture is

-~
y/ \\ b'e X 4 N

I \ . _—.>é 1y
\ y \ /

~ - -

(conv) Suppose FLT (z)Y. Then we remove one element y from L“ and add it to Ar,1; further
we define 1(y) = 2(z), 2(y) = I(z), T(y) =Y, and P(y) = z. As for H(y) the definition is:

H(z)f if 1(z)# 2=
H(y):{id() if 18?28

The possible pictures are

Y/Q\
y / \
-~ \
- /
@ \\%
X
X

(comp;) Suppose CET(2)YZ and Id ¢ Y and Id ¢ Z. Then we remove one element a from
L¥ and add it to Po,4;; also we remove two elements from L# and add them to Arpy1;

further we define 1(y) = 1(z), 2(y) = a, 1(2) = @, 2(z) = 2(z) and T(y) = Y, T(z) = Z, and
P(y) = P(z) = z. As for the function H it is defined as follows:

_ y 1f 1(z) #2(z B
H(y)—{ ﬁ:f if 18:2&; , H(z)=p:.

And visually we have one of the situations depending on whether 1(z) = 2(z) or not:

N\
/4 \

(comps) Suppose CLT(2)YZ and Id € Y. Then we remove two elements y, z from LA and add
them to Ar,1; further we define 1(y) = 1(z), 2(y) = 1(z), 1(2) = 1(z), 2(2) = 2(z) and
T(y) =Y, 7(z) = Z, and P(y) = P(z) = z. As for the function H it is defined as follows:

. H(z)l if 1(z) #2(z
h(y) =1id, H(z)= { id if 1%::; = 2%“3

And now the situations are



—— P

7 )

\ ~N
N\ \ﬂl /
y ~—-Jd&-- 2

X

(comps) And, finally, suppose CL7T(z)Y Z and Id € Z. Then we remove two elements from L4
and add them to Ar,4q; further we define 1(y) = 1(z), 2(y) = 2(z), 1(2) = 1(z), 2(z) = 2(z)
and T(y) = Y, 7(z) = Z, and P(y) = P(z) = z. As for the function H it is defined as
follows: HE)r i 1(2) £ 2e)

z)r if 1(z) # 2(z .
H(y) —{ id i 1(z) =2y 0 (@) =id
And again using pictures we have
RN 7 I
\ /
e @
X

End of the Construction

Now we define the sets Ar and Po as follows:

Po = U Po, and Ar = U Ar,

n<w n<w

Now probably some explanation about the construction is in order. Basically we have followed
reasonable pattern by adding arrows only when they are necessary because of a similar relations in
the canonical frame. We had to be careful a bit in order to preserve the exact spacial configuration
between the arrows we add. What is more in the function H we have tried to keep the exact way
some arrows have emerged, i.e. consider case (comps), then the function H for the arrow z is
defined in a way that allows us to see that this arrow z appeared from z and also z and z are in
a definite spacial configuration.

Now we will begin to show that the function 7 is a p-morphism from the relational arrow
frame generated by (Po, Ar, 1,2) to the canonical frame.

4.2 7T is a p-morphism

The function 7 satisfies the following properties from the definition of p-morphism. For every
arrow ¢ € Ar, and for every two maximal theories Y, Z, we have

e if RET ()Y, then there is an arrow y such that R;jzy and T(y) =Y,
e if FLT(2)Y, then there is an arrow y such that Fzy and 7(y) = Y,
e if CET(2)Y Z, then there are arrows y and z such that Czyz and 7(y) =Y, and 7(2) = Z.

10



This can be clearly seen from the way we did our construction, in a way it was done with the
idea the function 7 to satisfy exactly these properties. Furthermore, the function 7 is onto i.e.
for every maximal theory X, there is an arrow z, such that 7(z) = X. So, for 7 to be really
a p-morphism from A to £, it remains to prove that it is also a homomorphism. We will do
that by showing that 7 is a homomorphism for each of the relations I, R;;, F', C in a separate
subsubsection.
7T is a homomorphism for [
Lemma 4.2 For every @ € Ar the property holds:

if 1(z) = 2(z), then Id € T ()

Proof. At step 0 i.e. for the arrows in Arg the property holds by construction. Assume that it
holds at step n i.e. for every arrow z in Ar,, if 1(z) = 2(z), then Id € 7(z). We must prove that
the same is true for the arrows added at step n + 1. Let us call arrows for which the beginning
and the end coincide identily arrows. We consider the different cases.

(z71) In this case no new identity arrows are created.
(ij2) Now we create an identity arrow y, but also by definition we have Id € T (y).

(conv) Suppose that for the arrow y that is created in this case we have 1(y) = 2(y), using the
definition we conclude that 1(P(y)) = 2(P(y)). From the induction hypothesis we then have
Id € T(P(y)). But then from FLT(P(y))T (y) using property (I1) we have Id € T (y).

(comp;) In this case no new identity arrows are created.

(compy) Now two new arrows y, z are created. We have 1(y) = 2(y), but also Id € 7 (y), so with
this arrow everything is in order. Suppose that 1(z) = 2(z), then by definition we must have
1(P(z)) = 2(P(z)). So by the induction hypothesis Id € 7(P(z)). Now we can use the fact
that CLT(P(2))T (y)T (2) together with (12) to get Id € 7 (2).

(comps) Similar to the previous case using (I13). -

We notice now that because of the special way we defined the function [ we have that for every '
arrow z: 1(z) = 2(z) if and only if {(z) = i. So lemma 4.2 can be restated using this function.

7 is a homomorphism for R;;

Now we will prove that 7 is a homomorphism w.r.t. the R;; relations. Further on we will make
essential use of certain structural properties of our frame which we summarize in the lemma below.

Lemma 4.3 Suppose & € Arpy1, then

(i) For some i:i(z) € Pon.

(ii) If for some i:i(z) € Poyp, then there is j, such that i(z)=j(P(z)),

(iii) If for some y € Arp41, i(z) = j(y) € Popy1, theni=1and j =2, ori=2 and j = 1.

Proof. For the cases (i) and (ii) simply use the special way we have added arrows in the construc-
tion. For (iil) notice that the situation that is wanted is possible only in case (comp;).
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Lemma"4.4 For everyz € Arp4q:
if RijzP(z), then R{;T(:c)’T(P(m)).

Proof. Again we should go through the possible cases. For (i71) and (ij2) what we want is true
by definition, for the other cases use properties (FR12), (FR21), (CR11), and (CR22). A

Lemma 4.5 In the canonical frame L the property holds for i # j:

: L
if Iz, then Rjzz.

Proof. Suppose I'z, then using property (F1) we get FLzz. Applying the properties (FR12) and
(FR21) we get the result.

Before proceeding with the next property of the frame we have built, let us notice that if
z € Ar,, then 1(z) € Po, and 2(z) € Po,. We will use this property extensively.

Lemma 4.6 For every z, y € Ar, if Rijzy, then R{}T(m)’]’(y)

Proof. Again we proceed by induction on the structure S. At step 0 the only relations that are
created are of the kind Rj;zx inwhich case we can use the property (Pii), or of the kind R;jzz,
where ¢ # j. In the latter case we have Id € 7(z), so we can use lemma 4.5 to conclude R;jzy.

Now suppose that for all arrows in Ar, the assertion is true. Assume that z € Ar,4; and
R;jzy. There are different cases to be considered depending on whether y is in Ar, or not.
Suppose first that y € Ar,,. Then from i(z) = j(y) € Po, and lemma 4.3 we derive that there is
an 7; such that i(z) = i;(P(z)). Now from lemma 4.4 we know that R% T (z)7 (P(z)). Further
we have i1 (P(z)) = j(y), and both y and P(z) are in Ar,. So from the induction hypothesis we
get R, T(P(z))T(z). Now applying the fact that the restriction of the canonical frame to the
relations R;; is an arrow frame, we have what is desired.

Now suppose that y € Arp41\ Ay, then we have two other different cases depending on whether
i(2) = j(y) € Pony1. If this point is in fact in Pop 41, then the only possibility is that z and y are
obtained from P(z) in the case (comp, ), and we use lemma 4.3 and property (CR21). In the other
case we proceed as before using lemma 4.3 to find 4; and j;, such that R;;,zP(z) and R;;,yP(y);
using lemma 4.4 twice, the induction hypothesis, and the properties of arrow frames we conclude
Rijjzy. A

T is a homomorphism for F

We have now established that 7 is a homomorphism for I and for R;;. Next comes F, i.e. we
must prove that if Fzy, then FLT (2)7 (y).

Using the history function H which associates with every arrow some word over the alphabet
we introduced in the beginning of the construction, we will define some more relations between -
the arrows. For an arbitrary arrow & we we use the following definitions:

H(z)' is the first letter of H(z),
H(z)! is the number of ocurrences of the letter f in H(z), and
|H(z)]| is the length of the word H(z).

Suppose that z and y are not identity arrows, then we define the relations:

H(z)' = H(y)!, and H(z) = H(y)', and

z33y lﬂ'{ H(z)! + H(y)’ is even and z Sy 1ﬂ'{ H(z) + H(y) is odd.
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We say that an arrow z connects the points a and b if 1(z) = a, 2(z) = b, or 1(z) = b, 2(z) = a.
For the moment notice that if # € Arn4; and 1(z), 2(x) € Pop, then the arrow P(z) connects the
points 1(z) and 2(z). Using this, and a similar induction as before, we can prove:

Lemma 4.7 For every two arrows z, y: H(z) = H(y)' iff ¢ and y connect the same two points.
Now we are in a position to see exactly why all these words and relations we defined are needed.

Lemma 4.8 For every lwo arrows z, y the following two assertions hold:
(1) ifz =y, then Ryjzy and Raszy,
(ii) if ¢ Sy, then Riszy and Rozy.

Proof. We use induction on |H(z)| + |H(y)| for both assertions. Since for every arrow z we have
that |H(z)| > 1, our basic case should be |H(z)|+ |H(y)| = 2. It follows that |H(z)| = 1 and
|H(y)| = 1. Then H(x) = p; and H(y) = py, As £ =% y we must have p; = p,, and hence z = y,
which proved (i).The case (ii) is trivial in such a situation.

Now suppose |H(z)|+ |H(y)| = k > 2, and that for |H(z)| + |H(y)| < k both assertions are
true. Then, one of |H(z)| or |H(y)| is greater than 2. Let that be |H(z)|, so |H(z)| = ag, where «
is not the empty word and ¢q € {I,r, f}. For (i) suppose that z =3 y. We have to consider different
cases:

Case 1 ¢ = 1. Then the arrow z appeared in the construction from P(z) in case (compy). Let
z = P(z), then we have H(z) = «, and since « is not empty, then o’ = H(y)’ and of + H(z)/
is even, so z =% y. Notice also that ||+ |H (y)| < k, so we can apply the induction hypothesis
for (i) which gives Ri12y and Razzy. But by definition we have Ryj22z and Razzz from which
we can conclude that Ryjzy and Rgszy.

Case 2 ¢ = r. Similar to the above case.

Case 3 ¢ = f. Then the arrow z appeared in the construction from P(z) either in case (conv)
or in case (comp;). What is important is that in both cases we have an arrow 2z such that
H(z) = a. But now we have that o/ = H(y)' and o/ + H(2)/ is odd, so z 5 y. Furthermore
|a| + |H(y)| < k, so we can apply the induction hypothesis for (ii), which gives Rj2zy and
Rs12y. But by definition we have Rjsz2 and Rajzz from which we can conclude that Ry;zy
and Raszy.

In case when z & y, we reason along the same lines as above. -

What we are trying to do is to characterize the relation F' in some other way which will be
more appropriate for proving properties of this relation using the technique of the above proof.
Now we have defined a relation, namely <, which is similar to F' but it concerns only non-identity
arrows and we have to account for identity arrows as well. Consider the following relation between
two arrows z and y:

H(z) = H(y) = id, and

zooy iff { for some 1, j:i(z) = j(y)

In addition we define for arbitrary arrows z and y
Ezy iff 1(z) = 1(y) and 2(z) = 2(y).

Now we are ready for the characterizations of F' and F.
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Lemma 4.9 For every two arrows ¢ and y the following assertions hold:
(i) Ezy & 23y orzooy,

(i) Fzy & zSyorzooy.

Proof.

(«+) We will only prove the first item. The proof of item (ii) is similar. Suppose first that z co y,
then = and y are identity arrows and for some ¢, j : R;jzy. From the first we have that
1(z) = 2(z) and 1(y) = 2(y). We should consider the four different cases, depending on the
values of 7, j. Since they are similar, we will consider just one of them. Suppose i = 1 and
j = 1. Then we have 1(z) = 1(y), and must prove that 2(z) = 2(y). But that easily follows
from the above equalities. Next suppose that £ =% y. But then we need only apply lemma
4.8.

(—) We consider two major cases, the one when at least one of the arrows is an identity-arrow
and the one when neither of them is. Suppose that the arrow z is an identity-arrow, and also
that Fzy. Then y is an identity-arrow, and we have for some i, j: R;jzy. So by definition
we have z coy, and we are finished. Everything is the same if we have Fzy. Now suppose
that neither is an identity arrow. Since z and y connect the same two points, we know from
lemma 4.7 that H(z)' = H(y)'. For both (i) and (ii) we have to prove the other item from
the definition of =% and , respectively. We do that by induction on |H(z)| + |H(y)| for
both items simultaneously. If |H(z)| + |H(y)| = 2, then we have, as before, z = y. Then
since H(z)/ + H(y)/ =0, we have z =% y, so item (i) is true. In this case item (ii) is trivial.
Next assume that |H(z)|+ |H(y)| = k& > 2, and for |H(z)| + |H(y)] < k both assertions are
true. Then one of |H(z)| or |H(y)| is greater than 2. Let that be |[H(z)|, so |H(z)| = ag,
where « is not the empty word and ¢ € {I,r, f}. For (i) suppose that Ezy. We have to
consider different cases:

Case 1 ¢ = 1. Then the arrow z appeared in the construction from P(z) in case (comps).
Let z = P(z), then we have H(z) = «, and since we have 1(z) = 1(2) and 2(z) = 2(2),
we can conclude 1(y) = 1(z) and 2(y) = 2(z). Notice also that |a| + |H(y)| < k, so
we can apply the induction hypothesis for (i). Then we have that 2 = y or z 0oy, but
since y is not an identity arrow, then z co y is not true, so we have z =3 y. By definition
that means that of + H(y) is even, but then since H(z) = al, H(z)f + H(y)’ is even
sor33y.

Case 2 q = r. Similar to the above case.

Case 3 ¢ = f. Then the arrow & appeared in the construction from P(z) either in case
(conv) or in case (comp;). What is important is that in both cases we have an arrow
z such that H(z) = o and H(z) = «f. Also, in both cases we have 1(z) = 2(2) and
2(z) = 1(2). So from Ezy, we derive that 1(y) = 2(z) and 2(y) = 1(z). Since H(2) = a,
and |a|+ |H(y)| < k, we can apply the induction hypothesis to get, like before, z < y.
So H(z)! + H(y)’ is odd, and H(x)/ + H(y)’ is even, hence z =3 y.

If we have Fzy, then we can consider exactly the same cases and the reasoning is similar.

—

Lemma 4.10 In the canonical frame L the properiy holds for every two elements X, Y of W:
if ILX, IYY, and for some i, we have R,-LjXY, then FLXY .
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Proof. We consider two cases. Suppose first that ¢ = 1. Then using property (C1), we have
CEXY X. Further, applying property (F4) gives us FLY X, from which we conclude FXXY by
the symmetry of F'. The case where 7 = 2 is similar but now we must first use property (C2). -

Lemma 4.11 For every two arrows z, y the following holds:

if Iz, 1y, and for some i,j we have R;jzy, then FLT (z)T (y)

Proof. From lemmas 4.5 and 4.6 we have X7 (z), I*7 (), and RiLjT(z)T(y). It remains to use
lemma 4.10. A

Lemma 4.12 For every two non-identily arrows z and y, such that H(z) = H(y)f, holds that
FLT(2)T (y).

Proof. From the construction we know that the arrow z appeared either when extending the arrow
y in case (conv), and the assertion is true by definition, or when extending some identity arrow in
case (comp;) and we can apply property (F4) to conclude the result. -

Lemma 4.13 For every three arrows z, y, u the following assertions hold:
(i) if Exy and FLYT(y)T (u), then FET(2)T (u),

(ii) if Exy and FLT(v)T (y), then FXT (u)T (z),

(iii) if Fzy, then FLT(2)T (y).

Remark. Before beginning the proof let us just notice that if we prove this lemma, then we will
have proved that 7 is in fact a homomorphism with respect to the relation F'.

Proof. Notice that item (ii) can be derived from (i) using the symmetry of FL, so we will be
concerned from now on only with items (i) and (iii).We will use our characterizations of the
relations E and F from lemma 4.9. Let us first suppose that £ and y are identity arrows and
z 0o y. Then by definition we have Iz, Iy, and for some i, j: R;jzy, so by lemmas 4.5 and 4.6 we
have ILT (z), I*T (z), and RET (2)7 (y).

(i) From FET(y)T (uv) and I*7 (y) we have IXT (u). Also it is easily shown that for some iy, 7; :
R{“!le(:c)T(u). Now apply lemma 4.10.

(ii) Similar to item (i).

(ii1) Direct from lemma 4.10 and the fact that 7 is a homomorphism for I.

Now suppose that ¢ and y are not identity arrows. In this case we will use as before induction
on |H(z)|+ |H(y)| for the three items. For the induction basis suppose |H(z)|+ |H(y)| = 2, then
we have z = y, and the first two cases are tautologies, the third one is trivial. Next suppose
|H(z)|+ |H(y)| = k > 2, and assume that for |H(z)|+ |H(y)| < k both assertions are true. Then
one of |H(z)| or |H(y)| is greater than 2. Let that be |H(z)|, so |H(z)| = ag, where « is not the
empty word and ¢ € {l,r, f}.

(1) We must consider the different cases depending on which the letter ¢ is.
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Case 1. ¢ = I. Then the arrow z appeared in the construction from P(z) in case (comps).
Let z = P(z). We have H(z) = «, and also |a|+|H (y)| < k, and z =% y. Then applying
the induction hypothesis will give us FLT(2)7 (u). From the construction we have that
there is an identity-arrow v, that appeared together with z, and CX7(2)7 (v)7 (z).
Then we can use property (F5) to conclude FLT (2)7 (u).

Case 2. q¢ = r. Similar to the above case, using (F6) instead of (F5).

Case 3. ¢ = f. Now we have that of + H(y)? is odd, so Fzy. For z and y we can apply
the induction hypothesis for (iii) to conclude FL7 (2)7 (y). From lemma 4.12, we have
FLT(z)T(z). Combined with FL7 (y)7 (u) and property (F3) this gives the desired
result.

(ii1) Again we must consider some cases for the letter ¢q. They are similar to the ones above.

Case 1. ¢ = 1. Then the arrow z appeared in the construction from P(z) in case (comps).
Let z = P(z). Applying the induction hypothesis for (i) for z and y will give us
FLT(2)T(y). From the construction we have that there is an identity-arrow v, that
appeared together with z, and C*7 (2)7 (v)7 (z). Then we can use property (F6) to
conclude FET (2)7 (y).

Case 2. ¢ = r. Similar to the above case, using property (F5) instead of (F6).

Case 3. ¢ = f. From lemma 4.12, F£T (2)7(z). Now, o +I(y)/ is even, so Ezy. For z and
y we can apply the induction hypothesis for (ii) to conclude FL7T (z)T (y). -

7T is a homomorphism for C

Finally, we show that 7 is a homomorphism for C i.e.
if Czyz, then CLT (2)T (y)T(2).

This takes quite a few steps. We will first prove the result assuming that one of the arrows in the
composition is an identity arrow, leaving the other case until later.
Let us first prove some preliminary properties using the characterization of E.

Lemma 4.14 For every four arrows z, y, u, and v the following properties hold:
(i) if Ezy and CLT (u)T (y)T (v), then CLT (v)T (2)T (v),

(ii) if Ezy and C*T (u)T (v)7 (y), then CLT (u)T (v)T (),

(iii) if Ezy and CET(y)T (w)7T (v), then CET (z)T (v)T (v).

Proof. By lemma 4.9 we will have to consider two cases. Suppose that we have zocoy. For (i)
suppose also that CL7(u)T (y)T (v). Then from property (CR11) we get R}, 7T (u)T (y). Also
RL T (2)7 (y) from lemmas 4.9 and 4.6. So by properties (Tijk) and (Sij) R} T (v)T (z). Since we
have IXz, using property (C1) we conclude CLT (u)7 (z)7 (u). Now we can apply property (C5)
to conclude CX7 (u)T ()7 (v). For item (ii) we reason similarly but in the end we use property
(C4). Now for item (iii), suppose CX7 (y)7 (u)7 (v). From that, using IX7 (y) and property (F4),
we get FLT (u)T (v). As before we can make sure that CL7 (u)7(z)7 (u) from which by property
(C9) we conclude CLT (2)T ()T (v).

Now we will treat the case when ¢ = y. We will use induction on |H (z)|+ |H (y)| for the three
items. The basis of the induction when |H(z)|+ |H(y)| = 2 is trivial since in that case z = y.
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Now suppose |H(z)|+ |H(y)| = k > 2 and assume that for |H(z)|+ |H(y)| < k the three items
are true. Then one of |H(z)| or |H(y)| is greater than 2. Let that be |H(z)|, so |H(z)| = ag,
where « is not the empty word and ¢ € {l,7, f}. Since « is not the empty word, we have that
there is an arrow z such that H(z) = «. For (i) suppose also that CLT (u)T ()7 (v). Again we
must consider that cases for the letter gq.

Case 1. ¢ = l. Then the arrow x appeared in the construction from P(z) in case (compz). The
there must be an arrow w such that IX7(w) and CL7 (2)7 (w)7 (z). We have that Ezy,
and since also |e| + |H(y)| < k, applying the induction hypothesis gives CL7 (u)7 (2)7 (v).
Now applying property (C3) we conclude that CLT (u)7 (z)7 (v).

Case 2. ¢ = r. Similar to the above case, but in the end use property (C4).

Case 8. ¢ = f. Now we have o/ + H(y)! is odd, so Fzy. From lemma 4.12, FLT(z)T(z) and
also from lemma 4.13 (iii), F£7 (z)7 (z). Using property (C9) twice gives the desired result.

For (ii) the reasoning is similar, but in the different cases we use properties (C5), (C6), and twice
(C10), respectively. For (iii) again the same by using properties (C7), (C8), and (C11).

Now we can start proving that 7 is homomorphism with respect to C.

Lemma 4.15 Suppose z, y, and z are three arrows, two of which are identity arrows, and suppose
also Czyz, then CLT(2)T (y)7 (2).

Proof. By considering the various cases it is easy to see that if Czyz holds and if two of the
arrows z, y, and z are identity arrows, then the third one is also an identity arrow. From the
definition of C, we have Rjjyz. Then by lemma 4.6, R}, 7(y)7 (z). Now using property (C1)
gives us CLT (y)7 (2)7 (y). From Rajyz, we get R, T (y)T (z). This, together with IX7 (y) and
IXT (y) and lemma 4.10 gives us FET(y)7(z). Now we can apply property (C10) to conclude
CLT ()T (y)T(2). A

Lemma 4.16 Suppose z, y, and z are three arrows, one of which is an 1dentily arrow, and suppose
also Czyz, then CLT(2)T (y)7(2).

Proof. We may safely assume that exactly one of the arrows is an identity arrow because of lemma
4.15. and consider the different cases depending on which of the arrows is the identity one.

(y) Suppose first that Iy, then from the definition of C and Rjyyy we have that Ezz. Also from
Ri1zy, Iy and property (C1) we may conclude that CL7 ()7 (y)7 (z). And that together
with lemma 4.14 (i) gives us CL7 (z)7 ()7 (2).

(2) Assume Iz. Then the situation is similar to the above but we must use property (C2) and
lemma 4.14 (i).

(z) The last case is when Iz holds. Then from the definition of C' and Rsjzz we have that Fyz, .
so by lemma 4.13 (iii) FL7 (y)7(z). From Rjjyz and Iz we have that CLT (y)7 (z)T (y).
Now applying property (C10) we get CLT (2)T (y)T (2).

What we proved so far is that if Czyz holds and at least one of the arrows z, y, and z is an
identity arrow, then we indeed have that the maximal theories connected by the function 7 to
these arrows are in the relation C'* in the canonical frame. What should be proved next is that if
Czyz holds and none of the arrows is an identity arrow, then the same conclusion holds. So from

17



now on we will be concerned only with non-identity arrows. Let us introduce one terminological
convention: if Czyz, then we say that z is the composition of y and z, y is the first arrow of the
composition, and z is the second one. Further let us notice that if Czyz and neither of the arrows
z, y, and z is an identity arrow, then the three arrows are different. Let us also agree that from
now on when we say arrow we will mean non-identity arrow.

Lemma 4.17 For every mazimal theories X, Y, Z, U, and V in the canonical frame the nezxt
three items hold:

(1) ifCLtXYZ, FLXU, and F'YV, then CLV ZU,
(i) if CLXYZ, FEXU, and FEZV, then CEVU Z,
(iii) f CEXY Z, FLXU, FLYV, and FLZW, then CLUWV

Proof. By applying twice either property (C8) or (C9). 4

Next we define a new relation between the arrows and proceed with the assertion that will finish
the whole thing off:
Szyz ff 1(y) = 2(z) & 2(y) = 1(2) & 2(z) = 1(z)
Lemma 4.18 For every three arrows z, y, and z the following two assertions hold:
(i) If Czyz, then CLT (2)T (y)T (2).
(i1) If Szyz, then there is an arrow u such that Cuyz or Cuzz or Cuzy.

Remark. Item (ii) probably seems unnatural in its disjunstive conclusion, but that is so because
the relation S in effect says that there is a cycle between the arrows z, y, and z, so we can cyclically
move the places of z, y, and z in the relation. The property that we need is that if Szyz, then at
least one of z, y, and 2z has a converse that i1s in composition with the other two but we do not
know which, that is why have to take care of the three possibilities.

Proof. We proceed by induction on the construction. We prove the following:
o VnVz,y,z € Ar,(Czyz = CET(2)T (v)T (2)),
e VnVz,y,z € Arp(Szyz = Ju € Ar,(Cuyz V Cuzz V Cuzy)).

The induction base where n = 0 is trivial, since in Arg there are no three arrows z, y, z such
that Czyz or Szyz. Next suppose that both assertions are true for every z, y, 2 € Ar, and we
proceed to show that they are true also for Ar,4;. We must consider only the case where at least
one of the arrows in the composition or in the cycling relation is added when extending Ar, to
Arpy1. Suppose that the arrow z € Ar, and we will show that for every arrow that we add in the
construction when extending z, both properties are preserved.

(ij1) At this stage one new arrow is created, but its beginning (or end, depending on i, j) is not
connected to another arrow, so it cannot be in the relation C or S with other arrows.

(ij2) At this stage no new non-identity arrow is created.
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(conv) Probably this is the most interesting case, where it should become clear why we need
this S relation with the arising complications. Suppose that we create the arrow y, that is:
z = P(y). By the definition of the construction we also know that F£7 (z)7 (y). Further for
item (i) suppose that y is in the composition relation with two arrows v and v. Now different
cases appear depending on whether y is the first or the second arrow of the composition, or
the composition itself. We will handle one of these cases; the other ones are similar. Suppose
now that C'uyv, i.e. y is the first arrow in the composition. It is easiest to see what happens
on a picture and we dwell formally.

We distinguish whether the arrows u, v are in Ar,41 or not.

Suppose first that u € Ar, and v € Ar,. By simple calculations using the functions 1
and 2 we can conclude that Cvzu. For the arrows z, u, and v we can apply the induction
hypothesis to get CX7T (v)T (z)7 (u). Now from FL7(z)T(y) and property (C8) we have
CET(w)T (v)T (v).

Next suppose that exactly one of u, v is in Ar,41. Let that be v. We have that 2(u) € Poy,
and also 2(u) = 2(v). Further 2(z) € Po,, and 1(z) = 1(v), so both ends of v are points
that belong to Ary, so from earlier observation we may conclude that P(v) connects the
points 1(v) and 2(v). Again we must distinguish between the possible situations EvP(v)
and FvP(v). Suppose first that we have EvP(v). Now a picture is probably in order:

y
" - - - - - -~ — —
.‘ V.‘. e
" u
P(v).

Notice that we have C'P(v)zu, and for these three arrows we can apply the induction hypoth-
esis, so we have CLT(P(v))7 (2)7 (u). Now applying lemma 4.14 we get CL7 (v)7 (z)7T (u).
Next from FL7 (z)7 (y) and property (C9) we conclude that CL7 (u)T (y)7 (v) which is what
we wanted.

Now let FvP(v) be true, or we have the situation
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é -7 =~
', u
P(v‘),“

Now we have a further complication, we can in this case conclude that we have SP(v)zu, so
using the induction hypothesis for (ii) we can conclude that there is an arrow z € Ar,,, such
that Czzu or CzuP(v) or CzP(v)z. Again we must deal with these cases one at a time.

(Czzu) In this cases the situation looks like

Y
<-"7 777" -~ _
BIURR .

Now from SP(v)zu and Czzu by simple calculations using the functions 1 and 2 we
conclude that FzP(v). Since we are also in case that FvP(v) we get that Ezv. From
the induction hypothesis for (i) since z, u, z € Ar, we have CLT(2)T (2)T (u), by
lemma 4.14 CLT (v)T (2)7T (v). Next as before use F£7(2)7 (y) and property (C9) to
conclude that .

(CzuP(v)) Now using arguments as before we conclude that the relations below are true:

CET(2)T ()T (P(v)), CET(w)T (2)7 (v), and CLT (u)T ()7 (v).

Yy
P S -
z S
=
N
. V. -.'
I. . u
P(w)

(CzP(v)z) In this case we get CL7(2)7(P(v))T (z). We can further conclude that Fzz
and apply lemma 4.17 to get CL7 (u)T (y)7 (v).
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The case when u € Ar,4; and v € Ary, is similar.

Now let us consider that case when both v and v are in Ar,4;. We have that 2(u) = 2(v),
if we assume that 2(u) = 2(v) € Pop41 then we arrive at a contradiction with lemma 4.3.
Then this point is in Ary, hence as before we can conclude that P(u) connects the points
1(u) and 2(u) and something similar for P(v). Then we can continue along the above lines
considering the cases when EuP(u) or FuP(u) and EvP(v) or FvP(v). With that the case
when y is the first arrow in the possible composition is finished. The cases when y is the
second arrow in the composition, and the composition itself are treated as the first case with
some small modifications at times. With all that item (i) is proved in this case.

Now for item (ii) suppose that for some arrows u, v it holds that either Syuv or Suyv or
Suvy. In any of these cases we can compute using Fyz, that C'zuv is true, and in any case
at least one of the members of the disjunction is true.

So the case when extending an arrow by adding its converse is finished and we should say
that the worst is behind.

(comp;) First let us deal with item (i). In this case we add two new arrows y and z such that

CET(2)T (y)T (z). Now since there is no other arrow connected at the point 2(y) but z, if
y or z is to be in the composition relation with other arrows, then y and z are the first and
second arrow of such a composition, or the only possible case is for some previous arrow to
have C'uyz. Again a picture helps:

But we can compute from Cuyz that Ezu, and this together with CL7T(z)7 (y)7 (2) and
lemma 4.14 gives us CLT (v)T (y)7 (2).

Now for (ii) suppose that Suyz or Szuy or Szyu, then since by the construction Czyz and
in any of the above cases item (ii) holds.

(compz) In this case we create only one new non-identity arrow y, and it is such that Ezy. Now

for (i) suppose that for some arrows u, v we have either Cyuv, or Cuyv, or Cuvy. In any of
these cases we can compute that the arrow z is also in the appropriate place in a C relation .
with u, v. Afterwards we proceed as before i.e. considering the case whether u, v belong to
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Ary, or not. If they do not belong to this set then we consider respectively P(u) and P(v). -
The picture we get is entirely similar to the one we have treated. '

For (ii) suppose that Syuv or Suyv or Suvy, then we can substitute’in any of these cases z
for y, apply the induction hypothesis, get an appropriate C relation and in it substitute y
for £ which will again bring us home. '

(comps) It is the same as the above case.

This completes the proof of lemma 4.18.

BALR is complete

We have seen that there is a p-morphism from the frame .4 we built to the canonical frame and
furthermore A is standard. We may then conclude that it is possible to refute every formula that
is not a theorem of BALR in a standard frame which establishes the completeness of this logic
in the class of all standard frames. With that Theorem 3.5 is proved.

5 Conclusion

In this section we provide some concluding remarks as well as suggestions for further investigations.
In this work we saw how two approaches to Arrow Logic can be brought together and combined in
a unifying framework. Although to arrive at a satisfactory result cost great efforts and attention
mainly due to problems of undefinability the important thing is that the method we used in our -
proof can be used in a great variety of similar situations. To be more precise let us mention some
of them.

First, using similar construction we can investigate the underlying logic of multigraphs only
in the language of the Amsterdam approach i.e. omitting the co-incidence relations. We feel that
this can be done without great complcations. This will also provide a finishing touch to a line
of reseach that aims at dropping some restrictions on our frames with the idea of getting more
tractable logics. This line started with considering the full square of arrows, then this square was
relativised i.e. the condition that between any two points there should be an arrow was dropped.
We propose to go further and drop one more restriction, namely that saying that between any two
points there should be at most one arrow.

Second, using our coincidence relations this time we can try to consider other relations between
arrows. Very interesting suggestion in this direction is the one to try to characterize every possible
relation between 2, 3, ... arrows with the only restriction that these arrows should form a circle,
i.e. when considered as undirected these arrows form an closed curve. For example, the only such
relations between two arrows are the relations F' and E. Between three arrows there four such
relations, C and S are two of them and so on. It is interesting to consider interactons between
relations between one and the same number of arrows as well and those between the relations
among different number of arrows.
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