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An algebraic appreciation of diagrams*

Jerry Seligman?

1 Are diagrams terms?

At least since Frege, it has been widely acknowledged that the concepts of function
and argument are indispensable tools in linguistics. This idea is most clearly and
forcefully expressed by Montague in [1]. Simply put, Montague claims that algebraic
semantics is completely general: the semantic values of syntactic parts of a linguistic
symbol are related to the semantic value of the whole in the same way that the de-
notation of subterms of a term are related to the denotation of the whole term. This
follows almost directly from the assumption that the symbol is unambiguous and
Frege’s principle of compositionality. Any unambiguous symbol is uniquely analysed
as the result of composing its syntactic parts together in a way that determines the
meaning of the whole from the meaning of the parts. Consequently, any symbol
can be seen to have the abstract term structure ‘F(Sy,...,S,)’, where Sy,..., S,
are the term structures of its principal components, and F' stands for the mode in
which they are composed. By the principle of compositionality, F' can be given an
algebraic interpretation, as the function mapping the semantic-values of Sy,...,S,
to the semantic-value of the whole symbol.

It is very tempting to suppose that the Frege-Montague view of semantics
applies quite generally, not just to language but to all forms of symbolic represen-
tation. After all, the approach has a great track record. In computer science, the
method of using algebraic specification-languages has proved a powerful tool in the
analysis of data-structures and programming languages. In linguistics, especially in
semantics, an allegiance to the Frege-Montague approach has inspired many of the
advances of the last thirty years. Moreover, the approach is very robust—quite often
apparent detractors can be brought back into the fold if a sufficiently abstract view
is taken (see Janssen’s [2]).

One would expect simple diagrammatic systems of representation, such as
Venn diagrams and Euler circles, to be ideal candidates for an analysis along Frege-
Montague lines. Each diagram is composed from a finite number of diagrammatic
objects, such as circles, ellipses, crosses and shading, perhaps with a few simple
annotations; and the meaning of the diagram is clearly composed from the meaning
of its parts. Two such diagrams are shown in Figure 1.

Indeed, one might try to argue, as follows, that all diagrammatic systems
can be given the abstract syntax of terms. First, fix a co-ordinate frame for each
diagram—for instance, that provided by measurement in inches, vertically and hori-
zontally, from the mid-point of the paper. Associate each component of the diagram
with its position within that frame. For each integer n, and each n-tuple ¢ of co-
ordinates, let F,, stand for the syntactic operation of drawing a diagram by placing
its ith argument at co-ordinate position o;. Together with a range of atomic sym-
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Figure 1: Homeomorphic diagrams

bols of various sizes, this is enough to specify an abstract term structure for every
diagram. »

The proposal fails because it is manifestly at odds with our use of diagrams.
Imagine that the diagram on the left of Figurel were to be transformed imper-
ceptibly; the above analysis would assign a distinct syntactic structure to the new
diagram, even though we take it to be syntactically unchanged. The compulsion
that the two diagrams are syntactically equivalent is as basic as the compulsion
that two inscriptions of the same word are instances of a common syntactic type.

Clearly, there must be some partition of the uncountably many syntactic
forms into those which we regard as syntactically equivalent. The crucial difference
between diagrams and linear systems of representation lies in how this partition is
to be made.

A characteristic feature of linear systems, such as written language, is that
their symbols can be divided into segments in a way which is invariant across all
instances. For example, this sentence can be divided into ten words. Any other
inscription of the sentence can also be divided into ten words, and the sentences
will be syntactically identical if and only if they match word-for-word.! Once such a
segmentation is given, the possibility of following the Frege-Montague line is opened:
at the very worst, one can regard each symbol as a term built from primitive symbols
and the operation of concatenation.

By contrast, the task of finding a useful segmentation of diagrams is quite
hopeless in all part the most trivial cases. Indeed the fact that primitive components
of a diagram overlap is often of the utmost importance in determining the meaning
of the whole. The uncountably many arrangements of diagrammatic objects on the
page must be partitioned in a different way.

A moment’s thought suggests a viable alternative: the structure of most dia-
grams is invariant under many transformations of the plane, such as enlargement,
rotation, reflection, and even more general topological transformations; so perhaps
we can partition diagrams into classes which are closed under a given set of transfor-
mations. Put slightly differently, the proposal is that the syntactic type of a diagram
is an invariant of some class of transformations.

Exactly which transformations are chosen will depend on the diagrammatic
system we are analysing. In this paper, we will consider only the very simplest of
diagrammatic systems, in which syntactic type is taken to be a topological invari-
ant. Venn diagrams and Euler circles fall into this category, because their meaning
depends only on facts about whether or not one diagrammatic objects overlap with
another, and not on the size or shape of the object. However, we must not be too
quick to identify syntactic type using semantic equivalence. Although—we claim—
any adequate semantic theory of Venn diagrams should ensure that semantic-value

1. Of course, this is an idealization. In phonology, the problem of providing a segmentation of
natural speech is very difficult, and some argue for a “tiered” approach in which several stacked
segments are required for a correct analysis. Nonetheless, it is almost universally accepted that
spoken language has a segmental syntax at some level of analysis.
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Figure 2: Basic diagrams: connected and not
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Figure 3: Three deviant diagrams

is a topological invariant, it need not be the same invariant as syntactic type. Just
as in language, there are many semantically equivalent diagrams which are not
naturally analysed as being of the same syntactic type.

We adopt the most liberal approach to diagram syntax by identifying syntactic
type with invariance under homeomorphism. By this criterion, the diagrams in
Figure 1 are syntactically equivalent.

2 Basic diagram syntax

Although we believe that the methods adopted in this paper can be applied to any
diagrammatic system in which syntactic type is identified with invariance under
homeomorphism, we will only consider the simplest of such system, in which the
only diagrammatic objects are simple closed curves.?

Definition 2.1 A (basic) diagram D = (Op,Op) consists of a rectangular region
Op of the real plane, and a finite set Op of simple closed curves inside Op, such
that the following conditions hold.
(i) No two curves intersect without crossing.

(ii)) No two curves intersect at more than finitely many points.

(iii) No three curves intersect at the same point.
The region Op is called the rectangle of D, and each member of Op is called a
curve of D. D is said to be connected iff each pair of curves intersects at exactly
two points or not at all.

Examples of connected, and disconnected basic diagrams are shown in Fig-
ure 2, on the left and right, respectively. The labels ‘A’, ‘B’ and ‘C’, are not con-
sidered part of the diagram itself; they are merely annotations which enable us to
refer to the curves in the text. Diagrams which fail to satisfy conditions (i) to (iii)
are shown in Figure 3.

Notation Given a function f: A — B, we often need to refer to the associated
function mapping each subset X of A to its image under f, namely {f(z) |z € X}.

2. A simple closed curve is a homeomorph of the unit circle.



To avoid notational clutter, we call this function f, and rely on the reader to discern
which function is meant. Likewise, we use f~! to refer both to the function mapping
each subset Y of B to its inverse image under f, namely {z € A| f(z) € Y}, and
to the inverse of f, if it has one. To support this convention, we banish sets which
contain a subset as a member.

Definition 2.2 Given a diagram D and a homeomorphism h of the plane, the
image of D under h, written h(D), is the pair (h(Op), {h(c) |c € Op}).

If D is a diagram and h(Op) is rectangular then hD is also a diagram; more-
over, if D is connected, so is hD. Thus the class of diagrams (and the class of
connected diagrams) is “almost” closed under homeomorphic images. We could lift
the restriction to rectangular rectangles—and with it the “almost” of the previous
statement—but the need for such restrictions is often present in more complicated
diagrammatic systems of representation, and so it would be somewhat artificial to
do so.

Definition 2.3 Diagrams D; and Dj are said to be syntactically equivalent iff
there is a homeomorphism A such that Dy = hD;.

3 Basic diagram semantics

Basic diagrams may be interpreted by taking each curve to represent a class of
individuals. A diagram is true under an interpretation just in case the set-theoretic
relationships between the classes are as portrayed. For example, the diagram shown
on the right of Figure 2 is true under an interpretation just in case every member
of the class represented by the curve labelled ‘B’ is also a member of the class
represented by the curve labelled ‘A’. The curve labelled ‘C’ may be interpreted as
any class whatsoever, without effecting the truth-value of the diagram.

We can sharpen the account of how a diagram receives a truth-value with
the aid of a simple thought-experiment. To see if a diagram is true under an inter-
pretation, imagine placing each individual on the diagram in such a way that it is
surrounded by a curve if and only if it is a member of the class represented by that
curve. If this can be done, the diagram is true under the interpretation; if not, it is
false. We invite the reader to check that this method agrees with common sense.

Interpretations of diagrams are modelled using structures called classifications.?
Definition 3.1 A classification A consists of two sets tok(A) and typ(A), whose
elements are called tokens and types, respectively, and a binary relation of classifi-
cation between them. We write a : 4 « to mean that token a € tok(A) is classified
by type a € typ(A), dropping the subscripted ‘A’ when no ambiguity can arise.
The extension « of a type « € typ(A) is defined by ¢ = {a € tok(A) | a: a}.

A generic example of a classification is a relational structure, all of whose
relations are unary—indeed the reader may prefer to think of all classifications in
this way, and may interpret our definitions and results accordingly. 4

Definition 3.2 Given a diagram D, an interpretation of D consists of a classifica-
tion A, together with a function f:Op — typ(A). The diagram is true under the

3. The theory of classifications is developed by Barwise and Seligman in a series of papers, the

most recent being [3]
4. The advantage of using classifications is that we will be defining structure-preserving maps
between classifications which do not generalize easily to arbitrary relational structures.



interpretation, written A, f |= D, iff there is a function g: tok(A) — Op such that
for each a € tok(A), and each ¢ € Op,

a :a f(c) iff g(a) is surrounded by c. °
A function g satisfying the above is called a witnessing function of the interpretation.

Our informal account of interpretation can be recaptured by regarding the
type f(c) as the class represented by the curve ¢ of D, whose members are the
elements of f(c). The function g witnesses the imaginary placement of individuals
in our thought-experiment.

In support of our definition of syntactic equivalence, we show that interpre-
tations commute with homeomorphisms.

Notation Given functions f: A — B and g: B — C, the function gf: A — C is the
composition of f and g. Given a set A, the function id(A): A — A is the identity
function on A.

Claim 3.3 Given a diagram D and a homeomorphism h, if (A, f) is an interpre-
tation of D then (A, fh™!) is an interpretation of hD, and

A fE=EDIfA fh~! | hD.
PROOF: Given a homeomorphism kb, a simple closed curve ¢, and a point p, p is
surrounded by c iff h(p) is surrounded by h(c). The rest follows from the definitions.
QED

4 Diagram classifications and links

We will now work towards an alternative characterization of the syntax and seman-
tics of basic diagrams using some concepts from the theory of classifications and
links. The first step is to see diagrams as classifications.

Definition 4.1 For any diagram D, D is the classification defined by: tok(D) =
Op, typ(D) = Op, and for each point p € Op and each curve c € Op, p:p ciff pis
surrounded by c.

The next step is to see interpretations as links between a diagram classification
and the classification into which the diagram is interpreted.

Definition 4.2 Given classifications A and B, and functions f: typ(A) — typ(B)
and g: tok(B) — tok(A), the pair (f, g) is an S-link from A to B, written f,g: A < B,
iff for each b € tok(B) and each « € typ(A), g(a) ;4 ciff a:p f(a).

Claim 4.3 A, f = D iff there is a g such that f,g: D = A.
PRoOF: Direct from the definitions. QED

This characterization puts the following, purely link-theoretic question in fo-
cus: given a function f:typ(A) — typ(B), what property must f have for there to
be a function g: tok(A) — tok(B) such that f, g: A = B, and when is the choice of
g uniquely determined? For the reminder of this section, we will work towards an
answer. First, we introduce a useful abbreviation.

5. A point in the plane is surrounded by a simple closed curve iff it lies in the (bounded) open
region bounded by the curve.

6. In the language of [3], an ‘S-link’ is a Strongly Sound link with functionality 20 e, it is
‘S’-shaped.



Definition 4.4 Given classifications A and B, a function f: typ(A) — typ(B) is a
partial S-link from A to B iff there is a g: tok(B) — tok(A) such that f,g: A < B.

To sharpen Claim 4.3, we would like to show that there is a one-one corre-
spondence between true interpretations and S-links. In general, it is not true that
a partial S-link f:typ(A) — B has a unique extension to an S-link f,g: A < B.
However, we can find another classification A.,, such that if f uniquely determines
and is determined by an S-link from A. into B.

Definition 4.5 Given a classification A, elements a,b € tok(A) are indistinguish-
able, written a ~ b, iff for each a € typ(A), a 14 a iff b :4 a. The indistinguisha-
bility class of a, written [a]~, is the set of elements of tok(A) which are indistin-
guishable from a. The ~-quotient of A is the classification A. with tok(A.) =
{la]~ | a € tok(A)}, typ(A~) = typ(A), and [a]~ 14, aiffa:4 .

Theorem 4.6 If f is a partial S-link from A to B then there is an S-link f, f.: A = B,
and for any S-link f,g: A = B, f is a partial S-link from A to B and f. = g.

To prove Theorem 4.6 we will need to establish a few elementary properties
of links and ~-quotients. First, note that S-links compose in the obvious way: if
fige A2 Band f/,g": B2 C then f'f,gg’: A2 C. Also, for any classification A,
there is an identity link, id(typ(A)),id(tok(A)): A = A. Finally, if f,9: A & B and
both f and g are bijections, then (f,g) is called an isoinfomorphism and A and
B are said to be isoinfomorphic, written A S B. As expected, the compositions
(f~1f,g97 1) and (ff~1g~'g) are the identity links on A and B, respectively.

A classification is related to its ~-quotient by the following lemma.

Lemma 4.7 Given classifications A and B, there are functions 4 and ng such
that

(i) if f,g: A~ = B then f,nag: A< B
(ii) if f,g: A<= B then f,uag: AL < B

PROOF: Let p4: tok(A) — tok(A.) be the function mapping each a € tok(A) to its
indistinguishability class, and let n4: tok(A~) — tok(A) be a function which selects
a representative of each indistinguishability class, so that p4nA is the identity func-
tion on tok(A. ). From these definitions, it is easy to see that id(typ(A)), pa: A < A
and id(typ(A)),na: A = A_. The two parts of the lemma follow by composition of
S-links. QED

Unlike classifications in general, ~-quotients have the useful property that
any partial S-link from A. is uniquely extendable to an S-link.

Lemma 4.8 If f,g;: A, = B and f,gy: A., = B then g, = go.

Proor: By Lemma 4.7(i), f,nag1: A< B and f,nage: A< B. So for each b €
tok(B) and each a € typ(A), nagi(b) 14 « iff b:p f(a) iff n4g2(b) : 4 c, showing
that 74g1(b) ~ 14g2(b). Thus panagi(b) = panaga(b). But pana = id(tok(A)),
and so g1(b) = g2(b). QED

PRrROOF OF THEOREM 4.6: Given that A, f |= D, the existence of g follows from
Claim 4.3 and Lemma 4.7(ii), the uniqueness from Lemma 4.8. The converse follows
from Claim 4.3 and Lemma 4.7(i). QED



5 Consistent and tautologous diagrams

The results of the previous section provide us with a way of investigating the logical
properties of diagrams.

Definition 5.1 A diagram is consistent iff it is true under at least one interpreta-
tion, and tautologous iff it is true under every interpretation.

Observe that every diagram can be interpreted in itself: by Claim 4.3, the
existence of the identity link on D establishes that D,id(Op) | D. Thus:

Corrollary 5.2 Every diagram is consistent.

And, by composition of links, we can see that S-links between interpretations
are truth-preserving.

Corrollary 5.3 If A, f = D and f' is a partial S-link from A to B then B, f'f |=
D.

As promised, Theorem 4.6 yields a characterization of the true interpretations
of diagram D as S-links from D..,.

Corrollary 5.4 If A, f = D then f, f.: D.. = A is the unique S-link from D,, to
A extending f. Moreover, for any S-link f,g:D. < A, A, f = D.

Thus, for any diagram D, the classification D., contains all the information
necessary to evaluate the truth of D under an interpretation. It is finite and very
easy to inspect, especially when D is connected, because then the tokens of D, are
just the smallest regions bounded by curves of the diagram.

An important aspect of our analysis is that S-links can be used to study both
the semantics and the syntax of diagrams in a uniform way. The bridge is made by
exploring the idea that one diagram can be interpreted in the diagram-classification
of another.

Definition 5.5 Given two diagrams D and D', a function f:Op — Op- is a
diagram-homomorphism from D to D’ iff f is a partial S-link from D to D’. A
diagram-homomorphism is a diagram-isomorphism iff it is a bijection and its inverse
is also a diagram-homomorphism. Diagrams D and D’ are isomorphic iff there is
an isomorphism from D to D’.

The diagrams in Figure 2 are isomorphic, with an isomorphism given by asso-
ciating curves with the same labels. To check whether two diagrams D and D’ are
isomorphic it is often advisable to look for an isoinfomorphism between D., and
D... This is clearly sufficient, but the existence of such an link is also necessary.

Claim 5.6 Diagrams D and D’ are isomorphic iff D S D/.

PROOF: Suppose f:Op — Op- is an isomorphism from D to D’. By Theorem 4.6,
fife:D.2 D’ and f~1, f71: D!, 2 D. So, by Lemma 4.7 and composition of links,
fid(0p) f~1id(0Op"), fenp f 'np: D~ = D~.. But fid(Op)f~'id(Op’) = id(Op) and
so (fid(Op)f~tid(Op’), fenp fi 'np) must be the identity link on D, by Lemma 4.8.
Thus fonp fiinp = id(tok(D.)). A similar argument shows that f7inp finp =
id(tok(D.,)), and so f7'np = (fenps) L. The required isoinfomorphism is therefore
(f, f«np’). The converse is trivial. QED



O

B B 12 12

Figure 4: Free diagrams

ON®

do d1
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The following two Lemmas follow straight from Claim 4.3 and the definition
of homomorphism.

Lemma 5.7 If A, f' = D’ and f:Op — Op- is a homomorphism then A, f'f = D.
Lemma 5.8 f:Op — Op- is a homomorphism iff D', f = D.

Definition 5.9 A diagram D is free iff for each diagram D’, every function from
Op to Opr is a homomorphism. Examples of free diagrams are given in Figure 4.

Theorem 5.10 A diagram is tautologous iff it is free.
PROOF: Suppose D is a tautologous diagram. For any diagram D’ and any function
f:0p — Opr, D', f = D, so f is a homomorphism, by Lemma 5.8. Thus D is free.
Conversely, suppose D is free and (A, f) is an interpretation of D. For each
a € tok(A), let f, be the function from Op to the curves of the diagram D, depicted
in Figure 5, defined by
fa(C) _ { do if a: 7((6)

d; otherwise

fa is a homomorphism, because D is free, and so there is a function g, such that
fas ga: D & D... Now define the function g: tok(A) — tok(D) by g(a) = ga(*), where
‘¢’ is as marked in Figure 5. Noting that g(a) :p c iff x :p, fu(c) iff a: 4 f(c), we
can conclude that f,g:D < A, andso A, f = D. QED

Corrollary 5.11 Tautologous diagrams with the same number of curves are iso-
morphic.

PRroor: QED
If D and D’ are tautologous diagrams with the same number of curves then there
is a bijection f from Op to Ops. By Theorem 5.10, D and D’ are hoth free, so f
and f~! are both homomorphisms, and so f is an isomorphism.



This shows that the diagrams Fy, Fy, F» and F3, shown in Figure 4, are
the unique tautologous diagrams with 0, 1, 2, and 3 curves, respectively, up to
isomorphism. In fact, these diagrams are also the unique tautologous, connected
diagrams in their size, up to syntactic equivalence. Unfortunately, we will see later
that the series cannot be continued.

Definition 5.12 Diagram D’ is an extension of diagram D, written D' D D, iff
Op = Ops and Op C Opr. We also say that D is a subdiagram of D’'.

Diagram D’ is a free extension of diagram D, written D' > D, iff D’ 2 D and
for any diagram D” and any function f:Ops — Op if the restriction of f to Op is
a homomorphism then so is f. D is simple iff it is a free extension only of itself.

Corrollary 5.13 D is tautologous iff D > Fy.

Proo¥F: For any f:Op — Opr, the restriction of f to Op, = 0 is just the empty
function, and so is a homomorphism. Thus D > Fj iff D is free. The result then
follows from Theorem 5.10. QED

6 Covers

A different kind of characterization of partial S-links (and so of true interpreta-
tions and diagram homomorphisms) can be obtained by looking for the structural
property they preserve.

Definition 6.1 Given a classification A and sets X, %" C typ(A), let [X,Y] =
Nacs @ — Uaesy @ The pair (,%') is a cover iff [L,%'] = 0. A subcover of a
pair (%,Y’) is any cover (Yo, Xf) such that ¥y C ¥ and £ C ¥’. A function
F:typ(A) — typ(B) is said to preserve covers from A to B iff the image under f of
each cover in A is a cover in B.

Theorem 6.2 A function f:typ(A) — typ(B) is a partial S-link iff it preserves
covers.
PRrOOF: If f is a partial S-link then there is a g such that f,g: A 2 B. For any
Y, Y C typ(A), we will show that if b € [fX, f¥'] then g(b) € [%,¥'], which is
enough to show that f preserves covers. So, for any b € [fX, f¥'] and any « €
typ(A),

if « € ¥ then b € f(a), so b € a, and

ifa’ € ¥ thenb & f('), sob¢g .

Conversely, if f preserves covers, we define a function g: tok(B) — tok(A) as
follows. For each b € tok(B), let 5 = {8 € typ(B) | b :g B} and let ¥, = typ(B) —
¥} . Note that b € [5, £, ]. Also note that ff~!¥} C Bf and ff~1%,; C %y,
and so b € [ff7IZ}, ff~1E,]. But then (f~1%f, f71¥;) is not a cover, because
f preserves them. So pick any a € [f~IX}, 713, ] and let g(b) = a. We leave it to
the reader to check that, for each « € typ(A), g(b) :a a iff b:p f(a). QED

The theorem may be applied to both interpretations and homomorphisms.

Corrollary 6.3 A, f E D iff f preserves covers.

Corrollary 6.4 f:Op — Op- is a homomorphism iff f preserves covers from D to
D',



Corrollary 6.5 D is a tautologous diagram iff D has no non-trivial covers.
PROOF: For every interpretation (A, f) of D, f preserves trivial covers, so the result
follows from Corollary 6.3. QED

Covers are also useful for studying free extensions.

Lemma 6.6 D’ is a free extension of D iff each non-trivial cover in D' has a
subcover in D.

Theorem 6.7 Every diagram is the free extension of a unique simple diagram.

PRrooF: Let core(D) be the subdiagram of D) with Ocore(D) = N{op' | D' < D}.
We show that core(D) < D, and so establish that core( D) is the smallest subdiagram
of D with this property. Suppose (C, C’) is a non-trivial cover in D with no proper
subcover. We call such a cover a minimal pair of D. For all D’ < D, (C,C") has
a subcover in D', by Lemma 6.6. By minimality, this subcover can only be (C, C")
itself; and so (C,C") is also a cover in core(D), by construction of the latter. We
have shown that every minimal cover in D is also a cover in core(D). The subcover-
order is clearly well-founded, so every cover in D contains a minimal subcover in D,
and hence also in core(D); thus core(D) < D, by Lemma 6.6 again. Now core(D) is
clearly simple, and every I’ < D is a free extension of core(D), so core(D) is the
only simple subdiagram of D having D as a free extension. QED

Definition 6.8 For each diagram D, let core(D) = (Op,(){Op’ | D' < D}) be the
unique simple subdiagram of D having D as a free extension.

Finally, we leave the proofs of the following three claims to the reader.

Claim 6.9 core(D) is the largest simple subdiagram of D.

Claim 6.10 Given diagrams D and D’, the following are equivalent.
(i) There is a homomorphism from D’ to a free extension of D.
(ii) There is a homomorphism from core(D’) to D.

Claim 6.11 core(D) is isomorphic to core(D’) iff there are homomorphisms from
core(D) to D' and from core(D’) to D.

7 Constructing diagrams

The association of a diagram D with the classification D respects our notion of
syntactic equivalence in the following sense.

Claim 7.1 Syntactically equivalent diagrams are isomorphic.

PRrRoOOF: If D and D’ are syntactically equivalent then there is a homeomorphism
h such that hD = D'. It is easy to see that A=, h: D’ = D is an isoinfomorphism.
QED

However, the converse of Claim 7.1 is not true, even if we restrict it to free

diagrams which are connected. The isomorphic, free, connected diagrams shown in
Figure 6 are not syntactically equivalent. This is a shame, because Corollaries 5.11

10



Figure 6: Isomorphic, free, connected diagrams, which are not syntactically equiv-
alent.
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Figure 7: Freely extending a diagram

and 6.5 suggest a strategy for constructing all free diagrams. If for each n we can
construct one free diagram with n curves then we can be sure that it is the unique
free diagram with n curves, up to isomorphism. Unfortunately, that is not enough
to guarantee syntactic equivalence.

To construct the tautologous diagrams we must therefore be a little more
cunning that one might have expected. First, we show that any diagram can be
freely extended by one curve.

Construction 7.2 Recall that any finite number of points inside a rectangular
region can be joined by a simple closed curve lying inside the region. The following
is an algorithm for constructing such a curve. If there is only one point then a (small
enough) circle passing through the point will do. If there is more than one point
then there are two cases, depending on whether or not the points are collinear. If
they are, then they lie on a line of a finite length, which forms the side of a (small
enough) rectangle. If they are not collinear, draw a line through each pair of points
in the collection. Pick one of the resulting minimal regions (a convex polygon) and
call its centre c. No two points of the collection are collinear with c. Order the points
according to the size of the angle a line drawn from the point to ¢ makes with the
horizontal. Connect the points with straight lines in the order just determined, to
form a simple polygon—of course, any closed curve connecting the points in this
order will do as well.

Now suppose D is a basic diagram, to which we wish to add a curve freely.
Pick points in each ~-class of D, none of which lie on one of the curves. Join the
selected points them with a simple closed curve, as shown above. Because D is a
basic, there are only a finite number of points of intersection, so we can always draw
a curve which avoids them all and intersects the old curves in only a finite number
of places; this guarantees that the resulting diagram is also basic.
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Figure 7(a) shows a three-curve diagram with selected points marked by
crosses. In (b), the crosses have been joined by straight lines, following the above
algorithm. In (c), a smother curve is chosen.

Claim 7.3 If D’ is constructed from D in accordance with Construction 7.2 then
it is a free extension of D.

PROOF: By construction, each ~-class F of D contains a point p lying on the new
curve. The point p was selected so that it does not lie on any of the curves of D,
and so it is contained in the interior of E, which is an open set. The new curve
passes through p and so it divides the interior of E (and hence E also) into two
non-empty regions. Thus if ¢ is the new curve, neither ¢ N E nor E — ¢ are empty.
Consequently, if (I', T) is a cover of I’ then either ¢ € NI and so (T, T) is trivial,
or (I' — {c},TV — {c}) is a cover of D. The result follows by Lemma 6.6. QED

Construction 7.2 gives us a method of constructing free diagrams of each size,
thus characterizing the free diagrams up to isomorphism. To improve on this re-
sult, we need to show that every free diagram is syntactically equivalent to one
constructed in this way. To do this, we must look a little more closely at the con-
struction.

Definition 7.4 Given a diagram D, a sequence py,...,p, of points in Op is a
blueprint of D iff
1. for each i # j <n, p; # p;
2. p1=pn
3. for each i < n, there is a simple curve with endpoints p; and p;;;, and which
crosses one curve of D exactly once.”
Blueprints pi,...,pn and q1,...,qn of D are equivalent iff n = m and for each
1 < n, there is a curve with endpoints p; and ¢; which does not intersect any of the
curves of D.
Given any simple closed curve c in Op, we say that p, ..., p, is a blueprint of
c iff for every segment s of ¢ bounded by (but not containing) points of intersection
with curves of D, there is an i < n such that p; lies on s.

Construction 7.5 Given a diagram D and a blueprint py, ..., p,. For each i <mn,
there is a curve ¢; with endpoints p; and p;;1, and which crosses exactly one curve
of D exactly once. Draw a closed curve c by joining up the curves c¢y,...,c,—1.

Construction 7.5 provides a finer degree of control than Construction 7.2,
but it has the drawback that it may not produce a basic diagram, because the con-
structed curve may not be a simple closed curve—it may intersect itself. Nonetheless,
it is more general.

Claim 7.6 Given a diagram D and a curve ¢ € Op. D results from the diagram
D’ = (Op,0Op — {c}) by an application of Construction 7.5.

Proor: Divide c into segments sy, ..., s, bounded by, but not containing, points
of intersection between ¢ and curves of D’. (There are only a finite number of
segments, because c crosses any other curve of D at most finitely many times, and
there are only a finite number of curves in D—both restrictions imposed by the
definition of basic diagram.) For each i < n, select a point p; on s;. The sequence
P1,...,Pn is a blueprint for ¢, and so ¢ can be constructed from it by an application
of Construction 7.5. QED

7. A simple curve is a homeomorph of the closed unit interval.
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Figure 8: Equivalent extensions

The following theorem gives the condition under which successful applications
of Construction 7.5 yield syntactically equivalent diagrams.

Theorem 7.7 Let D be a diagram, and let ¢ and d two simple closed curves in Op,
which are not contained in Op, and do not lie on any of the intersection points of D,
but which have equivalent blueprints. If ¢ and d also surround the same curves of D,
then the diagrams (Op,Op U {c}) and (Op,0Op U {c}) are syntactically equivalent.
PRroOOF: Suppose pi1,...,pn and qi,..., ¢, are equivalent blueprints of ¢ and d,
respectively. For each i < n, there are segments s; of ¢ and ¢; of d which are
bounded by, but do not contain, points of intersection with the curves of D. The
points p; and g; lie on s; and t;, respectively; and there is a curve with endpoints p;
and ¢;, which does not cross any of the curves of D. Figure 8(i) depicts the situation.

Let z; be the point of intersection of ¢ with a curve of D between p; and p;41,
whose existence and uniqueness is implied by the fact that pq, ..., p, is a blueprint
of c. Likewise, let y; be the point of intersection of d with a curve of D, between g¢;
and git1.

Claim 1 The points z; and y; lie on the same curve of D and no other curves of
D intersect the region p;pi+1¢i+14i.

PRroOF oF CLAIM: First note that x; and y; are the only points of curves of D to
cross the boundary of the region. This follows from observations already made, stem-
ming from the fact that the corner points of the region lie on equivalent blueprints
of the curves ¢ and d. Thus the curve of D which enters the region at x; must either
terminate inside the region, or else leave at either x; or y;. The first possibility is
excluded because every curve of d is closed, and the second is excluded because
no curve of D is self-intersecting. The only remaining possibility is that the curve
entering at x; leaves at y;, which is just to say that x; and y; lie on the same curve.
No other curve can enter the region, because x; and y; are the only possible entry
points, and neither ¢ nor d lies on an intersection point of D (by hypothesis). Finally,
if there were any curve lying entirely within the region, it would be surrounded by
either c or d, but not by both, which is forbidden by hypothesis.

If we now consider the whole curves ¢ and d, it is clear that they are related in
the manner depicted in Figure 8(ii). In other words, the region bounded by ¢ and d
is a “pinched” annulus crossed by a finite number of segments of curves of D. By a
standard extension theorem (?), any homeomorphism of ¢ onto d which maps p; to
g; and z; to y; (for 0 < i < m), can be extended to a homeomorphism of the plane
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which maps ¢ to d, while keeping the rectangle and curves of D fixed. QED

Corrollary 7.8 If D, and Dy are free extensions of D which result from the addi-
tion of curves c and d, and c and d have equivalent blueprints, then D, is syntacti-
cally equivalent to Dy.

Proor: If D. and Dy are free extensions of D then ¢ and d must intersect all the
curves of D, and so there are none which they surround. QED

Corrollary 7.9 There are countably many syntactically non-equivalent diagrams.
PROOF: In any diagram D there are only countably many non-equivalent blueprints.
So, by Theorem?7.7, D has only countably many extensions with one extra curve.
The result follows by induction on the number of curves in a diagram. QED

We will now see how to enumerate basic diagrams, up to syntactic equivalence.

Definition 7.10 Let D be a diagram. Blueprints py,...,p, and qi,...,¢m in D
are co-extensive iff for each i < n there is a 7 < m and a curve with endpoints
p; and g;, and which does not intersect any curve of D. We define the order of a
blueprint in D by induction:
(0) A blueprint in--D has order 0 iff there is no shorter, co-extensive blueprint in
D.
(n) A blueprint in D has order n+1 iff it does not have order n but every shorter,
co-extensive blueprint has order n or less.
An extension D’ of D has order n iff it has one extra curve, and that curve has a
blueprint of order n.

Note that if we restrict our attention to connected diagrams, every one-curve
extension has order 0. Unfortunately, we do not yet know whether there are free
connected diagrams of every size; but we can be certain that there are always
extensions of order 0.

Corrollary 7.11 Every diagram has a finite, positive number of syntactically non-
equivalent, one-curve extensions of order n.

Corrollary 7.12 There are a finite number of syntactically non-equivalent, free
diagrams with n curves.

Thus, by enumerating blueprints, we can enumerate the tautologous diagrams,
up to syntactic equivalence.

8 Valid diagrammatic arguments

Our next goal is a link-theoretic characterization of valid arguments using diagrams.
It is not sufficient to represent a diagrammatic argument just as a sequence of
premise diagrams and a conclusion. In addition, we need to know which curves in
the conclusion are intended to represent the same class as curves in the premises.
In other words, we must record the connections between curves in the premises
and conclusion which establish co-reference. In informal use, these connections are
indicated by gestures, labels, or simply by the fact that a concrete image standing

14



for the conclusion is arrived at by a process of modifying concrete images of the
premises in a way that leaves some of the original curves in tact.

The easiest way to model co-reference between curves is to pretend that all
the curves in both premises and conclusion are labelled.®

Definition 8.1 Let L be a set. An L-labelled diagram is a pair (D, \), consisting
of a diagram D together with a function A\:Op — L. It is properly-labelled iff X is
one-one. (D, \) is syntactically equivalent to (D’, X') iff there is a homeomorphism
h such that hD = D’ and A = X h.

Let L be a fixed countably infinite set of labels. We draw labelled diagrams
by writing the label A(c) next to the curve ¢, in the expected way. Our decision
not to regard the labels as part of the diagram itself is reflected in the definition of
syntactic equivalence: we only require the curves with the same label to be preserved
under homeomorphism, not the labels themselves. Two properly-labelled diagrams
are shown in Figure 2. An improperly labelled diagram is shown in Figure 9.

Definition 8.2 An L-interpretation is a classification A with typ(A) = L. An L-
labelled diagram (D, A) is true under an L-interpretation A, written A = (D, A)
iff A;A = D. An L-labelled diagram is consistent iff it is true under at least one
L-interpretation, and tautologous iff it is true under all.

Given a set A of L-labelled diagrams and an L-labelled diagram (D, ), we say
that (D, A) is a consequence of A, and write A = (D, \), iff every L-interpretation
under which each labelled diagram in A is true is one under which (D, X) is also true.
Labelled diagrams (D, A) and (D, \) are logically equivalent iff (D,\) = (D, X)
and (D', ) = (D, \)

Claim 8.3 Given an L-model A, and an L-labelled diagram (D, )\), the following
are equivalent:

1. A (DX,

2 M \.D_ 2 A,

3. A preserves covers.
Proor: From Theorems 4.6 and 6.2. QED

In order to use this theorem to extend the results of the previous sections, we
need some way of relating arbitrary interpretations of a diagram to L-models. To
do this, it is convenient to make use of another concept from the theory of links.

Definition 8.4 Given a classification A, and a relation r C typ(A) x B, we define
the coherent projection of A along r, written r A, as follows. For each a € tok(A),
define

at ={B€B|3actyp(A) a:aca and (a,f)€r}

a” ={B€B|3ac typ(A) a faa and (a,B)e€r}
Let r A be the classifications with tok(rA) = {a € tok(A) |at Na™ = 0}, typ(rA) =
rng(r), and a ;.4 Biff B € a™.

Lemma 8.5 For any labelled diagram (D, \), let (\) be the graph of A. Then
A\, id(0p): D < (\)D
PROOF: By construction. QED

8. Another strategy is to represent the co-reference relation between curves (See Shin’s [4]). It is
fairly easy to see that this is equivalent.
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Figure 9: A tautologous labelled diagram

The classification (A\)D does for labelled diagrams what D did for unlabelled
diagrams.

Theorem 8.6 Every labelled diagram is consistent.

ProOOF: Let ((\)D)* be any L-model extending (A\)D (which must exist: assign
arbitrary extensions to the labels not occurring in rng(A)). The inclusion function
is a partial S-link, and so by composition with the link in Lemma 8.5, we have
(WD)Y* F (D, N). QED

Theorem 8.7 A labelled diagram (D, \) is tautologous iff (\) D has no non-trivial
covers.

ProoF: If (A\)D has no non-trivial covers, then by Theorem 6.2, for any L-model
A, id(rng())) is a partial S-link from (\)D to A. By composition with the link in
Lemma 8.5, A = id(rng(A))A is a partial S-link from D to A. Then, by Claim 8.3,
A= (D, )\).

Conversely, suppose (D, ) is tautologous. For any function, f: L — typ(A),
let Af be the classification with types L, tokens tok(A) and o : Liff a 14 f(I). Then
(Ay, M) is an L-interpretation of D, and so Ay |= (D, \), because (D, \) is tautolo-
gous; and so there is a function g such that A, g: D = Ay,

Claim 1 f,g:(\)D<Z A

Proor oF CLAIM: Given « € tok(A) and I € typ((A\)D) = rng(A), there is a
¢ € Op such that I = X(c). We have shown that A\, g: D 2 Ay and so g(a) :p c iff
a:4; Mc) =1, and this is the case iff a :4 f(l), by the definition of Ay, above. Now,
by Lemma 8.5, g(a) =id(Op)g(a) :p ¢ iff g(a) :(xp I; and we are done.

From this it follows that every f: L — typ(A) is a partial S-link from (A)D
to A. By Theorem 6.2, (A\)D can have no non-trivial covers. QED

Corrollary 8.8 If (D, ) is a properly-labelled diagram, D is isoinfomorphic to
(AN D and (D, ) is a tautology iff D is a tautology.

ProoF: By Lemma 8.5, if (D, A) is a properly-labelled then (X,id(0Op)) is an isoinfo-
morphism. The rest follows from the Theorem 8.7 and the fact that S-links preserve
covers. QED

Note that the corollary cannot be generalized to improperly-labelled diagrams.
Figure 9 shows a tautologous labelled diagram which would cease to be tautologous
were we to rub out the labels. We extend the notion of a diagram-homomorphism
to labelled diagrams in the obvious way.

Definition 8.9 If (D, ) and (D’, \’) are L-labelled diagrams, then f is a labelled-diagram

homomorphism from (D, A) to (D', X'} iff f is a digram homomorphism from D to D’ and
XN f = A A labelled-diagram homomorphism is a labelled-diagram isomorphism iff it is a
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bijection and its inverse is also a labelled-diagram homomorphism.

(D'X') is an extension of diagram (D, A}, written (D', ') 2 (D, A} iff D’ D D and A
is the restriction of A’ to Op. It is a free extension, written (D', X') > (D, A) iff, in addition,
for any labelled diagram (D", \”) and any function f:Ops — Op» such that X'f = X,
if the restriction of f to Op is a homomorphism then so is f. D is simple iff it is a free
extension only of itself.

Lemma 8.10 If (D', \') is a free extension of (D, ) then (D, \) = (D', \')
PRroor: Left to the reader. QED

Theorem 8.11 (For properly-labelled diagrams only.) (D, \) |= (D', X'} iff there
is a free extension (D*, X\*) of (D, A\) and a labelled-diagram homomorphism from
(D', N') to (D*, A*).

PRrOOF: Suppose (D, ) |= (D', N'). Let L’ = rng(N) — rng(XA). Construct the free
extension D* of D by adding a new curve ¢; for each [ € L/, according to Construc-
tion 7.5. Define A*:Op+ — L by

sy | Me) if ceOp
’\(")_{l if c=¢ forsomel e L’

This makes (D*, A\*) a free extension of (D, A\). From the proof of Theorem 8.6,
we have ((A\*)D*)T |= (D*,A\*), and so ((\*)D*)* |= (D', '), by hypothesis. Thus
there is a g such that X', g: D’ 2 ((A*)D*)*. In fact, because rng(\') C L'Urng(A\) =
typ((A\*)D*), we have X, g: D' 2 (\*)D*. Now, we use the fact that (D, ) and
hence (D*, A\*) is properly-labelled: by Corollary 8.8, A\*~1 id(0Op): (\*)D* & D*.
By composition, A* 71X, gid(Op): D’ & D*, and so A*~1)\ is a homomorphism from
(D', ') to (D*, X*), as required.

Conversely, suppose we have a homomorphism f from (D', X) to a free ex-
tension (D*,A*) of (D,\). If A = (D', N) then by Lemma 8.10 A = (D*, X*).
So A, \* |= D*, and thus A, \*f |= D’ by Lemma 5.7. Finally, \*f = X, and so
A E (D', X)), as required. QED

Definition 8.12 If (D, \) is properly-labelled, we define core((D,\)) to be the
diagram core(D), labelled with the restriction of A to O(:ore( D)

Corrollary 8.13 (For properly-labelled diagrams only.) (D, ) = (D', X') iff there
is a homomorphism from core((D’, X)) to (D, \).
ProoF: From the theorem and Lemma 6.10. QED

Corrollary 8.14 (For properly-labelled diagrams only.) (D, ) is logically equiva-
lent to (D', \') iff core({D, A)) is isomorphic to core({D’, X))
Proor: From Corollary 8.13 and Lemma 6.11. QED

Theorem 8.11 and its corollaries do not apply to the case in which the premise
is improperly labelled. A counterexample is shown in Figure 10. The diagram on
the right is a consequence of the one on the left and both are simple, but there is
no homomorphism from the right to the left.

We would like to extend Theorem 8.11 to a characterization of valid arguments
with an arbitrary number of premises. Clearly it would be sufficient to find a way of
combining diagrams (D1, A1) and (Da, Ag) into a single diagram (DsAs), such that
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Figure 10: Improper consequence

for each (D, \)

(D3)s) k= (D, A) iff (D1, A1), (D2, M) f= (D, A)
In fact, this can be done, but it is convenient to consider first a diagrammatic device
which makes the construction of the combined diagram much easier: shading. But
that would take us beyond the scope of this paper.

9 Depiction and Denotation

Our initial departure from the algebraic thoroughfare was motivated by syntactic
considerations: the fact that syntactic equivalence between diagrams is best de-
scribed using geometric concepts. But all roads lead to algebra, and we should say
something about how to navigate the rest of the journey.

First, we should recall the role played by terms in algebra. It will suffice to
restrict our attention to Boolean algebras, although the point is quite general. The
Boolean algebras constitute a variety BA of algebras of type (A,V,—,0, 1), which
can be characterized either equationally, by the usual axioms, or as the class of
algebras embeddable in a powerset algebra (P(S),N,U, —, 0, S), for some set S.

A term-algebra of type (A,V,=,0,1) is an algebra 7 [X] whose elements are
terms built from the Boolean connectives with elements of X taken as atomic sym-
bols, and whose operations are the corresponding syntactic functors, e.g., the func-
tion mapping terms t; and t9 to the term ‘(¢; A t2)’. The term-algebras play an
essential role in algebra for various reasons.

First, terms are segmentable: they can be written down in a linear notation.
This is an obvious point, but a very important one. So close is the concept of an
abstract term to the concept of a concrete symbol that it is sometimes difficult to
imagine one without the other.

Second, terms are inductive. To put it another way, terms wear their inductive
structure on their sleeves. This plays an essential role in shaping the way we think
about the manipulation of terms, when designing logical calculi, for example. Rules
which are defined in terms of the inductive structure of terms will have a special
character.

Third, terms are free: for any algebra A of the same type type as 7[X],
and any function f: X — A, there is a unique extension of f to a homomorphism
f: T[X] — A. This means that terms provide an extremely versatile means of
representing the elements of another algebra; no structural information is built into
a term, apart from its arity.

Fourth, terms denote. The sole representational role of a term is to denote
an element of an algebra. On its own, a term does not make any claim about the
element it denotes. To achieve go beyond denotation, one needs to combine terms
in more complicated expressions, the simplest being the equations.

Equations provide the means by which the denotational powers of terms are
turned into classificatory powers. An equation ‘¢ = &5’ classifies functions f: X — A
into those that do and those that do not satisfy the condition: f(t1) = f(t2).

Moreover, equations allow us to find a free Boolean algebra, and thereby
characterize the variety BA, by purely algebraic means. We define a congruence ‘~’
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on 7[X] by t1 = tg iff for each Boolean algebra B and each function f: X — B,
f(t1) = F(t5). Now the quotient T[X]/~ is still free with respect to the Boolean
algebras—each f: X — B is uniquely extendable to a homomorphism f:7[X]/~ —
B—but unlike 7[X] the quotient 7[X]/~ is itself a Boolean algebra.

Elements of the free Boolean Algebra F[X] = T[X]/~ are a perfect com-
promise between freedom and expressivity. All and only the equations which are
satisfied by all Boolean algebras are satisfied by F[X]. However, one important in-
gredient is gone: the wearing of structure on the sleeve. One cannot usually divine
the structure of a congruence simply by looking at an equation; at least not in the
same way that one can see the structure of a term.

By moving away from terms, we have shifted the balance from syntax to
semantics—or so it would seem, if we were to make the mistake that congruence-
classes of terms are the only way to represent the elements of F[X]. However,
there is another way. As mentioned earlier, the class of Boolean algebras can be
characterized either using equations, or as subalgebras of concrete powerset algebras,
also called “fields of sets”. This result due to Birkhoff was improved by Stone, who
made the remarkable discovery that the structure of these fields of sets can be
specified by entirely geometric means.

To be a little more precise, Stone’s Duality Theorem states that a Boolean
algebra can be uniquely represented as a certain kind of topological space (now
called a Stone space), in such a way that homomorphisms between Boolean algebras
-are also uniquely representable as continuous functions between the corresponding
spaces (in the opposite direction).

The potential for diagrams would be apparent, even had they not been in-
vented first. It only remains to fill in the details.

As was noted earlier, the essential structure of a basic diagram D is contained
in the classification D... This classification retains all the geometric structure of
the diagram, without inessential details about the exact arrangement of curves in
the plane. Such a classification can be used to generate both a Boolean algebra and
its corresponding Stone space.

Definition 9.1 Given a classification A, we let B(A) to be the Boolean set algebra
of ~-closed sets, and let S(A) be the topological space with points tok{ A) and whose
open sets are the ~-closed sets.

For a digram D, the space S(D.) is (homeomorphic to) the Stone space of
B(D..). What’s more, the duality between Boolean homomorphisms and continuous
functions is reflected in the two components of an S-link.

Claim 9.2 Given functions f:typ(D.) — typ(D..) and g: typ(D.,) — typ(D.),
f,g: D!, 2 D iff

(i) f can be uniquely extended to a homomorphism f:B(D.) — B(D’.)

(ii) g is a continuous function from S(D.,) to S(D..), and

(iii) f and g are Stone duals.

The correspondence can be extended to much of what has gone before. In
particular, D is a free diagram iff B(D.) is a free Boolean algebra. The addition of
labels makes the correspondence easier to state:

Claim 9.3 If (D, )\) is a properly-labelled, free diagram, then A: B(D,.) — F[L] is
an embedding.

This shows precisely how diagrams are analogous to terms: both provide a
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way of concretely representing finite information about the free Boolean algebra. It
also shows how they differ: terms do it by denoting elements of the algebra and use
them to define congruences; whereas diagrams do it by depicting a finite subalgebra.
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