

KAZIMIERZ ŚWIRYDOWICZ¹

A Remark on the Maximal Extensions of the Relevant Logic R

LP-94-04, received: Mar. 1994

ILLC Research Report and Technical Notes Series Series editor: Dick de Jongh

Logic, Semantics and Philosophy of Language (LP) Series, ISSN: 0928-3307

Institute for Logic, Language and Computation (ILLC) University of Amsterdam Plantage Muidergracht 24 NL-1018 TV Amsterdam The Netherlands e-mail: illc@fwi.uva.nl

^{1.} Adam Mickiewicz University, Poznan, Poland. Research supported by TEMPUS-project JEP 01941.

A Remark on the Maximal Extensions of the Relevant Logic R

Kazimierz Świrydowicz

1.Preliminaries. C_R -matrices. Let a set of propositional variables p,q,r,\ldots be given and let F be the set of propositional formulae built up from propositional variables by means of the connectives: \rightarrow (implication), \land (conjunction), \lor (disjunction) and \neg (negation). The Anderson and Belnap logic R with relevant implication (cf. [75]) is defined as the subset of propositional formulae of F which are provable from the set of axiom schemas indicated below, by application of the rule of Modus Ponens (MP; $A, A \rightarrow B/B$) and the Rule of Adjunction ($A, B/A \land B$):

```
A1. A \rightarrow A

A2. (A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))

A3. A \rightarrow ((A \rightarrow B) \rightarrow B)

A4. (A \rightarrow (A \rightarrow B)) \rightarrow (A \rightarrow B)

A5. A \land B \rightarrow A

A6. A \land B \rightarrow B

A7. (A \rightarrow B) \land (A \rightarrow C) \rightarrow (A \rightarrow B \land C)

A8. A \rightarrow A \lor B

A9. B \rightarrow A \lor B

A10. (A \rightarrow B) \land (C \rightarrow B) \rightarrow (A \lor C \rightarrow B)

A11. (A \land (B \lor C)) \rightarrow ((A \land B) \lor C)

A12. (A \rightarrow B) \rightarrow (B \rightarrow A)

A13. \neg \neg A \rightarrow A
```

A matrix is a pair $\langle \mathbf{A}, \nabla_{\mathbf{A}} \rangle$ where \mathbf{A} is an algebra while $\nabla_{\mathbf{A}}$ is a subset of the domain of \mathbf{A} . To the logic R and its extensions we can associate a set of so-called C_R -matrices (cf. W.Dziobiak [83]), their characterization is given by the following

Theorem 1 (W.Dziobiak (83),L.Maximowa (73)) Let

 $\mathbf{A} = \langle A, \rightarrow, \wedge, \vee, \neg \rangle$ be an algebra similar to F and let $\nabla_{\mathbf{A}}$ be a subset of A. then the following conditions are equivalent:

(i) $\langle \mathbf{A}, \nabla_{\mathbf{A}} \rangle$ is a C_R -matrix,

(ii) $\langle A, \wedge, \vee \rangle$ is a distributive lattice with \wedge and \vee as its meet and join, respectively and $\nabla_{\mathbf{A}}$ is a filter on A with the property: for all $a, b \in A, a \wedge b = a$ iff $a \to b \in \nabla_{\mathbf{A}}$; and moreover, the following conditions are satisfied for all x, y, z

```
of A,
   (c1) \quad (x \to y) \le (y \to z) \to (x \to z),
   \begin{array}{ll} (c1) & (x-y) \subseteq (y-z) \\ (c2) & x \le (x \to y) \to y, \\ (c3) & x \to (x \to y) \le x \to y, \\ (c4) & (x \to y) \land (x \land z) \le x \to (y \land z)), \\ (c5) & (x \to y) \land (x \land z) \le (x \lor y) \to z, \\ (c6) & (x \to y) \land (x \land z) \le (x \lor y) \to z, \\ \end{array} 
   (c6) \quad x \to \neg y \le y \to \neg x,
   (c7) \quad \neg \neg x = x,
here \leq is ordering of the lattice \langle A, \wedge, \vee \rangle.
```

Let us add some additional properties of C_R -matrices:

Lemma 2 (L.Maximowa (73)) Let (A, ∇_A) be a C_R -matrix and let the re $lation \leq be defined as follows:$

 $x \leq y \ \textit{iff} \ x \to y \in \nabla_{\hbox{\bf A}} \, .$

Then the relation \leq satisfes the following implications and inequalities:

- (i) if $x \in \nabla_{\mathbf{A}}$ then $x \to y \le y$ (ii) if $x \le y$ then $y \to z \le x \to z$
- (iii) $x \rightarrow \neg x \leq \neg x$.

Let us quote moreover a lemma and two propositions proved by W.Dziobiak in [83] which are important for our further investigations. Let $(\mathbf{A}, \nabla_{\mathbf{A}})$ be a C_R -matrix and let $X \subseteq A$. By [X] we shall denote the least filter on **A** containing X. Moreover, each filter ∇ on **A** will be called *normal* iff $\nabla_{\mathbf{A}} \subseteq \nabla$. We have

Lemma 3 (W.Dziobiak (83)) Let $A = \langle A, \nabla_A \rangle$ be a C_R -matrix. Then (i) $\nabla_{\mathbf{A}} = [\{a \rightarrow a : a \in A\}),$ (ii) If \mathbf{A} is generated by elements a_1, \ldots, a_{n-1} then $\nabla_{\mathbf{A}} = [i \stackrel{\wedge}{<} n \ (a_i \to a_i)).$

Theorem 4 (W.Dziobiak (83)) Let (A, ∇_A) be a C_R -matrix and let NF(A)be the set of normal filters on A. Then the lattices: $\langle NF(A), \subseteq \rangle$ and $\langle Con(\mathbf{A}), \subseteq \rangle$ are isomorphic.

Theorem 5 (W.Dziobiak (83)) The class of all C_R -matrices form a variety.

2.RRPg-spaces. Let $S = \langle S, RP, g \rangle$ be an ordered 4-tuple where S is a nonempty set, R is a ternary relation on S, P is a nonempty subset of S and $g: S \longrightarrow S$ a function. Then S is said to be a RRPg-space i.e RPg-space for the logic R (por.W.Dziobiak [83], L.Maximowa [73], R.Routley, R.K.Meyer [73]) iff for all $x, y, v, z \in S$ the following conditions are satisfied:

```
(s1) \quad \exists y \in P : R(y, x, x),
```

- $(s2) \quad \exists y \in P : R(x, y, z),$
- (s3) if R(x, y, z) and R(z, v, t) and $x \in P$ then R(y, v, t),
- (s4) if R(x, y, z) and R(u, z, v) and $x \in P$ then R(u, y, v),
- (s5) if R(x, y, z) and R(u, z, v) and $u \in P$, then R(x, y, v),
- $(s6) \quad g(g(x)) = x,$
- (s7) if R(x, y, z) then R(x, g(z), g(y)),
- (s8) R(x,g(x),x),
- (s9) R(x, y, z) implies R(x, y, t) and R(t, y, z) for some t,
- (s10) R(x, y, z) and R(z, v, w) imply R(x, v, s) and R(y, s, w) for some s,
- (s11) R(x, y, z) and R(z, v, w) imply R(x, v, s) and R(s, y, w) for some s.

Let us define a binary relation $\leq_{\mathbf{S}}$ as follows: $x \leq_{\mathbf{S}} y$ iff R(s,x,y) for some $s \in P$. By (s1) and (s4), the relation $\leq_{\mathbf{S}}$ is both reflexive and transitive. Now let $A(\mathbf{S})$ denote the family of all subsets of S which are closed under $\leq_{\mathbf{S}}$. Put (cf.Maximowa [73]) for all $X, Y \in A(\mathbf{S}) : X \wedge Y = X \cap Y, X \vee Y = X \cup Y, X \rightarrow Y = \{s \in S : \forall y, z \in S \text{ (if } R(s,y,z) \text{ and } y \in X \text{ then } z \in Y)\}$ and $\neg X = g^{-1}(S \setminus X)$. Setting $\nabla(\mathbf{S}) = \{X \in A(\mathbf{S}) : P \subseteq X\}$ we have the following

Lemma 6 (L.Maximowa (73)) If $S = \langle S, R, P, g \rangle$ is a RRPg-space then $\langle \langle A(S), \wedge, \vee, \rightarrow, \neg \rangle, \nabla(S) \rangle$ is a C_R -matrix.

It is known (cf. L.Maximowa [73], Routley and Meyer [74]) that from each C_R -matrix we can get a RRPg-space; the construction is based on prime filters.

3.Maximal extensions of the logic R. Let us start with the following lemma ¹

Lemma 7 Let $S = \langle S, R, P, g \rangle$ be RRPg-space and let the set P have the least element with respect to the relation $\leq_{\mathbf{S}}$. Then $(S \to X) = \emptyset$ for each proper subset X of the set S, which is $\leq_{\mathbf{S}}$ -hereditary.

Proof: (a) We show first that if P have the least element with respect to the relation $\leq_{\mathbf{S}}$ (we denote this element by 0) then it is true that (*) $\forall x \forall y \exists z : R(x, z, y)$. By (s8) we have: R(0, g(O), 0), i.e. $g(0) \leq_{\mathbf{S}} 0$. By (s2) we get:

- $(\exists y \in P) R(g(x), y, g(x)), \text{ but since } 0 \leq_{\mathbf{S}} y, R(g(x), 0, g(x)) \text{ (by } (s4)). \text{ Since } R(0, y, y) \text{ and } g(0) \leq_{\mathbf{S}} 0, R(g(0), y, y) \text{ (by } (s3)). \text{ By } (s7) \text{ and } (s8) R(g(x), 0, g(x)) \text{ implies } R(g(x), x, g(0)). \text{ At last, } R(g(x), x, g(0)) \text{ and } R(g(0), y, y) \text{ imply (by } (s10)) \text{ that } \exists t \in S) : R(x, t, y).$
- (b) Now, let $(S \to X) \neq \emptyset$ for some $X \subseteq S$, i.e. let there exists an x_0 such that $x_0 \in (S \to X)$. By the definition of the function \to (see above) the following implication holds for each $y, z \in S$:

¹The Lemmas 7 and 8 are proved by dr. W.Dziobiak.

if $R(x_0, y, z)$ then $z \in X$.

Since X is a proper subset of the set S, there exists $z_0 \notin X$. Let y_0 be an arbitrary element of S; then the following implication is satisfied::

if $R(x_0, y_0, z_0)$ then $z_0 \in X$.

But $z_0 \notin X$, thus it is not true that $R(x_0, y_0, z_0)$. However, by (a) for $x_0, z_0 \in S$ there exists an y_0 such that $R(x_0, y_0, z_0)$. Thus the set $S \to X$ must be empty, and it finishes the proof. .

This Lemma enables us to prove the following

Lemma 8 Let $\langle \mathbf{A}, \nabla \mathbf{A} \rangle$ be a C_R -matrix. Let \mathbf{A} be a subdirectly irreducible algebra and let ${\bf A}$ have the least element $0_{\bf A}$. Then for each $x \neq 1_{\bf A}$ the algebra **A** satisfies the equality: $(1_{\mathbf{A}} \to x) = 0_{\mathbf{A}}$.

Proof: Let S_A be an RRPg-space constructed of prime filters on A and let $\mathcal{A}(\mathbf{S_A})$ be the C_R -matrix build up of the RRPg-space $\mathbf{S_A}$. It is obvious that the function $f: \mathbf{A} \longrightarrow \mathcal{A}(\mathbf{S}_{\mathbf{A}})$ defined by equality

$$f(a) = \{ \nabla \in S_{\mathbf{A}} : a \in \nabla \}$$

(where $S_{\mathbf{A}}$ is the set of all prime filters on \mathbf{A}) is an embedding. Of course

 $f(x) = S_{\mathbf{A}}$ iff $x = 1_{\mathbf{A}}$, and $f(x) = \emptyset$ iff $x = 0_{\mathbf{A}}$.

Let $x \neq 1_{\mathbf{A}}$. Then we have $f(x) \neq S_{\mathbf{A}}$. By the previous lemma we have $f(1_{\mathbf{A}} \to x) = f(1_{\mathbf{A}}) \to f(x) = S_{\mathbf{A}} \to f(x) = \emptyset = f(0_{\mathbf{A}})$, i.e. $f(1_{\mathbf{A}} \to x) = f(0_{\mathbf{A}})$. But since f is an embedding, $(1_{\mathbf{A}} \to x) = 0_{\mathbf{A}}$.

Lemma 9 Let (A, ∇_A) be a C_R -matrix. If all finitely generated subalgebras of **A** are Boolean algebras (in the signature (\land, \lor, \neg)) i.e.the operation \neg satisfies the equality $x \to y = \neg x \lor y$ then \mathbf{A} is a Boolean algebra and $\nabla_{\mathbf{A}} = \{1_{\mathbf{A}}\}.$

Proof: We prove that for each $t \in \nabla_{\mathbf{A}}$, $t = x \vee \neg x$ and that the element $x \vee \neg x$ is the unit of **A**. So, we have $x \leq x \vee \neg y$ (because $x \to (x \vee \neg y) \in \nabla_{\mathbf{A}}$), thus by the assumption $x \leq (y \to x)$. However, since $(x \to (y \to z)) \leq (y \to (x \to z))$, $y \leq (x \to x)$ and in consequence $y \leq (x \vee \neg x)$. Thus $x \vee \neg x$ is the unit of **A** and in particular, for each $t \in \nabla_{\mathbf{A}}$, $t \leq (x \vee \neg x)$. Now, let $t \in \nabla_{\mathbf{A}}$. By $x \leq (y \to x)$ we have $t \leq (x \vee \neg x) \to t$ and in consequence $x \vee \neg x \leq t$.

Now we have the fundamental

Proposition 10 Let $A = \langle \mathbf{A}, \nabla_{\mathbf{A}} \rangle$ be an infinite C_R -matrix where \mathbf{A} is not a Boolean algebra. Then the variety V(A) generated by the algebre A contains a finitely generated C_R -matrix which is simple and is not a Boolean algebra.

Proof: Let $\mathcal{A} = \langle \mathbf{A}, \nabla_{\mathbf{A}} \rangle$ satisfies the assumptions of Proposition. We will consider finitely generated subalgebras of A.

- (a) All finitely generated subalgebras of A are either Boolean algebras or or infinite algebras without 0 and 1. Then let us consider a finitely generated algebra B which is infinite and does not have 0. In such a case in the matrix $\mathcal{B} = \langle \mathbf{B}, \nabla_{\mathbf{R}} \rangle$ we have $\nabla_{\mathbf{B}} = [b]$ for some $b \in B$ (cf. Lemma 3.(ii)). By the Jonsson's theorem (cf.B.Jonsson [72]) there exists a finitely generated simple algebra which is a isomorphic image of B. Let us assume that this algebra is the two-valued Boolean algebra 2 (in the signature (\land, \lor, \neg)). Then by the Rival-Sands theorem (cf.I.Rival, B.Sands [78]) the congruence relation which determines this homomorphic image is compact in the congruence lattice Con(B) and in consequence the normal filter which is connected with this congruence relation is a principal filter the in Boolean sense (i.e. is of the form $[b_0]_{\mathbf{R}}$ for some $b_0 \in B$). However, since the algebra B does not have the least element, there exists an element $b_1 \in B$ such that $b_1 < b_0 < b$, which is impossible because the filter $[b_1)_{\mathbf{R}}$ is a normal filter as well. So we conclude that this simple algebra which is a homomorphic image of the algebra B cannot be a Boolean algebra. Moreover, since each homomorphic image of a finitely generated algebra is finitely generated as well, this simple algebra whose existence follows from Jonsson's theorem have
- (b) All finitely generated subalgebras of the algebra $\bf A$ are either Boolean algebras or infinite algebras with 1 and 0. So let us consider an infinite, finitely generated subalgebra $\bf B$ of the algebra $\bf A$ and let $\bf B$ has 1 and 0. By $V(\bf B)$ we denote the variety generated by the algebra $\bf B$. It is obvious that $V(\bf B)$ contains a subdirectly irreducible algebra $\bf C$ such that $\bf C$ is not a Boolean algebra and that $\bf C$ has unit and zero (we denote these elements by $\bf 1_C$ and $\bf 0_C$, respectively). By Lemma 8, $\bf 1_C \rightarrow x = \bf 0_C$ for each $x \neq \bf 1_C$, thus the two-valued Boolean algebra $\bf 2$ cannot be a homomorphic image of $\bf C$. Let us consider a finitely generated subalgebra $\bf D$ of the algebra $\bf C$ (assume that $\bf 1_C, \bf 0_C$ are between generators of $\bf D$; now we denote them by $\bf 1_D$ and $\bf 0_D$, respectively. It is clear that the algebra $\bf D$ satisfies the equality $\bf 1_D \rightarrow x = \bf 0_D$ for each $x \neq \bf 1_D$, thus the two-valued Boolean algebra cannot be a homomorphic image of the algebra $\bf D$ and by the Jonsson's theorem (cf.Jonsson [72]) there exists a simple algebra which is a homomorphic image of $\bf D$.
- (c) If all finitely generated subalgebras of the algebra A are either Boolean algebras or finite (proper) C_R -algebras then the proof of the existence of a simple algebra in the variety V(A) can be obtained from (b).

The fundamental result of this note follows from the following

Proposition 11 Let $A = \langle \mathbf{A}, \nabla_{\mathbf{A}} \rangle$ be a C_R -matrix such that \mathbf{A} is not a Boolean algebra and has the elements 1 and 0. Moreover let $\nabla_{\mathbf{A}} = [a]$ where $a \neq l$ and a be an atom in the algebra \mathbf{A} . Then \mathbf{A} has a finite subalgebra different from the two-valued Boolean algebra $\mathbf{2}$.

Proof: Let us consider a subalgebra of the algebra A, generated by elements

- a and 0. It is clear that $a \neq 0$. Thus the elements $\neg a$ and 1 belong to this subalgebra. We show now that the set $\{0, a, \neg a, 1\}$ is closed under operations $\land, \lor, \rightarrow, \neg$; this implies that this subalgebra consists only of these four elements
- (a) Let us observe first that $\neg a \neq 1$, $\neg a \neq 0$, because if $\neg a = 0$ then $\neg \neg a = a = 1$, and if $\neg a = 1$ then a = 0.
- (b) Of course, $a \land \neg a \leq a$. However, a is an atom, thus either $a \land \neg a = a$ or $a \land \neg a = 0$. This entails that either $a \lor \neg a = \neg a$ or $a \lor \neg a = 1$.

To show that the set $\{0, a, \neg a, 1\}$ is closed under the operation \rightarrow we need some useful inequalities .

- (c) $1 \to y \le y$. (Of course, if a C_R -matrix $\mathcal A$ has a subdirectly irreducible algebra then by Lemma 8 something more is true, but the inequality (c) holds in each case.) To justify it let us observe that $x \le (x \to y) \to y$, thus $1 \le (1 \to y) \to y$ and in consequence $1 \to y \le y$.
- (d) $0 \to x = 1$. To prove it we take the inequality $1 \le (1 \to y) \to y$; and by the implication: if $x \le y$ then $y \to z \le x \to z$ (cf.Lemma 2) and the inequality $0 \le 1 \to x$ we get $(1 \to x) \to x \le 0 \to x$, thus $1 \le 0 \to x$.
- (e) Besides of joins, meets and "complements" the following elements belong to the C_R -subalgebra of the algebra **A** generated by elements $a, \neg a, 1, 0$:
- 1) $a \to a$, 2) $\neg a \to \neg a$, 3) $a \to \neg a$. 4) $\neg a \to a$, 5) $0 \to a$, 6) $0 \to \neg a$, 7) $a \to 0$, 8) $\neg a \to 0$, 9) $a \to 1$, 10) $\neg a \to 1$, 11) $1 \to a$, 12) $1 \to \neg a$, 13) $0 \to 1$, 14) $0 \to 0$, 15) $1 \to 0$, 16) $1 \to 1$.

We prove now that each of the elements 1) - 16) is one of the elements $0, 1, a, \neg a$. We have

- 1) $a \to a = a$. By Lemma 2, $a \to a \le a$. But [a) is the filter of designated elements of the algebra A, thus $a \le a \to a$.
- 2) $\neg a \to \neg a = a$, because by Theorem 1 ((c6),(c7)) we have : $a \to a \le \neg a \to \neg a \le a \to a$
- 3) $a \to \neg a = \neg a$. Since $x \to (y \to z) \le y \to (x \to z)$, $a \to (\neg a \to \neg a) \le \neg a \to (a \to \neg a)$. By 1) and 2), $a \le \neg a \to (a \to \neg a)$, thus $\neg a \le a \to \neg a$. For the converse, by Lemma 2 we have $a \to \neg a \le \neg a$.
- 4) Since $\neg a \to a \le a$ (cf.Lemma 2), either $\neg a \to a = a$ or $\neg a \to a = 0$, because a is an atom.
- 5) $0 \rightarrow a = 1$ (cf. (d) above).
- 6) $0 \rightarrow \neg a = 1$, as above.
- 7) $a \rightarrow 0 = 0$, for the proof cf. Lemma 2.
- 8) $\neg a \to 0 = 0$. Let us note first that $\neg a \to 0 \le 1 \to a$, and by (c) $\neg a \to 0 \le a$, thus either $\neg a \to 0 = 0$ or $\neg a \to 0 = a$, because a is an atom. Let us assume that $\neg a \to 0 = a$. Thus $a \le 1 \to a$, i.e. $a \to (1 \to a) \in [a]$. However, by

 $x \to (y \to z) \le y \to (x \to z)$ we get $1 \le (a \to a)$, i.e. a = 1. Since it is impossible, $\neg a \to 0 = 0$.

- 9) $a \to 1 = 1$. To state it observe that $0 \to \neg a \le a \to 1 \le 0 \to \neg a$..
- 10) $\neg a \rightarrow 1 = 1$. The proof as for 9)..
- 11) $1 \to a = 0$. By (c) $1 \to a \le a$, so either $1 \to a = a$ or $1 \to a = 0$. The case $1 \to a = a$ can be eliminated as in 8).
- 12) $1 \rightarrow \neg a = 0$. We have: $a \rightarrow 0 \le 1 \rightarrow \neg a \le a \rightarrow 0$, but by 7) $a \rightarrow 0 = 0$.
- 13) $0 \to 1 = 1$ by (d).
- 14) $0 \to 0 = 1 \text{by (d)}$.
- 15) $1 \to 0 = 0$ by (c).
- 16) $1 \to 1 = 1$ because $0 \to 0 = 1$.

Thus the set $\{0, a, \neg a, 1\}$ is closed under all basic operations of the algebra A, an it finishes the proof.

Let PC denote the set of tautologies of the classical propositional logic. We have now

Theorem 12 The interval [R, PL] of the lattice of extensions of the relevant logic R has exactly three co-atoms.

Proof: Proposition 10 entails that each variety of C_R -matrices which contains a proper C_R -matrix \mathcal{A} (i.e. a matrix, whose algebra \mathbf{A} is not a Boolean algebra) contains a finitely generated C_R -matrix \mathcal{B} , whose algebra \mathbf{B} is a simple algebra different from the two-valued Boolean algebra $\mathbf{2}$, and in consequence whose filter of designated elements is generated by an atom of \mathbf{B} . By the previous theorem each such a simple algebra \mathbf{B} has a subalgebra whose uniwerse consists of elements $0, a, \neg a, 1$, where a is the generator of the filter of designated elements of the matrix \mathcal{B} .

Let us consider now connections between the element $\neg a$ and the remaining elements. There exist the following three cases:

(a) $\neg a \notin [a)$. It is known that $\neg a \neq 0$, $\neg a \neq 1$, $a \land \neg a = 0$, $a \lor \neg a = 1$; in consequence the operations \land , \lor , \neg in this algebra are defined as in the four-element Boolean algebra. The filter of designated elements consists of the elements a, 1. To find the table of values of the function \rightarrow , we use the proof of the previous proposition. The only doubtful point is the value of $\neg a \to a$ (point (e) 4) of the proof of the previous proposition). It follows from the proof that $\neg a \to a \leq a$, thus either $\neg a \to a = a$ or $\neg a \to a = 0$. If the first possibility holds then we have $a \leq \neg a \to a$, i.e. $a \to (\neg a \to a) \in [a)$. But $x \to (y \to z) \leq y \to (x \to z)$, thus $\neg a \leq (a \to a)$, i.e. $\neg a \leq a$. Since a is an atom and $\neg a \neq 0$, $\neg a = a$. By the assumption it is impossible, thus $\neg a \to a = 0$. In consequence the tables of values for the operation \to in the case in question will have the following form:

\rightarrow	0	\boldsymbol{a}	$\neg a$	1
0	1	1	1	1
\boldsymbol{a}	0	\boldsymbol{a}	$\neg a$	1
$\neg a$	0	0	\boldsymbol{a}	1
1	0	0	0	1

If $\neg a \in [a)$ then of course we have $a \leq \neg a$, thus $a \wedge \neg a = a, a \vee \neg a = \neg a$. So we need to consider two cases:

(b) $a = \neg a$. Thus the operations \land , \lor , are defined as in three-element chain and the operations \neg , \rightarrow are defined as follows:

$$\begin{array}{c|cccc} x & \neg x \\ \hline a & a \\ 1 & 0 \\ 0 & 1 \\ \hline \\ \hline \\ 0 & 1 \\ \hline \\ 0 & a & 1 \\ \hline \\ a & 0 & a & 1 \\ \hline \end{array}$$

It is easy to observe, that the algebra of the matrix we characterize now is a Sugihara matrix; this matrix generates the logic, which is the maximal extension of the relevant logic RM (cf. M.Dunn [70]).

(c) $a \neq \neg a$. Then the C_R algebra in question is defined on the four-element chain where the elements are ordered in the following way: $0 < a < \neg a < 1$; the operations \land, \lor are defined as in this chain. Operations \neg, \rightarrow are defined as follows:

The value of $\neg a \rightarrow a$ we establish as in the case (a). Of course, in each of these cases the filter of designated elements is the filter [a); in the case (c) consists of three elements.

In this way we have found three C_R matrices which characterize three maximal extensions of the relevant logic R

Let us observe that none of these logics satisfies the relevant principle (cf. N.D.Belnap [60]).

References

A.R.Anderson, N.D.Belnap, Entailment, vol 1, 1975

N.D.Belnap, Entailment and Relevance, Journal of Symbolic Logic 25 (1960), p.144-146.

M.Dunn, Algebraic Completeness Results for R-mingle and its Extensions, JSL 35 (1970), p.1-13.

W.Dziobiak, There are 2^{\aleph_0} Logics with the Relevance Principle between R and RM, Studia Logica XLII,1, 1983, p.49-60.

B.Jonsson, Topics in Universal Algebra, 1972.

L.L.Maksimowa, Struktury s implikacjej, Algebra i Logika 12, (1973) p. 445-467. I.Rival, B.Sands, A Note on the Congruence Lattice of a Finitely Generated Algebra. Proceedings of the AMS, vol. 72, No 3, 1978, p.451-455.

R.Routley, R.K.Meyer, The Semantics for Entailment, w: H.Leblanc (ed.), Truth, Syntax and Modality, 1973, str.199-243.

ILLC Research Reports and Technical Notes

Coding for Research Reports: Series-Year-Number, with LP = Linguistics and Philosophy of Language; ML = Mathematical Logic and Foundations; <math>CL = Computational Linguistics; CT = Computation and Complexity Theory; <math>X = Technical Notes.

All previous ILLC-publications are available from the ILLC bureau. For prepublications before 1993, contact the bureau.

LP-93-01 Martijn Spaan, Parallel Quantification

LP-93-02 Makoto Kanazawa, Dynamic Generalized Quantifiers and Monotonicity

LiP-93-03 Nikolai Pankrat'ev, Completeness of the Lambek Calculus with respect to Relativized Relational Semantics

LP-93-04 Jacques van Leeuwen, Identity, Quarrelling with an Unproblematic Notion

LP-93-05 Jaap van der Does, Sums and Quantifiers

LP-93-06 Paul Dekker, Updates in Dynamic Semantics

LP-93-07 Wojciech Buszkowski, On the Equivalence of Lambek Categorial Grammars and Basic Categorial Grammars

 $LP-93-08\ Zisheng\ Huang,\ Peter\ van\ Emde\ Boas,\ Information\ Acquisition\ from\ Multi-Agent\ resources;\ abstract$

LP-93-09 Makoto Kanazawa, Completeness and Decidability of the Mixed Style of Inference with Composition

LP-93-10 Makoto Kanazawa, Weak vs. Strong Readings of Donkey Sentences and Monotonicity Inference in a Dynamic Setting

LP-93-11 Friederike Moltmann, Resumptive Quantifiers in Exception Sentences

LP-93-12 Jaap van der Does, On Complex Plural Noun Phrases

LP-93-13 Natasha Alechina, Binary Quantifiers and Relational Semantics

LP-93-14 Mati Pentus, Lambek Calculus is L-complete

LP-93-15 David Ian Beaver, What comes first in Dynamic Semantics

ML-93-01 Maciej Kandulski, Commutative Lambek Categorial Grammars

ML-93-02 Johan van Benthem, Natasha Alechina, Modal Quantification over Structured Domains

ML-93-03 Mati Pentus, The Conjoinabity Relation in Lambek Calculus and Linear Logic

ML-93-04 Andreja Prijatelj, Bounded Contraction and Many-Valued Semantics

MI-93-05 Raymond Hoofman, Harold Schellinx, Models of the Untyped 1-calculus in Semi Cartesian Closed Categories

ML-93-06 J. Zashev, Categorial Generalization of Algebraic Recursion Theory

ML-93-07 A.V. Chagrov, L.A. Chagrova, Algorithmic Problems Concerning First-Order Definability of Modal Formulas on the Class of All Finite Frames

ML-93-08 Raymond Hoofman, Ieke Moerdijk, Remarks on the Theory of Semi-Functors

ML-93-09 A.S. Troelstra, Natural Deduction for Intuitionistic Linear Logic

ML-93-10 Vincent Danos, Jean-Baptiste Joinet, Harold Schellinx, The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs

ML-93-11 Lex Hendriks, Inventory of Fragments and Exact Models in Intuitionistic Propositional Logic

ML-93-12 V.Yu. Shavrukov, Remarks on Uniformly Finitely Precomplete Positive Equivalences

ML-93-13 V.Yu. Shavrukov, Undecidability in Diagonizable Algebras

ML-93-14 Dick de Jongh, Albert Visser, Embeddings of Heyting Algebras

ML-93-15 G.K. Dzhaparidze, Effective Truth

ML-93-16 Maarten de Rijke, Correspondence Theory for Extended Modal Logics

MI-93-17 Alexander Chagrov, Michael Zakharyaschev, On the Independent Axiomatizability of Modal and Intermediate Logics

ML-93-18 Jaap van Oosten, Extensional Realizability

ML-93-19 Raymond Hoofman, Comparing Models of the Non-Extensional Typed l-Calculus

ML-93-20 L.A. Chagrova, Dick de Jongh, The Decidability of Dependency in Intuitionistic Propositional Logic

MI-93-21 Max I. Kanovich, The Relational Knowledge-Base Interpretation and Feasible Theorem Proving for Intuitionistic Propositional Logic

ML-93-22 Andreja Prijatelj, Connectification for n-contraction

- CT-93-01 Marianne Kalsbeek, The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax
- CT-93-02 Sophie Fischer, A Note on the Complexity of Local Search Problems
- CT-93-03 Johan van Benthem, Jan Bergstra, Logic of Transition Systems
- CT-93-04 Karen L. Kwast, Sieger van Denneheuvel, The Meaning of Duplicates in the Relational Database Model
- CT-93-05 Erik Aarts, Proving Theorems of the Lambek Calculus of Order 2 in Polynomial Time
- CT-93-06 Krzysztof R. Apt, Declarative programming in Prolog
- CT-93-07 Janusz A. Pomykala, Approximation, Similarity and Rough Constructions, Part I. Elementary Introduction
- CL-93-01 Noor van Leusen, László Kálmán, Computaional Linguistics
- CL-93-02 Theo M.V. Janssen, An Algebraic View On Rosetta
- CL-93-03 Patrick Blackburn, Claire Gardent, Wilfried Meyer-Viol, Talking about Trees
- X-93-01 Paul Dekker, Existential Disclosure, revised version
- X-93-02 Maarten de Rijke, What is Modal Logic?
- X-93-03 Michiel Leezenberg, Gorani Influence on Central Kurdish: Substratum or Prestige Borrowing
- X-93-04 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Corrections to the First Edition
- X-93-05 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Second. corrected Edition
- X-93-06 Michael Zakharyashev, Canonical Formulas for K4. Part II: Cofinal Subframe Logics
- ML-94-01 Domenico Zambella, Notes on polynomially bounded arithmetic
- LP-94-01 Dimitar Gelev, Introducing Some Classical Elements of Modal Logic to the Propositional Logics of Qualitative Probabilities
- LP-94-02 Andrei Arsov, Basic Arrow Logic with Relation Algebraic Operators
- LP-94-03 Jerry Seligman, An algebraic appreciation of diagrams
- LP-94-04 Kazimierz Świrydowicz, A Remark on the Maximal Extensions of the Relevant Logic R
- CT-94-01 Harry Buhrman and Leen Torenvliet, On the Cutting Edge of Relativization: the Resource Bounded Injury Method
- X-94-01 Johan van Benthem, Two Essays on Semantic Modelling

Titles in the ILLC Dissertation Series:

- 1993-1 Transsentential Meditations; Ups and downs in dynamic semantics, Paul Dekker
- 1993-2 Resource Bounded Reductions, Harry Buhrman
- 1993-3 Efficient Metamathematics, Rineke Verbrugge
- 1993-4 Extending Modal Logic, Maarten de Rijke
- 1993-5 Studied Flexibility, Herman Hendriks
- 1993-6 Aspects of Algorithms and Complexity, John Tromp
- 1994-1 The Noble Art of Linear Decorating, Harold Schellinx
- 1994-2 Generating Uniform User-Interfaces for Interactive Programming Environments, Jan Willem Cornelis Koorn
- 1994-3 Process Theory and Equation Solving, Nicoline Johanna Drost