institute for logic, language and computation

KAZIMIERZ SVVIRYDOWICZ1

A Remark on the Maximal
Extensions of the Relevant Logic R

LP-94-04, received: Mar. 1994

ILLC Research Report and Technical Notes Series
Series editor: Dick de Jongh

Logic, Semantics and Philosophy of Language (LP) Series, ISSN: 0928-3307

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

Plantage Muidergracht 24

NL-1018 TV Amsterdam

The Netherlands

e-mail: illc@fwi.uva.nl

1. Adam Mickiewicz University, Poznan, Poland.
Research supported by TEMPUS-project JEP 01941.






A Remark on the Maximal Extensions of the
Relevant Logic R

Kazimierz Swirydowicz

1.Preliminaries.Cg-matrices. Let a set of propositional variables p, q, 7, ...
be given and let F' be the set of propositional formulae built up from proposi-
tional variables by means of the connectives: — (implication), A (conjunction),
V (disjunction) and — (negation). The Anderson and Belnap logic R with re-
levant implication (cf. [75]) is defined as the subset of propositional formulae
of F' which are provable from the set of axiom schemas indicated below, by
application of the rule of Modus Ponens (MP; A, A — B/B) and the Rule of
Adjunction ( A,B/AAB):
Al. A— A
A2. (A—-B)—=(B—C)—=(A—-0))
A3. A— ((A— B)— B)
A4. (A—-(A— B))—(A— B)
A5. AANB— A
A6. AANB— B
A7T. (A= B)A(A—=C)—=(A—=BACQ)
A8. A— AVB
A9. B—AVB
A10. (A—-B)A(C— B)— (AvC — B)
All. (AAN(BVCE)—=((AAB)VC)
Al2. (A — -=B)— (B — —A)
Al3. ——A— A
A matriz is a pair (A,V 5) where A is an algebra while V 5 is a subset of
the domain of A. To the logic R and its extensions we can associate a set of
so-called Cg-matrices (cf .W.Dziobiak [83]), their characterization is given by
the following

Theorem 1 (W.Dziobiak (83),L.Maximowa (73)) Let

A = (A,—,A,V,7) be an algebrq similar to F and let V5 be a subset of A.
then the following conditions are equivalent:

(i) (A,V p) is a Cr-matriz,

(i) (A, A, V) is a distributive lattice with A and V as its meet and join, respec-
tively and V p s a filter on A with the property: for all a,b € A,a ANb = a iff
a — b € Vp; and moreover, the following conditions are satisfied for all z,y,2



of A,

(c]) (z—y) <(y—2) = (z—2),
(2) z<(z—y)—y,

(3) z—=(z—y)<z—y,

(c) (@—y)A(eAz)<z—(yA2),
(5) (e—)A(eh2) < (@Vy)— 2
(c6) z—-y<y— -z,

(c7) ——z==,

here < is ordering of the lattice (A, A, V).

Let us add some additional properties of Cg-matrices:

Lemma 2 (L.Maximowa (73)) Let (A,V ) be a Cr-matriz and let the re-
lation < be defined as follows:
c<yifft -yeVy.
Then the relation < satisfes the following implications and inequalities:
(z) if:L'EVA thene —y<y
(i) ifz<ytheny—z2<z—z
(i) z— e <.

Let us quote moreover a lemma and two propositions proved by W.Dziobiak
in [83] which are important for our further investigations. Let (A,V o) be a
Cr-matrix and let X C A. By [X) weshall denote the least filter on A containing
X. Moreover, each filter V on A will be called normaliff V, C V. We have

Lemma 3 (W.Dziobiak (83)) Let A= (A,V ) be a Cr-matriz. Then
(i) Va =Ho—aiacA))
(i1) If A is generated by elements ay,...,an_1 then

VA:[ié\n(a,- — a;)).

Theorem 4 (W.Dziobiak (83)) Let (A, V ) be a Cr-matriz and let NF(A)
be the set of normal filters on A. Then the lattices: (NF(A),C) and
(Con(A), C) are isomorphic.

Theorem 5 (W.Dziobiak (83)) The class of all Cr-matrices form a variety.

2.RRPg-spaces. Let S = (S, RP, g} be an ordered 4-tuple where S is a
nonempty set, R is a ternary relation on S, P is a nonempty subset of S and
g :S — S a function. Then S is said to be a RRPg-space i.e RPg-space for
the logic R (por.W.Dziobiak [83], L.Maximowa [73],R.Routley,R.K.Meyer[73])
iff for all z,y, v,z € S the following conditions are satisfied:



(s1) 3Jy€eP:R(yz ),
(s2) 3Jy e P:R(z,y,z),
(s3) if R(z,y,z) and R(z,v,t) and ¢ € P then R(y,v,t),
(s4) if R(z,y,z) and R(u, z,v) and ¢ € P then R(u,y,v),
(sb) if R(z,y,2) and R(u, z,v) and u € P, then R(z,y,v),
(s6) g(9(z)) ==,
(s7) if R(z,y, z) then R(z,g(2),9(y)),
(s8) R(z,g(z),z),
(s9) R(z,y,z) implies R(z,y,t) and R(t,y,2) for some ¢,
(s10) R(z,y,z) and R(z,v,w) imply R(z,v,s) and R(y, s, w) for some s ,
(s11) R(z,y,z) and R(z,v,w) imply R(z,v,s) and R(s,y,w) for some s.
Let us define a binary relation <g as follows: z <g y iff R(s,z,y) for some
s € P. By (s1) and (s4), the relation <g is both reflexive and transitive.
Now let A(S) denote the family of all subsets of S which are closed under
<g. Put (cf.Maximowa [73]) for all X,Y € A(S) : X AY = XNY, X VY =
XUY, X -Y={seS:Vyz€S (if R(s,y,2) and y € X then z € Y)} and
=X = ¢~ }(S\ X). Setting V(S) = {X € A(S) : P C X} we have the following

Lemma 6 (L.Maximowa (73)) IfS = (S, R, P,g) is a RRPg-space then
((A(S),A,V,—, =), V(8S)) is a Cr-matriz.

It is known (cf. L.Maximowa [73], Routley and Meyer [74]) that from each
Cr-matrix we can get a RRPg-space; the construction is based on prime filters.

3.Maximal extensions of the logic R. Let us start with the following

lemma !

Lemma 7 LetS = (S, R, P,g) be RRPg-space and let the set P have the least
element with respect to the relation <g. Then (S — X) = 0 for each proper
subset X of the set S, which is <g-hereditary.

Proof: (a) We show first that if P have the least element with respect to the rela-
tion <g (we denote this element by 0) then it is true that (*) VzVy3z : R(z, 2, y).
By (s8) we have: R(0,4(0),0), i.e. g(0) <g 0. By (s2) we get:

(3y € P)R(g(z),y,9(z)), but since 0 <g y, R(g(=),0,9(z)) (by (s4)). Since
R(0,y,y) and g(0) <g 0, R(g(0), y,y) (by (s3)). By (s7) and (s8) R(g(z), 0, g(x))
implies R(g(z),,9(0)). At last, R(g(z),z,9(0)) and R(g(0),y,y) imply (by
(s10)) that 3t € S) : R(z,t,y).

(b) Now, let (S — X) # 0 for some X C S, i.e. let there exists an zo such that
zo € (S — X). By the definition of the function — (see above) the following
implication holds for each y,z € S :

1The Lemmas 7 and 8 are proved by dr. W.Dziobiak.



if R(zo,y,2) then z € X.

Since X is a proper subset of the set S, there exists zo € X. Let yo be an
arbitrary element of S; then the following implication is satisfied::

if R(zo, yo, Zo) then zp € X.

But zo ¢ X, thus it is not true that R(xo, Yo, 20). However, by (a) for zg, 29 € S
there exists an yo such that R(zo, yo,20). Thus the set S — X must be empty,
and it finishes the proof. . .

This Lemma enables us to prove the following

Lemma 8 Let (A, VA) be a Cr-matriz. Let A be a subdirectly irreducible al-
gebra and let A have the least element 0p . Then for each x # 15 the algebra
A satisfies the equality: (15 — x) =04

Proof: Let S5 be an RRPg-space constructed of prime filters on A and let
A(S A) be the Cr-matrix build up of the RRPg-space S 5 . It is obvious that
the function f: A — A(S 5 ) defined by equality

fla)={V €S :a eV}

(where Sy is the set of all prime filters on A) is an embedding. Of course
f(z) =Sy iff z =14, and

fl)=0iff z=04.

Let  # 15 . Then we have f(z) # Sp . By the previous lemma we have

f(p —z)=f(1p) = f(x) = SA = f(2) =0 = f(04),ie f(1p — ) =
f(0p)- But since f is an embedding, (14 — ) =04 .

Lemma 9 Let (A,V p) be a Cr-matriz. If all finitely generated subalgebras of
A are Boolean algebras (in the signature (A,V,=) ) i.e.the operation — satisfies
the equality x — y =~z V y then A is a Boolean algebra and V 5 = {14 }.

Proof: We prove that for each t € V 5 ,t = 2V -z and that the element z V -z
is the unit of A. So, we have z < 2V -y (because & — (xV—y) € V), thus by
the assumption z < (y — «). However, since (z — (y — 2)) < (y — (z — 2)),
y < (z — ) and in consequence y < (zV —z). Thus 2V -z is the unit of A and
in particular, for each t € V5 ,t < (z V -z). Now,let t € V5. By z < (y — z)
we have t < (z V—-z) — t and in consequence z V —z < t.

Now we have the fundamental

Proposition 10 Let A = (A, V A) be an infinite Cr-matriz where A is not a
Boolean algebra. Then the variely V(A) generated by the algebre A contains a
finitely generated Cg-matriz which is simple and is not a Boolean algebra.

Proof: Let A = (A, V p ) satisfies the assumptions of Proposition. We will con-
sider finitely generated subalgebras of A.



(a) All finitely generated subalgebras of A are either Boolean algebras or or infi-
nite algebras without 0 and 1. Then let us consider a finitely generated algebra B
which is infinite and does not have 0. In such a case in the matrix B = (B, Vpg)
we have Vg = [b) for some b € B (cf. Lemma 3.(ii)). By the Jonsson’s theorem
(cf.B.Jonsson [72]) there exists a finitely generated simple algebra which is a
isomorphic image of B. Let us assume that this algebra is the two-valued Bo-
olean algebra 2 (in the signature (A, V,—)). Then by the Rival-Sands theorem
(cf.I.Rival, B.Sands [78]) the congruence relation which determines this homo-
morphic image is compact in the congruence lattice Con(B) and in consequence
the normal filter which is connected with this congruence relation is a principal
filter the in Boolean sense (i.e. is of the form [bo)g for some by € B). However,
since the algebra B does not have the least element, there exists an element
b1 € B such that b; < by < b, which is impossible because the filter [bl)B is a
normal filter as well. So we conclude that this simple algebra which is a homo-
morphic image of the algebra B cannot be a Boolean algebra. Moreover, since
each homomorphic image of a finitely generated algebra is finitely generated as
well, this simple algebra whose existence follows from Jonsson’s theorem have
Oand 1.

(b) All finitely generated subalgebras of the algebra A are either Boolean al-
gebras or infinite algebras with 1 and 0. So let us consider an infinite, finitely
generated subalgebra B of the algebra A and let B has 1 and 0. By V(B) we
denote the variety generated by the algebra B. It is obvious that V(B) contains
a subdirectly irreducible algebra C such that C is not a Boolean algebra and
that C has unit and zero (we denote these elements by 1o and Oc, respec-
tively). By Lemma 8, 1o — ¢ = O¢ for each ¢ # 1 , thus the two-valued
Boolean algebra 2 cannot be a homomorphic image of C. Let us consider a fini-
tely generated subalgebra D of the algebra C (assume that 1,0 are between
generators of D ; now we denote them by 1y and Op, respectively. It is clear
that the algebra D satisfies the equality 1y — 2 = Op for each z # 1p, thus
the two-valued Boolean algebra cannot be a homomorphic image of the algebra
D and by the Jonsson’s theorem (cf.Jonsson [72]) there exists a simple algebra
which is a homomorphic image of D.

(c) If all finitely generated subalgebras of the algebra A are either Boolean al-
gebras or finite (proper) Cg-algebras then the proof of the existence of a simple
algebra in the variety V/(A) can be obtained from (b).

The fundamental result of this note follows from the following

Proposition 11 Let A = (A,V 5 ) be a Cr-matriz such that A is not a Boolean
algebra and has the elements 1 and 0. Moreover let V A = [a) where a # 1 and
a be an atom in the algebra A. Then A has a finite subalgebra different from
the two-valued Boolean algebra 2.

Proof: Let us consider a subalgebra of the algebra A, generated by elements



a and 0. It is clear that ¢ # 0. Thus the elements —a and 1 belong to this
subalgebra. We show now that the set {0, a,—a,1} is closed under operations
A, V, —, —; this implies that this subalgebra consists only of these four elements

(a) Let us observe first that —a # 1, ~a # 0, because if @ = 0 then ~—a =a =1,
and if —-a = 1 then a = 0.

(b) Of course, a A ~a < a. However, a is an atom, thus either a A ma = a or
a A —a = 0. This entails that either a V ~a = -a or aV —a = 1.

To show that the set {0, a,—a, 1} is closed under the operation — we need some
useful inequalities .

(¢) 1 = y < y. (Of course, if a Cr-matrix A has a subdirectly irreducible algebra
then by Lemma 8 something more is true, but the inequality (c) holds in each
case.) To justify it let us observe that z < (z — y) - y, thus 1 < (1 - y) — y
and in consequence 1 -y <y .

(d) 0 — z = 1. To prove it we take the inequality 1 < (1 — y) — y; and by
the implication: if z < y then y — 2z < z — z (cf.Lemma 2) and the inequality
0<l—zweget(l—oz)—2<0—z thuisl <0— =z

(e) Besides of joins, meets and ” complements” the following elements belong
to the Cr-subalgebra of the algebra A generated by elements a, —a, 1, 0:
1)a — a, 2)~a — —a,3)a— —a.4) ~a—a,5)0—a,6)0— —a, 7)a—0,8)
-a—0,9Ya—1,10)-a—1,11)1 - @a, 12) 1 — —-a, 13) 0 — 1, 14) 0 — 0,
156)1 —>0,16) 1 — 1.
We prove now that each of the elements 1) - 16) is one of the elements 0, 1, a, —a.
We have ‘
1) a — a = a. By Lemma 2, a — a < a. But [a) is the filter of designated
elements of the algebra A, thus a < a — a.
2) ma — —a = a, because by Theorem 1 ((¢6),(c7)) we have : a — a < —a —
a<la—a
3)a—-a=-a Sincer — (y—2)<y—(z—2),a— (~a—a)<-a—
(¢ — —a). By 1) and 2), a < —a — (¢ — —a), thus ma < a — —a. For the
converse, by Lemma 2 we have a — —a < —a .
4) Since —a — a < a (cf.Lemma 2), either ma — a = a or —a — a = 0, because
a is an atom.
5) 0 — a =1 (cf. (d) above).
6) 0 — —a = 1, as above. .
7) a — 0 = 0, for the proof - cf. Lemma 2.
8) —a — 0 = 0. Let us note first that ~a — 0 <1 — a, and by (¢) —a — 0 < q,
thus either ma — 0 = 0 or ma — 0 = a, because a is an atom. Let us assume
that ~a — 0 = a. Thus a < 1 — a, i.e. a — (1 — a) € [a). However, by



z—(y—2)<y—(z— z)wegetl < (a — a), ie. a = 1. Since it is
impossible, ma — 0 = 0.

9) a — 1 = 1. To state it observe that 0 > ~a <a — 1< 0 — —a..

10) ma — 1 = 1. The proof as for 9)..

11)1 -a=0.By (¢) 1 = a < a,so either 1 - a=aor1— a=0.The case
1 — a = a can be eliminated as in 8).

12)1 - -a=0. Wehave:a —-0<1—>-a<a—0,but by 7) a —0=0.
13) 0 —1=1 - by (d).

14) 0 — 0 = 1 - by (d).

15) 1 = 0=0 - by (c).

16) 1 — 1 =1 because 0 — 0 = 1.

Thus the set {0, a,—a, 1} is closed under all basic operations of the algebra A,
an it finishes the proof.

Let PC denote the set of tautologies of the classical propositional logic. We
have now

Theorem 12 The interwal [R, PL)] of the lattice of extensions of the relevant
logic R has ezactly three co-atoms.

Proof: Proposition 10 entails that each variety of Cg-matrices which contains
a proper Cr-matrix A (i.e. a matrix, whose algebra A is not a Boolean algebra)
contains a finitely generated Cgr-matrix B, whose algebra B is a simple algebra
different from the two-valued Boolean algebra 2, and in consequence whose filter
of designated elements is generated by an atom of B. By the previous theorem
each such a simple algebra B has a subalgebra whose uniwerse consists of ele-
ments 0, a, —a, 1, where a is the generator of the filter of designated elements of
the matrix B .

Let us consider now connections between the element —a and the remaining
elements. There exist the following three cases :

(a) —a ¢ [a). It is known that —a #0,-a¢ # 1,a A-a =0, aV —a = 1; in conse-
quence the operations A, V, - in this algebra are defined as in the four-element
Boolean algebra. The filter of designated elements consists of the elements a, 1.
To find the table of values of the function —, we use the proof of the previous
proposition. The only doubtful point is the value of —a — a (point (e) 4) of the
proof of the previous proposition). It follows from the proof that ~a — a < aq,
thus either —a — a = a or ma — a = 0. If the first possibility holds then we
have a < -a — a,ie.a — (ma —a) €[a). But 2z — (y — 2) < y — (z — 2),
thus —a < (¢ — a), i.e. ma < a. Since a is an atom and —a # 0, —~a = a. By
the assumption it is impossible, thus ma — a = 0. In consequence the tables
of values for the operation — in the case in question will have the following form:
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If —a € [a) then of course we have a < —a, thus ¢ A —a = a,aV —a = —a. So we
need to consider two cases:

(b) @ = —a. Thus the operations A, V, are defined as in three-element chain and
the operations —, — are defined as follows:

It is easy to observe, that the algebra of the matrix we characterize now is a
Sugihara matrix; this matrix generates the logic, which is the maximal extension
of the relevant logic RM (cf. M.Dunn [70]) .

(¢) @ # —a. Then the Cg algebra in question is defined on the four-element
chain where the elements are ordered in the following way: 0 < a < —a < 1;
the operations A,V are defined as in this chain. Operations -, — are defined as
follows:

— l 0 a —-a 1
01 1 1 1
a |0 a —-a 1

a0 0 a 1
110 0 0 1

The value of =@ — a we establish as in the case (a). Of course, in each
of these cases the filter of designated elements is the filter [a); in the case (c)
consists of three elements.



In this way we have found three Cr matrices which characterize three ma-
ximal extensions of the relevant logic R

Let us observe that none of these logics satisfies the relevant principle (cf.
N.D.Belnap [60]).

References
A_.R.Anderson,N.D.Belnap, Entailment, vol 1, 1975
N.D.Belnap, Entailment and Relevance, Journal of Symbolic Logic 25 (1960),
p.144-146.
M.Dunn, Algebraic Completeness Results for R-mingle and its Extensions, JSL
35 (1970), p.1-13.
W .Dziobiak, There are 2%¢ Logics with the Relevance Principle between R and
RM , Studia Logica XLII,1, 1983, p.49-60.
B.Jonsson, Topics in Universal Algebra, 1972.
L.L.Maksimowa, Struktury s implikacjej, Algebra i Logika 12, (1973) p. 445-467.
I.Rival, B.Sands, A Note on the Congruence Lattice of a Finitely Generated Al-
gebra. Proceedings of the AMS, vol. 72, No 3, 1978, p.451-455.
R.Routley, R.K.Meyer, The Semantics for Entailment, w: H.Leblanc (ed.), Truth,
Syntax and Modality, 1973, str.199-243.



nd cOmputation

ILLC Research Reports and Technical Notes

Coding for Research Reports: Series-Year-Number, with LP = Linguistics and Philosophy of Language;
ML = Mathematical Logic and Foundations; CL = Compuational Linguistics; CT = Computation and
Complexity Theory; X = Technical Notes.

All previous ILLC-publications are available from the ILLC bureau. For prepublications before 1993, contact
the bureau.

LP-93-01 Martijn Spaan, Parallel Quantification

LP-93-02 Makoto Kanazawa, Dynamic Generalized Quantifiers and Monotonicity

LP-93-03 Nikolai Pankrat’ev, Completeness of the Lambek Calculus with respect to Relativized Relational
Semantics

LP-93-04 Jacques van Leeuwen, Identity, Quarrelling with an Unproblematic Notion

LP-93-05 Jaap van der Does, Sums and Quantifiers

LP-93-06 Paul Dekker, Updates in Dynamic Semantics

LP-93-07 Wojciech Buszkowski, On the Equivalence of Lambek Categorial Grammars and Basic Categona.l
Grammars

LP-93-08 Zisheng Huang, Peter van Emde Boas, Information Acquisition from Multi-Agent resources; abstract

LP-93-09 Makoto Kanazawa, Completeness and Decidability of the Mixed Style of Inference with Composition

LP-93-10 Makoto Kanazawa, Weak vs. Strong Readings of Donkey Sentences and Monotonicity Inference in a
Dynamic Setting

LP-93-11 Friederike Moltmann, Resumptive Quantifiers in Exception Sentences

LP-93-12 Jaap van der Does, On Complex Plural Noun Phrases

LP-93-13 Natasha Alechina, Binary Quantifiers and Relational Semantics

LP-93-14 Mati Pentus, Lambek Calculus is L-complete

LP-93-15 David Ian Beaver, What comes first in Dynamic Semantics

MI-93-01 Maciej Kandulski, Commutative Lambek Categorial Grammars

ML-~93-02 Johan van Benthem, Natasha Alechina, Modal Quantification over Structured Domains

MIL-93-03 Mati Pentus, The Conjoinablity Relation in Lambek Calculus and Linear Logic

MI-93-04 Andreja Prijatelj, Bounded Contraction and Many-Valued Semantics

ML-~93-05 Raymond Hoofman, Harold Schellinx, Models of the Untyped I-calculus in Semi Cartesian Closed
Categories

MI-93-06 J. Zashev, Categorial Generalization of Algebraic Recursion Theory

ML-~93-07 A.V. Chagrov, L.A. Chagrova, Algorithmic Problems Concerning First-Order Definability of Modal
Formulas on the Class of All Finite Frames

‘"ML-93-08 Raymond Hoofman, Ieke Moerdijk, Remarks on the Theory of Semi-Functors

MI~93-09 A.S. Troelstra, Natural Deduction for Intuitionistic Linear Logic

ML-93-10 Vincent Danos, Jean-Baptiste Joinet, Harold Schellinx, The Structure of Exponentials: Uncovering
the Dynamics of Linear Logic Proofs

MI-93-11 Lex Hendriks, Inventory of Fragments and Exact Models in Intuitionistic Propositional Logic

MIL-93-12 V.Yu. Shavrukov, Remarks on Uniformly Finitely Precomplete Positive Equivalences

MI1-93-13 V.Yu. Shavrukov, Undecidability in Diagonizable Algebras

MIL-93-14 Dick de Jongh, Albert Visser, Embeddings of Heyting Algebras

ML-93-15 G.K. Dzhaparidze, Effective Truth

MI1-93-16 Maarten de Rijke, Correspondence Theory for Extended Modal Logics

ML-93-17 Alexander Chagrov, Michael Zakharyaschev, On the Independent Axiomatizability of Modal and
Intermediate Logics

MIL-~93-18 Jaap van Oosten, Extensional Realizability

ML-93-19 Raymond Hoofman, Comparing Models of the Non-Extensional Typed I-Calculus

ML-93-20 L.A. Chagrova, Dick de Jongh, The Decidability of Dependency in Intuitionistic Propositional Logic

ML-93-21 Max I. Kanovich, The Relational Knowledge-Base Interpretation and Feasible Theorem Proving for
Intuitionistic Propositional Logic



ML-93-22 Andreja Prijatelj, Connectification for n-contraction

CT-93-01 Marianne Kalsbeek, The Vanilla Meta-Interpreter for Definite Logic Programs and Ambivalent Syntax

CT-93-02 Sophie Fischer, A Note on the Complexity of Local Search Problems

CT-93-03 Johan van Benthem, Jan Bergstra, Logic of Transition Systems

CT-93-04 Karen L. Kwast, Sieger van Denneheuvel, The Meaning of Duplicates in the Relational Database
Model

CT-93-05 Erik Aarts, Proving Theorems of the Lambek Calculus of Order 2 in Polynomial Time

CT-93-06 Krzysztof R. Apt, Declarative programming in Prolog

CT-93-07 Janusz A. Pomykala, Approximation, Similarity and Rough Constructions, Part I. Elementary Intro-
duction

CL-93-01 Noor van Leusen, Liszlé Kalman, Computaional Linguistics
CL-93-02 Theo M.V. Janssen, An Algebraic View On Rosetta
CL-93-03 Patrick Blackburn, Claire Gardent, Wilfried Meyer-Viol, Talking about Trees

X-93-01 Paul Dekker, Existential Disclosure, revised version

X-93-02 Maarten de Rijke, What is Modal Logic?

X-93-03 Michiel Leezenberg, Gorani Influence on Central Kurdish: Substratum or Prestige Borrowing

X-93-04 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Cor-
rections to the First Edition

X-93-05 A.S. Troelstra (editor), Metamathematical Investigation of Intuitionistic Arithmetic and Analysis, Sec-
ond, corrected Edition

X-93-06 Michael Zakharyashev, Canonical Formulas for K4. Part II: Cofinal Subframe Logics

ML-94-01 Domenico Zambella, Notes on polynomially bounded arithmetic

LP-94-01 Dimitar Gelev, Introducing Some Classical Elements of Modal Logic to the Propositional Logics of
Qualitative Probabilities

LP-94-02 Andrei Arsov, Basic Arrow Logic with Relation Algebraic Operators

LP-94-03 Jerry Seligman, An algebraic appreciation of diagrams

LP-94-04 Kazimierz SWLrydowxcz, A Remark on the Maximal Extensions of the Relevant Logic R

CT-94-01 Harry Buhrman and Leen Torenvliet, On the Cutting Edge of Relativization: the Resource Bounded
Injury Method

X-94-01 Johan van Benthem, Two Essays on Semantic Modelling

Titles in the ILLC Dissertation Series:

1993-1 Transsentential Meditations; Ups and downs in dynamic semantics, Paul Dekker

1993-2 Resource Bounded Reductions, Harry Buhrman ’

1993-3 Efficient Metamathematics, Rineke Verbrugge

1993-4 Extending Modal Logic, Maarten de Rijke

1993-5 Studied Flexibility, Herman Hendriks

1993-6 Aspects of Algorithms and Complexity, John Tromp

1994-1 The Noble Art of Linear Decorating, Harold Schellinx

1994-2 Generating Uniform User-Interfaces for Interactive Programming Environments, Jan Willem Cornelis
Koorn

1994-3 Process Theory and Equation Solving, Nicoline Johanna Drost



