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DIRECTIONS IN GENERALIZED QUANTIFIER THEORY *

Johan van Benthem (Amsterdam)  Dag Westerstahl (Stockholm)

1. Introduction

The study of generalized quantifiers is by now an old and respectable field of logic. With
the pioneering work of Mostowski and Lindstrom in the fifties and sixties, quantifiers
became a major tool in the model theory for logics extending first-order logic — many of
these being representable as first-order logic with added quantifiers. Apart from general
structure theorems on how various general properties are distributed in this class of logics
(most famous of these is still Lindstrdm's theorem on the properties which characterize
first-order logic), particular logics were examined in detail w.r.t. their model theoretic
properties and their comparative expressive power, as well as the behaviour of theories
expressed within these logics. Though some of the extensions transcend first-order
models (e.g. logics with measure-theoretic or probabilistic quantifiers), this work, which
reached its peak in the late seventies and early eighties — witness the book Model-Theo-
retic Logics edited by Barwise and Feferman — is squarely situated within classical model
theory, with mathematics as its main source of inspiration and set theory as its basic
framework.

In the beginning eighties the study of quantifiers received an impetus from a quite
different direction, when it was realized (by Barwise and Cooper, Keenan and Stavi, and
others) that determiners and noun phrases, which abound in most natural languages,
were interpreted in Montague style semantics by means of generalized quantifiers. This
brought parts of the established model theory of quantifiers to bear on linguistics, but it
also brought new logical questions about quantifiers, motivated by the linguistic perspec-
tive and by particular constraints inherent in natural languages (such as conservativity, or
the use of finite or at least 'small' models).

Research on quantifiers stemming directly from the original waves of inspiration
(Lindstrom's theorem and Montague semantics, respectively) has perhaps had its hey-
day, but the field does not show signs of exhaustion. On the contrary, a lot of work on
quantifiers is going on, addressing not only 'classical' issues, but also extending them in
new directions, charting new territories and establishing sometimes surprising connec-
tions with other fields. One such connection is with finite model theory as used in de-
scriptive complexity theory in computer science. Another is with recent developments in
modal logic. Both will be elaborated on below.

* This paper was inspired by the symposium on Generalized Quantifiers held at the 5th European Sum-
mer School in Logic, Language and Information in Lisbon, August 1993. We feel that the work pre-
sented there motivates a survey of recent research areas and research problems in the field of generalized
quantifiers. The speakers at the symposium, Natasha Alechina, Jaap van der Does, Lauri Hella, Michal
Krynicki, Michiel van Lambalgen, Kerkko Luosto, Marcin Mostowski, and Jouko Viddnénen, have coop-
erated and made (oral and/or written) contributions and comments to this research survey which we grate-
fully acknowledge, and without which it would not have been written. But it is easier to produce a paper
with two authors than with ten, and so the present two authors take full responsibility for the final for-
mulation of the paper. In addition, we acknowledge comments received from some further colleagues, in
particular, Dorit Ben-Shalom, Makoto Kanazawa, Victor Sanchez and Yde Venema.



Our purpose here is to indicate the direction of some of this recent research. We shall
sketch a few major research areas and research problems. Such a condensed survey may
be useful both for the practitioner in the field and for the interested logician, and also for
the logic student who is looking around for something to set his or her teeth in.! At least,
that is our intention. Moreover, through this unified presentation, we hope to illustrate,
and to encourage the current confluence and interaction of more mathematical and more
linguistic research lines in this area. After some background, the material is presented un-
der ten distinct headings. This is for ease of exposition, but it will become clear that much
of the work is interconnected and some of it belongs under more than one heading.

2. Background

We assume familiarity with standard notions and terminology from generalized quantifier
theory. In particular, the initial concept of a (generalized) quantifier is that of a class of
structures of a given similarity type, or, equivalently and more informatively (when the
similarity type is finite and involves only relations), a functional relation Q associating
with each universe M a quantifier Qp on M, i.e., a relation between relations on M, of
that type. The type can then be identified with a finite sequence of natural numbers
<ny,...,m>, and (M,Ry,...,Ry) € Q can be written

OmR1...Rx where R; ¢ M™.

Q is usually assumed to be closed under isomorphic structures (ISOM); we will note
explicitly when this is not required. The arity of Q is max(ny,...,nx). Let Qy be the class
of all n-ary quantifiers. Q is the class of monadic quantifiers, i.e., quantifiers of type
<1,1,...,1>; the others are called polyadic.2 A quantifier Q of type <nj,...,ng> comes
with a variable-binding operator binding n; distinct variables in formulas ¢;, i = 1,...,k,
respectively, and when a corresponding formation rule and the obvious truth condition is
added to first-order logic we obtain the logic Lyy(Q). Similarly for Lyo(Q1,...,0m), or
Lwo(Q) where Q is a class of quantifiers, and also for L(Q) where L is some other famil-
iar given logic.? This is a standard concept of generalized quantifier ('Lindstrdm quanti-
fiers'). Various extended or otherwise different concepts will appear below.

3. Logical definability and expressive power*

The first thing you want to know about a quantifier is its expressive power, which in
model theory is measured in terms of what you can say with the corresponding sen-
tences. L < L' iff for every L-sentence there is an equivalent L'-sentence (one with the
same models), and L = L' iff L < L' and L' £ L. In particular, L(Q) < L(Q") iff Q is de-
finable in L(Q"), i.e., there is an L(Q")-sentence ¢ with non-logical symbols matching the

1For further reading in the same vein, cf. Krynicki et al. 1993, which contains both surveys and speci-
mens of recent research on quantifiers.

2Note that there are other notions of arity for quantifiers in the literature. For example, a quantifier of
type <np,...,ng> is sometimes said to be k-ary.

3The notations 'EL(Q)' and 'FO(Q)' for Lye(Q) are also common. Often 'L(Q)' is also used, but here we
let L be any logic which uses the same models as first-order logic, and which allows addition of general-
ized quantifiers in a similarly straightforward way.

4Thanks to Lauri Hella for help with this section!



type of Q such that QuR;...Rx <& (M,Ry,...,Ry) I= ¢. There are thus innumerable
(uncountably many!) definability issues for quantifiers. We may classify them as follows:

(1a)  Given two quantifiers Q and Q', when is Q definable in Lyu(Q")?
(1b)  Given a quantifier Q and a class of quantifiers Q, when is Q definable in Ly,(Q)?
(Ic) When is Q definable in L(Q) for some other logic L?

To prove definability of a particular quantifier Q you provide a definition. To prove un-
definability you either proceed indirectly, using some known property of the target logic
L which would fail if Q were definable in it, or directly by providing for each L-sentence
¢ a model over which Q and ¢ disagree. Usually, the latter is done for each quantifier
depth d: you find two models which are equivalent for L-sentences of quantifier depth at
most d but which differ over Q, where L-equivalence up to d is established by means of
an Ehrenfeucht-Fraissé game for the logic L. The general theme in the background here is
the characterization of appropriate semantic invariances for quantifier languages, either
via comparison games or via some structural connection like 'partial isomorphism' or
'bisimulation' (see van Benthem & Bergstra 1993, De Rijke 1993 on this general theme
for families of modal logics and process theories).

Undefinability proofs range from straightforward to impossibly difficult. Lots of
particular results occur in the literature, but systematic attacks on definability questions
are only fairly recent. For a start, Corredor 1986 gave a complete characterization for the
mutual definability, relative to first-order logic, of two universe-independent type <1>
quantifiers on finite structures; the result involves simple arithmetical properties of such
quantifiers.5 Recently Vadninen proved (Viidnénen 1994) that the question of definability
between any two monadic quantifiers can be reduced to a relationship between certain
boolean algebras associated with them. Thus, problem (1a) has been solved in the case of
monadic quantifiers. The next natural step would be to consider quantifiers of type <2>.
There seem to be no characterization results for mutual definability here, and such results
look difficult to obtain for any extensive class of binary quantifiers. Still, it could be
worthwhile to find general criteria for definability and undefinability also in the case of
polyadic quantifiers. Undefinability results for particular polyadic quantifiers are multi-
plying (the next section has some examples), and probably some of the constructions
behind these could be turned into such general criteria for undefinability.

Questions (1b) and (1c) have attracted attention especially in the case where Q = Qy,.
Already Lindstrém 1966 proved that the well ordering quantifier W is not definable in
Luo(Q1). Krynicki, Lachlan and Viddndnen 1984 gave an example of a ternary quantifier
not definable in Lo.(Q>). Then, Viininen 1986 established the existence of arity-based
hierarchies of quantifiers: for each n there are (n+1)-ary quantifiers not definable in
Loo(Qn). Using this result as a starting point, Hella 1989 developed a fairly general
method for proving that a given quantifier is not definable in Le.(Qy). The paper Hella
and Luosto 1992 contains an up to date survey of results obtained by this method. The
existence of natural hierarchies of quantifiers is another important general theme, which
fits in well with developments elsewhere in linguistic semantics (witness various pro-
posed hierarchies of expressive power in categorial, modal or dynamic logics: cf. van

SHere universe-independence means that if A € M,M' then OpA < QpA. This property, often called
extension (EXT) in the literature, applies straightforwardly to quantifiers of other types as well.



Benthem 1991). The notion of arity-based quantifier hierarchies is tightly connected with
another definability issue, namely, the finite generation problem:

(2a) Given a logic L, does there exist a finite set Q of quantifiers such that L =
Lauo(Q)? (Equivalently, is there a single quantifier Q such that L = Lew(Q)?)
(2b)  Is there a finite set Q of quantifiers such that L = L'(Q) for some other logic L'?

If a logic L is capable of defining a sequence Q1,0>,... of quantifiers such that for each
n, Qns1 is not definable in Ly,(Qp), then L cannot be finitely generated (or even be a
sublogic of a finitely generated logic). Hence, the known arity hierarchies of quantifiers
have led to negative answers to the finite generation problem for many extensions of first-
order logic familiar from the literature (cf. Hella and Luosto 1992). The finite generation
problem was first raised by Makowsky, Shelah and Stavi 1976 for the A-closure of the
cardinality logic Ly(Q1), where Q1 is now the quantifier "there exist uncountably
many". The answer for this special case is still open. The problem is of particular interest
in cases, like A(Luo(Q1)), where the syntax or semantics of the logic under consideration
is given in an indirect way: a representation of the form L(Q) with some finite set Q of
quantifiers would give the logic a simple finitary syntax and a nice semantics.

The study of definability with generalized quantifiers has received new impetus recently
through contacts with computer science. Two influential themes here are finite model the-
ory and complexity of queries, as we shall demonstrate by a few examples.

Problems similar to those mentioned for the languages L(Qn) have recently been
studied in the context of finite model theory. Kolaitis and Védnédnen 1992 proved that the
Hirtig quantifier I is not definable in L®.(Q) for any finite set Q of type <1> quanti-
fiers.6 The main result of Cai, Fiirer and Immermann 1989 implies the existence of a bi-
nary PTIME computable quantifier (cf. section 6) not definable in L®.(Q1). Extending
this result, Hella 1992 proved that for each n there is a PTIME computable (n+1)-ary
quantifier which is not definable in L®.,,(Qp). The result by Kolaitis and Vdénénen also
points towards other quantifier hierarchies than purely arity-based ones. For example,
with monadic quantifiers one may count the number of 1:s in their type. Let Q) be the
class of monadic quantifiers with at most n 1:s. By the Kolaitis-Viénénen result,  is not
definable in L%%.(Q(1)). Lindstrdm 1992 used a counting argument to show that the
classes Qpn) form a strict hierarchy over finite structures relative to L. Extending this,
Luosto, Hella, and Viininen 1994 prove a general hierarchy theorem for a much more
refined order between types than by arity (where, for example, (2, 2, 3) > (2, 1, 3)):
each type contains a quantifier Q not definable in first-order logic over finite models from
any finite number of quantifiers of lower type. Moreover, Q can be made to have various
properties, like being monotone or computable in polynomial time. The theorem also
yields a resumption hierarchy: A type <1> quantifier Q yields a sequence of resumptions
O of type <n>, n = 1,2,..., where Q™ says of an n-ary relation R what Q says of the

6/yAB & 1Al =IBI. L®p = UnL"ewq, Where L"wq) is Leogy €xcept that there are only n variables.
Note that Lgg < L%eq-



set of n-tuples of R (Q™yR < QumR), and they prove that there exists a Q such that
for each n, Q1 is not definable in Lyo(Q™) over finite structures.”

A much studied problem in finite model theory concerns connections with natural
complexity classes whose original definition was algorithmic. In particular, there has
been a very interesting search for a logical characterization for polynomial-time com-
putability (PTIME). If we consider models with a given ordering then fixed point logic,
FP, provides such a characterization: a property P of finite ordered structures is com-
putable in polynomial time if and only if P is definable in FP (Immermann 1986, Vardi
1982). However, in the general case where the existence of a linear order is not assumed,
this characterization fails badly. Indeed the above mentioned quantifier hierarchy result of
Hella 1992 implies that there exists no finite set Q of quantifiers such that FP(Q) would
characterize all PTIME computable properties of finite structures. Thus, PTIME, as a
logic on finite structures, is not finitely generated even over FP.

This negative result does not rule out the possibility of characterizing PTIME by a
uniform sequence of quantifiers: there might exist a single (PTIME computable) quanti-
fier O such that PTIME = L,,(Q), where Q is the set of all relativized resumptions of 0.8
Note that this is actually a finite generation problem in disguise: if L* is like L except
that it has explicit formation rules for relativizing and for quantifying of tuples of vari-
ables, then Lyy(Q) = L*(Q). Dawar 1993 proves a result that emphasizes the significance
of this variation of the finite generation problem for PTIME. Namely, there is a reason-
able logic capturing PTIME iff PTIME is finitely generated over L*. In particular, a
negative answer to this finite generation problem would immediately yield the separation
of PTIME from NPTIME. Regardless of whether the answer in this specific case is
negative or positive, it would be desirable to find general tools for proving that a given
logic is not finitely generated over L*.

With this we hope to have shown that logical definability of generalized quantifiers is
an active research area, with a large supply of particular problems, but also with some
more general structure theorems, which relate in interesting ways to problems of compu-
tational complexity. In the next section they also turn out relate to linguistic issues.

We end this section with a suggestion (as opposed to a conjecture or a well-defined
problem) pointing in a different direction. Some undefinability results for generalized
quantifiers on finite structures seem to require sophisticated combinatorial methods. For
example, the proof of the result about the Hartig quantifier mentioned above starts with
type <1> quantifiers Qj,...,Qm and a number k, and constructs two models M and M',
each with two disjoint unary predicates P and R, so that M and M" are equivalent relative
to the k move Ehrenfeucht-Fraissé game for Qj,...,Om, and P and R have the same car-
dinality in M but not in M'. One way of doing this uses van der Waerden's theorem. It
also seems that the construction of the models is impossible without some appeal to Ram-
sey theory, although some work would be needed to make this statement exact. This
leads to the question whether every proof of the undefinability result requires Ramsey
theory. Or is there perhaps another proof which avoids the construction of such models?®

TIn fact, it is not definable in Ly(Q), where Q is any finite set of quantifiers of the form Ql(m), where
Q1 is of type <1>and m < n.

8L.e., quantifiers 0! of type <1,n> defined by (omrely AR & o™ 4 ATOR.

91t may be noted that the corresponding result for the stronger quantifier more (morepfAB & 1Al > IBl),
also proved in Kolaitis and Vidninen 1992, only requires a simple use of the pigeon hole principle.



Given the very general nature of generalized quantifiers it may be worth-while to do
some 'reverse mathematics' in the field of finite combinatorics and definability questions,
and thus to assess the combinatorial content of certain results about generalized quanti-
fiers. And corresponding results may be obtainable also for infinite models.10

4. Polyadic quantifiers and linguistic definability

The quantifiers appearing as denotations of determiners in natural languages are normally
monadic — usually of type <1,1> where the first argument belongs to the noun and the
second to the verb phrase, though noun phrases with more than one nouns and hence
quantifiers of type <1,...,1> occur as well. A typical example is mostyAB < |ANBI >
|A—B|. But sentences often combine such monadic quantifiers into polyadic ones. The
canonical example is a sentence with quantified subject and object and a transitive verb,
like most students criticized at least two teachers. With type <1,1> determiner denotations
01 and Q, of the subject and object, respectively, this construction results in the type
<1,1,2> iteration Q1Q», defined by

(0102)MABR & (Q)mA{ae M: (Q2)mMBR,} where R, = {be M: Rab}.

However, linguists have noted that natural language sometimes operates on monadic
quantifiers in other ways. Among the examples cited are branching (e.g. for two quanti-
fiers which are upward monotone in their right argument, Br(Q1,02)ABR <
IXcATYCB[01X & Q,Y & XXY C R]), the resumptions mentioned above, and Ram-
sey quantifiers (Ram*(Q1)AR & IXcA[Q1X & XX-Id c R]). Initial papers in this
move are Keenan 1987,1992, van Benthem 1989, Sher 1990, while Keenan and West-
erstihl 1994 is the most up-to-date survey.

A systematic study of such polyadic patterns would thus be quite interesting. First,
what are most general schemas of definition for polyadic quantification (cf. Sher 1991,
Spaan 1993)? More systematically, one may inquire how much of the existing monadic
theory (cf. van Benthem 1986, Westerstahl 1989) can be lifted to the polyadic case. Sec-
ond, what are typical properties of the lifts, and can some lifts be interestingly character-
ized in terms of such properties? Third, can we get an illuminating overview of all the
lifts that occur in natural languages? Fourth, there are obvious questions of definability in
this connection: how far (and in what sense) do these lifts increase expressive power?
And finally, what are the prospects for axiomatizability here?

An indication of recent research on points one to four can be found in the survey pa-
per mentioned above — the subject is far from exhausted. Here, we shall just emphasize
some general themes. First, the general linguistic challenge in this area involves the extent
and precise nature of the principle of semantic compositionality (cf. Janssen 1994).
Where lies the 'Frege Boundary' of standard iteration of (quantified) components of ex-
pressions, and where do we need additional forms of 'logical glue' to construct the sen-
tence meanings that we use? In the limit, one might use full lambda calculus or type the-
ory for this purpose (cf. van Benthem 1991), but intuitively there are strong constraints
on what would be admissible in empirical 'linguistic definability' (which will be weaker

10Barwise 1972a and Friedman 1974 studied how much set theory is needed to prove the existence of the
Hanf number of second order logic. How much set theory is required to prove that the game quantifier is
not definable in Leooo?



than logical definability tout court). These general concerns may actually be translated
into a variety of specific technical questions of definability in the earlier sense. Here is a
quite recent illustration.

There are two natural definability questions for a polyadic lift F, namely, (1) is
F(Qj,...,0x) definable in terms of Qy,...,0k, and (2) is F(Q1,...,Qx) definable in terms
of any monadic quantifiers? As logicians we thus ask if F(Qj,...,Qx) is definable in
Luo(Q1,..-,0%), or in Lee(Q1). (A case might also be made for considering other basis
logics than Ly, here.) But it is not clear that logical definability is really what the linguist
wants: one might reasonably restrict attention to definitions that are somehow easily ex-
pressed in natural languages. Definability as an iteration, or as a boolean combination of
iterations, are obvious candidates that have been studied, but common constructions in
natural languages would yield richer notions of linguistic definability, tending towards
full lambda calculus and type theory in the limit.

This area remains largely unexplored, but note that in so far as linguistic definitions
are expressible in the logical language, a logical undefinability result yields linguistic un-
definability as well. In this connection, Hella, Viininen and Westerstahl 1994 obtain a
characterization of precisely when Br(Q1,Q») is definable in Ly, (Q1,02), and in
Loo(Q1), on finite structures, and likewise for RamX(Q)). In general, e.g. when Q1 = 0>
= most or some other 'proportional’ quantifier, the branching (and the corresponding
Ramsey quantifier) is not definable in Ly, (Q1). The case of resumption seems harder,
but recently Luosto (1994) succeeded in proving (using van der Waerden's theorem) the
conjecture that most@ is not definable in Ly,(Q1) on finite structures.

Another interesting linguistic topic is the semantic and inferential behaviour of quan-
tifier combinations, involving the central notion of scope. For instance, how strict is the
position-dependence of individual quantifiers in a sequence: when can they be inter-
changed, etcetera? For a technical illustration, once again connecting linguistics with
mathematics, let us mention the Prefix Theorem (Keenan 1993, cf. also Westerstéhl
1992), which is formulated for the linear prefixes of iteration, but holds in a suitable form
for the 'vertical' prefixes of simple branching as well. One version says that if Qy,...,0x
and Q1',...,Q\ are positive (do not hold of &) non-trivial type <1> quantifiers on M and
Q1O =010k on M, then Q;' = Qj' for i = 1,...,k. Compare this with the Linear
Prefix Theorem of Keisler and Walkoe 1973 which says that, for Qy,...,0x,01',....0k'
e {V 3}, if (Q1,...,0x) and (Q1',...,Qk') are distinct prefixes then there is a sentence
with the (Q1,...,Q)-prefix which is not equivalent to any sentence with the
(01',...,0i)-prefix. Keenan's Prefix Theorem generalizes this to arbitrary quantifiers,
but the conclusion is weaker, namely, only that the two sentences Q1x1... QxgRxy...x¢
and Q1'x1...Ok'xcRx...x are not equivalent. The proof is surprisingly simple, whereas
the Keisler-Walkoe theorem uses Ramsey theory. So the obvious question is this: Can
the Keisler-Walkoe result be generalized to other quantifiers than V and 37 (See the last
paragraphs of Keenan 1993 for some caveats.) For truly polyadic constructions, of
course, these issues would require more sophisticated formulations. (Some linguists have
even claimed that absence of scope is a hall-mark of the latter: cf. de Mey 1990.)

As a final linguistic issue, we mention the pervasive phenomenon of plural predicates
and collective quantification. So far we have been talking about so-called 'distributive
quantification', i.e., quantification over individuals, but an equally common natural lan-
guage phenomenon, especially in connection with plurals, is collective quantification,



which can be construed as quantification over sets of individuals. This suggests a sec-
ond-order version of generalized quantifiers, or, more generally, a higher-order version.
Here too there are natural notions of lifts from the first-order (monadic) domain to the
higher-order one, and all of the issues we mentioned above for the polyadic lifts have
their counterparts. These lifts have been investigated in van der Does 1992a,b, but a gen-
eral study from the perspective suggested here does not yet exist. And in contrast with the
polyadics there is not this time an established model theory to fall back on.

5. Weak semantics and axiomatizability

Going higher-order, as in the previous section, carries connotations of a substantial in-
crease in complexity, loss of nice properties, etc. But in fact this need not be so. The
familiar technique of general models allows great freedom in the choice of sets, while re-
taining a many-sorted first-order framework. Thus, in the analysis of collective quantifi-
cation, one avoids set theoretic complexity and can be explicit about which sets to invoke
for the treatment of plurals. In other words, one may profitably use a 'weak' semantics
tailored to one's needs. Likewise, polyadic patterns may actually involve only the exis-
tence of certain restricted families of 'choice functions', rather than full quantification
over Skolem functions and the like. This perspective on lowering semantic complexity is
discussed at length in van Benthem 1993, where a plea is made for reconsidering many
received views on semantic complexity in the semantics of natural languages and compu-
tation. Of course, the art will be not just to switch to some broad abstract model class, but
to find some informative yet more tractable 'intermediate' modelling. (Many successful
examples of this kind may be found in the field of algebraic logic, which has to navigate
between standard set-theoretic models at one extreme and trivial Lindenbaum algebras at
the other.) Again, this general theme has definite technical counterparts.

Few logics with generalized quantifiers are axiomatizable in the sense of having a re-
cursively enumerable set of standard validities. For example, in L(most) one can char-
acterize the order of the natural numbers, so there is no axiomatization (by Tarski's Theo-
rem). But here again there are moves to 'weak' semantics which sometimes restore ax-
iomatizability. This was originally used by Keisler and others as a technical step in proofs
of ordinary completeness and omitting types results for certain quantifiers, but we have
already hinted that 'weak' semantics has an independent motivation.

A weak model has the form (M,q), where M is an ordinary model and ¢ is a quanti-
fier on M — in this context ISOM is not assumed. If we now take a (generalized) quanti-
fier of type T to be a class Q of weak models instead, where the right elements are of type
1, satisfaction of the usual formulas of Ly,(Q) in weak models is defined as expected,
and the earlier notion of a quantifier is essentially the special case of a class of models of
the form (M,Qp).!! Such quantifiers are called ambiguous in Krynicki and Mostowski
1993, the idea being that the variety of local instances of Q on a given universe may re-
flect an ambiguity of meaning.!2 An example would be most, which on infinite models
might need some form of measure to give a reasonable interpretation.

I1Equivalently, we can view Q as a functional relation which with each M associates a class On of
quantifiers of type T on M.

12This is then an extended concept of a generalized quantifier. What constraints does it obey? Some pro-
posals are discussed in Krynicki and Mostowski 1993.



Continuing with most as our example, there are now at least two ways in which ax-
jomatizability could be obtained. First, we may consider a type <1,1> ambiguous quanti-
fier which allows all local quantifiers with some typical properties of most, like mono-
tonicity, conservativity, existential import, etc. Now valid reasoning with most which
only depends on these properties can be axiomatized — Doets 1991 in fact shows
(roughly) that universal properties like these are always axiomatizable.

Another route to axiomatization goes via the observation that (the ordinary quantifier)
most is definable in second-order logic, which already has a familiar complete semantics
in terms of general models, i.e., models of the form (M, K), where K is a class of rela-
tions on M over which the second-order variables vary. M. Mostowski 1993b provides
proof systems for second-order definable quantifiers, which are complete with respect to
any class of general models (M, K) such that K is closed under definability over (M, K)
by Luwe(Q)-formulas. This again turns most into an ambiguous quantifier, whose ambi-
guity now resides in the choice of the class K. Other cases are the Henkin quantifiers
(quantifiers with partially ordered prefixes), but of course there is a vast supply of further
examples. For example, if Q1 and Q; are second-order definable, so are Br(Q;,0>) and
RamX(Q)), and hence they can be axiomatized by the same methods.!3

Yet another class of ambiguous quantifiers are the so-called relational quantifiers; cf.
Krynicki (1994a,b). Using models of the form (M, R), where R is a binary relation on
M, let Qx¢(x) mean Jac MVbe M(aRb — ¢(b)). Here the ambiguity lies in the choice of
R, and Krynicki gives completeness results for various classes of models of this form.
The motives for studying these quantifiers have been mostly technical, but there also
seem to exist affinities with modal logic — cf. section 8 for a general exploration of the
analogies between quantifiers and modal operators.

A final proposal for capturing most (due to Krynicki and Mostowski) is via using a
measure in the sense of a function p from M to [0,1] which is finitely additive and homo-
geneous in that pu({a}) = p({b}) for a,be M. Then on each (M, 1) one interprets most as
usual but using the measure instead of cardinality. Does this give an axiomatizable
logic?14

6. Computational semantics

Intuitively, quantifiers may be viewed in two different ways. On the one hand, they ex-
press static quantitative relationships that may hold between predicates of individuals. But
on the other hand, we can also think of them through their associated semantic proce-
dures. This theme has already emerged briefly in section 3, during the discussion of gen-
eralized quantifiers and query languages in computer science. It will also occupy most of
section 7 on 'dynamic semantics'. At least in the more linguistic tradition, however, the
first computational analysis of this kind had to do with so-called 'procedural semantics’,
thinking of expressions as coming with certain algorithms for their successful evaluation.
E.g., van Benthem 1986 introduced 'semantic automata' for generalized quantifiers. In a
more mathematical setting, Moschovakis 1991 even proposes to equate evaluation algo-

13Note that the 'second-order version' of an ordinary quantifier Q is sensitive to the choice of defining
formula — equivalent formulas may yield versions with different properties. When are they the same?

14A similar proposal was made in Colban 1991 using a different notion of measure, which however (as
Colban noted) reduced to a universal property of Q and hence was axiomatizable by the result of Doets
mentioned earlier.



rithms with Fregean 'senses', as opposed to the earlier-mentioned static 'reference' of
quantifier expressions. This general perspective turns out to be firmly related to a long
technical tradition.

Quantifiers on finite structures can be coded as sets of words. This is particularly
simple in the monadic case. A binary word wj...w, corresponds to an n element struc-
ture with one unary predicate: a 1 is in the predicate, a 0 is not. So a type <1> quantifier
Q corresponds to a set (language) Wy of such words. Similarly, an arbitrary monadic
quantifier Q corresponds to a set Wy of k-letter words for a suitable k. Note that since we
assume ISOM here these languages will be permutation-closed: the order inside a string
does not matter.

We can try to classify familiar classes of quantifiers in terms of the computational
complexity of the corresponding languages. Or, in the other direction, we can try to find
logical characterizations in terms of quantifiers of familiar complexity classes. Here are
the known results in the monadic case:

(a) (van Benthem 1987) Let Q be a type <1> quantifier, or a type <1,1> quantifier
satisfying conservativity and extension.!5 Then, (i) Wy is recognized by an acyclic finite
automaton iff Q is first-order definable; (ii) Wy is recognized by a push-down automaton
iff Q is definable (as a binary relation between natural numbers) in additive arithmetic.

(b) (M. Mostowski 1993a) Let Q be a monadic quantifier, or a resumption of one.
Then Wy is recognized by a finite automaton iff Q is definable in Lyw(D), where D is the
class of divisibility quantifiers Dy, n = 2,3,... (DpA < |Alis divisible by n).

For non-monadic quantifiers one can use another representation, with ternary words. For
example, a type <2> quantifier corresponds to a set of words
W1i1...Win#Woi...won# ... #wpi...wnpn

(wjj is 0 or 1, # is a separator). This word encodes a binary structure with universe
{1,...,n} and with the predicate that holds of (i,j) iff wjj = 1. For this representation or-
der does seem to matter, and in fact the order in which the elements of the universe are
presented to the recognizing device must be a part of the structures in the quantifiers for
some of the characterization results in the following list (those marked with *):

quantifier Q language Wy by

*first-order definable ~ computable with concurrent parallel Immermann
random access machine in constant time 1989

*definable by transitive Turing computable in non- Immermann
closure quantifiers deterministic LOGSPACE 1989
*definable in fixed Turing computable in PTIME Immermann
point logic FP 1986 and Vardi 1982

15Equivalently, a relativization of a type <1> quantifier.
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definable in first-order Turing computable in non- Fagin 1974
logic with extra pre- deterministic PTIME
dicates (X! definable)

definable in first-order partially Turing computable (Trakhtenbrot
logic with extra pre- (recursively enumerable) 1950)
dicates and sorts

definable and co- Turing computable (recursive) (Trakhtenbrot
definable in first-order 1950)16
logic with extra predicates and sorts

We noted in section 3 that the use of ordered structures is not really motivated from a

logical point of view, and that it is an interesting research problem to try to find corre-

sponding characterizations without the order. (Nevertheless, from a linguistical or psy-

chological point of view, the idea of some arbitrary but inevitable semantic 'surveying

trajectory' is not without its attractions.) Going in the other direction, there are lots of

classes of quantifiers that one might want to characterize computationally, for example,

1) classes of type <1> quantifiers determined by some set of natural numbers, such
as the class of P, n=2,3,... , where P,A & |Al is a power of n.

(i)  Henkin quantifiers

(iii)  more generally, for some class of upward monotone quantifiers, its closure under
branching.1?

The connection between definability of a quantifier and the computational complexity of

the corresponding language thus seems to deserve more systematic investigation. For in-

stance, the analysis can be extended to countably infinite models. A quantifier consisting

of countable models corresponds to a 'language' which is a set of infinite binary words,

i.e., of reals. The known results include

quantifier Q 'language' Wo by

definable in the countable A-recursive Barwise 1969
admissible fragment L4

definable in Ly, ¢ hyperarithmetic in a real Barwise 1972b

This can even be continued to uncountable models by considering set theoretic criteria on
the 'language’.

7. Quantifiers in dynamic settings
Computational aspects of natural language have inspired a more general move towards
what is currently called 'dynamic semantics', where one emphasizes, instead of traditonal

16The idea for this and the previous result can be found in Trakhtenbrot 1950, though the specific con-
clusion about definability with extra predicates and sorts is due to Véinianen and was communicated to us
by him.

17Note that characterizing a class Q of quantifiers is not trivially the same as characterizing the quanti-
fiers definable in, say, Ly(Q).
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'truth conditions', the changes in human information states brought about by processing/
understanding various linguistic expressions. Dynamic features have been investigated
most extensively in connection with anaphora (cf. Kamp 1984, Heim 1983, Groenendijk
and Stokhof 1991), defaults (Veltman 1991) and presuppositions (Beaver 1994): cf. van
Benthem, Muskens and Visser 1994 for an extensive survey of systems, results and is-
sues. This line is actually one instance of a more general move in cognitive science: cf.
the theory of informational updates and belief revision in Gérdenfors 1988. In this light,
it seems natural to ask which dynamic aspects (if any) naturally occur with generalized
quantifiers. There are at least three levels where one can look for these.

First and most traditionally, the dynamics of anaphora naturally involve quantified
NPs, and hence, a marriage between dynamic semantics for anaphora and generalized
quantifier logics seems an obvious project. There have been several proposals for
achieving this, starting with Chierchia 1991, and continuing through van den Berg 1991,
van Eyck and de Vries 1992 to Fernando 1993, Kanazawa 1993a,b. What these papers
achieve is dynamic semantics for unary generalized quantifiers in terms of testing some
fixed assignment (in most cases) and changing the current assignment of evaluation (in
some). A natural question in this context is what becomes of the earlier denotational con-
straints in the static case, such as Conservativity or various forms of Monotonicity. Prima
facie, these can now fail (this was even the original point of the famous 'donkey sen-
tences' from Geach 1968, which have inspired so much research in this area). Kanazawa
1993a shows how to turn notions and results from the original static quantifier theory
into constraints on reasonable dynamic extensions. E.g., dynamic monotonicity serves to
prune the possible range of dynamic quantifiers corresponding to a given static one.
Moreover, he finds that Conservativity can actually occur in two plausible dynamic ver-
sions, which still collapse in the static case. These observations are instances of a general
'transfer theory' that one would like to see. In the same realm, Kanazawa 1993b charac-
terizes, amongst others, those dynamic quantifiers for which the so-called 'proportion
problem' cannot arise.

But quantifiers can also interact with other dynamic phenomena in compositional in-
terpretation. One example are the polyadic constructions of section 4. Intuitively, there
are various processing strategies for quantified components in a sentence, some more
'sequential’ (leading to standard Fregean iterations) and others more 'parallel’, leading to
branching or other genuinely polyadic constructs. So far, there has been no systematic
dynamic analysis of polyadics with any explanatory value, which might provide a deeper
underpinning for the mathematical possibilities that we found in the above. Another form
of dynamics in interpretation is the changing of contexts or 'local domains of quantifica-
tion' during the evaluation of sentences. What a noun phrase like "all girls" refers to may
be subject to continuous contextual modification. This phenomenon was signalled in the
logical tradition in Westerstdhl 1984, and some proposals for a corresponding dynamic
logic of 'domain change' may be found in van Benthem and Cepparello 1994. (Note, for
instance, how the usual Conservativity for determiners may be understood dynamically
as an instruction constraining general domain change.) Similarly, recent work on
anaphora and quantification aiming to formalize the notion of an E-type anaphor (Francez
and Lappin 1993, Jackson 1994, van der Does 1993, 1994) also engages in 'domain dy-
namics', whereby each occurrence of a quantifier is restricted by an appropriate context
set. This can be modelled using dependent objects, e.g., variables labelled by formulas.
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The problem is to account for the dependency among domains and the interaction of this
dependency with the binding properties of quantifiers. For example, should free variables
in the labels always be brought under the scope of the relevant quantifiers, or can depen-
dencies be resolved in a different way?

Further, quantified expressions may also triggers actual changes in the construction
of semantic models (the preceding form of dynamics merely concerned 'zooming in' on
certain parts of a fixed domain). For instance, an existental quantifier some A may be an
instruction to add a new object to the domain satisfying this or that property, much as in
the construction of a Beth-style semantic tableau. Again, no systematic theory of the latter
form of quantifier dynamics exists so far. What would probably be needed is a more
principled account of various functions served by linguistic utterances: model checking,
model construction, querying, etcetera.

Finally, here is a more technical question that is high on the agenda right now. Can
dynamic generalized quantifiers be obtained from the standard theory via systematic 'dy-
namic lifts', say in the style of Dekker 1993? Also, there are many more standard techni-
cal questions of axiomatization and expressive power to be asked in connection with a
mathematical marriage between generalized quantifiers and dynamic logic, yielding sys-
tems of the form 'PDL(Q)' (cf. Harel 1984).

8. Quantifiers and modal logic
There are many analogies between quantifiers and modal operators, as has often been
pointed out. Notably, modal diamonds are like existential quantifiers and modal boxes
like universal ones. This fact underlies the usual translations from modal logic to standard
logical formalisms (cf. van Benthem 1984). But there is more to this analogy. For in-
stance, in its present-day manifestation, Modal Logic is a very general theory of
(restricted) quantifier patterns with their model theory and proof theory (cf. Venema
1991, de Rijke 1993). And hence, many more analogies have emerged. For instance, van
der Hoek and de Rijke 1993 use modal techniques to find direct axiomatizations and de-
finability results for numerical quantifiers at least n, as well as most, within a syllogistic
context. The latter paper also suggests applications of 'small' generalized quantifier for-
malisms to so-called 'terminological languages' in the field of knowledge representation.
Likewise, Ben Shalom 1994 shows how the central modal semantic invariance of
'bisimulation' may be discerned underneath notions and results in the standard theory of
unary quantifiers. For this purpose, she analyzes the following general definition schema:

M, s I= 0q0 iff OQw {s'IsRs'} {s'IM,s'I=0¢}.

Various equivalences then turn out to hold between standard modal results and quantifier
properties. For instance, the modality oq is invariant under bisimulation if and only if
the generalized quantifier Q is a Boolean combination of the first-order quantifiers 3 and
V. Evidently, this is just the start for a more extensive elaboration of analogies between
generalized quantifier theory and modal logic. For instance, what would be a preservation
theorem w.r.t. bisimulation for the whole language EL(Q)?

Perhaps a deeper contact between the two perspectives has arisen in recent work on
generalized semantics for first-order quantifiers, inspired by the earlier tradition of cylin-
dric algebra (cf. the cylindric modal algebra of Venema 1991 and the 'modal state seman-
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tics' of van Benthem 1994). Here, the general pattern of interpretation for quantified ex-
pressions becomes as follows:

M, a = Oxd iff there exists an assignment b such that
(1) Ryab and 2) M, b= ¢

More generally, assignments may become abstract states here, while the restricting rela-
tions R, can vary too. This semantics produces a decidable minimal base logic, on top
of which different kinds of quantifiers may be defined (which would all be collapsed to
3 in the standard semantics). For instance, combinations QxQy ¢ will not be equivalent
to QyQx¢ , and neither of them is equivalent to the binary tuple quantifier Qxy¢ . (All
these equivalences would express existential conditions on the behaviour of the restricting
relations, and the availability of states in the universe). Thus, one can model many
classes of generalized quantifiers by varying the behaviour of these restriction models,
where exact correspondences may be obtained using techniques from Modal Logic. For
instance, simple principles suppressing 'vacuous quantification' like QxOx¢ <> Qx¢ or
0x—0x0 < —Qxd will now become modal S5-axioms stating that R, is a Euclidean
relation.

Current questions in this area concern the choice of natural sets of defining condi-
tions for quantifiers, and obtaining logics with desirable combinations of meta-properties
(including decidability). Moreover, on the modal analogy, one may define quantifiers of
higher arities, such as variants of temporal since and until, and study their properties in a
similar vein.

Finally, a somewhat similar relational semantics with a modal-style axiomatization
has been proposed for first-order quantifiers in Alechina and van Benthem 1993, but this
time, with a dependence relation directly on objects, rather than between assignments.
Here, one sets

M, ay,...,ax = Oxd(x, y1,-.-,Yk) iff  there exists some object a such that
Ra,ay,...,ax with M, a,ay, ...,ax = 0(x, y1,...,¥k)

The precise connection with the preceding view is not yet clear, but will probably involve
invariance principles destroying the individual identity of variables. Alechina 1993 ex-
tends this analysis to binary generalized quantifiers, enlarging the modal analogy to one
with Conditional Logic, and providing applications to default reasoning. Precise reduc-
tions and questions of axiomatization remain to be explored.

9. Proof theory of generalized quantifiers

Generalized quantifiers are usually thought of as a typically semantics-generated notion,
but historically, their first use was in systems of inference, namely, in the traditional
Syllogistic. And also more generally, reasoning with quantifiers has served as a paradigm
for what may be called natural logic in human languages (cf. Sanchez Valencia 1991).
Thus, the technical issues of axiomatization for quantifier logics raised in previous sec-
tions are very much to the point. Nevertheless, there are further aspects here. For in-
stance, natural inferential divisions in human languages need not coincide with those
found in the usual generalized quantifier formalisms (which take all of first-order logic
for granted at the outset), and a more careful hierarchy of 'sub-mechanisms' may be
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found in van Benthem 1993, asking for separate descriptions of, e.g., pure syllogistic,
Boolean monotonicity reasoning, and higher forms of quantified inference.

Another relevant topic from the earlier theory of unary generalized quantification re-
tains its relevance too (van Benthem 1984). When doing so-called inverse logic, one
starts from some inferential patterns (potentially) occurring in natural language, and then
asks whether any generalized quantifiers exist exemplifying these, or just these. Ques-
tions of inverse logic have been studied extensively for unary quantifiers (cf. Westerstéhl
1989), but they remain largely unexplored for polyadics or collectives.

But one can also strike out from inside the core of mathematical logic. Generalized
quantifiers have traditionally posed a challenge to the famous Brouwer-Heyting-Kol-
mogorov view of logical Proof Theory. Unlike the usual (constructive) connectives and
first-order quantifiers, quantifiers like most or even exactly one do not seem to admit of
perspicuous adequate introduction- and elimination-rules. (For some authors, this has
even been a strong argument against their logical worthiness, witness Sommers 1982.)
Indeed, there exist characterization results by Zucker, Prawitz and Schroeder-Heister
which seem to imply that only the first-order standard quantifiers are amenable to this
style of analysis, which would make generalized quantifiers proof-theoretic oddities. This
challenge has been met in several ways. One is that of Sundholm 1991, where the usual
set-theoretic truth conditions for generalized quantifiers are transcribed into a Martin-Lof-
style type theory, whose rules for the standard quantifiers 3, V employed in those def-
initions will then provide an indirect proof-theoretic treatment after all. (Ranta 1991 ap-
plies a more elaborate proof-theoretic program in this vein to natural language.) A more
radical innovation in the proof-theoretic treatment of generalized quantifiers may be found
in recent work by van Lambalgen 1991.

In its current manifestation, the latter approach may be characterized by the slogan
"generalized quantifiers from substructural logics". The usual sequent calculi for predi-
cate logic have a hidden structural rule (usually inside the introduction rule for the univer-
sal quantifier), to the effect that variables do not have an identity of their own, but serve
to mark positions only. One can make this structural rule explicit, and then consider proof
systems where it is absent, allowing variables to have a separate identity. Of the many
ways in which this can happen, one of particular importance to generalized quantifiers is
the case where variables depend on other variables. Such systems yield complete Gentzen
axiomatizations for the quantifiers for many, for uncountably many and for almost all (in
Friedman's sense). Moreover, van Lambalgen has shown that only certain of these logics
lead to systems that allow of Cut Elimination, thereby providing a new angle upon what
might be considered 'natural' generalized quantifiers. The resulting range of questions
will be clear. Basically, all of classical Proof Theory may be rethought in the presence of
generalized quantifiers in a rule format with appropriate variable restrictions. It seems
plausible that this viewpoint is closely related to the semantic use of 'assignment restric-
tions' mentioned in the modal perspective of section 8. (For instance, by leaving out cer-
tain assignments in a model, one can force variables to 'work together' and hence become
'dependent'.) It might also be usefully applied to the dependent objects needed for the
dynamic formalizations of E-type anaphora mentioned in section 7. Likewise, there seem
to be interesting connections with systems of cylindric algebra, but the precise situation is
not yet clear.
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10. Further topics

The preceding sections have identified the main loci of current research. Nevertheless,
there are still various other linguistic issues that may drive logical research in the area. We
conclude by mentioning a few.

(1) In natural language, there are still other forms of quantification besides those over
individuals and collectives. In particular, there is a pervasive duality between so-called
'count nouns' calling for the above counting quantifiers, and so-called 'mass terms' call-
ing for measuring quantifiers (cf. Lgnning 1994). No systematic theory of the latter form
of quantification has been developed so far.

(2) Moreover, it is well-known that the standard determiner pattern of quantification
is not the only quantificational tool of natural languages. Even in English, quantification
may also be expressed by adverbial constructions, such as "the boys all played the game"
or "the boys mostly played the game". In many languages of the world, the latter type of
construction is indeed the dominant one. No mathematical analysis of these alternative
possibilities has taken place yet.

(3) Many types of lexical expression exhibit behaviour which is closely related to
quantifiers, such as conditionals, temporal adverbials, or even dynamic connectives (cf.
van Benthem 1986, Lobner 1987, ter Meulen 1994, Lapierre 1991, van Benthem and
Cepparello 1994). The resulting model-theoretic and proof-theoretic analogies have
hardly been touched systematically.

(4) Linguistic quantifiers do not operate in isolation. One can study their contacts
with various other linguistic mechanisms. A case in point is the pervasive semantic phe-
nomenon of partiality. There is a relatively mechanical generalization from the standard
theory to the case of partial models, but also some more intriguing questions. (Cf. van
Benthem 1988, van Eyck 1991 for some first explorations.)

(5) More generally, the contribution of generalized quantifiers to sentence meanings
arises in interaction with various compositional mechanisms. Examples of these are
anaphora (cf. section 7 on dynamic semantics), various operators switching between
collective and distributive predicates (cf. van der Does 1992a), or monotonicity and gen-
eral Boolean inference (Sanchez Valencia 1991, van Benthem 1991). In each case, one
wants a combined account telling us how the two systems cooperate in order to produce
the correct sentence meanings. One example of this is the 'monotonicity calculus' of van
Benthem 1986, which predicts polarity of predicate occurrences in complex sentences, at
least, assuming standard Fregean iteration. No extensions have taken place yet to the
various forms of polyadic composition mentioned in section 4. Moreover, no simple cal-
culi have been found yet for other semantic properties of interest, such as Conservativity.

(6) The preceding perspective also leads to clear-cut mathematical questions. One
may study generalized quantifiers in richer logical environments than the usual first-order
bases, notably, that of a Boolean typed lambda calculus (cf. van Benthem 1991). As it
turns out, many open technical questions emerge then. For instance, in order to prove not
just 'soundness' but also 'completeness' for a natural monotonicity calculus with arbi-
trary generalized quantifiers, one would need a Lyndon Theorem for positive occurrences
with respect to upward monotonicity in this setting. So far, only partial results in this di-
rection have been found (van Benthem to appear, Spaan 1993). More generally, the
model theory of generalized quantifiers in Boolean typed lambda calculus remains to be
developed, as a more realistic reflection of how natural languages function.

16



(7) Our presentation has largely presupposed standard semantics for generalized
quantifiers. But of course, there are other styles of modelling, at least in principle, which
might carry their own particular insights. Two such examples are algebraic semantics (cf.
Németi 1991) and game-theoretical semantics (cf. Hintikka and Kulas 1984).

(8) Although generalized quantifiers belong to the latest technical tool kit of modern
logic, they also reflect one of the most traditional subjects in the field, being syllogistic
subject-predicate structure, dating back long before the Boolean and Fregean Revolution.
There are a few historical studies in the field (cf. Sanchez Valencia 1991, and recently
Hodges 1993 on monotonicity reasoning), but much more remains to be explored.
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