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ABSOLUTE TIME, SPECIAL RELATIVITY AND MLV

Natasa Rakic¢
Department of Philosophy
University of Amsterdam

ABSTRACT

A modal concept of absolute attribute is introduced in the modal
language MLV by A. Bressan. In this paper I treat the concept of an
Instant as an MLV absolute attribute to show one way of introducing the
relativistic notions of temporal relations for events in the absolute
theory of time.

1 INTRODUCTION

The controversy between the absolute and the relational theories of time
and space has been famous since the Leibniz-Clark correspondence.!
According to the absolute theory there is an actual time existing inde-
pendently of the existence of objects, events and processes. Temporal
relations between events depend on temporal relations between instants
of time at which these events occur. According to the relational theory
there is no time in itself - all assertions about time can be reduced to
assertions about events and relations between events.

In some authors' opinion the Special Theory of Relativity (STR) counts
in favour of the relational theory. For example, A. Griinbaum argues
that the STR opposes the absolutistic conception of time ingredient in
the Newtonian theory and that Einstein in fact repudiates philosophical
assumptions made by the Newtonian theory.2 On the other hand, some



authors, for example Newton-Smith, argue that the STR is neutral with
regard to the absolutist-relationalist controversy.3 In the STR, Einstein
held that time is a parameter depending on a particular reference
system. He claimed that it is not the case that every pair of events is
unambiguously ordered with respect to one of the relations "earlier
than", "later than" or "simultaneous with", -i.e.- that temporal relations
between events need not be the same in every reference system, and that
those relations depend on reference systems moving relative to one
another. Absolute space and time are not presupposed in the STR.

I will discuss the following question: what is the impact of the STR on
the absolute theory of time? More precisely, once we have been forced
to adopt the new relativistic notion of temporal relations for events,
should we take ourselves to be committed to drop the theory of the
independent existence and structure of "container” time? I will use the
modal language MLV, in particular the formal definition of a modal
concept of absolute attributes introduced in MLV, to show a possible
way out for an absolutist.4

Why a modal language in the first place? In special relativity the notion
of temporal order of events becomes a relative notion, relative to an
inertial frame. That in fact supplies us with a variety of possible
temporal orders of events the world can possess. Each perspective or
each referential frame determines a particular ordering of the events, a
possible history of the world. So, it seems to me quite natural to think
about referential frames as coexistent possible worlds.

2 SOME SEMANTICAL FEATURES OF MLV

Bressan's MLV is a v—sorted modal language (v=1,2,...) based on a type
system. The semantic analysis of ML is based on the concept of a set
of possible cases and on Carnap's method of extension and intension.
Necessity means "true in every possible case" and possibility "true in
some possible case". In Bressan's notation N is the necessity operator



while ¢ is the possibility operator introduced in the usual way by ¢ =p
—N—.

The extension of an expression is always relativized to possible cases:
the extension of the expression A in the possible case y is what A
denotes in y. The semantical rules for MLV assign an intension ("quasi
intension" in Bressan's teminology) to every typed expression A. The
intension of an expression of the type of individuals is a function from
the possible cases to its extensions, that is, to objects. The function takes
each possible case y into the extension for that expression in Y. The
intension of an n-ary attribute is a relation between its extensions and
possible cases. Bressan's definition of extensions of attributes differs
from the usual first-order one: the extension of an n-ary attribute is a
set of n-tuples of intensions of the arguments, not a set of n-tuples of
extensions of the arguments. Hence, the intension of an n-ary attribute is
a relation between n-tuples of intensions of the arguments and possible
cases. The intension of a sentence p is the class of the possible cases
where p holds. For a fixed domain D the range of the variables is the
set of all intensions of the appropriate type (value assigments for MLY
are functions from the variables to intensions). The above choice for the
intensions of the attributes makes it possible to deal within MLV with
nonextensional attributes as well as with extensional ones. In order to
illustrate the difference I shall give one of Bressan's examples.

But first the feature of MLY which is of great importance here: as is
usual in intensonal logics, identity in MLV is always contingent. "A; =
A, holds in y" means that A; and A, have the same extension in vy. In
order to express that A; and A, have the same intension, the necessity
operator is needed: N(A; =A,).

Now, for Bressan's example, let M; and M, be two individual constants
denoting the rockets Mida, and Mida, respectively in every possible
case. Let m denote that one of the above rockets which at the final
instant tp( of the twentieth century is at a larger distance from the earth
than the other. (If both are at equal distance from the earth, then let m
denote Mida,.) Then

NM; # Mp),



O0piAQ—p; where p; =p (m=M,).

Let
F1(X) =p (p1AX=M)V(=p;AXx=M),)

Fy(x) =p (p1ANx=M))v(=p1AN(x=M,)).

The attribute F; is extensional in the sense that the truth value of F;(x)
in y depends just on the extension of x in y ( try F;(m) ), while the truth
value of F,(x) in Y depends essentially on the intension of x. The
extensional attributes are defined in MLV by an appropriate use of
identity:

Ext(F) =D (Vxla}’la---,Xna}’n)(F(Xla---,Xn)/\ i/=I{1 Xi=Yi - F(Yl’---ayn))-

F, satisfies the condition from the above definition, but F, doesn't. In
case p; holds in v, both F,(M;) and m=M;, hold in v, but F,(m) does not.
This also shows that Leibniz' Law

(x=y > VF(F(x) = F(y)))

does not hold in MLV, since some attributes are not extensional. But it
does hold that
(x=y = VF(Ext(F) o (F(x) =F(y)))) and

(N(x=y) = VF(F(®x) =F(y))).

In MLV the concept of an absolute attribute is introduced using the
concepts of modally constant and modally separated attributes.

MConst(F) =p (Vxy,..Xp)(OF(x1,....xp) = NF(xy,...,Xp))

An attribute is said to be modally constant if and only if it applies to
the same intensions in every possible case.

MSep(F) =D (Vxl,yl,---,Xn,yn)(F(Xl,..,Xn) A F(Y1,...,yH) A 0O 1/:\1x1=y1
> A NG&i=yi)



An attribute is said to be modally separated if and only if whenever x
and y both fall under F, then x and y are either necessarily identical or
necessarily distinct.

An attribute is said to be absolute if it is both modally constant and
modally separated. Formally:

Abs(F) =p MConst(F) A MSep(F) .

Take the concept of body, intuitively characterized as follows: if b is a
body then it is the same body, i. e. the same bearer of (possible)
properties, in all possible cases. We may assert that Abs(Body). Now,
take the concept of a heavy body. Obviously, — Abs(Heavybody).

Every absolute attribute F determines its corresponding extensional
attribute, in that the latter is precisely the extensionalisation of the
former. The extensionalisation of an attribute is introduced as follows:

FO(xp,.xn) =D GY1oesyn) BG1¥n) A A ¥i=xi)

Consider again the example with the rockets and assume that Body
(Mida,) and Body(Mida,). Since 0(m=Mida,) and O¢(m#Mida,), the
definition of MSep(Body) implies that — Body(m). But, because it holds
that N(m=Mida; v m=Mida,), the definition of Body(€)(x) implies
Body(e)(m).

Since natural language does not distinguish between absolute and
extensional predication, there are double uses of certain common
nouns in natural language. For example, the concept of real number is
treated in MLY as an absolute attribute ( Abs(Real) ) with the
corresponding extensionalisation ( Ext(Real(®)) ). So the noun "real
number" may have an extensional as well as an absolute meaning
depending on the context. Let n be the number of planets. Then n=9,
0(n29), Real(9), MSep(Real) and the defininition of Real®©)(x) imply —
Real(n) and N(Real®)(n)). Now, take the sentence "n is a real number",
for the n mentioned above. An extensional reading of the common noun
"real number" makes it true but an intensional reading of the noun
makes it false. The case of the common noun "body" and the sentence



"m is a body", for the m from the example with the rockets, is
analogous.

In order to deal with descriptions Bressan defines "there is exactly one x
such that ¢(x) holds" by

X)) =p FX)(OE)IANVY)(@(y)Dy=x))

where y is a variable of the same type as x that does not occur in ¢(x)
and ¢(y) is obtained from ¢(x) by replacing the free occurrences of the
variable x in ¢(x) by occurrences of y. Notice the difference between
the above MLV-definition and the usual predicate-logical one:

(31x)¢(x) =p E)(Vy)(9(y)=y=x).

To see the point, take the example with the rockets. By the usual
definition, (3;x)(F,(x)) would not hold in y where p; holds, since
m=My, F,(M) but —F,(m). In other words, for any F, (31x)(F(x))
defined in the usual way would make F an extensional attribute.

The intension of the term (1x)¢(x) is the pattern of its extensions as Yy
varies. In every possible case y where (3;x)¢(x) does not hold, the
extension of (1x)¢(x) in yis a Fregean "nonexisting" object identified
with an empty class, and in every possible case y where (3,x)¢(x) holds,
the extension of (1x)¢(x) in 7y is the unique object which is the extension
in y of any y such that ¢(y) holds in v.

Bressan introduces also an intensional description operator 1. depending
on the parameter ¢ which ranges over the set of possible cases. He
defines "there is at most one strictly unique x such that ¢(x) holds" by

AD™x)0x) =p (Vxy)(0x)Ad(y) D N(x=y))

where y is a variable of the same type as x that does not occur in ¢(x)
and ¢(y) is obtained from ¢(x) by replacing the free occurrences of the
variable x in ¢(x) by occurrences of y. Compare (3;x)¢(x) and
3D x)p(x). Due to the use of simple identity in the definition of
(F;x)$(x), "(F;x)F(x) holds in y" means that there is an intension that
falls under F in v, and that all intensions that fall under F in v, have the



same extension in . Due to the use of strict identity in the definition of
ADx)dp(x), "@EAD x)F(x) holds in ¥" means that all intensions that fall
under F in v, are the same intension. Taking |, to mean "C is the case
that actually holds" the intensional description operator is defined as
follows:

(1cx)0x) =p O(APIAED X)G(x)).

For example, take n to be the number of planets and take (1x)¢(x) to be
(1x)(Real(x)Ax=n). Consider the real case p where 9=n ( Real(9),

Real®)(9), Real(®)(n), —Real(n) ). Take 9 to be the value of x. Then
(3;x)¢(x) holds in p by the transitivity of identity, and (1x)¢(x) denotes
the number nine in p. Consider the possible case C where 10=n. Take 10
to be the value of x. Then (3;x)¢(x) holds in C and (1x)$(x) denotes the
number ten in C. On the other hand, take (1px)¢(x) to be
(1px)(Real(x)ax=n). For 9 as the value of x, (3V"x)¢(x) holds in p
since MSep(Real). (1px)9(x) denotes the number nine in every possible

case.

Absolute attributes and extensional attributes mirror Aristotle's
distinction between secondary substances and qualities.> Absolute
attributes can be used to denote things as (primary) substances, while
extensional ones can be used for attributing qualities to substances.

We accept the following common abbreviating definition for all
appropriate types:
X1,...Xp € F =p F(X)AFXp)A...AF(Xp)

3 ABSOLUTE TIME AND RELATIVISTIC SIMULTANEITY

In order to capture the concept of time in the absolute theory of time,
let us take the concept of Instant ( Inst ) to be an MLY absolute attribute:

tistys... € Inst ; Inst € Abs .

In this way absolute time is considered to consist of objects (primary
substances) whose essence (secondary substance) is the absolute property



of being an Instant. Now, let te,(te,,...) be defined as the instants at
which the event e,(e,,...) occurs. The question is whether the noun
"instant” employed in the preceding sentence should be used in an
absolute or in an extensional way. In order to reach an answer, consider
the following example which illustrates the relativistic notion of
temporal relations among events.

Three murders occurred on a railway near a small town T. A very
interesting case since three guys — Smith, Jones and Brown were the
murderers as well as the victims. Jones, when his body was found in a
tree just near the railway, had in his hands the latest model of a laser
gun. Smith, whose body was found on a train, also had a laser gun.
Brown was found dead just near the tracks at some distance from the
above mentioned tree and he had, believe it or not, two such guns. A
local police inspector P.I., an ex-professor of physics, was supposed to
solve this case. After searching the place of the crime and talking to the
witnesses, P.I. came to the following facts.

1) Jones, who was in the tree, and Smith, who was on the train,
simultaneously fired their laser guns at Brown who was just near the
tracks at a certain distance from the tree (Figure 1). Jones and Smith
shot at Brown at the moment when the train with Smith was just level
with Jones. This was claimed by a witness who was just near Jones and
Smith when they shot. The train was moving at the constant velocity in
the direction from Brown toward Jones, that is to say, after shooting it
was moving in the direction away from Brown.

Figure 1. Shooting scenario



2) Brown simultaneously fired his two laser guns. He shot at Jones with
the one gun and at Smith with the other one. This was claimed by a
witness who was just near Brown when Brown shot.

3) A witness wg, who was resting on a bench equidistant from Brown
and Jones, claimed that "the bullet" that Brown fired off at Jones and
"the bullet" that Jones fired off at Brown had passed him at the same
time.

4) A witness wr, who was on the train and who just coincided with the
witness wg precisely when Brown and Jones fired their lazer guns as
judged from the ground, claimed that "the bullet" that Brown fired off
at Smith and "the bullet" that Smith fired off at Brown had passed him
at different moments - first "the bullet" that Smith fired off at Brown
and then "the bullet" that Brown fired off at Smith.

These facts were not enough for a complete report since P.I. had to
discover who, if anybody, shot in self-defence. He had to establish the
order of the shooting. A local insurance company was also waiting for
the report because the company was supposed to pay out the life-
insurance to the family of a guy who shot in self-defence. Here are the
results of P.L's further investigations.

Since (non)simultaneity of spatially coincident events holds for every
reference system, 1) and 2) imply that Brown simultaneously fired his
two laser guns relative to both the ground reference system G and the
train reference system T and that Jones and Smith shot simultaneously
relative to both G and T.

Each laser "bullet" was travelling at the same speed since the velocity of
light is constant and independent of the velocity of its source. Since wg
was equidistant from Brown and from Jones, wg's testimony implies
that Brown and Jones shot simultaneously within the ground reference
system G. By the transitivity of simultaneity it follows that within G
everybody shot at the same time.

Since the train, with the witness wr on it, was moving relative to the
ground, after the shooting wr moved away from the witness wg. So, it is
clear that wt said the truth. At the time wg sees the two "bullets" in
front of him, wr is to the right of him (Figure 2) - this means that "the



bullet" that Smith fired off has already passed the witness wr (since
Smith shot from the same place as Jones and at the same time as Jones)
and that "the bullet" that Brown fired of at Smith will pass wt only
later.

WG

Fig. 2. After the shooting

But, wt was also at the middle point between two shooting places. So,
wr's testimony implies that Smith shot before Brown within the train
reference system T. Hence, within T Smith and Jones had simultaneously
shot but before Brown shot.

P.I. did his job perfectly, but the chief inspector started to feel dizzy
when he read the report, while the menager of the insurance company
was desperate. The question "Who shot in self-defence” could not be
answered: relative to G nobody shot in self-defence, but relative to T
Brown did!

As I indicated earlier, I am going to interpret possible cases as
referential frames. If the instants defined via events were treated as
belonging to Inst, then, by modal separation, if two such instants are
equal in one possible case, they would be equal in all possible cases. In
other words, two events, (non)simultaneous in one referential frame,
would be (non)simultaneous in every other referential frame. But such a
consequence is not in accordance with the STR. Take two spatially
separated events B (Brown shoots) and S (Smith shoots): they are
simultaneous in the referential system G but not in the referential system
T. So, I will treat instants at which particular events occur as necessarily
belonging to Inst(®) and not belonging to Inst ("necessarilly" since all
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referntial frames deal with the same set of events). In this way we may
make the notion of simultaneity between events relative to a particular
referential system as well as dependent upon relations among the
instants of absolute time. We are going to see that the possibility of this
"relativization" follows immediately from the features of MLV, in
particular from MLV's identity and its distinction between Inst and
Inst®,

Taking tB, ts, ty € Inst(®), consider G where B and S are simultaneous
events, that is where tg = tg holds. By the definition of the
extensionalisation of an absolute attribute, there exist t;,t, € Inst such
that it holds in G that tg = t; and tg = t,. By the transitivity of identity
it follows that t;= t,, which by modal separation implies N(t; = t,). We
have seen that the principle of identity from extensional logic ( x=y D
(¢(x)=0¢(y)) does not hold in MLV. Hence we cannot infer that N(tg =
tg).

On the other hand, B and S are not simultaneous events in T, thatis tg#
tg. This implies that there exist t;,ty€ Inst such that in T holds that tg =
t; and tg = t,. In the same way as above, we may infer that N(t3# t,) but
we may not infer that N(tg # tg).

Hence, the presence of t;,t,,... belonging to Inst forces neither "tg = tg
holds in G" nor "tg # tg holds in T" to be strenghtened to N(tg = tg) or
N(tg # tg) respectively.

We have seen that relative to G Brown and Jones shot simultaneuosly,
while relative to T, although Jones and Smith shot simultaneously, Smith
and Brown didn't. Relativistically, the notion of simultaneity is no
longer an equivalence relation. Within any particular inertial frame
simultaneity with respect to that frame is still an equivalence relation.
But if event E; is simultaneous with event E; relative to one referential
system and event E; is simultaneous with event E3 relative to another
one, then there is no general reason to conclude that E; is simultaneous
with E3 relative to either system. Treating the instants defined via
events as belonging to Inst(®) captures these requirements. Since identity

11



is contingent, only within a particular possible case identity between the
instants belonging to Inst®) is an equivalence relation. Hence,

N(te;=te Ate,=te; D te;=te3)

gives us the notion of transitivity that we really need. On the other
hand, a simple identity between the instants belonging to Inst can
always be replaced by a strict identity. This gives us the notion of
"transitivity across possible cases" of identity between instants of
absolute time, just what we really need. Now, it should be clear that the
truth of tg = ty in the case G and the truth of ty = tg in the case T do not
imply that tg = tg holds in either G or T. The presence of t, t;, t,,...
belonging to Inst does not make these inferences valid. That can be seen
from the following translation in MLV of the facts from our example:

(@) N((igt)(te Inst A t=tg) = Qgt)(te Inst A t=ty))
(b) N((irt)(te Inst A t=ty) = (Lpt)(te Inst A t=tg)).

If we want to conclude from(a) and (b) that, for example in T, it holds
that tg = tg, we have to be able to infer

N((rt)(te Inst A t=tg) = (pt)(te Inst A t=tg));
for that we need:
N((irt)(te Inst A t=tg) = (trt)(te Inst A t=ty))

which is different from what (a) says and cannot be infered from (a).
Since Inst®¢ MSep , if in one possible case t coincides with tg, it does
not follow that that is so in any other case. Hence, if in one possible case
the instants t; and t, are equal and t; coincides with tg while t, coincides
with ty, although t; and t, have to be necessarily equal, it does not follow
that the instants t; and t,, with in some other possible case t; coinciding
with tg and t, with ty, have to be equal to t; and t, respectively. On the
other hand, from

(@) N((igt)(te Inst A t=tg) = (1gt)(te Inst A t=ty))
(c) N((igh(te Inst A t=ty) = (gH)(te Inst A t=tg))

12



it follows that
(d) N((gt)(te Inst A t=tg) = QgH)(teInst A t=tg)).

That is, from the facts that relative to G events B and J are simultaneous
as well as events J and S, it follows that relative to G events B and S are
simultaneous, too. As we have seen, (d) does not imply N(tg=tg).

Note that if we were dealing only with the extensional concept of Instant
which is not modally separated, we would not be able to use the
intensional description operator, since the condition (3P x)¢(x) would
never hold.

4 THE STRUCTURE OF ABSOLUTE TIME

Having seen that our framework captures the relativization of
simultaneity, we are now going to deal with the relation "earlier than"
between instants. This relation is also going to be relativized, but in a
way that it will still appropriatelly structure absolute time.

The space-time appropriate for the STR is Minkowski space-time.
Minkowski space-time has the topological structure of E*, the Euclidean
four-dimensional space. But, in contrast to Newtonian space-time, it
"splits up" into three-dimensional space and one-dimensional time only
relative to a given reference frame. Relative to a given reference frame,
the relation of simultaneity between events is an equivalence relation
and hence partitions the set of all events into equivalence classes.
Relative to a given reference frame, space-time can be viewed as an
infinite set of these equivalence classes, one for each instant of time, that
is, it can be viewed as Euclidean three-space persisting through time.
These facts give us the direction in which we should proceed.

We shall introduce the notion of "isomorphism up to identity" to see
more clearly the distinction between Inst and Inst(©).

Let y =yx and Ry stand for "y=x holds in y" and "the restriction of the
n-ary relation R to y". Let ( A, S) be a structure and let Fy = {x | F(x)
in v}. (The set of intensions Fyis the extension of Fin vy .) A function f

13



from Fyto Ais an isomorphism of ( Fy, Ry)onto (A, S) up to
identity in y if:
(a) if f(x)=f(x"), then x =y X'
(b) f[Fy] = A;
(©) Ry(Xy,...xp) iff S(f(xy),...1(xp)).
If there is an isomorphism of (Fy, Ry) onto (A, S) up to identity in
Y, we say that the structures ( Fy, Ry) and (A, S) are isomorphic up
to identity in v and write:

( Fy, Ry) ==y(A, S).

PROPOSITION 1.
Let Fe Abs , Fy= {y | F(y) in y}, F®y= {x | F®)(x) in y} and Re Ext .
Then:

( F®)y, Ry) =/=y ( Fy, Ry).

Proof :

Let f be a function from F©)y to Fy such that f(x) = (ty)(y =yx).

(a) Suppose f(x)=f(x"). f(x)=f(x") implies f(x)=yf(x"). By def. of f, x =y
f(x) and x'=yf(x'). Hence, x =yx'.

(b) By def. of {, if ye f[F(e)y], then yeFy.

Suppose ye Fy. By def. of Fy, F(y) in . By reflexivity of =, y =yy.
F(y) and y =yy imply that F(®)(y) in v, hence ye F©)y. Now, from y =y
y and ye F©y it follows that f(y)=y. Hence, ye f[F(©)].

(c) Since Re Ext and xj =y f(xj), for 1< i< n, it follows that

Ry(X1,..,.Xp) = Ry(Xy,..,xp) [X1/f(X1),...xp/f(xp)] holds in 7.

Hence, f is an isomorphism of ( F(®)y, Ry) onto (Fy, Ry) up to
identity in Y .®

PROPOSITION 2.

Let f be the isomorphism of ( F©)y, Ry) onto ( Fy, Ry) up to identity in
v, with Re Ext . Let L be a MLV- sublanguage containing variables
V1,...sVm, N-ary relational symbol R and all logical symbols from MLY
except N. Let V be a L-value assigment, if it is a function from
variables to intensions such that V(vi) € F®yand V(R) € {(Xq,....Xp; )
[ X{5...,Xp € F(e)y}. Then, for any L-formula ¢, L-value assigment V
and possible case y

14



¢[v] holds in v iff @[fV] holds in v.
Proof : by L-formula induction. ®

Here comes our first postulate. The symbol < is going to be interpreted
as an extensional binary relation.

POSTULATE 1.
<ekFExt.

The motiovation for Postulate 1 is the following: we want for instants
belonging to Inst®) to be possible to hold both O(tg<tr) and O—(te<tg').
Let R and (R, <) stand for the set of real numbers and the real line
respectively.

PROPOSITION 3.
(Insty, <y) = (R, <) iff (Inst®y <y )=/ (R, <).

Proof : by Proposition 1. ®

By the following postulate we start describing the structure of absolute
time.

POSTULATE 2.
For every v: (Insty, <y) = (R, <).

PROPOSITION 4.
For every ¥: { Inst®)y, <y ) =/= (R, <).

Proof : by Proposition 3 and Postulate 2. ®

Relative to a given possible case v, identitiy between instants belonging
to Inst(®) is an equivalence relation and hence partitions the set Inst(e)y
into equivalence classes. Proposition 4 says that, relative to v, Inst(e)y
can be viewed as a set of these equivalence classes, one for each real
number.

PROPOSITION 5.
For every v, y*: Insty = Insty.

15



Proof : Suppose t € Insty, for arbitrary y. By def. of Insty, Inst (t) holds
in v. Since Inst € MConst, Inst (t) holds in every Y. Hence, t € Insty+.
The other direction is analogous. ®

We say that n-ary relation R is modally constant with respect to
attribute F if and only if whenever for every element of n-tuple
(X5...,Xp) falling under F, either necessarily R(xy,...,xp) or necessarily
—=R(xy,...,Xpn). Formally:

Re MConst g = (VXp,....Xp)(Xp,-...Xn€ F A OR(Xy,...,xp) DNR(Xy,....Xp)).

POSTULATE 3.
< € MConst 5

Postulate 3 says that in every possible case, the relation < holds for the
same pairs of instants belonging to Inst . Postulate 1 and Postulate 3
make the relation < analogous to the identity relation in the following
sense: holding of the relation < between instants belonging to Inst is
independent of possible cases, while its holding between instants
belonging to Inst(®) depends on a particular y.

PROPOSITION 6.
For every v, Y*: ( Insty, <y ) = ( Insty+, <y* ).
Proof : by Proposition 5 and Postulate 3. ®

Proposition 6 enables us to omit index v in { Insty, <y ). From now on,
by an isomorphisim from ( Inst , <) onto ( R, <), where Inst ={t |
te Inst }, we mean an isomorphism which is the same function f for
every vy: for every v, ¥ and t, f(t) in y equals f(t) in y".

Once an observer in a particular inertial state of motion is selected, the
three-dimensional space and the one-dimensional time can be Cartesian
coordinatized. But, in contrast to Newtonian space-time, the always
nonnegative distance in time between two events is not a quantity
invariant for all observers. Hence, we introduce a ternary relation dist
and take it to be extensional. The intended interpretation of "dist
(tg,tg,n) holds in y", where tg,tp € Inst(®), tg,tp ¢ Inst and n is a real

16



number, is that n = |k - ml, where k and m are temporal coordinates of
events E and E' respectively in the reference frame which is the
interpretation of y. Note that, under this interpretation, for every y and
every tg,tg such that tg,tp € Inst(® and tg,tp @ Inst , there is exactly one
real number n such that dist(tg,tz,n) holds in ¥.

POSTULATE 4.
dist € Ext .

PROPOSITION 7.

Vitg, tg, t, t'(tg, tg €Inst® A t, telnst A tg=t A tp=t'D dist(tg,tp,n) =
dist(t,t',n)).

Proof : by Postulate 4. ®

POSTULATE 5.
Ve, t' (t, t'eInst A O dist(t,t',n) D N dist(t,t',n)).

Postulates 4 and 5 say that the distance between two instants belonging
to Inst®) is dependent on a possible case and need not be the same in
every possible case, while the distance between two instants belonging to
Inst is the same in every possible case.

PROPOSITION 8.

Assume: tgq, tgy, gy, tgy € Inst(®; ¢, t'e Inst ; dist(tg;,tg,,n) holds in v,
dist(tgs,tge,n) holds in y*; tg;< tg, holds in vy iff tg;< tg, holds in y*.
Then:

(yD)(t=tey) = prt)(t=tes) D (Wt)(E'=te) = (Lyst)(t'=tgy)).

Proof :

Since the distance between tg; and tg, in Y is the same as the distance
between tg; and tg, in v*, only the following three cases can occur:

Case I: tg< tg, holds in y and tg;< tg, holds in y*.

Then, by postulates 1 and 3 it follows that N((1yt)(t=tg;) < (Lyt)(t'=tg,))
and N((vy*t)(t=tgs) < (Ly*t')(t'=tgy)). Since dist(tg,tg,,n) holds in vy, by
Postulates 4 and 5 it follows that Ndist((1yt)(t=tg;),(1yt')(t'=tg,),n). Since
dist(tgs,tgy,n) holds in y*, by Postulates 4 and 5 it follows that Ndist
((Lyxt)(t=tgs),(Ly*t')(t'=tgy),n). Now, take an arbitrary y' and suppose
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that (Lyt)(t=tg;) = (Lyxt)(t=tgs) and (yt)(t'=tg,) # (Ly*t')(t'=tg,) hold in
Y. dist((iyt)(t=tg,),(yt")(t'=tg,),n) holds in y'. Since N((vy*t)(t=tg;) <
(Ly*t")(t'=tgy)) and (Lyt)(t=tg;) = (Ly*t)(t=tgz), it follows that
(Lyt)(t=tg)<(iy*t')(t'=tg,) holds in 7y'. Hence, —dist
((byt)(t=tg{),(Lyxt')(t'=tg,),n) holds in y'. But, Ndist
(L) (t=tgs),(Lyxt')(t'=tg,),n) and (Wt)(t=tg;) = (Ly*t)(t=tg;) imply Ndist
((yt)(t=tg),(Lyxt)(t'=tg,),n) . Contradiction. So, ((Lyt)(t=tg;) =
() (t=tgs) D (W) (t'=tgy) = (Ly*t')(t'=tg,)) holds in 7'

Case 2: tg = tg, holds in y and tg;= tg, holds in y*.

Then (Wyt)(t=tg;) = (yt')(t'=tg,)) and (y*t)(t=tgy) = (Ly*t")(t'=tgy).
Suppose (Lyt)(t=tg;) = (Lyxt)(t=tg;). Then, (yt)(t'=tg,) = (Lyxt)(t'=tg,).
Case 3: tg,< tg; holds in y and tg< tgy holds in y*.

This case is analogous to Case 1. ®

The Lorentz transformations give the transformation between the set of
space coordinates x,y,z and time T of an event, as measured in a given

1 1 '

reference system S, and a corresponding set x',y',z',t' belonging to the
same event as measured in another reference system S', moving
uniformly relative to S. Since the structures { Inst , < ) and (R, <) are
isomorphic, we may think of the instants belonging to Inst as if they are
"temporal coordinates”, through possible cases, of the instants belonging
to Inst®). We shall show this by an example.

Take two referential frames S and S', moving uniformly relative to one
another, that coincide at event E, and let coordinates of E in S and S' be
x=y=z=1=0 and x'=y'=z'=1'=0 respectively. Two cases can occur:

(1) (gt)(teInst A t=tg) = (gt)(t'e Inst A t'=tg);

(i1) (gt)(te Inst A t=tg) # (gt)(t'e Inst A t'=tg).

Suppose (i). Take the isomorphism f from ( Inst, < ) onto (R, <) such
that:

(a) f((st)(t=tg)) = 0;

(b) for every t': if (1gt)(te Inst A t=tg) < t', then f(t') is positive;

(c) for every t'" if t' < (1gt)(te Inst A t=ty), then f(t') is negative;

(d) for every t, t": if dist(t,t',n), then If(t) - f(t)| = n.

18



It can be shown that for any event E', f((ig5t')(t'=tg)) = k and
f((1gt")(t"=tg)) = m if and only if (x,y,z,k) and (x'y',z',m) are
coordinates, related by the Lorentz transformations, of event E' in §
and S' respectively.

Let k, m be positive. For one direction, suppose k and m are temporal
coordinates of event E' in S and S' respectively. Since k is positive, tg <
tg' holds in S. By Postulate 1 it follows that (igt)(te Inst A t=tg) <
(gt (t'e Inst A t'=tg). Since 10 - kl = k, dist(tg,tg,k) holds in S. By
Postulate 4 it follows that dist(t,t',k) holds. From (d) it follows that [0 -
f(t")l = k. Finaly, since t < t', f(t') = k. In the similar way we get that
f((Lst")(t"=tg)) = m.

For the other direction, suppose f((1gt)(t'=tg)) = k and f((1gt")(t"=tg))
= m. Then, If(t) - f(t')l = 10 - kl = k. Since there are tg,tg, belonging to
Inst®) and not belonging to Inst , such that t=tg and t'=tg hold in S,
instants t and t' are in the relation dist with some real number. To show
that dist(t,t' k) holds, suppose dist(t,t',j) and k # j. By (d) it follows that
If(t) - f(t)] = . Since k # j, we get the contradiction: If(t) - f(t")| # If(t) -
f(t)l. Hence, dist(t,t' k) holds. Since k is positive, t < t'. dist(t,t',k) and
Postulate 4 imply that dist(tg,tg,k) holds in S, which means that 10 - Tl =
k, where T is the time coordinate of event E' in S. Since t < t' implies
that tg < tg' holds in S, from 10 - 1l = k it follows that T = k. In the
similar way, we get that m is the temporal coordinate of event E'in S'.
If (ii) is the case, take isomorphisms fg and fg' such that:

(a) fs((ist)(t=tg)) = 0 = f5' (g t)(t=tg));

(b) for every t": if (1gt)(te Inst A t=tg) < t', then both fg(t') and fg'(t")
are positive;

(c) for every t": if t' < (1gt)(te Inst A t=tg), then both fg(t') and fg'(t")
are negative;

(d) for every t, t': if dist(t,t',n), then Ifs(t) - fs(t)l = n = Ifg'(t) - fs'(t)l .
Then, for any event E', fg((1gt)(t=tg)) = n and fs'((1gt)(t=tg)) = m if
and only if (X,y,z,n) and (x',y',z',m) are coordinates, related by the
Lorentz transformations, of event E' in S and S' respectively.

To see that both (i) and (ii) can occur, consider the following three
systems S, S' and S" (Figure 3). S and S' are in uniform relative motion,
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while S" is at rest with respect to S. Systems S and S' are spatially
coincident at A, while systems S' and S" are spatially coincident at B.

Fig. 3.

Suppose that the temporal coordinate of event A is O in all three systems
and suppose (igt)(te Inst A t=tp) = (gt)(te Inst A t=tp) = (ig-t)(te Inst
A t=tc). Event B has different time coordinates in S ( S") and in S'.
Hence, for some n, dist(ta,tg,n) holds in S' and —dist(ta,tg,n) holds in
S". From postulate 4 it follows that

dist((Lgt)(te Inst A t=tp),(gt)(te Inst A t=tg),n) and

—dist((lgrt)(te Inst A t=tp),(1g t)(te Inst A t=tg),n).

From Postulate 5 it follows that

(gt)(te Inst A t=tg) # (1g-t)(te Inst At =tg).

S CLOCK RETARDATION

Another aspect of the STR which is famous by its discrepancy with what
common sense would suppose is the phenomenon of clock retardation.
Consider again the situation where G and T are frames of reference
moving relative one to another. Suppose that Jones' clock and Smith's
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clock were synchronized and set at zero when they were spatially
together; that is to say Jones' clock reading O is an event ( Oy )
coincident with Smith's clock reading O ( Og ). Suppose also that there
was no shooting at all and let 1y be the event that is the reading 'one
hour' on the clock of Jones and let 15 be the event that is the reading
'one hour' on the clock of Smith. Relative to Jones' system the event 1j
will not be simultaneous with the event 1g but with a reading on Smith's
clock ( say event Xg ) which is earlier than 1g in Smith's system. Let Yy
be an event in Jones' system simultaneous, relative to Jones' system, to
1. Relative to Jones' system, 1y is earlier than Yj. Relative to Jones'
system the clock of Smith reads "one hour" only after more than one
hour has passed. Smith's clock is slow relative to Jones' clock. On the
other hand, relative to Smith's system the event 15 will be simultaneous
to a reading on Jones' clock ( event Xj ), which is earlier than the event
1y in Jones' system. Let Yg be an event in Smith's system simultaneous,
relative to Smith's system, with 15. Relative to Smith's system 1g is
earlier than Yg. Relative to Smith's system, the clock of Jones reads
"one hour" only after more than one hour has passed. Jones' clock is
slow relative to Smith's clock. Actually, the dilation factor is equal in
the two cases - the factor by which the clock of Smith is retarded
relative to Jones' clock is the same as the factor by which the clock of
Jones is retarded relative to Smith's clock.

How do our absolute instants fit in this phenomenon? Here follows the
translation in MLV of the above facts.

Assume that top, tog, t1, tig. txps txgty;tyg€ Insit® and t,t,t""e
Inst . For the sake of convinience we take that (i) holds.

@) (at(t=to;=tog) = (Lrt)(t=ty;=tos)
(i) (gt(t=toy=tog) < (at)(t'=txy) < (gt")(t"=t1;=txg) <
(at")( "=ty =t1g)

(i) (1)(t=toy=tog) < (Lt)(t=tyg) < (1rt")(t"=t1g=tx;) <
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(Lt ) (e "=ty g=t1).
Since
dist(t()J,tlj,m) holds in G,
dist(t()s,tls,m) holds in T,
dist(to;,tx;,k) holds in G,
dist(tg.txg-K) holds in T,
dist(toj,tYJ,n) holds in G and
dist(tOS,tYS,n) holds in T,
by Propositions 7 and 8 it follows that
(iv) (gt)(t'=txy) = (Lrt)(t'=txg)
(v) (t")(t"=typ) = Qpt")(t"=t )
(vi) (gt")(t"=ty;) = Qrt™)(t"=tyg).

The translation shows that everything is as it should be: although
coordinate time between two events is relative to a given frame of
in both cases and the retardation

reference, "one hour" is "one hour'
factor is the same in both cases.

6 WHAT TO GIVE UP

We shall now explicate some of the implications of the STR for our
framework.

Let us see what the STR tells about the ordering of events. The function
called the interval between events is invariant under Lorentz
transformations. Consider two events e; and e; with coordinates
(X1,¥1,21,7T1) and (X2,y2,22,T2) respectively, in a system S. The interval
between the two events is
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I (e1, €2) = cX(T2 — T1)2— (X2 — X1)2 — (y2 — y1)? — (22 — 21)2.

I*(e1, e2) = 0 (I?(e1, €2) < 0 ) means that event e; is (is not) causally
connectible to event e, that is, that a signal can (can not) be send from
e1 to ey, or conversly. Since I?(e1, ep) is invariant, the property that one
event is connectible to another one is the same in every frame of
reference. Furthermore, when event e; is connectible to event e;, by
measuring the coordinates of event e, along the direction of the light
rays through event e; in the Minkowsi diagram (Figure 4), we can
determine whether e; is in the future of e; (later than e;) or in the past
of e; (earlier than e).

elsewhere elsewhere

Fig. 4. The Minkowski diagram for an observer

The property that events connectible to e; are in the future of e; or in
the past of e is also invariant. On the other hand, the property of being
numerically earlier (later) than e; is not invariant for an event which is
not connectible to e;. The relation of connectibility is both reflexive and
symetrical, but it is not transitive since for any two events e;, €3, which
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are not connectible, there will be an event e, connectible to both e; and
es, and in the future of both e; and e3.

We say that two instants te; and te, belonging to Inst(®) are absolutely
temporally ordered if and only if their temporal ordering does not
vary through possible cases:

te; ~ te; =p N(te; < tep) vV N(te; = tey) Vv N(te, < tey).

It is easy to see that ~ € MConst j,«(e). From this definition and from
the reflexivity and symmetry of identity we may deduce that the relation
~ is reflexive and symmetric. However, it does not follow from this
definition and from the properties of the relation < that the relation ~ is
transitive. Suppose N(te; < te,) and N(te; < te,). Then, te; ~ te, and te, ~
te; and N(te; < tey V te; = tes V te3 < te;). But, we can not deduce
anything about te; ~ tes.

Absolute time order of instants belonging to Inst(¢) within our
framework corresponds to a unique time order of connectible events.
Since events that are not connectible do not have a unique time order,
the notion of "absolute temporal ordering of all instants belonging to
Inst®)", appropriate for Newtonian physics, has to be given up.

We have seen (Figure 3) that for two systems S' and S", in uniform
relative motion and in spatial proximity at some event B, it can hold that

(tgt)(te Inst A t=tg) # (15 t)(te Inst A t=tg).

Thus, two inertial observers can "meet" each other without identifying
the instant of the meeting with the same absolute instant. To make the
example more intuitive, suppose that observers O' and O", in systems S'
and S" respectively, both say "Now" when they meet at B. Then,

(gt)(te Inst A t=tgy) # (g-t)(te Inst A t=tgry).

Clearly, the notion of a universal absolute instant "now", the same for
all coexistent observers, makes no sense.

Keeping that in mind, the well-known twins "paradox", to which the
theory of relativity leads, does not seem paradoxical any more.
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Consider a three-nonaccelerating-system version of the twin
"paradox"®.

€1

Fig. 5. The paradox of the twins

Let F; and Fp be two non-accelerating frames of reference moving
relative to one another (Figure 5) and let C; and C; be digital clocks
associated with F; and Fp respectively. Assume that I am travelling with
F; and that my twin is traveling with F,. Suppose that the Fj-path
intersects the Fy-path and that me and my twin are the same age when F;
and Fy are spatially coincident or, in other words, suppose that the
clocks were synchronized and were set to read zero when F; and Fp
were in spatial proximity (event 0). Suppose also that a third non-
accelerating frame F3 intersects the paths of F; (event E) and F; (event
0"). The velocities of F, and Fj relative to Fy are +Vv and -V respectively.
When F; and F; are spatially coincident, my twin transfers from F; to Fs,
that is, the clock Cs; of F3is synchronized with C; and is set to read what
C, then reads. This means that my twin has a kind of composite clock:
between the departure and E this clock is the clock associated with Fp
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and between E and the meeting this clock is the clock associated with Fs3.
My twin transfers to my frame when F; and F3 coincide. Let C be the
composite clock and let F be the "reference system" of my twin. Let 2t
be the time elapsed relative to F; between 0 and 0'. Let e be an event at
F1 such that for Fy, e is simultaneous with E, that is, with spatial
coincidence of F, and F3 and such that t is the time elapsed relative to F;
between O and e. Let T be the time elapsed relative to Fp between 0 and
E as well as the time elapsed relative to F3 between E and 0'. If,
applying the STR, I and my twin compare the time elapsed between our
parting from each other and our meeting with each other, his clock will
read less than mine. Let e; and e; be events at F; such that eq is
simultaneous with E for F;, and e, is simultaneous with E for Fs. It is
the passage of time between e; and e; which makes the clock C; read a
later time at 0', since the composite clock C fails to record it. C regards
E to be simultaneous with ey, since this is so for C,, and C regards E as
simultaneous with e, since this is so for C3. Hence, C regards e; to be
simultaneous with e,. So, although we both agree that we part from each
other simultaneuosly and that we meet each other simultaneously, at the
meeting point more time has elapsed for me than for him! Actually,
from the STR point of view, there is nothing paradoxical in this
relativistic conclusion since the jump occurs only in the life of one of
the twins which means that the situation is not symmetrical for both
twins.

Here follows what we get within our framework. Assume that te Inst,
to, tE, teps tes tey, ' € Inst®), The assumption that me and my twin are
the same age at our parting from each other becomes:

(1 D(t=t0) = (LEt)(t=to).
It follows that
(lFlt)(t=tO) < (lFlt)(t=tel) < (lFt)(t=tE=tel=tez) < (lFlt)(t=te) <

(g, D(t=tey) < Apt)(t=ty) < (e, D)(t=tg).
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7 CONCLUSION

As the above discussion indicates, the STR does not force an absolutist
to give up his classical absolutist conception of time. The relativistic
notion of temporal relations for events is compatible with the ontology
of the absolute theory of time. So, the introduction of the relativistic
notion of simultaneity, with all its consequences, can be understood as a
modification of some aspects of the absolute theory.

NOTES

* An early draft of this paper was presented to the international conference "Space,
Time, Philosophy" at the Inter-University Center for Postgraduate Studies in
Dubrovnik, Yugoslavia, sept. 1989.

I wish to express my gratitude to Frank Veltman for support and discissions during the
preparation of this paper. I would also like to thank Milos Arsenijevi¢, Johan van
Benthem, George Berger, Jon Dorling, Dick de Jongh, Aleksandar Kron and Wilfried
Meyer-Viol for their helpful suggestions.

1 Leibniz (1956).

2 Griinbaum (1964), p. 345.

3 Newton-Smith (1980), p. 195-200.

4 MLY was introduced in Bressan (1972).

5 Bressan (1972), p- 86-91

6 This version of the "paradox" is considered in Newton-Smith (1980), p. 190-195
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