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1 Introduction

The present chapter is devoted to formal models of language acquisition, and of empirical inquiry
more generally. We begin by indicating the issues that motivate our study and then describe
the scope of the chapter.

1.1 Empirical inquiry

Many people who have reflected about human intellectual development have noticed an apparent
disparity. The disparity is between the information available to children about their environment,
and the understanding they ultimately achieve about that environment. The former has a sparse
and fleeting character whereas the latter is rich and systematic. This is especially so in the case of
first language acquisition, as has been pointed out repeatedly.! A similar disparity characterizes
other tasks of childhood. By an early age the child is expected to master the moral code of his
household and community, to assimilate its artistic conventions and its humor, and at the same
time to begin to understand the physical principles that shape the material environment. In each
case the child is required to convert data of a happenstance character into the understanding
(implicit or explicit) that renders his world predictable and intelligible.

Little is known about the mental processes responsible for children’s remarkable intellec-
tual achievements. Even elementary questions remain the subject of controversy and inconclu-
sive findings. For example, there is little agreement about whether children use a general-
purpose system to induce the varied principles bearing on language, social structure, etc.,

*Research support was provided by the Office of Naval Research under contracts Nos. N00014-87-K-0401
N00014-89-J-1725 and by the Swiss National Science Foundation under grant number 21-32399.91. Correspon-
dence to D. Osherson, IDIAP, C.P. 609, CH-1920 Martigny, Switzerland. Electronic mail: dickdj@fwi.uva.nl,
martin@maya.idiap.ch, osherson@maya.idiap.ch, weinstein@cis.upenn.edu

'See, for example, [Chomsky, 1975, Matthews, 1984, Hornstein & Lightfoot, 1981]. A review of empirical
findings on first language acquisition is available in [Pinker, 1990].



or whether different domains engage special-purpose mechanisms in the mind.? Although
some suggestive empirical findings are available [Gleitman, 1986, Johnson & Newport, 1989,
Newport & Supalla, 1989], the matter still engenders controversy (e.g., [Bickerton, 1981]).

The disparity noted above for intellectual development has also been observed in the acqui-
sition of scientific knowledge by adults. Like the child, scientists typically have limited access
to data about the environment, yet are sometimes able to convert this data into theories of
astonishing generality and (apparent) veracity. At an abstract level, the inquiries undertaken
by child and adult may be conceived as a process of theory elaboration and test. From this per-
spective, both agents react to available data by formulating hypotheses, evaluating and revising
old hypotheses as new data arrive. In the favorable case, the succession of hypotheses stabilizes
to an accurate theory that reveals the nature of the surrounding environment. We shall use the
term “empirical inquiry” to denote any enterprise that possesses roughly these features.

It is evident that both forms of empirical inquiry — achieved spontaneously in the early years
of life, or more methodically later on — are central to human existence and cultural evolution.
It is thus no accident that they have been the subject of speculation and inquiry for centuries,
and of vigorous research programs within several contemporary disciplines (namely, Psychology,
Artificial Intelligence, Statistics and Philosophy). We shall not here attempt to synthesize
this vast literature but rather limit ourselves to a single line of investigation that descends
from the pioneering studies [Putnam, 1965, Putnam, 1975, Solomonoff, 1964, Solomonoff, 1964,
Gold, 1967, Blum & Blum, 1975]. It is this tradition that appears to have had the greatest
impact on linguistics, and to a limited extent on epistemology.?

Our topic has been named in various ways, often as “Formal Learning Theory” which we
adopt here usually without the qualifer “Formal”. Central to the theory is the concept of a
paradigm (or model) of empirical inquiry. The inquiry in question might be that of a child
learning language, or of a scientist investigating nature. Every paradigm in the theory has
essentially the same stock of component concepts, which we now explain.

1.2 Paradigms

A paradigm offers formal reconstruction of the following concepts, each central to empirical
inquiry.

(1) (a) a theoretically possible reality
(b) an intelligible hypothesis about reality
(c) the data available about any given reality, were it actual
(d) a scientist (or child)
(e) successful behavior by a scientist working in a given, possible reality

The concepts figure in the following picture of scientific inquiry, conceived as a game between
Nature and a scientist. First, a class of possible realities is specified in advance; the class is

2For discussion, see [Chomsky, 1975, Osherson & Wasow, 1976].

3Within linguistics, relevant papers include [Wexler & Culicover, 1980, Borer & Wexler, 1987, Lasnik, 1989,
Matthews, 1989, Truscott & Wexler, 1989]. Within epistemology, see, for example, [Kelly & Glymour, 1993],
[Earman, 1992, Ch. 9].



known to both players of the game. Nature is conceived as choosing one member from the class,
to be the “actual world;” her choice is initially unknown to the scientist. Nature then provides
a series of clues about this reality. These clues constitute the data upon which the scientist
will base his hypotheses. Each time Nature provides a new clue, the scientist may produce a
new hypothesis. The scientist wins the game if there is sufficient guarantee that his successive
conjectures will stabilize to an accurate hypothesis about the reality Nature has chosen.

Different paradigms formalize this picture in different ways, resulting in different games.
Whether a particular game is winnable depends, among other things, on the breadth of the set of
possible realities. Wider sets make successful learning more difficult, to the point of impossibility.
The dominant concern of Learning Theory is to formulate an illuminating characterization of
the paradigms in which success is achievable.

1.3 Scope of the chapter

Contemporary Learning Theory has two principal branches, which may be termed “recursion
theoretic,” and “model theoretic.” They are distinguished, as indicated, by the tools used to
define and study paradigms. The recursion theoretic side of the discipline is older and better
developed. The next three sections overview some principal results. A few proofs are lightly
sketched, just for “feeling.” The others may be found in [Osherson et al., 1986¢c]. A more
complete survey will be available in [Sharma et al., 1995]. Concerns about recursion theoretic
modeling are voiced in Section 5, and the alternative perspective is introduced. The subsequent
five sections are devoted to Learning Theory from the point of view of model theory. We have
chosen to follow one particular line of research, ending with some new results (proofs are given
in the appendix). The material presented here is intended to be illustrative of central ideas and
concepts; a comprehensive survey is not attempted. More systematic coverage is available in
[Sharma et al., 1995].

2 Identification

There is no better introduction to Learning Theory than presentation of its most fundamental
paradigm. Such is the goal of the present section, whose essential ideas are due to [Gold, 1967].
To proceed, we consider in turn the components of paradigms listed in (1).

Realities. Possible realities are represented by nonempty, r.e. subsets of non-negative integers.
(The non-negative integers are denoted by N in the sequel.) Thinking of such sets as potential
natural languages, the paradigm is usually called language identification, and the sets themselves
“languages.” It will be convenient in what follows to drop the “language” qualifier when referring
to identification.

Hypotheses. Intelligible hypotheses are the r.e. indices for languages, relative to some back-
ground, acceptable ordering of the Turing Machines (see [Machtey & Young, 1978] for “accept-
able ordering”).

Data. To specify the data that Nature makes available about a given language L, we rely
on the following terminology. An w-sequence of natural numbers is called a texzt. The set of



numbers appearing in a text t is denoted content(t). Text t is said to be for L just in case
content(t) = L. After choosing L as reality, Nature presents the scientist with an arbitrary text
for L, that is, an infinite listing of L with no intrusions or omissions. If L has at least two
elements, the class of texts for L is uncountable.

Let ¢ be a text for L. The initial finite sequence of length n in ¢ is denoted ¢[n]. t[n] may be
thought of as an “evidential position” since it contains all the data about L made available by
t at the nth moment of inquiry. The set {¢[n] | n € N and t is a text} of all evidential positions
is denoted SEQ. Note that SEQ is the set of all finite sequences of natural numbers and hence
is recursively isomorphic to N.

Scientists. A “scientist” is any function (not necessarily total or recursive) from SEQ to N,
where the latter are conceived as r.e. indices. Thus, a scientist is a system that converts its
current, evidential position into an hypothesis about the language giving rise to his text.

Success. Success is defined in stages.

(2) DEFINITION: Let scientist ¥, text ¢, and # € N be given.

(a) ¥ converges ont to i just in case for all but finitely many n € N, ¥(t[n]) = ¢.

(b) ¥ identifies t just in case there is ¢ € N such that ¥ converges to ¢ on ¢, and ¢ is
an index for content(t).

(c) ¥ identifies language L just in case ¥ identifies all the texts for L.

(d) ¥ identifies a collection L of languages just in case ¥ identifies every L € L. In
this case L is said to be identifiable.

Thus, ¥ identifies L just in case for every text ¢ for any L € L, ¥ identifies ¢. Note that any
singleton collection of languages is trivially identifiable (by a constant function). Scientists (and
children) are challenged only by a wide range of theoretical possibilities.

To illustrate, the collection F of finite sets is identifiable by ¥ defined this way: For all
o € SEQ, ¥(o) is the smallest index for content(o), where the latter is the set of numbers
appearing in 0. F has the interesting property that no extension is identifiable [Gold, 1967],
whereas every other identifiable collection can be extended to another one. The collection
L={N}U{N —{z} |« € N} is also unidentifiable, whereas it is easy to define a scientist that
identifies L — {N}.

To prove the non-identifiability facts cited above, we rely on the “locking sequence” lemma.
Its basic idea is due to [Blum & Blum, 1975].

(3) DEFINITION: Let scientist ¥, language L, and o € SEQ be given. o is a locking sequence
for ¥ and L just in case:
(a) ¥(o) is defined; and
(b) for all 7 € SEQ drawn from L that extend o, ¥(7) = ¥(0).

Intuitively, o locks ¥ onto its conjecture ¥(o), in the sense that no new data from L can lead
¥ to change its mind.



(4) LEMMA: Let language L and scientist ¥ be such that ¥ identifies L. Then there is a
locking sequence o for ¥ and L. Moreover, ¥(¢) is an index for L.

A proof is given in Section 12.1.

Now suppose that scientist ¥ identifies some infinite language L. By the lemma, let o be a
locking sequence for ¥ and L, and let ¢ be a text that consists of endless repetitions of o. By
the choice of o, ¥ converges on t to an index ¢ for L. Since L is infinite, 7 is not for content(t)
since the latter is finite. Hence, ¥ fails to identify some text for a finite language, and thus does
not identify F. This is enough to show that no scientist identifies a proper extension of F, as
noted above. The nonidentifiability of {N}U{N — {z} | 2 € N} is shown similarly.

More generally, Lemma (4) allows us to provide the following characterization of identifia-
bility (see [Osherson et al., 1986¢, Sec. 2.4] for the simple proof).

(5) PropPOSITION: [Angluin, 1980] Let collection L of languages be given. L is identifiable
if and only if for all L € L there is finite Dy, C L such that for all L' € L, if Dy, C L’
then L' ¢ L.

3 Remarks about the identification paradigm

Identification evidently provides a highly simplified portrait of first language acquisition and of
empirical inquiry generally. Learning theorists have exercised considerable ingenuity in refin-
ing and elaborating the basic paradigm in view of more realistic models. Illustrations will be
provided in the next section. First it may be useful to comment on a few aspects of the bare
paradigm defined above.

3.1 Possible realities as sets of numbers

Limiting possible realities to r.e. subsets of N is mathematically convenient, and has been a
feature of much work in Learning Theory.* The numbers are to be conceived as codes for objects
and events found in scientific or developmental contexts. The details of such coding reflect
substantive hypotheses concerning the kind of phonological, semantic, and other information
available to children about the ambient language, or about the character of the data that drives
scientific research. Unfortunately, mathematical studies of learning often neglect this aspect of
formalization, simply starting with N as the base of inquiry. Until Section 6 we shall follow suit.

Some sets of numbers are “single-valued,” in the sense of [Rogers, 1967, Sec. 5.7]. By limiting
attention to collections of single-valued, r.e. sets, one treats the important problem of synthesiz-
ing a computer program from examples of its graph (as in [Shapiro, 1983]). Indeed, there have
been more studies of function learning than of pure language learning (see [Sharma et al., 1995]).
In view of our present concern with natural language, no more will here be said about function
learning (except for a remark in Section 4.9).

* An exception is [Kugel, 1977], who drops the r.e. requirement.



3.2 Reliability

The concepts of accuracy and stability are central to identification. Identifying a text ¢ requires
the scientist to ultimately issue an index ¢ that enumerates content(t) and then to remain with
¢ for the remainder of ¢, that is, it requires eventual accuracy and stability of the scientist’s
hypotheses. When we consider collections of languages a third concept arises. To identify
collection L, a scientist ¥ must succeed on any text for any member of L. In this sense, ¥ is
required to be a reliable agent of inquiry, succeeding not just on a happenstance collection of
texts, but on all of them. Being able to reliably stabilize to an accurate conjecture is the hallmark
of scientific competence in all of Learning Theory, and alternative paradigms provide varied
reconstructions of these concepts. Kindred notions of reliability are studied in epistemology
(e.g., [Goldman, 1986, Kornblith, 1985, Pappas, 1979]), which is one reason Learning Theory is
considered pertinent to philosophical investigation (as in [Kelly, 1994]).

There is another aspect of successful performance that is pertinent to defining realistic models
of language acquisition and of inquiry generally. Discovery should be reasonably rapid. The
identification paradigm imposes no requirements in this connection, since successful scientists
can begin convergence at any point in a text (and at different points for different texts, even for
the same language). However, other paradigms build efficiency into the success criterion (as in
[Daley & Smith, 1986]).°

One requirement on scientists that is usually not imposed by Learning Theory is worth
noting. To succeed in identification, the scientist must produce a final, correct conjecture about
the contents of the text he is facing. He is not required, however, to “know” that any specific
conjecture is final. To see what is at issue, consider the problem of identifying L = {N — {z} |
z € N}. Upon seeing 0,2,3,4,...,1000 there are no grounds for confidence in the appealing
conjecture N — {1} since the next bit of text might contradict this hypothesis. The identifiability
of L does warrant a different kind of confidence, namely, that systematic application of an
appropriate guessing rule will eventually lead to an accurate, stable conjecture on any text for
a member of L.

Distinguishing these two kinds of confidence allows us to focus on scientific success itself,
rather than on the secondary question of warranted belief that success has been obtained. Thus,
the fundamental question for Learning Theory is:

What kind of scientist reliably succeeds on a given class of problems?
rather than:

What kind of scientist “knows” when it is successful on a given class of problems?

Clarity about this distinction was one of the central insights that led to the mathematical study
of empirical discovery (see [Gold, 1967, pp. 465-6]).

SEfficiency is of paramount concern within the “PAC-learning” approach to inductive inference (see
[Anthony & Biggs, 1992]). PAC-learning is less relevant than Formal Learning Theory to language acquisition by
children, and is not treated here. For one attempt to relate the two approaches, see [Osherson et al., 1991a].

Tn “finite learning” scientists are allowed but a single conjecture so their attachment to it can be considered
stronger than is the case for identification. See [Jain & Sharma, 1990b] for an illuminating study.



3.3 Comparative grammar

In the linguistic context, possible realities are the languages that children might be called upon
to master. Now it seems evident to many linguists (notably, [Chomsky, 1975, Chomsky, 1986])
that children are not genetically prepared to acquire any, arbitrary language on the basis of
the kind of casual linguistic exposure typically afforded the young. Instead, a relatively small
class H of languages may be singled out as “humanly possible” on the basis of their amenabil-
ity to acquisition by children, and it falls to the science of linguistics to propose a nontrivial
description of H. Specifically, the discipline known as “comparative grammar” attempts to char-
acterize the class of (biologically possible) natural languages through formal specification of their
grammars; and a theory of comparative grammar is a specification of some definite collection.
Contemporary theories of comparative grammar begin with [Chomsky, 1957, Chomsky, 1965]),
but there are several different proposals currently under investigation (see [Wasow, 1989] and J.
Higginbotham’s chapter in this handbook).

Theories of linguistic development stand in an intimate relation to theories of comparative
grammar inasmuch as a theory of comparative grammar is true only if it embraces a collection of
languages learnable by children. For this necessary condition to be useful, however, it must be
possible to determine whether given collections of languages are learnable by children. How can
this information be acquired? Direct experimental approaches are ruled out for obvious reasons.
Investigation of existing languages is indispensable, since such languages have already been
shown to be learnable by children; as revealed by recent studies much knowledge can be gained
by examining even a modest number of languages (see [van Riemsdijk & Williams, 1986)).

We might hope for additional information about learnable languages from the study of chil-
dren acquiring a first language. Indeed, many relevant findings have emerged from child lan-
guage research. For example, the child’s linguistic environment appears to be largely devoid of
explicit information about the nonsentences of the target language (see [Brown & Hanlon, 1970,
Demetras et al., 1986, Hirsh-Pasek et al., 1984, Penner, 1987]). The acquisition process, more-
over, is relatively insensitive to the order in which language is addressed to children (see
[Newport et al., 1977, Schieffelin & Eisenberg, 1981]). Finally, certain clinical cases suggest
that a child’s own linguistic productions are not essential to mastery of the incoming language
([Lenneberg, 1967]). These facts lend a modicum of plausibility to the use of texts as a model of
the child’s linguistic input. Other pertinent findings bear on the character of immature grammar,
which appears not to be a simple subset of the rules of adult grammar but rather incorporates
distinctive rules that will be abandoned later (see [Pinker, 1990]).

For all their interest, such findings do not directly condition theories of comparative grammar.
They do not by themselves reveal whether some particular class of languages is accessible to
children or whether it lies beyond the limits of their learning. Learning Theory may be conceived
as an attempt to provide the inferential link between the results of acquisitional studies and
theories of comparative grammar. It undertakes to translate empirical findings about language
acquisition into information about the kinds of languages assimilable by young children. Such
information can in turn be used to evaluate theories of comparative grammar.

To fulfill its inferential role, Learning Theory offers a range of models of language acquisi-
tion. The models arise by precisely construing concepts generally left vague in studies of child
language, namely, the five concepts listed in (1). The interesting paradigms from the point of



view of comparative grammar are those that best represent the circumstances of actual linguistic
development in children. The deductive consequences of such models yield information about
the class of possible natural languages.

Many of the paradigms investigated within the theory have little relevance to comparative
grammar, for example, studies bearing on team-learning [Daley, 1986, Jain & Sharma, 1990b,
Pitt, 1989]. On the other hand, considerable effort has been devoted to paradigms which bear
on aspects of language acquisition. For purposes of illustration, the next section is devoted to
refinements of the Identification paradigm.”

4 More refined paradigms

Refinements of identification can alter any or all of the five components of paradigms, (1)a-e.
We limit ourselves here to some simple illustrations bearing on the concepts:

e scientist (or child);
e data made available;

¢ successful inquiry.

More comprehensive surveys are available in [Angluin & Smith, 1983, Osherson et al., 1986c,
Sharma et al., 1995]. The latter two references provide proofs for claims made in this section.

4.1 Memory limitation

It seems evident that children have limited memory for the sentences presented to them. Once
processed, sentences are likely to be quickly erased from the child’s memory. Here we shall
consider scientists that undergo similar information loss. The following notation is used. Let
o € SEQ be given (SEQ is defined in Section 2). The result of removing the last member of &
is denoted by o~ (if length(co) = 0, then 0~ = o = (). The last member of o is denoted by o,
(if length(o) = 0, then 0y, is undefined).

The following definition says that a scientist is memory limited if his current conjecture
depends on no more than his last conjecture and the current datum.

(6) DEFINITION: [Wexler & Culicover, 1980] Scientist ¥ is memory limited just in case for
all 0,7 € SEQ,if ¥(07) = ¥(77) and 045t = Tiagp then V(o) = ¥(7).

Intuitively, a child is memory limited if her conjectures arise from the interaction of the current
input sentence with the latest grammar that she has formulated and stored. The stored grammar,
of course, may provide information about other sentences seen to date. To illustrate, it is not
hard to prove that the class of finite languages is identifiable by memory limited scientist.

"For further discussion of the role of Learning Theory in comparative grammar see [Osherson et al., 1984,
Wexler & Culicover, 1980]. Other constraints on theories of comparative grammar might be adduced from bio-
logical considerations, or facts about language change. See [Lightfoot, 1982] for discussion.



Thus, it is sometimes possible to compensate for memory limitation by retrieving past data
from current conjectures. Nonetheless, memory limitation places genuine restrictions on the
identifiable collections of languages, as shown by the following proposition.

(7) ProposITION: There is an identifiable collection of languages that is not identified by
any memory limited scientist.

We give an idea of the proof (for details, see [Osherson et al., 1986¢, Prop. 4.4.1B]). Let E be
the set of even numbers, and consider the collection L of languages consisting of:

(a) E,
(b) for every n € N, {2n+ 1} U E, and
(c) for every n € N, {2n 4+ 1} U E — {2n}.

It is easy to verify that L is identifiable without memory limitation. In contrast, suppose that
memory limited ¥ identifies £, and let ¢ € SEQ be a locking sequence for ¥ and F. Pick
n € N such that 2n ¢ content(o). Then, ¥ will have the same value on o and o extended by
2n. From this point it is not difficult to see that ¥ will fail to identify at least one text for either
{2n+ 1} U E or {2n + 1} U E — {2n}. Hence, ¥ does not identify L. As is common in results
of this form one may now further establish that there are uncountably many such identifiable
classes of languages not identified by any memory limited scientist.

Proposition (7) shows that, compared to the original paradigm, the memory limited model
of linguistic development makes a stronger claim about comparative grammar, imposing a more
stringent condition on the class of human languages. According to the refined paradigm, the
human languages are not just identifiable, but identifiable by a memory limited learner. Of
course, this greater stringency represents progress only if children are in fact memory limited in
something like the fashion envisioned by Definition (6).

4.2 Fat text

It may be that in the long run every sentence of a given human language will be uttered
indefinitely often. What effect would this have on learning?

(8) DEFINITION:

(a) A text t is fat just in case for all z € content(t), {n | t{(n) = z} is infinite.

(b) Let scientist ¥ and collection L of languages be given. VU identifies L on fat text
just in case for every fat text ¢ for any L € L, VU identifies ¢. In this case, L is
identifiable on fat text.

Thus, every number appearing in a fat text appears infinitely often. It is easy to prove that
every identifiable collection L of languages is identifiable on fat text, and conversely.

Fat text is more interesting in the context of memory limitation. The following proposition
shows that the former entirely compensates for the latter.



(9) ProrosITION: Suppose that collection L of languages is identifiable. Then some memory
limited scientist identifies L on fat text.

4.3 Computability

The Turing simulability of human thought is a popular hypothesis in Cognitive Science, and
the bulk of Learning Theory has focussed on scientists that implement computable functions.
Obviously, any collection of languages that is identifiable by computable scientist is identifiable
tout court. The converse question is settled by the following.

(10) ProPOSITION: Let S be any countable collection of functions from SEQ to N (conceived
as scientists). Then there is an identifiable collection L of languages such that no member
of § identifies L.

One argument for (10) proceeds by constructing for each @ C N an identifiable collection Lg
of languages such that no single scientist can identify two such classes. The proposition then
follows from the fact that there are uncountably many subsets of N but only countably many
Turing machines. (See [Osherson et al., 1986¢, Prop. 4.1A] for details.)

The assumption that children are Turing simulable is thus a substantive hypothesis for
comparative grammar inasmuch as it renders unlearnable some otherwise identifiable collec-
tions of languages (assuming the empirical fidelity of the other components of the identification
paradigm, which is far from obvious). On the other hand, under suitable assumptions of uniform
recursivity of the class of languages, the characterization of (ineffective) identifiability offered by
(5) can be transformed into a characterization of identifiability witnessed by Turing-computable
scientist (see [Angluin, 1980] and for applications [Kapur, 1991, Kapur & Bilardi, 1992]).

It might be thought that Proposition (10) points to a complexity bound on the languages that
co-inhabit collections identifiable by computable scientist. However, the following proposition
shows that such a bound cannot be formulated in terms of the usual notions of computational
complexity, as developed in [Blum, 1967].

(11) ProposiTiON: [Wiehagen, 1978] There is a collection L of languages with the following
properties.

(a) Some computable scientist identifies L.

(b) For every r.e. § C N there is L € L such that S and L differ by only finitely many
elements (that is, the symmetric difference of S and L is finite).

One such collection turns out to consist of all languages L whose least member is an index for
L. This collection is easily identified (indeed, by a Turing Machine that runs in time linear in
the length of the input), and an application of the recursion theorem shows it to satisfy (11)b.
This argument is Wiehagen’s (see [Osherson et al., 1986¢, Prop. 2.3A]).

Once alternative hypotheses about scientists have been defined and investigated it is natural
to consider their interaction. We illustrate with the following fact about memory limitation
(Definition (6)).
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(12) ProposITION: There is a collection L of languages with the following properties.

(a) Some memory limited scientist (not computable) identifies L.
(b) Some computable scientist identifies L.

(c) No computable, memory-limited scientist identifies L.

4.4 Consistency, Conservatism, Prudence

At the intuitive level, learning theorists use the term “strategy” to refer to a policy for choosing
hypotheses in the face of data. Formally, a strategy is just a subset of scientists, such as the
class of memory-limited scientists. Further illustration is provided by the next definition, which
relies on the following notation. The finite set of numbers appearing in ¢ € SEQ is denoted
content(o). If scientist ¥ is defined on o, then the language hypothesized by ¥ on o is denoted
Wy (o) (notation familiar from [Rogers, 1967]).

(13) DEFINITION: Let scientist ¥ be given.

(a) [Angluin, 1980] ¥ is consistent just in case for all o € SEQ, content(o) C W\I!(a)'

(b) [Angluin, 1980] ¥ is conservative just in case for all o € SEQ, if content(c) C
W\Ii(a—) then ¥(o) = ¥(o7).

(c) [Osherson et al., 1982] ¥ is prudent just in case for all o € SEQ, if ¥(0) is defined
then V identifies WlIl(a)'

Thus, the conjectures of a consistent scientist always generate the data seen so far. A conserva-
tive scientist never abandons a locally successful conjecture. A prudent scientist only conjectures
hypotheses for languages he is prepared to learn.

Conservatism has been the focus of considerable interest within linguistics and developmental
psycholinguistics.® The prudence hypothesis is suggested by “prestorage” models of linguistic
development (as in [Chomsky, 1965]). A prestorage model posits an internal list of candidate
grammars that coincides exactly with the natural languages; at any moment in language acqui-
sition, the child is assumed to respond to available data by selecting a grammar from the list.
Regarding consistency, it is likely not a strategy adopted by children since early grammars are
inconsistent with most everything the child hears; on the other hand, consistency is a property
of learners that has attracted the attention of epistemologists (e.g., [Juhl, 1993, Kelly, 1994]).

Consistency and conservatism are substantive strategies in the following sense.

(14) PROPOSITION:

(a) There is a collection of languages that is identifiable by computable scientist but
by no consistent, computable scientist.®

(b) [Angluin, 1980] There is a collection of languages that is identifiable by computable
scientist but by no conservative, computable scientist.!%

8See [Berwick, 1986, Baker & McCarthy, 1981, Mazurkewich & White, 1984, Pinker, 1989, Pinker, 1990].
®For more information about consistency and cognate notions, see [Fulk, 1988].
19Gee [Kinber, 1994] for thorough analysis of conservatism and related concepts.
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In contrast, we have the following fact about prudence.

(15) ProposITION: [Fulk, 1990] Suppose that collection L of languages can be identified by
computable scientist. Then L can be identified by computable, prudent scientist.

Indeed, the prudent scientist can be constructed uniformly from an index for the original one
[Kurtz & Royer, 1988]. Fulk’s proof proceeds by showing that every class of languages identified
by a computable scientist can be extended to a similarly identifiable collection with an r.e. index
set. Proposition (15) then follows easily (see [Osherson et al., 1986¢, Lemmas 4.3.4A,B]).

4.5 Noisy and incomplete texts

Although it appears that children’s linguistic environments are largely free of grammatical error
[Newport et al., 1977], imperfections of two sorts are bound to arise. On the one hand, ungram-
matical strings might find their way into the corpus; on the other hand, certain grammatical
strings might be systematically withheld. Texts with simple forms of these defects may be
defined as follows.

(16) DEFINITION: Let language L and text ¢ be given.
(a) tis a noisy text for L just in case there is finite D C N such that ¢ is an (ordinary)
text for L U D.

(b) t is an incomplete text for L just in case there is finite D C N such that ¢ is an
(ordinary) text for L — D.

(c) Scientist ¥ identifies L on noisy text just in case for every noisy text ¢t for L, ¥
converges on ¢ to an index for L. V¥ identifies collection L of languages on noisy
text just in case ¥ identifies every L € L on noisy text.

(d) Scientist ¥ identifies L on incomplete text just in case for every incomplete text ¢
for L, ¥ converges on t to an index for L. V¥ identifies collection L of languages on
incomplete text just in case ¥ identifies every I € L on incomplete text.

It is easy to see that noise and incompletion interfere with learning languages differing only
finitely from each other. A more substantial fact is the following.

(17) ProprosiTION: There is a collection L of languages with the following properties.
(a) Every L € L is infinite.
(b) Every distinct pair of languages in L is disjoint.
(c) Some computable scientist identifies L (on ordinary text).

(d) No computable scientist identifies L on noisy text.

A parallel fact holds for incompletion. Indeed, it is shown in [Fulk et al., 1992, Theorem 1] that
incompletion is substantially more disruptive for identification than is noise.
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4.6 Exact identification

The dictum that natural languages are learnable by children (via casual exposure, etc.) has a
converse, namely, that nonnatural languages are not learnable. We are thus led to consider a
variant of identification in which successfully learning collection L entails identifying L and no
more. But a complication arises. It may be that certain degenerate languages (e.g., containing
but a single word) can be learned by children, even though we do not wish to classify them as
natural.

There are findings to suggest, however, that children are not inclined to learn profoundly
inexpressive languages. Some of the evidence comes from studies of children raised in pidgin
dialects [Sankoff & Brown, 1976]; other work involves the linguistic development of sensorily
deprived children [Feldman & Goldin-Meadow, 1978, Landau & Gleitman, 1985]. If we accept
the thesis that learnability implies expressiveness, then it is appropriate to define the natural
languages as exactly the collection of learnable languages.

Within Learning Theory these ideas give rise to the following definition.

(18) DEFINITION: [Osherson & Weinstein, 1982a] Let scientist ¥ and collection L be given.
¥ identifies L ezactly just in case ¥ identifies L and identifies no proper superset of L.

The requirement of exact identification interacts with hypotheses about strategies. This is
illustrated by comparing Proposition (15) with the following.

(19) ProrosiTION: There is a collection L of languages with the following properties.

(a) Some computable scientist exactly identifies L,

(b) No prudent, computable scientist exactly identifies L.

More generally, exact identifiability by computable scientist is possible only in the circum-
stances described below.

(20) ProrosITION: Let collection L of languages be given. Some computable scientist exactly
identifies L if and only if L is II} indexable and some computable scientist identifies L.

The II} indexability of L here means that there is a II{ subset of N that holds indexes for just
the members of L. We note that (19) is a corollary to (20). For, there are computably identi-
fiable, properly II} collections of languages whereas any collection that is identified by prudent,
computable scientist is r.e. indexable. (See [Osherson et al., 1986¢, Sec. 7] for discussion.)

4.7 Efficiency

First language acquisition by children has struck many observers as remarkably rapid.*! Tt is
thus pertinent to examine paradigms in which success requires efficient use of data. To define a
simple paradigm of this character, we use the following terminology. Let scientist ¥, text ¢, and

1But not everyone. See [Putnam, 1980].
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n € N be given. Suppose that ¥ converges on ¢ to index ¢ € N. Then n is called the convergence
point for ¥ on t just in case n is smallest such that ¥ conjectures 7 on all initial segments of ¢
of length n or greater. If ¥ does not converge on ¢ we take the convergence point to be .

(21) DEFINITION: [Gold, 1967] Let scientists ¥o and ¥y, and collection L of languages be
given.

(a) U identifies L strictly faster than ¥y just in case:

i. both ¥y and ¥, identify L;
ii. for every text ¢ for every L € L, the convergence point for ¥y on ¢ is no greater
than that for ¥y on t;
iii. for some text ¢ for some L € L, the convergence point for ¥y on ¢ is smaller
than that for ¥y on ¢.
(b) Vg identifies L efficiently just in case ¥ identifies L, and no scientist ¥, identifies
L strictly faster than Wy.

The next proposition shows that the three strategies examined in Section 4.4 guarantee
efficient learning.

(22) PROPOSITION: Suppose that scientist ¥ identifies collection L of languages. If ¥ is
consistent, conservative and prudent then ¥ identifies L efficiently.

The preceding proposition can be used to show that in the absence of computability con-
straints, efficiency imposes no restriction on identification (see [Osherson et al., 1986¢c, Sec.
4.5.1]). In contrast, the work of computable scientists cannot always be delegated to efficient,
computable ones.

(23) ProprOSITION: There is a collection L of languages with the following properties.

(a) Some computable scientist identifies L.

(b) For every computable scientist ¥ that identifies L there is a computable scientist
that identifies L strictly faster than V.

A rough idea of the proof may be given as follows (see [Osherson et al., 1986¢, Prop 8.2.3A]
for details). Suppose that () C N is an r.e., nonrecursive set, and that ¥’s speed is aided by
quickly deciding whether n € N belongs to ¢). Then ¥ cannot do this for at least one n since
otherwise  would be recursive. Hence, there is a scientist strictly faster than ¥ which has
built-in information about this n but which otherwise behaves like .

4.8 Stability and accuracy liberalized

Identification proposes strict criteria of hypothesis stability and accuracy (in the sense of Section
3.2), and many liberalizations have been examined. For example, weaker criteria of stability
might allow successful learners to switch indefinitely often among indices for the same lan-
guage, or alternatively, to cycle among some finite set of them [Osherson & Weinstein, 1982b,
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Jain et al., 1989]. Weaker criteria of accuracy might allow a finite number of errors into the
final conjecture [Case & Smith, 1983], or else allow the final conjecture to “approximate” the
target in a variety of senses [Fulk & Jain, 1992, Royer, 1986]. These and other liberalizations
have been studied extensively, both separately and in combination. For a review of findings, see
[Sharma et al., 1995].

4.9 Identifying the child’s program for language acquisition

Whereas the child’s task is to discover a grammar for the ambient language, the task of devel-
opmental psycholinguists is to discover the mental program animating the child’s efforts. By
focusing on the child’s learning program rather than on what it learns, we may attempt to
define paradigms that illuminate the prospects for success in discovering the mechanisms of
first language acquisition. In this case the learner is the psycholinguist and her data may be
conceived as the graph of the acquisition function implemented by the child. Successful inquiry
consists of converging on the graph to an index for the child’s learning function. A less stringent
requirement is convergence to a program that identifies at least as many languages as children
do, irrespective of its similarity to the child’s method. This latter success criterion is called

“weak delimitation.”

We would like to know how wide a class of potential children can be identified or weakly
delimited. If the class is narrow, there may be no reliable means of investigating first-language
acquisition. Success in psycholinguistics would depend in this case upon the fortuitous circum-
stance that the child’s learning function falls into the small class of possibilities for which our
scientific methods are adapted. :

In [Osherson & Weinstein, in pressb] it is shown that some narrow classes of potential chil-
dren can be neither identified nor weakly delimited. One such class consists of just those children
that identify less than three, nonempty languages, none of them finite.

5 The need for complementary approaches

A quarter century of research within Formal Learning Theory has provided suggestive findings for
both epistemology and linguistics. It seems fair to say, however, that its impact on the latter dis-
cipline has as yet been meager, despite efforts to confront theories of comparative grammar with
results about learning (as in [Berwick, 1986, Osherson et al., 1984, Truscott & Wexler, 1989,
Wexler & Culicover, 1980]). One reason for the lack of interaction is the abstract character of
learning theoretic results. Indeed, the majority of findings remain true under recursive permu-
tation of N, and hence have little to do with the grammatical structure of natural language.

A more recent tradition of research on learning shows greater promise in this regard. For
example, [Shinohara, 1990] considers languages defined via elementary formal systems (EFS’s)
in the sense of [Smullyan, 1961]. He proves that for any n € N, the class of languages definable
by length-bounded EFS’s with at most n» axioms is computably identifiable. From this it follows
that for any n € N, the class of languages with context-sensitive grammars of at most n rules
is similarly identifiable. Another notable finding is due to [Kanazawa, 1993]. He shows that the
class of classical categorial grammars assigning at most k£ types to each symbol is identifiable
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by computable scientist in the sense of Definition (2), above. As Kanazawa notes, it follows
that the entire class of context-free languages is similarly learnable, provided that texts are
enriched with information about the type-ambiguity of each symbol. (For further results, see
[Kanazawa, 1994].)

Results like the foregoing are of potentially greater interest to linguistic theory than those
bearing on arbitrary r.e. sets. However, research in the new tradition has yet to investigate
the special character of children’s learning, e.g., its memory-limitation and resistance to noise.
These are just the topics given greatest attention in the older literature.

To understand a second reason for Learning Theory’s lack of impact on linguistics, let us
recall that comparative grammar is supposed to contribute to the theory of innate ideas. In
particular, the universal elements of grammar, invariant across natural languages, correspond to
what the prelinguistic child already knows about the language into which he is plunged. Exten-
sive debate has arisen about the form in which such knowledge might be lodged in the infant’s
mind — and even whether it should be called “knowledge” at all, instead of simply “predis-
position” (see, for example, [Chomsky, 1975, Matthews, 1984, Putnam, 1967, Stich, 1978]). To
address the issue squarely, let us conceive of the child’s innate preparation to learn language
as a prestored message that characterizes the class of potential natural languages. Then it is
difficult to locate this message within the learning paradigms of the Putnam/Gold/Solomonoff
tradition. There are just classes of languages in play, under no particular description. Given
specific assumptions about data-presentation and so on, either the child can learn the languages
or not. There is no innate starting point in sight.'2

To remedy this shortcoming, some recent paradigms have conceived of innate knowledge as a
first-order theory in a countable language (e.g., [Osherson et al., 1991b, Osherson et al., 1992]).
In the usual case, the innate theory is not complete; otherwise, there is nothing to learn and there
would be no linguistic variation across cultures. So the child’s task is to extend the innate theory
via new axioms that are true of the particular language spoken in his environment. Consequently,
these paradigms consider a single sentence in the language of the original theory, and ask what
sort of learning device could determine the truth-value of the sentence by examining data from
the environment. The environment is assumed to be consistent with the child’s background
theory, which thus serves as prior information about the range of theoretical possibilities.

The remainder of the chapter provides details about this approach. To keep the discussion
manageable, it is limited to a single strand of inquiry, leaving several relevant studies aside (e.g.,
[Glymour & Kelly, 1989, Kelly & Glymour, 1993]). The work to be discussed was stimulated by
the seminal papers [Glymour, 1985, Shapiro, 1981, Shapiro, 1991].

We proceed as follows. Background ontology and basic concepts occupy Section 6. An
elementary but fundamental paradigm is described in Section 7 and some basic facts presented.
More sophisticated paradigms are advanced in Sections 8 and 9. Their relevance to first language
acquisition is taken up in Section 10. Unless noted otherwise, verification of examples and proofs
of propositions are given in the appendix to this chapter.

12 A preliminary attempt to communicate “starting points” to learners within a recursion theoretic framework
is reported in [Osherson et al., 1988].
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6 Ontology and basic concepts

6.1 Overview

The paradigms in the remainder of this chapter are embedded in a first-order logical framework.
By this is meant that the “possible worlds” in which the scientist might find herself are rep-
resented by relational structures for a first-order language. Moreover, the hypotheses that the
scientist advances about her world are limited to sentences drawn from the same language. Gen-
eralizations are of course possible (as in [Kelly & Glymour, 1992, Osherson & Weinstein, 1989a],
for example), but our aim here is to exhibit significant results within the simplest framework
possible.

6.2 Language, structures, assignments

We fix a countably infinite collection D of individuals dg,d; . ... D is the domain of all structures
to be considered in the sequel. In particular, given a set 7" of first-order sentences, mod(T)
denotes the class of structures with domain D that satisfy T. The exclusion of finite models from
the remainder of the discussion is only for convenience. In contrast, the exclusion of uncountable
models is necessary to avoid unresolved conceptual questions (see [Osherson & Weinstein, 1986,
Section 6.1]).

By a “D-sequence” is meant an w-sequence onto D (i.e., with range equal to all of D). Given
D-sequence d and i € N, d; denotes the ith member of d, and d[i] denotes the initial segment
of length ¢ in d. The set {d[7] | d is a D-sequence and ¢ € N} of all finite initial segments of
D-sequences is denoted D<“.

We also fix a language £ with a countable set VAR = {v; | ¢ € N} of variables. The vocab-
ulary of £ is assumed to be finite and include only constants and relation symbols (including
identity).13 The sets of L-formulas and £-sentences are denoted by Lform and Lsen, respectively.
The set of free variables occurring in ¢ € Lform is denoted var(p). We use BAS to denote the
set of basic formulas, that is, the subset of Lfoym consisting of atomic formulas and negations
thereof.

A D-sequence d will be used to assign objects from D to variables in VAR. In particular,
for every i € N, d(v;) = d;. Similarly, the finite sequence d = (do,...,dn) € D™+ corresponds

to the finite assignment {(vo,do), ..., (vn,dn)}. By domain(d) is meant the set of variables that
d interprets, i.e., {v; € VAR | ¢ < length(d)}.

6.3 Environments

(24) DEFINITION: Let structure S and D-sequence d be given. By the environment for S
and d is meant the w-sequence e such that for all ¢ € N, e; = {# € BAS | var(8) C
domain(d[i]) and S |= B[d[i]]}. An environment for S is an environment for S and d, for
some D-sequence d. An environment is an environment for some structure.

13The exclusion of function symbols is for convenience only. Their presence would slightly complicate the
definition of environments, below.
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Thus, an environment is a sequence of ever-more-inclusive, finite, consistent sets of basic formu-
las. (The sets are finite by our choice of £.) It is as if Nature chooses elements from D one by
one, and after each selection tells us everything she can about the new element and its relation
to all the previously chosen elements. For example, suppose that the predicates of £ are {=, R},
and that structure S interprets R as {(d;,d;) | ¢ < j}. If D-sequence d is dg,d;,d;... then the
environment for & and d begins this way:

Vg =Yy V1 75 Vo Vo =Vy Uy =V Uy 75 (%% R’Uo'l)l —|Rv1v1

v = Vo vy =v;  Ruvgvy vy =v; v #vy ~Rvivg Ruvova —Rugvs
{ - Rvgvg } vg £ v; —Rvivg vo #Fv1 vy Fvg —Rvsvg Rvivg
"Rvovo _|R1111)1 V1 71: Vo V1 75 V2 —|R1}2U1 —|R’U0’U0

The following lemma is straightforward (a proof appears in [Osherson & Weinstein, 1986]).

(25) LEMMA: Let environment e and structures S and U be given. If e is for both § and U
then S and U are isomorphic.

6.4 Sclentists

The finite segment of length ¢ in environment e is denoted e[i], and the set {e[i] | e is an
environment and 7 € N} is denoted SEQ (there is no risk of confusion with our previous use of
SEQ in Section 2). Since L is a finite relational language, SEQ is a collection of finite sequences
of finite subsets of a fixed countable set; hence, SEQ is countable.

A (formal) scientist is defined to be any function from SEQ to Lgep. According to this
conception, scientists examine the data embodied in finite initial segments of environments, and
emit hypotheses about the underlying structure in the guise of first-order sentences.

(26) DEFINITION: Let 6 € Lgep, environment e, and scientist ¥ be given. ¥ converges on e
to 0 just in case ¥(e[i]) = @ for all but finitely many i € N.

6.5 Solvability for environments

To succeed in a given environment, we require the scientist’s hypotheses to stabilize to a single,
true, interesting sentence. The idea of stabilization is defined by (26), above. Rather than
attempt to formalize the concept of “interesting sentence,” we leave it as a parameter in the
definition of scientific success. The parameter takes the form of a subset X of sentences, which
count as the interesting ones.

(27) DEFINITION:

Let X C Lgen, scientist ¥ and structure § be given. Suppose that environment e is for
S. Then ¥ X-solves e just in case there is # € X such that:

(a) W converges on e to #, and

(b) S = 6.
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It is Lemma (25) that renders clause (b) unambiguous: up to isomorphism, S is the unique
structure for which e is an environment.

(28) EXAMPLE: For 0 € Lgen, let X = {0, -6}. Then, scientist ¥ X-solves environment e for
structure S just in case ¥ converges on e to whichever of 8, =6 is true in §. This choice
of X yields the paradigm of “truth-detection,” analyzed in [Glymour & Kelly, 1989,
Osherson et al., 1991b].

Other choices of X are discussed in [Osherson & Weinstein, in pressa, Osherson et al., 1992].

6.6 Solvability for structures

All of the paradigms discussed below share the foregoing apparatus. They differ only in the
definition given to the idea of solving a given structure §. In each case a scientist will be
credited with solving & if she solves enough environments for S, but the paradigms differ in
their interpretation of “enough.” The first (and simplest) paradigm conceives the matter in
absolute terms: To solve § the scientist must be able to solve all of its environments. Subsequent
paradigms offer probabilistic conceptions.

A scientist ¥ solves a collection K of structures just in case ¥ solves all the structures in
K. This is a constant feature of our paradigms, regardless of how the solution of individual
structures is defined. Of particular interest is the case of elementary classes of structures, picked
out by a first-order theory. The results discussed below bear principally on this case.

6.7 Relation to language acquisition

Let us relate the concepts discussed above to the child’s acquisition of a first language.

The collection X of sentences represents alternative, finitely axiomatized theories of some
circumscribed linguistic realm, for example, well-formedness or pragmatic force. Each member
of X provides an adequate description of a potential human language (relative to the realm in
question). The description is “adequate” in the sense of representing the implicit knowledge
accessible to mature speakers. The child’s task is to find a member of X that is true of the
particular language presented to him.

The class K of structures embodies the range of linguistic realities for which children are
genetically prepared. These realities are the “human” or “natural” ones, in the terms of Section
3.3. If K is elementary, then the child is assumed competent for any linguistic situation that
satisfies a certain theory. The theory can thus be conceived as a component of Universal Gram-
mar, embodying linguistic information available innately to the child at the start of language
acquistion.

Environments represent the linguistic data from which a theory can be inferred. In this
perspective, D might consist of vocalic events (perhaps with associated context) which are
classified by the predicates of £. For example, if the theories in X bear on pragmatic force, then
predicates might code the intonational contours of utterances, the apparent emotional state of
the speaker, etc. Note that environments give direct access to “negative data,” whereas this is
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often assumed not to be a feature of linguistic input to children (see the discussion in Section
3.3, above). To exclude negative data from environments it suffices to restrict their content to
atomic formulas, suppressing basic formulas containing negations. We have not adopted this
convention since it is unclear whether negative evidence is lacking in linguistic realms other
than syntax; in learning the semantics of quantifiers, for example, negative feedback might be
available from the failure to communicate an intended meaning. In any event, it remains to
determine how well our theorems transfer to the case of “positive environments.”

Formal scientists play the role of children. Their mission is to stabilize to a true theory
drawn from X. In the model of Section 7 it will be assumed that children achieve such stability
with perfect reliability, i.e., no matter how the data are presented. The models of Section 8 and
9 admit the possibility that language acquisition fails when data are presented in an unlikely
order.

Suppose that we’ve established a linguistic realm of interest (e.g., well-formedness). Suppose
furthermore that X holds the kind of theories achieved by adults for that realm. Then, a
nontrivial property can be attributed to the class of natural languages, namely, X-solvability in
the relevant sense. The paradigms now presented provide alternative definitions of X-solvability.

7 First paradigm: Absolute solvability

The idea of solving an environment was formulated in Definition (27) above. To solve a structure,
our first paradigm requires the scientist to solve all of its environments. Subsequent paradigms
adopt a probabilistic stance.

7.1 Solving arbitrary collections of structures

(29) DEFINITION: Let X C Lgepn and scientist ¥ be given.

(a) ¥ X-solves structure S just in case ¥ X-solves every environment for S.

(b) ¥ X-solves collection K of structures just in case ¥ X-solves every S € K. In this
case, K is said to be X-solvable.

For the examples to follow, we suppose that £ is limited to a sole binary relation symbol R (plus
identity).

(30) ExaMPLE: Let X = {#,-0} for § = VaIdyRzy ("there is no greatest point”). We
describe the extensions of R in a collection K = {S; | j € N}. R is the successor
function {(di,di41) | 4 € N}. For j > 0, RS is {(d;,di11) | i < j}. Then K is not
X-solvable.

(31) EXAMPLE: Let K be as defined in Example (30). Given n € N — {0}, let 0,, =
3&71 . .l'n+1(R.7}1$2 A A R$n$n+1 A Vy—'Ryxl A ‘VIZﬁRCEn.HZ)

i.e., there is an R-chain of length exactly n. Then, for all n € N — {0}, K is X,,-solvable,
where X,, = {6,,-8,}. The simple proof is left for the reader.
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(32) ExaMPLE: Let T be the theory of linear orders (with respect to R). Let A = Ja2VyRzy
(“there is a least point”), I' = JzVyRyz (“there is a greatest point”), and X = {A,=A}.
Then mod( TU{ AVT, =(AAT)})is X-solvable whereas mod(T) is not.

For verification of Example (32), see [Osherson et al., 1991b, Example 5]. Additional exam-
ples are given in [Osherson & Weinstein, 1989b, Osherson & Weinstein, in pressa].

Example (32) reveals that inductive inference within our paradigm does not amount to
“waiting for deduction to work.” For, no o € SEQ implies either A or —A in the models of
TU{AVT, =(AAT) }. The latter class is nonetheless {A, =A}-solvable.

7.2 Solving elementary classes of structures

The theory of solvability has a simple character when limited to first-order definable classes of
structures (as in Example (32), above). The theory defining such a class may be conceived as
a scientific “starting point” since it embodies all the prior information that is available about a
potential environment. In this case there is a computable learning method that is optimal, even
compared to methods embodied by noncomputable scientists. We state the matter precisely
in the following proposition (whose formulation presupposes familiarity with the arithmetical
hierarchy and in particular with the notion of a X9 subset of Lgep).

(33) PROPOSITION: Suppose that X C Lge, is £9. Then there is an oracle machine M such
that for all T' C Lgep, if mod(T) is X-solvable, then M7 X-solves mod(T).

The proposition follows immediately from the following lemmas. Their statement requires a
preliminary definition, along with the following notation: ¢ € L, will be called “3V” if it is
existential-universal in form; either or both sets of quantifiers may be null.

(34) DEFINITION: Let X C Lgep and T C Lgep be given. X is confirmable in T just in case
for all S € mod(T') there is ¢ € Lgepn such that:

(a) pis 3V,

(b) S = ¢, and
(c) for some 8 € X, T U {p} £ 0.

(35) LEMMA: Let a X9 subset X of L, be given. Then there is an oracle machine M such
that for all T C Lgen, if X is confirmable in 7 then M7T X-solves mod(T).

(36) LEMMA: Let X C Lggp be given. For all T' C Ly, if mod(T') is X-solvable, then X is
confirmable in T'.

Lemma (35) is an exercise in “dovetailing” and £9-programming, some of the basic ideas already
appearing in [Gold, 1965, Putnam, 1965]. A complete proof in a closely related paradigm is
given in [Osherson & Weinstein, in pressa]. We do not repeat it here. (Lemma (36) is proved in
Section 12.5, below.)
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In [Osherson et al., 1991b] the following corollary is derived from Lemma (36) and a weaker
version of Lemma (35).

(37) CoROLLARY: Let 0 € Lgen and T' C Lgen be given. Then mod(T') is {6, ~8}-solvable if
and only if both @ and -6 are equivalent over T to existential-universal sentences.

As an immediate consequence of Corollary (37) and [Chang & Keisler, 1977, Theorem 3.1.16], we
obtain the following fact, demonstrated independently in [Kelly, 1994] (cited in [Earman, 1992,

Chapter 9]).

(38) COROLLARY: Let 6 € Lgep and T' C Lgep be given. Then mod(T') is {0, —6}-solvable if
and only if @ is equivalent over T to a Boolean combination of existential sentences.

We note in passing that Proposition (33) can be extended to no regular logic stronger than the
predicate calculus which meets the Lowenheim-Skolem condition. See [Osherson et al., 1991b,
Section 4].

8 Second paradigm: Probabilistic solvability

In the present section and the next we conceive of environments as created by a stochastic
process. In particular, the entities in our universal domain D are assumed to be delivered for in-
spection via independent, identically distributed sampling according to a probability law which
may be unknown to the scientist. The associated paradigm measures successful performance in
probabilistic rather than all-or-none fashion, and thus differs from most earlier investigations of
scientific discovery within a model-theoretic context. It also takes a different approach than that
offered in [Gaifman & Snir, 1982] inasmuch as probabilities are attached to the countable set D
rather than to uncountable classes of structures. Within the recursion-theoretic literature on in-
ductive inference, related paradigms are treated by [Angluin, 1988] and [Osherson et al., 1986b,
Ch. 10.5].

The core idea of our paradigm is to allow scientists to fail on “small” sets of environments,
namely, of measure 0. It will be seen that such liberalization has no effect on the solvability
of elementary classes of structures. Moreover, the universal machine for absolute solvability is
universal in the present setting as well.

8.1 Measures over environments

The class of all positive probability distributions over D is denoted P. (P € P is positive just
in case P(d) > 0 for all d € D.) Given P € P, we extend P to the product measure over D¥
(as reviewed, for example, in [Levy, 1979, Section VIIL.3]). Given a structure S, this measure
is extended to sets E of environments for & via their underlying D-sequences. That is, the
P-measure of F is the P-measure of {d € D¥ | for some e € E, e is for S and d}. (All sets of
environments measured below are Borel.)

22



In what follows we ignore members of D“ that are not onto D. This is because the class
of such sequences has measure zero for any P € P, by the positivity of P (for discussion see
[Billingsley, 1986, Chapter 4]). Recall from Section 6.2 that D-sequences are, by definition, onto
D. The following lemma is easy to demonstrate. '

(39) LEMMA: Let structure S be given, and let E be the class of environments for S. Then
for all P € P, F has P-measure 1.

8.2 Success criterion

To give probabilistic character to scientific success we modify only the concept of solving a
structure. The same success criterion as before applies to individual environments (see Definition

(27)).
(40) DEFINITION: Let X C Lgepn, Po C P, and scientist ¥ be given.
(a) Let structure S be given. ¥ X-solves S on Py just in case for every P € Py, the

set of environments for S that ¥ X-solves has P-measure 1.

(b) Let collection K of structures be given. ¥ X-solves K on Py just in case ¥ X-solves
every S € K on Py. In this case, K is said to be X-solvable on Py.

If Pg is a singleton set {P}, we drop the braces when employing the foregoing terminol-
ogy.

Of course, if Py, Py are classes of distributions with Pg C Py then X-solvability on Py implies
X-solvability on Py. Lemma (39) implies that if ¥ X-solves K (in the absolute sense), then ¥
X-solves K on P. Definition (40) thus generalizes the absolute conception of solvability.

(41) ExampLE: Let £, X, and K be as described in Example (30). Let Po C P be any class
of distributions such that for all i € N, glb{P(d;) | P € Po} > 0. Then K is X-solvable

on Pg.

A recursion-theoretic analogue of the contrast between Examples (30) and (41) appears in
[Osherson et al., 1986¢c, Prop. 10.5.2.A]. Further analysis is provided by [Angluin, 1988].

8.3 Comparison with absolute solvability

Examples (30) and (41) show that absolute and probabilistic solvablility do not coincide for
arbitrary collections of structures. However, for elementary collections of structures things are
different. In this case the same concept of confirmability (Definition (34)) governs solvability
in both the absolute and probabilistic senses. This is revealed by the next two lemmas, which
parallel (35) and (36). The first is an immediate consequence of (35) and (39).

(42) LEMMA: Let a %9 subset X of Lgsen be given. Then there is an oracle machine M such
that for all T C Lep, if X is confirmable in 7 then M7 X-solves mod(T) on P.
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(43) LEMMA: Let X C Lgepn be given. Then for all P € P and T C Lgep, if mod(T) is
X-solvable on P then X is confirmable in T'.

Lemmas (42) and (43) directly yield the following proposition.

(44) ProrosITION: Suppose that X C Lgep is ¥9. Then there is an oracle machine M such
that for all P € P and T C Lgep, if mod(T) is X-solvable on P then MT X-solves
mod(T) in the absolute sense (hence M7 X-solves mod(T) on P, as well).

As a corollary we obtain:

(45) CoROLLARY: Let 6 € Lyep, be given. Then for all T C Ly, the following conditions are
equivalent.

(a) mod(T) is {8, —6}-solvable.
(b) mod(T) is {6, ~0}-solvable on P.
(c) For some P € P, mod(T) is {8, —60}-solvable on P.

(d) @ is equivalent over T' to a Boolean combination of existential sentences.

9 Third paradigm: Solvability with specified probability

So far in our discussion we have considered the natural-nonnatural boundary to be sharp. A
more liberal attitude would define the natural languages as those for which there is some positive
probability of successful acquisition by children, and recognize that different members of this
class are associated with different probabilities. Such is the approach of the present section.
We preserve the assumption of a sharp distinction between success and failure in any given
environment, but allow the class of environments that lead to success to have measure between
0 and 1.

Formulation of this idea requires reflection about the case in which success is not achieved. In
particular, we rely on the following hypothesis, which is substantive but strikes us as plausible.
When the acquisition process breaks down, we assume that the child fails to converge to any
grammar, rather than stabilizing to an incorrect one.

It may be interesting to view the foregoing hypothesis from a normative perspective (that is,
independently of the empirical question of its veridicality for children). A scientist who solves
a given structure with small probability is worse than useless if he exhibits high probability of
misleading an external observer. In particular, it is misleading to converge to a false theory; for
in this case the mistaken theory appears to be held with confidence, and risks being accredited.
If the probability that the scientist misleads us this way is high, and the probability of genuine
success low, it might be better to show him no data at all.

9.1 Definitions and principal theorem

These considerations suggest the following definitions.
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(46) DEFINITION: Let scientist ¥, structure § and environment e for S be given. ¥ is
misleading on e just in case ¥ converges on e to 6 € L4, such that S [~ 6.

Given X C Lgen, if ¥ X-solves structure S then ¥ is not misleading on any environment for S.
Definition (46) is inspired by the concept of “reliability” from the recursion theoretic literature

(see [Blum & Blum, 1975]).

(47) DEFINITION: Let 7 € [0,1], X C Lyepn, Po C P, and scientist ¥ be given.

(a) Given structure S, we say that ¥ X-solves S on Py with probability r just in case
the following conditions hold for all P € Py.

i. The set of environments for S that ¥ X-solves has P-measure at least r.14

ii. The set of environments for & on which VU is misleading has P-measure 0.

(b) Given collection K of structures, we say that ¥ X-solves K on Py with probability
r just in case ¥ X-solves every & € K on Py with probablity . In this case, K is
said to be X-solvable on Py with probability r.

Clause a-ii of the definition embodies our hypothesis that acquisition failure results in nonconver-
gence. On the normative side, it renders useful any scientist whose chance of success is positive.
In particular, the hypotheses of such a scientist lend themselves to aggregation within a larger
scientific community (see [Jain & Sharma, 1990a, Osherson et al., 1986a, Pitt & Smith, 1988]
for discussion of aggregating scientific competence).!®

Definition (47) generalizes the earlier paradigms. This is shown by the following lemma,
which follows immediately from our definitions.

(48) LEMMA: Let P € P, scientist ¥, X C Ly, and structure S be given. If either

(a) ¥ X-solves S or
(b) ¥ X-solves S on P

then ¥ X-solves structure S on P with probability 1.

The present conception of scientific success has a “zero-one” character, as revealed by the
following proposition.

(49) ProOPOSITION: Let X C Lgen, Po C P, and collection K of structures be given. Then K
is X-solvable on Py with probability greater than 0 if and only if K is X-solvable on Py.

From Proposition (44), Corollary (45), and Proposition (49) we have the following immediate
corollaries.

14Recall from Section 8.1 that the measure of a set of environments is defined via their underlying D-sequences.

15We note that the aggregation problem is distinct from “team learning” in the sense of [Daley, 1986,
Jain & Sharma, 1990b, Pitt, 1989]. The latter paradigm requires only that a single scientist arrive at the truth,
not that divergent opinions be unified into a correct one.
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(50) COROLLARY: Suppose that X C Lge, is 9. Then there is an oracle machine M such
that for all P € P and T C Lgep, if mod(T') is X-solvable on P with probability greater
than 0, then M7 X-solves mod(T) in the absolute sense.

(51) CorOLLARY: Let § € Lye, be given. Then for all T C Ly, the following condition is
equivalent to (a) - (d) of Corollary (45).

(e) For some P € P, mod(T) is {6, ~6}-solvable on P with probability greater than 0.

10 Empirical evaluation

The paradigms discussed above provide at best a crude picture of first language acquisition by
children. We provide a partial list of their deficiencies.

(a) The linguistic data available to children are not adequately represented by the formal con-
cept of environment. The issue of negative information was already noted in Section 6.7,
above. In addition, the concept of probabilistic solvability portrays data as arising via iden-
tically distributed, stochastically independent sampling. It is easy to see that real language
does not arise in this way (for discussion see [Angluin, 1988, Osherson et al., 1986b]).

(b) Except for computability, our paradigms provide no constraint on the class of formal
scientists whereas the inductive mechanisms of children surely operate under severe lim-
itations. At the least, we can assume that children have limited memory for the precise
form of spoken sentences, and that the time devoted to processing any given datum is
recursively bounded. Building these constraints into formal scientists alters the collections
of structures that can be solved.'®

(c) The criterion of solvability is both too weak and too strong compared to actual language
acquisition. It is too strong in requiring selection of # € X that is “exactly” true in the
underlying structure. Since the grammatical theories issuing from normal language acquis-
tion are not likely to be entirely accurate reflections of the input language, more realistic
paradigms would incorporate a suitable notion of “approximate truth” (for discussion of
this notion, see [Kuipers, 1987, Osherson et al., 1989]). On the other hand, solvability is
too weak inasmuch as it imposes no requirements on the number of data that must be
examined before convergence begins. In contrast, the rapidity of first language acquisition
is one of its striking features. Note also that solvability for individual environments is
defined here as an all-or-nothing affair. In reality, children might harbor random processes
that yield only probable success within any fixed set of circumstances.!”

As seen in Section 4, the foregoing issues (among others) have begun to be addressed within
the recursion theoretic tradition in Learning Theory. In contrast, their exploration within a
first-order framework has hardly been initiated.

18 Preliminary work on restricted classes of scientists within the model theoretical perspective is reported in
[Gaifman et al., 1990, Osherson & Weinstein, 1986].
17For an analysis of random processes in learning, see [Daley, 1986, Pitt, 1989].
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11 Concluding remarks

Apart from concerns about first language acquisition, the model theoretic paradigms discussed in
this chapter may be examined from an epistemological point of view. For example, Proposition
(33) indicates that there is an upper bound on scientific competence, at least for elementarily
defined starting points (in the sense of Section 7.2). Moreover, this bound is already reached by
a Turing Machine whose sole recourse to an oracle is to determine the axioms of the background
theory. The theorem might thus be relevant to the thesis 7" according to which human mentation
is computer simulable. Although 7" might imply various bounds on human knowledge or capacity,
Proposition (33) provides one sense in which the scope of scientifically attainable knowledge is
not affected by the status of 7.18 Corollary (50) provides an even stronger sense.

Theorem (33) raises questions about the character of first-order logic itself. To what extent
is the theorem linked to the special properties of the predicate calculus? Are there analo-
gous theorems for stronger logics? Inversely, are all of the deductive consequences of first-
order logic necessary for conducting scientific inquiry, including such inferences as p = pV ¢
(sometimes thought to have an odd character [Schurz & Weingartner, 1987])? Some prelimi-
nary results that bear on these questions are presented in [Osherson et al., 1991b, Section 4],
[Osherson & Weinstein, 1993].

12 Appendix: Proofs

12.1 Proof of Lemma (4)

We restrict attention to scientists that are total functions; that no generality is lost follows from
[Osherson et al., 1986¢, Props. 4.3.1A,B]. Assume that ¥ identifies L but no locking sequence for
¥ and L exists. Moreover assume that ag, a1, as,...is an enumeration of L. We now construct
in stages a special text ¢ for L.

Stage 0: Start ¢ with ag.

Stage n + 1: Suppose that t[mg] has been constructed at stage n. By assumption, this
sequence is not a locking sequence. So, it can be extended by elements of L to some 7
such that either ¥(7) is not an index for L or ¥(7) # ¥(¢[mo]). Let 7 followed by a,41
be the segment of ¢ constructed in the present stage.

It is easy to see that t is a text for L, and that ¥ does not converge on ¢ to an index for L.
Hence ¥ does not identify L, contradicting our assumption.

12.2 Notation

The following notation will be helpful in the sequel. Given D-sequence d and structure S, we
let [S, d] denote the environment for § and d. Given structure S and d € D<¥ of length n € N,

18For discussion of the machine simulability of thought, see [Glymour, 1992, Chapter 13] and references cited
there.
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we let [S,d] denote e[n], where e = [S,d] and d extends d. For example, with S and d as in
Section 6.3, [S,d[3]] is displayed just above Lemma (25) (ignoring the ...). It is helpful to note
that for structures S, U, and d,u € D<¥, [S,d]| = [U, u] iff S restricted to d is isomorphic to U

restricted to 1.

12.3 Model-theoretic locking sequences

In the model-theoretic paradigms the following version of the locking sequence lemma is used. It
has been demonstrated elsewhere in diverse forms (e.g., [Osherson & Weinstein, 1982b, Lemma
B], [Osherson et al., 1991b, Lemma 24]). The proof resembles that for Lemma (4), and we do
not rehearse it here.

(52) DEFINITION: Let scientist ¥, structure S, and d € D<¥ be given. d is a locking sequence
for (¥, S) just in case:

(a) U([S,d]) € Lsen, i-e., ¥ is defined on [S,d], and
(b) for all d’ € D<¥ that extend d, ¥([S,d"]) = ¥([S, d]).

(53) LEMMA: Let X C Ly, scientist ¥, and structure S be given. Suppose that ¥ X-solves
every environment for S. Then there is a locking sequence d for (¥,S). Moreover,
S E ¥([S,d)).

12.4 Proof of Example (30)

Suppose that ¥ X-solves Sp. Then, because Sp |= 6, Lemma (53) implies the existence of
d € D<¥ such that:

(54) for all d’ € D<“ that extend d, ¥([So,d']) = 6.

Choose i € N large enough so that S; |= [So,d]. Let D-sequence h extend d. Then it is easy to
verify that:

55) for all j > length(d) there is d’ € D<¥ of length j such that:
g

(a) d' extends d, and
(b) [Si; hj] = [So, -

By (54) and (55), ¥ converges on [S;, h] to 6. It follows that ¥ does not X-solve §; since S; £~ 6.

12.5 Proof of Lemma (36)

We rely on the following notation.
(56) DEFINITION: Let structure S and d € D<“ be given.
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(a) The set
{ ™ € Lform | 7 is universal, var(r) C domain(d), and S |= 7[d] }
is denoted by V-type(d,S).
(b) The set
{ ™ € Lform | 7 is existential, var(r) C domain(d), and S |= 7[d] }
is denoted by 3-type(d,S).

Let scientist ¥, X C Lyen, and T' C Lsep be such that ¥ X-solves mod(T). We suppose that
T is satisfiable and X # @ (the other cases are trivial). By Lemma (53) choose d € D<¥ and
0 € X such that:

(57) (a) d is alocking sequence for (¥,S), and
(b) ([S,d]) = 0.
It is sufficient to show that there is ¢ € Lgey, such that:
(58) (a) ¢ is of form 3V,

(b) S = ¢, and
(c) TUu{p} 0.

(59) FacT: Suppose that U € mod(T') and sequence u are such that length(#) = length(d)
and 3-type(u,Ud) C I-type(d,S). Then U |= 6.

Proof: Suppose that U, u satisfy the assumptions, and let u’ extend @. Let y € Lform be the
conjunction of the basic formulas in [/, u']. Then U = Iziengtn(a) - - - Iiengenar)—1X[4]. Hence,
because 3-type(a,U) C I-type(d,S), S |= I iength(a) - - -Hmlength(d')—lX[J]- Hence, some extension
d' of d of the same length as W satisfies [S,d'] = [U,u']. So, by (57)a, ¥([U,u']) = ¥([S,d]) =
U([8,d]). We infer immediately that:

(60) @ is a locking sequence for (¥,U).
From the same equality (with «/ = @) and (57)b, we obtain:

(61) ¥([U,u]) =6.

Finally, (59) follows from (60), (61) and the assumptions that & € mod(T") and ¥ X-solves
mod(T). B

Using (59), we now show that:

(62) Facr: T UVY-type(d,S) = 0
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Proof: By the Léwenheim-Skolem theorem it is sufficient to show that # holds in any countable
. model 4 € mod(T) in which V-type(d,S) is satisfied by a sequence @ of the same length as d. So
assume that 2/ and @ are such a model and sequence. Then 3-type(4,U ) C 3-type(d,S). Hence,
by (59), 8 holds in /. B

By compactness there is a finite subset Il of V-type(d,S) such that
(63) TUIl =0

To witness (58), let ¢ be the existential closure of the conjunction of II. Then, ¢ can
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