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Abstract

In this paper, we introduce a general technology, called taming, for finding well-
behaving versions of well-investigated logics. Further, we state completeness, decid-
ability, definability and interpolation results for a multimodal logic, called arrow logic,
with additional operators such as the difference operator, and graded modalities. Fi-
nally, we give a completeness proof for a strong version of arrow logic.

1 Taming

In this section, we argue that it is important to find nice (complete, decidable, etc.)
versions of logics, and introduce a technology to achive this goal.

1.1 Why to tame?

There are interesting and well-investigated logics that do not behave in a nice way in
some respects. Examples are the undecidability of classical first-order logic, FOL, and the
incompleteness and undecidability of several versions of arrow logic, AL, cf. Def.2.1.

One may argue that some of these features are necessary, e.g., in FOL we can build up
whole mathematics, so FOL must have a high complexity. However, FOL has several other
applications when decidability would be a desirable property. For instance, [8] proposes
relativized versions of FOL as “modal fragments” of classical logic. These relativized
versions have nicer properties than FOL itself, cf. [20].

Our other example is arrow logic. AL as defined in [9] is intended to be the core of
logical systems for reasoning about dynamic aspects of the subject matter of our thinking,
e.g., properties of processes, actions and programs. Thus one of the basic intended areas
for applications of AL is computer science. There decidability of AL is clearly a desirable
property. The most interesting connective of AL is composition, and if it is an associative
operator, then AL is undecidable. Moreover, any non-trivial extension or strengthening
of associative AL is undecidable, cf. [3]. Thus it is natural to consider non-associative
versions of AL. Indeed, most of them are decidable and complete, cf. below.

On the other hand, we would like the expressive power of the nice logic to be rather
large. To achive this, one can strengthen the logic by introducing new connectives without
losing the nice properties. Below we will give examples how to do this.



1.2 How to tame modal logics?

To answer this question we should understand what causes the undesirable properties of
various modal logics.

Let L(K) be a modal logic defined by a class K of Kripke frames. We can define a first-
order language using the accessibility relations R, of K as n + l-ary predicates for every
n-ary modality ¢ of L. We take all the substructures in the first-order model-theoretic
sense of elements of K, cf. [11]. Then we get a class SubK of frames. We call the logic
L(SubK) the core of L(K). If we consider the universal first-order theory of K, then it
coincides with that of SubK. And we get rid of the existential frame conditions of K,
which may be useful, cf. below. See also [10].

There are several reasons to consider L(SubK). First, L(SubK) is relatively close
to L(K), since all universal frame conditions are preserved. Second, in many cases, the
existential frame conditions are responsible for the unnice behaviour. So there is a chance
that L(SubK) has nicer properties than L(K). Let us give two examples.

(1) Consider classical first-order logic as a modal logic, cf. [25] and [27]. Then the frame
condition corresponding to the commutativity of the quantifiers Jv;3v;¢p — Jv;3v;¢ is

Vz,y, z((Rjz, z & Riz,y) = 32'(Riz, 2’ & Rjz',y)).

In [20], it is argued that the above condition is the reason for undecidability of FOL. In
[20] and [16] there are several decidable logics lacking this condition.

(2) Our other example is arrow logic. If we consider the associative version of AL, then
the frames satisfy

Vz,y,z,u,v((Cz,y, 2 & Cy,u,v) = Jw(Cz,u,w & Cw,v, 2))

corresponding to (pe))ex — pe(ey). Associativity is the reason for both undecidability
and incompleteness of associative AL, cf. [1], [3] and Thm.3.2 below.

Thus L(SubK) may be a nice logic. Moreover, if we consider the class Alg(L(K))
of algebras® corresponding to the logic L(K), cf. [6] and [7], then we can get the class
Alg(L(SubK)) by a well-known and well-investigated operation called relativization, cf.
[13]. In many cases, this yields a class of algebras with nicer properties than the original
class, reflecting the fact that L(SubK) has nicer properties than L(K) does.

Although this procedure described above may yield nicer logics, usually it is not satis-
factory in itself. The situation is like taming a lion by pulling out all of its teeth. That is,
L(SubK) may be remarkably weaker than L(K). For instance, there may be connectives
that are not definable any more. The larger expressive power has obvious advantages. Be-
side that, the stronger logic may have nicer properties as well. For instance, the existence
of the universal modality ensures that the logic has a deduction term, i.e., deduction the-
orem holds. See [24] for more detail and motivation for strenghtening. Thus, the problem
of strengthening L(SubK) naturally arises.

We will show two ways to do that. First, we may try to find a class K’ of frames such
that K C K’ C SubK and L(K') still has nice properties. In this way we may get back
some of the expressive power of L(K). Example is pair arrow logic, cf. below.

The other way of strengthening is to introduce new connectives to the logic without
losing the nice properties. Examples are the universal modality <, the difference operator
D, and the graded modalities (n) that can be added to PAL and to PALy, ;3 without losing
decidability, cf. Thm.3.4 below.

In case of modal logics, this class can be defined as the class of subalgebras of products of complex
algebras.



2 Taming arrow logic

First we give the definitions of several versions of arrow logic. We will concentrate on its
pair version and tame it. For more on arrow logic see [9], [16], [17] and [26].

Definition 2.1 Arrow logic, AL, is defined as follows. Its connectives are the Booleans,
the identity constant id, a unary connective ® called converse, and a binary connective e
called composition. The set of formulas is built up in the usual way using a denumerable
set of parameters (or propositional variables).

A structure (W, C,F,l) is called an an arrow frame if W is a non-empty set, | is a
unary, F is a binary, and C is a ternary relation on W. An arrow model is an arrow
frame together with a valuation v assigning value to atomic formulas. Truth of a formula
¢ at a world w in a model (W,C,F,l,v), in symbols w|,¢p, is defined as follows:

o wll,p & owe v(p) for propositional variable p,
def
e wl,—p & not wl-,e,

def,
o wl o A% ES ul o &l
o wlyp o £ @0, 0" € W)Cw, w0 & w0 & w9,

o wll-, ®p PN (Fuw' € W)Fw,w' & w'|-, ¢,

e wl,id & .
Validity of a formula in a model, (W,C,F,|,v) = ¢, and the (global) semantical conse-
quence relation, I' |= ¢, are defined in the usual way:

(W, C,F,1,0) = o €5 (Vw € W)uwl|l,

and T |= ¢ iff in every model validating T, ¢ is valid.?

Pair arrow logic PAL is defined as follows. Its syntaz is the same as that of AL. A
structure (W, Cw,Fw,lw) is a pair frame if the following holds. The universe W is a
binary relation W C U X U for some non-empty set U, called the base of the frame, and

the accessibility relations Cyy, Fw, and lyw are relational composition, relation converse,
and identity restricted to W. That is,

L CW<$7:E,>7 <y7yl>7 <z7zl> g T = y & m, = ZI & y, = z}

def
i FW(‘TaQ:I)? (y,y’) é T = y’ &' = Y,

o ly(z,z') &y =o',

PAL,y denotes the square version of PAL, where the universes of the frames are Carte-
sian squares W =U x U.

Let s,r,t abbreviate ‘symmetry’, ‘reflexivity’ and ‘transitivity’, respectively, and H C
{r,s,t}. The logic PALg 1is defined as PAL with the following modification. A frame for
PALg is a binary relation W satisfying the conditions in H. Thus for H = (), PALy =
PAL. We will call these logics the relativized versions of arrow logic.

2Note that the semantical consequence relation can be defined locally, i.e., using truth at a world instead
of validity in a model as well.



Let us consider the strongest pair arrow logic PALs,. In the above definition of PAL,,
we required that the universes of the frames are Cartesian squares. Transitivity of the
universe ensures that composition is associative, i.e., the following is a valid formula:

(pog)ex < pe(pey).

Associativity causes both incompleteness and undecidability of PAL, cf. [1] and [3]. Thus,
to find nicer versions of PAL we should apply the “non-square approach”, i.e., allow frames
with non-square universes.

The core of PAL,, is the completely relativized pair arrow logic PAL, cf. [16]. Since we
got rid of the existential conditions by relativization, associativity does not hold in PAL.
To see more clearly why associativity does not hold in (many of) the relativized versions

of arrow logic, we introduce the following notation: let [¢] &ef {we W : wll,¢}, and for
XY CW, XowY ¥ {(w,w') € W : Ju"((w,w") € X & (w",w') € Y)}. Then, in a
model for PALyg with universe W C U x U,

[o e 4] = [el ow [4] = ([¢] cvxv [¥]) N W.

That is, to get the meaning of composition in relativized models, we have to intersect
the unrelativized meaning with the universe of the model. And there are non-transitive
relations W such that (w,w’) € W, and for some z, (w, z) € [¢] ow [¢] and (z,w') € [x],
while [1] o [x] = 0. That is, [( s ) o x] # 0 = [0 (4 » X)]-

Although the relativized version PAL behave much nicer than the square version
PALgg, cf. Thm.3.2, its expressive power is remarkably weaker. Applying the first tech-
nique of strengthening we may consider pair frames with reflexive and/or symmetric uni-
verses. Then we get the logics PALy (H C {r,s}). These logics still have the nice
properties, cf. Thm.3.2.

In PALy, there are connectives that are not definable in PALy (H C {r,s}). Consider
the universal modality < interpreted as:

[©0] ¥ {we W : (T € W' € [¢]}.

In PALy,, ¢ can be defined as T e p @ T while in PALg it is not definable, cf. [2]. The
< is really useful, since a deduction term is definable using <, cf. [24].

To strengthen our relativized logics, we may re-introduce connectives which were defin-
able in the square logic, or we may even add new connectives. We will add the difference
operator D to PALg, obtaining PAL}d}ﬂ . The interpretation of D is:

[Dy] & {w e W : (Ju' € W)w # v’ & w' € []}-

Note that Dy is definable in PALs, by (T @ p e —id) V (mide p e T), cf. [26], and that O is
definable by D: Dy V ¢. We will also add the so-called graded modalities (n) for n € w\ 1:

ar [ Wit [le]| 2 n
[(m)e] = { ®  otherwise.

We will denote this new logic by PAL%ad. Note that (n) is definable in PAL,, iff
n € {1,2,3}, cf. [16], and that D and (1), (2) are definable by each other. For moti-
vation concerning graded modalities, their application in computer science, epistemic and
probability logic we refer to [14].

We will prove that adding D to PAL, ;3 does not ruin completeness, cf. Thm.3.3. The
same holds for decidability, and we can even add all the (n) to PALy (¢t ¢ H) without
losing decidability, cf. Thm.3.4.



Let us conclude this section with some remarks.
Note that, for n > 1, (n) is not a modality in the following sense: it does not distribute
over disjunction, i.e., the following is not a valid formula:

(n)(p V) < ((n)e V (n)y).

However, we can add modalities <,, to PALg such that the two logics become equivalent,
cf. [5]. The interpretation of <, is:

det | W if (Fwy,...,wp_1 € W)(Vi € n)w; € [p;] & (V] # 1)w; # w;
[On(p0; -5 on-1)] = { 0 ot](nerwise. . : Lo e (7 7 i 7w,
It is easy to see that <, distributes over disjunction in each of its argument.

As we mentioned above, there are relativized versions of FOL that behave nicely.
We will not deal with this problem here. However, FOL, the 3 variable fragment of FOL
with binary predicates is equivalent with PAL,g, cf. [13]. Thus, whenever we obtain results
about PAL,,, these results apply to F’ OL:Z,, as well.

3 A Survey of Results

In this section we collect results available about relativized and strengthened versions of

arrow logic.
First we define what we mean by a Hilbert-style inference system or calculus. For the

other metalogical notions we refer to [6], [7], [11] and [16].

Definition 3.1 The set of formula schemes is defined as the set of formulas using a set
A, (n € w) of formula variables instead of the set of parameters. An instance of a formula
scheme is a formula given by uniformly substituting formulas for the formula variables.

An inference rule s
B,,...,B,

By

with formula schemes By,...,B,. An instance of an inference rule is given by uniformly
substituting formulas in the formula schemes occurring in the rule.

By a Hilbert-style calculus or inference system, usually denoted as b, we mean a finite
set of formula schemes, called axiom schemes, and inference rules.

Let T'U {p} be a set of formulas. We say that ¢ is derivable from T' by the calculus -,
[ & o, if the following holds. There is a finite sequence of formulas (g, ..., pn) such that
Yn 15 @ and Vi €n

e p, el or
e (; is an instance of an ariom scheme (an axiom for short) of F or

e there are jg,...,Jjr <t and an inference rule of - such that ﬁm%%k 18 an instance
of this rule.

Given a logic and its semantical consequence relation =, we say that - is strongly sound,
and strongly complete, respectively, for = if the following holds:

e I'Fp=Tkoy,
eI'Ep=TFyp



for any set T' U {¢p} of formulas. When T is empty, we use the adverb weakly instead of
strongly.

Since the frames of PALy, ;11 are disjoint unions of frames of PALs,, the two logics are
equivalent. Thus all the (negative) results about PALy, s 1) below apply to PALg, as well.

The various parts of the following theorem have been proven by H. Andréka, R. Kramer,
R. Maddux, M. Marx and I. Németi. For precise reference we refer to [16].

Theorem 3.2 Let H C {r,s,t} be arbitrary. Then
1. PALg has a strongly sound and strongly complete Hilbert-style calculus iff t ¢ H;
2. PALg 1s decidable iff t ¢ H;
3. PALg has the Craig interpolation property iff t ¢ H;

4. PALp has the Beth definability property iff t ¢ H.

We prove the following theorem in the next section. An algebraic proof can be found in
[18].

Theorem 3.3 For H = {r,s}, PAL}"}ﬁr has a strongly sound and strongly complete Hilbert-
style calculus.

We conjecture that the above theorem remains true for any H C {r,s}. For the case

t € H, [1] gives a negative answer.
The next theorem is due to H. Andréka, Sz. Mikulds and I. Németi, its proof can be

found in [4].

Theorem 3.4 The graded logic PAL%ITad and the difference logic PALgﬁ are decidable iff
t¢ H.

Unfortunately, the Craig interpolation and Beth definability propertles are not preserved
after strengthening. M. Marx, I. Németi and I. Sain showed that PALH and PALgm‘i do
not have the above two properties for any H C {r, s, t}, see [16].

4 Proof of the Completeness Thorem

Below, we will give an axiomatization for the class of reflexive and symmetric pair frames
with the difference operator KD"% .. From this, by a standard modal-logical argument,
it follows that there is a strongly sound and strongly complete calculus for the arrow logic
PALf’ﬂ’ ; defined by this class.

We will use the fact that the logic PALy, 5y has a strongly sound and strongly complete
calculus, cf. Thm.3.2. Let K7¢ .o denote the class of symmetric and reflexive pair frames.
The following set of formulas axiomatizes K¢ setRS, cf. Prop.4.1 below.

(A1) ((pAid)etp)ex < (pAid)e (1 ex)
(A3) peid

(43) ®®p < ¢

(A1) B(pey) « ®pep

(45) ®pe-(pey) — -1



Now we enumerate the frame conditions corresponding to the above arrow-logical formulas.

(C1) Vzyzv(Czyz&Czvz&lv <= Czyz&Cyvy&iv)

(Cy) VzIy(lz & Czzz)

(Cy) Vzyz(Cayz &lz =z =1y)

(Cs) Vz3ly(Fzy & Fyz)

(Cy) Vzyz(3w(Frw & Cwyz) <= Jy'2'(Fy'y & F2'z & Czz2'y'))
(Cs) Vzyzv((Czyz&Fyv) = Czvz)

Define K¢k o o {F=(W,C,F,l): F = (C1) — (Cs)}. For K a class of frames we use ZigK

to denote the class of all zigzagmorphic images of members of K, for the definition of
zigzagmorphism (under the name of p-morphism) we refer to [12].

Proposition 4.1 K'¢he = {F =(W,C,F,1) : F = (A1) — (45)} = ZigKT% .o
Proof: This follows from the proof of Theorem 5.20 in Maddux [15]. qed

Consequences. If an arrow frame satisfies conditions (C1) — (Cs) then there are three
total functions living in this frame (cf. Prop.4.2 below). They are defined as follows.

def,

fr = <~ Fzy
=y N Cxyz & ly

T =1y &L Czzy & ly
So, fz gives us the converse arrow of z, and the functions z; and z, (I for left and r for
right) give us the left and the right “endpoints” of an arrow.

It is convenient to have explicit symbols in our language corresponding to the two
defined functions. Define s} > (idAp) e T and sY ¢ < T e (idAg). Also define their
conjugates dom and ran as follows: domy < (idA(p @ T)) and ranp < (IdA(T e ¢)).
Their meaning is given by the following equations. This is easy to see by writing out the

definitions.
[si¢] = {z:z €[4}
[dom¢] = {zi:z€[¢]}
[S¢] = {z:z €[¢]}
[rang] = {z,:z€[¢]}
[® ¢] {z: fz € [¢]}

Proposition 4.2 Every arrow frame which satisfies the conditions (C1) — (Cs) also sat-
isfies conditions (Ty) — (T5) below.

(To) f, ()1 and (.), are total functions and f is idempotent
(Ty) lz=z=f(z) =z =2,

(T2) =z = (fz), and z, = (fz);

(T3) Coyz=m=y&yr=2& 2 =2,

(Ty) Vzyzv(Czyz&Fzv = Cyzv)

(T5) Vzyz(Czyz & lz = Fzy)

Proof: Cf. [16]. qed



Axioms for D on pair—frames.

¢ ADy — D(y A Do)

(Cs) Rzy = Ryz Ag)
A7) DDy — (¢ V Dy)
Ag)
Ayg)

(C7) Rzy & Ryz =z =z or Rzz
(Cs) Fzy = (z =y or Rzy)

(

(

( ®p — Op
(Cy) Czyz= (z =y or Rzy) & (z = z or Rzz) E

(

peh) = CpAOY
Aro) sh(dom(p e domi)) — g e VY Drang

(Cw) zi=v & yr = 21 = Czyz or Rz, 2,
A11) Dy « s} Ddomy V s Drang

(Cu1) Rzy <= Rz or Rz,y,

Consequences. In the proof of the lemma below, we will use that the following theorems
are derivable from conditions (C1) — (Cip). Conditions (D1) and (D3) are just variants of
(C10). (D3) and (Dy) express the fact that if z; = y; and z, = y, and one of the two pairs
is R-irreflexive, then = equals y.

Proposition 4.3 The following theorems follow from conditions (Cy) — (Cio),

(Dl) -Rzyy; & yr = 21 & 2, = z, = Cxyz (D3) =y & Rz,y, >z =y
(D) z =y & “Ry,2z; & z, = z, = Czyz (D) Roiy&z,=y.=>z=1y

Proof: Use (C1p),(Cs),(T4) and (T3) to show (D7) and (D). Assume the antecedent of
(D3). Use (T1) and (T2) to derive that (z;); = z; & —Rz,(fy); & (fy)r = (z1)r. Then (D3)
implies that Czjzfy and (Ts) that ffy = 2. But then, idempotence of f implies z = y.
(Dy) follows easily from (Dj3). qed

Define the following class of arrow frames expanded with a binary relation R:
KDjshs & {F=(W,C,,L,R) : F = (C1) — (Cn)}

where R interprets D. That is, in a model with valuation v,

def.
z|-, Dy < (Jy € W)Rzy & yll-, 0.

Proposition 4.4 The calculus defined by the K-azioms®, (A1) — (A11), and the rules
modus ponens and universal generalization is strongly sound and strongly complete with
respect to the arrow logic defined by the class KD'$he of frames.

Proof: This follows from the Sahlqvist form of the axioms, cf. [16] and [25]. qed

The main lemma

Let (AU) denote the frame condition (z # y = Rzy).

Lemma 4.5 (i). Each F € KD §hg consists of a disjoint union of frames satisfying (AU).
(ii). FEach F € KDIfhg which satisfies (AU) is a zigzagmorphic image of some G €
KDjetrs-

Proof: (i). Let F=(W,C,f,1,R) € KD'¢,q. Define a binary relation = on W as follows

xEyggy:yVRzy

3This set of axioms includes enough propositional tautologies, and the formulas ensuring that the
modalities distribute over disjunction.



Conditions (Cg) and (C7) imply that = is an equivalence relation. We denote the equiv-

alence class of = by z def {y € W : z = y}. Define for each equivalence class a frame
7 (z,C',f',I',R’) such that the relations are the restrictions to Z. We claim that each
Fz E (AU) and F is a disjoint union of the system of frames {F; : € F'}, by which we
prove part (i) of the lemma. The first part of the claim is immediate, for the second it
suffices to show that each F; is a subframe of F generated by z, which is precisely the

point of conditions (Cg) and (Cy).

(i1). The proof of part (ii) consists of two steps, corresponding to the two things which
can go wrong with the accessibility relation of the difference operator. First we show that
F is a zigzagmorphic image of a pair frame expanded with a relation R which satisfies
(AU). In the second step we make the R relation irreflexive, thereby turning it into the
inequality relation. These two steps are given in the schema below.

STEP I STEP II
full language F € KDIfho L Gpair(V) € KD/ fks < Hpair(H) € KD}etps
D-free reduct F* € K:le}las L G* pair (V) € ngiRS

Let F=(W,C,f,I,R) € KDIfhs satisfy (AU). By Proposition 4.1 we may assume that
the R-free reduct F* of F is a zigzagmorphic image, say by function [*, of a pair frame
G*pair(V*) = (V*,Cy», fy=, ly«) for some reflexive and symmetric relation V* with base
U*.

STEP I The problem with the representation G*pei(V*) is that it may contain two
different pairs  and y which get mapped to the same point in F which is not R reflexive.
This will prevent extending the zigzagmorphism [* to one for R as well. We will create a
new pair frame Gpqir (V') where this problem is eliminated.

Define an equivalence relation = on the base U* as follows:

Vu,v €eU*) ru=w &y =vor =RI*(u, u), I* (v, v)

Claim 1 (i). = is an equivalence relation.
(ii). v =v = *(u,u) = I*(v,v)

PROOF OF CLAIM: Immediate because F |= (AU). QED

Define
v U*/=

Vv Y {w/=v/=) €U XU (u,0) € V*}
Define a function | : V. — F as l(u/=,v/=) def I*(u',v") for some v’ € u/= and v’ €
v/=. Note that, by the definition of V, for every pair (u/=,v/=) € V there exist a pair
(u',v') € V* such that u = v’ and v = v'. Hence [ is defined for every element in V. The

next claim states that this is a real definition.

Claim 2 [ is well defined, i.e., for every (u,v),(u',v') € V* if u = «' and v = v’ then
*{u,v) = *(u',v").



PROOF OF CLAIM: Suppose (u,v),(u',v') € V* and v = ' and v = v'. We have four
cases, according to whether v = 4’ and v = v'. If u = ¥’ and v = v/ the statement is
trivial. So assume otherwise:

Case 2: [u # u' & v # ¢v']. Then the definition of = implies that —RI*(u, u), I*(u', u')
and —RI*(v,v)[*(v',v'). Since I* is a zigzagmorphism for the relational operators, this
means that we have =R(I*(u,v));, (I*(v/,v')); and =R(*(u,v)),, (I*(uv',v’)),. Then condi-
tion (C1) implies that —RI*(u,v), *(u/, "), so by (AU), I*(u,v) = I*(u',0').

Case 3 and 4: [u = u' & —RI*(v,v),*(v',v")] and [-RI*(u, u), I* (v’ u') & v = v']. These
cases are solved in a similar way, but now using conditions (Ds3) and (Dy). QED

To finish the first step of the proof, define an accessibility relation Ry on the pair frame

Gpair(V) as Ryzy €5 Ri(z)I(y). Call this frame G = (V, Cy, fy, Iy, Ry), where Cy, fy and
ly are relational composition, converse and identity restricted to V', respectively. The next
claim states that we have accomplished our first goal.

Claim 3 (i). V is a reflexive and symmetric relation.

(ii). 6 Fz #y = Ryzy

(iii). The function [ is a zigzagmorphism from G onto the frame F.

PROOF OF CrLAIM: (i). Obvious.
(ii). We will denote u/= by 4. Suppose =Ry (g, ), (u', ') for some (i, ), (u/,v') € V. We
have to show that 4 = u’ and 7 = v’. We compute:

-Ry (@, ), (u/, ') — (using well-definedness of 1)

=R*(u, v), I*(u',v') @ (using that [* is a zigzagmorphism)

—|Rl ( su), *(u 3 ,u') & =R (v, v),I*(v,0") = (definition of =)
u' and 7 = e

(iii). All steps in this proof, except homomorphism of Cy, are straightforward, since equiv-
alent pairs are mapped to the same place, cf. Claim 2. We show that [ is a homomorphism
for Cy. Suppose (4, 9), (4, w), (w,v) € V. We have to show that Ci(u,),!{u,w),l(w,v)
holds. By definition of V, we have u, v’ v,v',w,w’ € U*, {{u,v), (¢, w), (w',v')} C V*
and v = v,2w = w' and v = v'. By the definition of [ it is sufficient to show that
Cl*(u,v), I*(u',w), I*(w', v') holds.

There are several cases, depending on why the points are equivalent. One easy case
is this. If 4w = v/,w = w' and v = ¢, then, since [* is a homomorphism, we have
Cl*(u,v), *(u, w), *(w,v). In all other cases, for at least one of the three pairs of equivalent
points, the reflexive pairs at those points are mapped to an R irreflexive arrow. For these
cases, we need condition (Cjp) and the fact that F = (AU). The next claim helps out.

Claim 4 If F € KD'¢hg and F |= (AU) then
FE [n=yu&y =2 &2z, =z, & (-Rzy; V -Ry,2z; V —=Rz,z,)] = Cryz

In words: ifz; = y; & y, = z; & z, = z, and at least one of the pairs (z;, y1), (yr21), (27, Zr)
is R irreflexive, then z can be decomposed into y and z.

PROOF OF CLAIM: We have shown already two cases: (Dj) and (D). Use (AU) to prove
all other possibilities from (Cip), (D1) and (D3). QED
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We show with an example how this claim helps us. Suppose =RI*(u, u)l*(v/, ') and w = w'
and v = v'. Because [* is a zigzagmorphism, we have [*(u,u) = (I*(u,v));, and similarly
for the others. This implies that

R (u, v) ) (I (u', w1 & (*(u', w))r = (', o)) & (I (', 0"))r = (I (u, ),
So by the above claim, Cl*(u,v), *(u', w), *(w',v'"). Hence also Cl(u,),(u,w),{w,7v),

which is what we had to prove. QED

STEP II Since the frame G constructed in the previous step is a pair frame, we only
have to make sure that Ry becomes the inequality. Since G = (AU), it suffices to make
the Ry relation irreflezive. Define the following two sets:

BAD o {u € U : Ry(u,u) (u,u) }
CcoOPIES * [/ ,«):u e BAD} U {{v,u'),(u',v) : (u,v) € V,u € BAD & u # v}
Without loss of generality we may assume that COPIES is disjoint from V. Let
H=(H,Cq,fu,ln,#) € KD{4ps

be given by the set H, defined as

H¥ vucorIEs

and Cg, fg, and lg be composition, converse, and identity restricted to H. Define a
function p : H — V as the unique function such that

e p restricted to V is the identity function
o p((u',u)) def (u,u) ifu € BAD
o p({(u,v)) & (u,v) and p((v,u')) o (v,u) if u # v and u € BAD.

The next claim states that for Ry we did enough, That is, we only copied Ry reflexive
arrows.

Claim 5 (i). (Vz € V) : (Ryzz <= there exists a copy of z in COPIES).
(i). (Vz,y € H) : ((z #y & p(z) = p(y)) = Rvp(z)p(y))

ProOF OF CrAIM: (i). Suppose Ry (u,v)(u,v) for some (u,v) € V. If u = v then the
claim holds by definition. So, suppose u # v. Then:

Ry (u, v)(u,v) @

Ry {u, u)(u, u) or Ry (v, 0)(v,0) <=

u € BAD orv € BAD <

(u',v) € COPIES or (u,v') € COPIES.

(ii) Follows from (i), since two pairs of H can only be mapped to the same pair in V' if
they are copies of each other. QED

Claim 6 p is a zigzagmorphism from H onto G.
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ProOF OF CLAIM: Clearly p is surjective. That p is a zigzagmorphism for Ry is im-
mediate by Claim 5. For | and f this is straightforward to check. For C observe that, if
{{u, ), (u,w), (w,v)} C H, then either they all are in V, or one pair is in V and the other
two are in COPIES. QED

With these two steps we have finished the proof, because our original frame F will be a
zigzagmorphic image of the frame H by the function given by the composition of [ and p.
qed

Proof of Theorem 3.3: It is an easy consequence of Prop.4.4 and Lemma 4.5.

In more detail: Soundeness of the calculus defined in the formulation of Prop.4.4
is easy to check. Now assume that I' I/ ¢. For completeness, we have to prove that
I’ £ . By Prop.4.4, there is a frame F € KD:?}QS, a valuation v and a world w such that
(F,v) E T and w|l-,—¢p. Take the subframe F' of F generated by w. By Lemma 4.5,
F' is a zigzagmorphic image of a pair frame G € KD:giRS. Let this zigzagmorphism be

denoted by . Let the valuation v’ on G be defined as:

v'(p) = {w': l(u') € v(p)}

for every propositional variable p.‘ Then the model (F',v) is the zigzagmorphic image of
the model (G, v'). Thus, for every world v’ of G and formula ), w'|l- % iff {(w’)|l-, 4. This
means that (G,v') ET'. On the other hand, let w’ be the pre-image of w, i.e., [(w') = w.
Then w'|l-,,—¢ by w|l-,—¢. That is, we found a pair model witnessing I" f~ ¢. qed
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