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Abstract

This note is on cautious cut elimination for one of Veltman’s might
logics. Syntactically, the logic is presented as an extension of a sequent
system for classical propositional logic (hence: cPL). I show that this
extension preserves the completeness and decidability of cPL. The
proof has cautious cut elimination as a corollary. I also give a rather
general syntactic proof of cautious cut elimination. It states that any
‘base’ logic which has a reflexive, monotone consequence relation that
allows cautious cut to be eliminated preserves cautious cut elimination
when extended to a might logic.

1 Introduction

The last decade has shown a growing concern with aspects of language in-
terpretation which do not fit nicely within the truth conditional paradigm.
This led to the idea that the focus should be on the context change potential
of a sentence rather than on its truth conditions. Well-known systems that
embody this philosophy are the semantics for anaphora, and the dynamic
logics for studying computer programs. In this article I investigate a logic
for the phrase ‘it might be’, which developed within this tradition. It is

*This paper is inspired by a talk of Frank Veltman on completeness theorems for might
logics. The sections 2—4 elaborate on his notes, now published as Groeneveld and Veltman
1994 (section 3). I would like to thank him, Tim Fernando, and Willem Groeneveld for
discussions. An earlier version of the paper was read at the workshop on Proof Theory
and Natural Language (SOAS, London) organized by Ruth Kempson. The remarks from
the audience were helpful. This work is part of the PIONIER project ‘Reasoning with
Uncertainty’ (NWO grant pGs-22-262).



introduced by Veltman (1991) as a first step towards more complex systems
to handle defaults.

Besides more formal concerns, Veltman tries to explain why (la) is an
acceptable continuation of (1) while (1b) is not.

(1)  Somebody is knocking at the door...
a. It might be John...It is Mary.
b. *It is Mary...It might be John.

The example shows that the acceptability of sentences with ‘might’ depends
on the place at which they occur within a text.! There are different ways in
which the phenomenon can be analyzed, but the logic designed by Veltman
does so by:

e interpreting sentences as update functions over a set of information
states;

e introducing a notion of logical consequence which is sensitive to the
order of the premisses.

As a result of this set up ‘might’ can be seen as a kind of metalogical devise:
it tests whether the formula within its scope can be consistently added to
the preceding discourse. If so the information carried by that discourse is
preserved unaltered, but otherwise the ‘might’ sentence yields the discourse
inconsistent.

Formally, the structure sensitivity of a consequence relation can be mir-
rored by a sequent system which uses, e.g., ‘cautious’ versions of cut and
monotony. Groeneveld and Veltman 1994 introduce such sequent systems
for several might logics, and show them to be sound and complete with
respect to what I call concrete models. Their proofs use cautious cut, so
the question arises whether this rule can be eliminated. In this article I
concentrate on the Update-Test might logic, and give a semantic as well as
a syntactic proof of cautious cut elimination. To this end I introduce a new
sequent system, which basically adds two rules for the might operator to a
sequent system for CPL. The semantic proof of cautious cut elimination is
obtained as a corollary to a completeness proof for the system relative to
abstract models for the might logic. Syntactically the result follows from
the fact that any ‘base’ logic that has a reflexive, monotone consequence

!Tense is another important factor: in case of ‘it might have been’ (1b) is acceptable
while (1a) is not.



relation and which allows cautious cut to be eliminated preserves cautious
cut elimination when extended to a might logic.

Some of the results presented here are also proved by Van Eijck and De
Vries (1992) by means of a Hoare logic, and a translation into S5.

2 Syntax and Semantics

In this section I define the syntax and semantics of M, a propositional logic
with formulas of the form ‘M’ corresponding to ‘it might be the case that
¢’. The semantics of M is much like that of the Update-Test might logic
in Groeneveld and Veltman 1994. But the notion of model used is more
general.

2.1 Syntax

The syntax of M is defined on top of a standard propositional language over
a set of propositional letters P := {p;,...,pp,---} - It discerns £y and £
formulas in order to preclude iterations of the might-operator.

Definition 2.1 (syntax)
Ly Fyu=p | -Fy | (F() VAN F())
El Fl = FO | MFO

Semantically ‘might’ is interpreted as an operator which tests for consistency,
a metaproperty. So the fact that M only occurs as an outermost operator
corresponds to a strict division between the object language Ly and the
metalanguage L£;. Below, formulas of the form My are called M-formulas.

2.2 Semantics

The semantics of M specifies the update function associated with a formula,
not its truth conditions. More precisely, a formula ¢ denotes a function from
information states to information states. We therefore have to stipulate,
among other things, which information structures will be used.

Definition 2.2 (information structures, models, updates)
An information structure is a Boolean algebra (hence: BA) together with a
family of operators F; : I — I:?

T:= <IJC7/\7T7Fi>

2Cf. Van Benthem 1991c and Kanazawa 1994a,b for a more general relational notion
of information structure. Also, I use basic facts concerning BA’s without much notice.



A model is an information structure T := (L°, A, T, p, [[p]]I)pep with:

i) p:IxI— I so that?®

i) = {z ifing# L

1 otherwise.

i) [p]* : I— I, for each p € P, so that:

a. ifp] C1 introspective
b. Ifi C j then i[p] C j[p] monotone
c. IfiCj[p] then i Ci[p] stable

Here and elsewhere I omit the superscript T when no confusion is likely. The
argument is placed before the function so as not to disturb the order among
the formulas in case of the sequences introduced below.

With each formula ¢ we associate an update function [p)* : I — I as
follows.

a. i[p] = i[p]

b. i[-p] = i—ily]
c. ilpAy] = ] ANily]
d. iMy] = p(iile])

Finally, a sequence of formulas o1...0y is associated with an update func-
tion: [o1...0,]F : I — I by means of the following induction:

iloy...on]" = (o1 ... on_1]")[on]*

Although the semantics sustains different notions of consequence, we confine
ourselves to the following:

Definition 2.3 (logical consequence)
Let T be a model and let II, 7 be a sequence of L1-formulas.

IT =2 7 iff: 4[I1, 7] = 4[II] for eachi €T
We say that T is a consequence of II—II = 7—iff Il =% 7 for each model T.

3A more abstract interpretation of p treats it as a functional of type I x 1 — T with:

. [ iF@)#£L
w(F,i) = {J_ otherwise

Cf. Kanazawa 1994b for a partial alternative without L.



Some natural questions concerning the consequence relation are: What are
its structural properties? And how does it relate to classical consequence?
That the present relation is sensitive to the order of the premisses is already
shown by (2-3) indicating that permutation no longer holds. But it lacks an
unconditional form of monotonicity too. For instance, due to idempotency
p E p is true in each model. But not so for p, M—p = p. Therefore, left-
monotonicity fails for the sequential variants. Right-monotonicity, on the
other hand, is valid for |=. Cf. Veltman 1991, Groeneveld and Veltman 1994.

Before proving M to be sound, complete and decidable, I discuss some basic
facts of the system.

2.2.1 Basic Facts

Perhaps the most prominent feature of definition 2.2 is that all formulas are
interpreted as operators on a BA. This move to a higher level enables a uni-
form definition of interpretation. But Ly formulas could also be interpreted
as elements of a BA, as they normally are. Proposition 2.4, adapted from
Veltman 1991, shows that the value of [p] at an information state, ¢ in Lo,
can be defined in terms of the element T[p] (cf. also Van Benthem 1989).

Proposition 2.4
For all ¢ € Ly and all information states i: i[p] =1 A T|g].

PROOF Induction on the structure of ¢. For the atomic case we use the fact
that [p] is introspective, monotone, and stable. i

As a corollary to proposition 2.4 we see to what extent the constraints on
[p] are preserved under the definition of [¢]:

Corollary 2.5
For all formulas ¢, [¢] is introspective and monotone. It is stable in case @
18 Ly. O

A further consequence of proposition 2.4 is that [¢] is idempotent: i[p][p] =
ip], for all ¢ and all i € Z. Proposition 2.4 does not hold for M-formulas.
But observe that in that case i{[My] = 7 if i[¢p] # L, while i[M¢] = L
otherwise; due to introspectivity.

Proposition 2.6 collects some useful properties concerning sequences of
formulas.



Proposition 2.6
For all sequences 11, I, and all 1 € Z:

i) L)% =1
i) {11, I = () (v
i) 4[IL, o, IT'] C 1[I, TT]
iv) [I] € [T}
v) a[IT] # L gff i[ITI*] = 4[II§] # L for each initial segment II* of II.

IIy refers to the sequence of Ly-formulas which results from erasing the M-
formulas in II.

PROOF We only prove (v). One direction is clear, so assume 3[II] # L. First
note that no initial segment II* has i[II*] = L. For otherwise i[II] = L by
(i-ii). As to the remaining claim, we discern two cases in an induction on
the length of IT*.

o [T* = A, p with ¢ € Ly. Then: i[A, o] =; 1. i[Ao, ¢] = i[(A, ¢)o]-

o II* = A,Mp. It is an immediate consequence of i[A,¢] = L that
i[II*] = L, which we know to be impossible. So i[A, ¢] # L, and therefore
i{A, Me] = i[A] =i, i[Ao] = i[(A, Mi)o]. 0

We finish this section with a comparison of the models introduced here with
the concrete models defined by Veltman (1991).
2.2.2 Concrete Models

Veltman considers concrete models, which are based on the following as-
sumptions:

e a world is a finite set of proposition letters (the atomic facts that hold
true in it).

e an information state is a set of worlds (the worlds compatible with
this information).

e a model should contain as many information states as possible.

More in particular, Veltman uses models of the form:

(pp(P))c 51, p(P)) H, Hpi]])pE’P
with P a finite set of proposition letters, and [p] defined by:

i[p] =in{j € p(P):p € j}



It is almost immediate that [p] is introspective, monotone, and stable. This
means that concrete models are a special case of the models given by defi-
nition 2.2. By abuse of notation I denote these models by P, and allow P
to be infinite.

Concrete models have the great advantage of turning an Ly-semantics
into one for £1-sentences. Since a world in an information state is equivalent
to an valuation m : P — {0,1}, the concrete models are built by taking
the power of the set of models for cPL. Given the Ly-models, a concrete
model contains all possible information states which can be obtained from
them. By contrast, definition 2.2 allows models of this kind to consists
of a field over a subset of the set of all Lo-models.* Proposition 2.7 has
some properties of updating concrete information states with a sequence I'
of Ly-formulas in terms of their models.

Proposition 2.7
Let i be a state in P. Set m(I') = m(AT), m a valuation. We have:

i) Tl ={meP — {0,1} : m(I') = 1}

ii) i ={mei:m(l') =1}
iil) i) =1 4ff ¢ C T[] iff for allm €1 :m([') =1
iv) T[] = L iff T by

PROOF Immediate from proposition 2.4, and the completeness theorem for
classical propositional logic. O

In case i[p| =1, © accepts ¢ (Veltman 1991, 1). Proposition 2.7 (iii) shows
that acceptance generalizes truth: 7 accepts ¢ iff ¢ is valid in 7. In a sense,
this is dual to 72 # | accepting M. For this is so iff there is an m € 7 which
makes ¢ true.

As a simple application of proposition 2.7, we describe the difference
between (1a,b). Consider p = ‘somebody is knocking on the door’, ¢ = ‘it is
John’, and r = ‘it is Mary’. Since both p and ¢, and p and r are consistent
with each other, there are valuations my and mg with my(r) # mo(r) =1
so that:

(2)  {ma1,ma}p, Mg, 7] = {m1, ma}[p,r] = {ma}
On the other hand, r is inconsistent with the sequence p, q. Therefore:
3) ilp,g,Mr]=1

4A field is a non-empty set of sets which is closed under intersection and complemen-
tation.




for each i. (Of course, the argument assumes p to be about just one person.)

The above facts prove useful in establishing completeness and decidability
for M, which is the topic of section 4. But first I give the sequent system
M.

3 The System M

System M combines a sequent system for the object-language £y with one
for the meta-language £,.5 More in particular, M consists of:

classical logical rules for the constants — and A;
two logical rules for the ‘might’ operator;
monotonicity, contraction, and permutation for £y-sequents;

reflexivity and cautious cut for £i-sequents.

Conventions The letters ¢, 1, x,... vary over Lo-formulas, and A, T, ...
over finite, possibly empty sequences of Ly-formulas. £;-formulas are de-
noted by o, 7, p,..., and finite, possibly empty sequences of such formulas
by II, A,.... The letters may carry sub- or superscripts. The set PROP(II)
consists of the proposition letters used to built II. Il refers to the sequence
of Ly-formulas, which results from erasing the M-formulas in II. A sequent
is a pair (I, o). The sequent (II,7) is derivable iff Il F 7 can be derived
from instances of the axioms and the rules of M.

The classical part

The classical part is restricted to Ly-sequents.

Logical rules

Lo x i TFo1 TFo
CippApax ™ TEerAps

'k I Lotk

| N TR CE=p
Ipbx I
[,m=pbx 70

5 At present, the combination of logics is studied by several people, e.g., by Gabbay
using his LDS framework and his fibring semantics.



Structural rules

AR x mor Lo, Al x ¢ Lo, A x
- A = A contr +—F~ —
Lo, Al x Lo, Al x Ly, 0, A x

perm

The L,-part
Logical rules

ILAFT Aok x (x inD,9)
ILMp, A7 ™ A, My, ' - My

M

Structural rules

IITFo I,o,AbFT .
efl cautious cut

ILAF T

T
cko

With a view to natural language semantics it seems less than ideal to distin-
guish between levels of language. But logically it is proficient. For example,
the completeness and decidability results below directly extend well-known
facts concerning classical logic.

Observe that in the context of the classical structural rules cautious cut,
referred to as ‘ccut’, is equivalent to the familiar cut rule.

T Ap, Ay
AT, A4

cut

To be precise, monotonicity and ccut imply cut, while contraction, per-
mutation and cut imply ccut. This means that My, i.e., M restricted to
Lo-sequents, is a sound and complete sequent calculus for classical logic.

Fact 3.1
Ibm, e T |:cp1 ¥

Fact 3.2
T |_Cp1 p=>TFnoe

As to the L;-part, rule M allows ¢, I', and ¥ to be empty. Therefore,
both rules in (4) are instances of M.

(4) Apby  AFx(xinT,)
A, My F M AT F My

The first rule shows that M generalizes the familiar normality rule.



Proposition 3.3 (soundness)
The system M is sound: if 1 = 7 then Il = 7.

PROOF By way of example, we prove the soundness of rule M. So assume
A, ¢ =L « for each v in I',%. Pick i € Z. In case i[A, p] = L it is clear that
i[A, Mo, I', Myp] = i[A,Mp,T']. Solet i[A, p] # L. By assumption i[A, p] =
iAo, T 4], So i[A, ¢, T',9] # L and hence i[A,T',4] # L. Therefore (*)
i[A, T, My] = i[A,T]. And since i[A, ] # L, also (**) i[A,My] = i[A].
But (*) and (**) imply i[A, Mp, ', M| = i[A, Mg, I']. The choice of i was
arbitrary, so: A, Mo, T' =7 M. O

Corollary 3.4 The relations =p) and |= coincide on Lo-formulas.

PROOF If I' =% ¢ for all Z, then in particular T' =7 ¢, for the concrete
model P. From this, I =, ¢ follows by proposition 2.7 (iii). Conversely:
[ =cpl ¢, (completeness) T' ) ¢, (fact 3.2) T' by ¢, (soundness) ' = ¢.
O

Corollary 3.5
The system M 1is conservative over CPL: IfI' by @ then I' o) o, for I' and
@ in Lg. O

4 Completeness and Decidability

Here I prove that M is complete and decidable for |= along the lines of
Groeneveld and Veltman 1994. The present completeness proof is mainly
semantical, and does not use ccut. So we obtain ccut elimination as a
corollary. A consistency lemma is proved first. It uses the formula o°,
which is ¢ with its initial M erased.

Lemma 4.1 (consistency lemma)
IfTL I 7, then TP [~ AN(Il, 7°),I'] # L, for each initial segment II' of I and
each P 2 PrOP(IL, 7).

PROOF Let P be a model of the relevant kind and set i = T [~ A(Ilo, 7°)].
We use induction on the length of II' = A, 0.

Observe that it is sufficient to prove i[A,0°] # L. For if 0® = o we are
done. Whereas if 0 = My we have: i[II'] = i[A,Myp]| = i[A] # . L. So

10



assume i[A,0®] = L. By the induction hypothesis and proposition 2.6 (v):
i[Ag,0®] = L. According to proposition 2.7 and the definition of i:

_'/\(H0> T.), Ao, o |_cpl

So by classical reasoning and fact 3.2: Ag,0® = A(Ip, 7*). Let II = II', I1".
R yields: Ag,0® F v for each v in IIfj, 7*. Rule M: Ag, 0,11 - 7. (To be
precise: if 0 € Ly, ¢ in M is assumed to be empty, and similarly for 7.) Ly,
proves: Il 7, a contradiction. O

Theorem 4.2 (completeness)

Ifll =7 then 11+ 7.

PROOF Assume I1 I/ 7, and let P D PROP(I, 7). Set i = TP [~ A(Ily, 7*)].
By the consistency lemma and proposition 2.6 (v):

i[T] = i[IIg] = T[~*, o] # L

So: 4[II,7*] = T[-7*,1lp,7%] = L. Whether or not 7* = 7, we get i[lI] #
L =[Il, 7], and therefore: IT [£7 7. O

A check of the above proofs gives some corollaries.

Corollary 4.3
M s sound and complete with respect to the model P, with P the proposition
letters used to generate the formulas. O

Corollary 4.4
Let (I, ) be a sequent and P = PROP(IL,7) : I 7 4ff 1 =7 7. O

Corollary 4.5 (decidability)
The logic M s decidable.

PROOF In order to check whether or not II - 7 it suffices to search the
finitely many states of PROP(II, 7). As soon as a countermodel is found we
know II I/ 7, but otherwise: I - 7. O

Corollary 4.6 (ccut elimination)
The cautious cut rule can be eliminated from M. O

11



PROOF If at all, cautious cut is only used in the classical part, where it is
eliminable. O

I have been careful in presenting M as an extension of classical propositional
logic, and the same can be done for the other might logics in Groeneveld and
Veltman 1994. But to what extent does this approach generalize to other
‘base’ logics? That is, could we frame the above result as a preservation
result of the form: for each complete Ly-logic of a certain kind, there is a
might logic which is complete as well (and similarly for other properties).
The main point seems to be to find a generalization of the concrete models.
I leave this question open. A similar question can be asked with respect
to cautious cut elimination. But here we need not bother about semantical
issues since the result can be proved syntactically. The next section has such
a preservation result.

5 Cautious Cut Elimination

In this section we forget about set-theoretic interpretations and confine our-
selves to syntactic methods. In particular we shall prove the following the-
orem.

Theorem 5.1

Let ¢ be a consequence relation for Lo-sequents which is reflexive, and closed
under monotony and cautious cut. Extend the language to an Li-language as
i definition 2.1, and extend ¢ to 1 for the Lq-language by closure under
the rules M, Ly, and cautious cut. If by has cautious cut elimination, then
s0 has 1.

Note that we need not assume reflexivity for L£i-sequents, since it can be
derived by means of M. This is handy, for it means that in the ccut-free
variant of M reflexivity need not be considered as ‘might’ introducing.

PROOF OF THEOREM 5.1 As in case of Iy, the relation ¢ will contain logical
and structural rules for L£y-sequents. But the use of these rules is blocked
after an application of M or Ly,. This means that if ccut is applied to ccut-
free premisses that part of a derivation will have the following structure:

Aypbgy (yinT,0%) M Ao x (xinI, 7°) (M)
A,Mp,T'Fo (* ) Al My, TV F 7 N
IIFo (Lm) IIo AFT (Lm)
MAF~ ceut

12



Here, (M) indicates that M is applied at most once, and (Lpy)* that Ly, is
used finitely many (possibly zero) times. Given this general form we prove
ccut-elimination as follows.

Let D be a derivation in M. If D is ccut-free we are done. Otherwise
select an occurrence of ccut with cutt-free premisses. If this occurrence lies
within the Ly-part of D we know by assumption how to eliminate it. But if
the ccut is applied to £1-sequents we discern four cases.

Case I: There are no applications of M above the cut. Then, the situation
is:

Iy Fo (Lun)* Iy, ¢, Ag Fo ¥ (L)
Ik m Lo, A1 tm
LAF % een

This can be reduced to:
Iy o o Tlo, i, Ag o 9
HO) AU F 77[] *
ILAF (Ln)

ccut

Here ccut occurs in the Ly-part and is hence eliminable.

Case II: In deriving the right-hand side premiss of the ccut, M is applied
once. The situation is:

Iy Fo 7y (v in Ag,7°) N
Iy o x Loy 0 Mo, Aj F 7 .
IIFx (m) I, x,AFT (m)
A ccut
ILAFT

We discern two subcases. When x occurs in Aj, we obtain a ccut-free deriv-
iation from the left premiss by deleting this occurrence. But when x occurs

in II§ we have IIj = Iy, x, IIj for some IIj (and hence Ay = IIjj, Aj). Then
the above can be reduced to:
My o x Mo, x, 1§ Fo oy (v in Ag,7°)
I, 11, ¢ =y (v in Ag, 7°)
H0> 37 M(107A6 Fr %
ILAFT (L)

ccut

Again, these ccuts are eliminable by assumption.

13



Case III: M is used once in deriving the left-hand side premiss of the ccut.
This case is trivial, for in the right premiss the ccut formula comes from Ly,.

Case 1V: The derivations of both premisses contain an application of M.
Again the trivial reduction of the previous case may apply, but the situation
may also be more interesting:

H6,Q0 I_0 vy (7 in H8a¢) Hba 6’777/) l_0 X (X in AO;T.)
IT), Mo, IT4 - Mv) . 0: g, Mep, Ag - 7 .
', Mo, TT” + My (Tn) I, Mo, I" My, A+ 7 (m)

I, Mg, 1", A F 7 cout

(M)

(M)

This reduces to:

HGaH6’7¢ |_0 X (X in AOaT.)

. - < mon
Mo, o Fox (e in G, 9) Mo, 5,9 Fox (xindo,7)
H6,QD l_0 X (X in HgaA07T.)
0, Mo, II5, A +
e AT L)
' M, II" AF7
This completes the proof of theorem 5.1. O

Note that in reducing the ccut to Ly-sequents the might part of the proof
grows at most n+1 steps, where n is the length of ITjj, ¢ in the last reduction.
The other reductions shorten or do not alter the length of the proof.

If kg in theorem 5.1 is decidable, -1 can be shown to be decidable too.
Except for ccut, the rules of M satisfy the subformula property. So the
following algorithm to check whether or not II - 7 is recursive:

i) If 7 € Ly check whether ITg ¢ 7.
i) If 7 = Mt check whether ITj), ¢ Fq v for each v in IIf, 9, and each
partition IT = I, Mg, IT” (y, IIj, or ¢ may be empty).

By assumption I is decidable, so the recipe defines a finite search space with
all possible initial sequents to introduce the M-formulas in II, 7. Therefore,
II 1 7 iff the algorithm finds a derivable Ly-sequent from which II F; 7
can be derived. In particular, since -, is decidable this argument gives a
syntactic proof of corollary 4.5.

14



6 Further Issues

In this section I name two topics for further study. Firstly, one would like
to obtain similar results for formulas with nested occurrences of the might-
operator (cf. Van Eijck and De Vries 1992). As in Veltman 1991 such nestings
are not allowed here, since the reflexivity axiom would then be lost. E.g.,
the formula Mp A —p is not reflexive. One way to go would be to assume
that reflexivity only holds for proposition letters, and to argue that the
formulas which do not preserve this property are somehow inadmissible.
For instance, the example given corresponds to the unacceptable sentence:
it might be p and it isn’t p. Secondly, one may wonder about the minimal
algebraic structure for the Ly-part. For instance, do we retain completeness
and decidability if we generalize the structures to those of the form (I, A, 1)
with A associative and idempotent, and L a left and right neutral element?
Kanazawa 1994b has some results in this direction for a partial version of
‘might’.
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