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Abstract

In [60] N. Belnap presented an 8-element matrix for the relevant logic R with the
following property: if in a implication A — B the formulas A and B do not have a
common variable then there exists a valuation v such that v(A — B) does not belong
to the set of designated elements of this matrix. Below we present a 6-element matrix
with the same properties and prove that the logics generated by these two matrices
are all maximal extensions of the relevant logic R which have the relevance property:
if A — B is provable in such a logic then A and B have a common propositional
variable.

1 Preliminaries. Cr-matrices.

Let a set of propositional variables p,q,r,...be given and let F' be the set of propositional
formulae built up from propositional variables by means of the connectives: — (implica-
tion), A (conjunction), V (disjunction) and - (negation). The Anderson and Belnap logic
R with relevant implication (cf. A. R. Anderson, N. D. Belnap [75]) is defined as the subset
of propositional formulae of F' which are provable from the set of axiom schemes indicated
below, by application of the rule of Modus Ponens (MP; A, A — B/B) and the Rule of
Adjunction ( A, B/A A B):

Al. A—- A

A2. (A= B)—((B— () —(4A—-C())

A3. A—- ((A— B)— B)

A4. (A-(A— B))—(A— B)

A5. ANB— A

A6. ANB— B

A7. (A= B)AN(A—=C)—(A—=BAC)

A8. A— AV B

A9. B— AV B
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A10. (A= B)A(C—B)— (AV(C — B)
All. (AAN(BVC))—= ((AANB)VC)
Al12. (A— -B)— (B — ~A)

A13. A — A

Lemma 1 The formulae listed below are theses of R:
(t1) (p—=q)A(r—s)—=(PAT—gAs),
(t2) (- A(@r—s)—=(pVr—gqVs),
(t3) (pVag—r)—(p—r)
(t4) (P—anr)—=(p—r),
(t5) (p—(g—7)—=(g—(p—r)).

A matriz is a pair (A, V) where A is an algebra while V 5 is a subset of the domain of
A. To the logic R and its extensions we can associate a set of so-called Cr-matrices (cf.
W. Dziobiak [83]); their characterization is given by the following

Theorem 2 (W. Dziobiak (83), L. Maximowa (73)) Let

A = (A,—,A,V,0) be an algebra similar to F and let V5 be a subset of A. Then the
following conditions are equivalent:

(i) (A, Va) is a Cr-matriz,

(i) (A, A, V) is a distributive lattice with A and V as its meet and join, respectively, and
VA is a filter on A with the property: for all a,b € A,aANb = a iffa — b € Vu; and
moreover, the following conditions are satisfied for all z,y,z of A,

() (e=y)<(y—2)—(2—2),

(2) z<(2—y)—9,

(3) 2= (z—y)<e—y,

(c4) (z=yA(z—2)<z—(yA2),

(¢5) (= 2)A(y—2)<(aVy)— 2

(¢6) z—y<y— w,

(e7) -z =u,

where < 1is ordering of the lattice (A, A, V).

Let us add some additional properties of C'r-matrices:

Lemma 3 (L. Maximowa (73)) Let (A, V) be a Cr-matriz and let the relation < be
defined as follows: z<yiffr -y € Va.
Then the relation < satisfes the following implications and inequalities:
(i) fzeVyp thenz —-y<y
(i) ifzx<ytheny—z<z—z
(iti)) fz<ythenz—z<z—y
(iv) = — -z < -z,

Let us moreover quote a lemma and a proposition proved by W. Dziobiak, which are
important for our further investigations. Let (A, V o) be a Cr-matrix and let X C A. By
[X) we shall denote the least filter on A containing X. Moreover, a filter V on A will be
called normal iff Vo C V.

We have first



Lemma 4 (W. Dziobiak (83)) Let A= (A,Vy,) be a Cr-matriz. Then
(i) VA =[{a—a:a€ A},
(i) If A is generated by elements ag, . ..,a,—1 then

va=[; 2, (a—a)

It is known that the set of all Cgr-matrices forms a variety (cf. W. Dziobiak [83])?;
algebras which belong to this variety can be called R-algebras. Observe that (cf. Lemma
4) each R-algebra determines a C'g-matrix. Moreover, the logic R is algebraizable (cf.
W. J. Blok and D. Pigozzi [89]), thus in particular the lattice of congruences of each
R-algebra is isomorphic to the lattice of its normal filters (cf. also W. Dziobiak [83]).

However, the notion of a filter of designated elements plays a fundamental role in this
paper and thus we decided to exercise the notion of C'g-matrix rather than the notion of
R-algebra.

Now we have the following

Theorem 5 (W. Dziobiak, unpublished) FEach finitely generated C'r-matriz has the
least and the greatest element which form a Cgr-matriz isomorphic to the two-element
matriz 2.

Proof: Let us denote by R the variety of Cg-matrices and by 2 the two-element C'g-matrix.
It is known that 2 € R. Let Fr(n) be the R-free algebra over the set n of free generators.
Of course 2 € H(Fg(n)) for each natural n. Thus there exists a normal filter V on Fg(n)
such that 2 = (Fg(n))/V. Since 2 is finite, by the Rival-Sands Theorem (cf. I. Rival and
B. Sands [78]) the filter V is a principal filter, e.g. V = [{a}) for some a. But [{a}) is a
proper normal filter (because 2 is not trivial) thus there exists a b such that b ¢ [{a}) and
in consequence bAa < a, but bAa # a. Thus there exist an element below the element a. It
is easy to observe that there exists exactly one such an element, because 2 = (Fg(n))/V.
Let us denote it by 0. Without any difficulties we can prove that 0 is the least element
in Fr(n); similarly the element 1 = =0 is the greatest element. Now let A be a finitely
generated (e.g. n-generated) C'g-algebra. Of course, A € H(Fg(n)),i.e A = (Fr(n))/V,
thus A must contain 1 and 0.

2 The Belnap matrix Mg.

Denote by Mg the matrix (({0,a,-a,b,=b,a A b,=aV =b,1},—,A,V,=),{a,b,a A b,1})
whose lattice operations A and V are defined here as it is shown in the following diagram:

1 An equational characterization of this variety can be found e.g.in: J. M. Font and G. Rodriguez [90].



and whose operations — and — are defined by the following tables:

— 00 a ~a b =b anNb —-aV-bd 1
0 11 1 1 1 1 1 1
a 0 a -a 0 O 0 -a 1
—a 0 a a 0 O 0 a 1
b 00 0 b b O -b 1
-b 00 0 b b 0 b 1
aANb |0 a —a b =b aAb -aV-b 1
—aV-b|{0 0 0 0 O 0 aANb 1
1 00 0 O O 0 0 1

T -z

0 1
a -a
b -b
aAb|-aV-b

It is not difficult to prove that My is a C'r matrix; it is just the matrix presented by
N. Belnap in [60]. We have changed, however, the symbols used by N. Belnap in [60]; since
the algebra of this matrix is 2-generated, we have reduced the number of basic symbols
to two symbols to make the lattice connections and negation connections in this matrix
more suggestive.
For this matrix the following is true:

Theorem 6 (Belnap (60)) If in A — B the sets of variables of A and B are disjo-
int then there exists a valuation hV such that h(A — B) does not belong to the set of
designated elements of Ms.

To prove this Theorem it suffices to note that the valuation function A" can be defined
as the homomorphic extension of a function v defined as follows: if p; occurs in A then we
put v(pi) = a or v(p;) = —a, and if p; occurs in B then we put v(p;) = b or v(p;) = =b. It
is easy to check that hV(A — B) cannot belong to the set of designated elements of Ms.



Let us observe that this proof is based on the fact that Mg has two disjoint and
<-incomparable submatrices with universes {a,-a} and {b, b}, respectively (they are
isomorphic to the matrix 2, of course).

This observation justifies introducing the following notion. Let (A, V 4) be a Cr-matrix
and let By, B, be subalgebras of the algebra A;let < be the partial order which defines
the lattice of the algebra A. The subalgebras By, By will be called <-incomparable (i.e.
incomparable with respect to the relation <) if for any a,b, if a € By,b € By, then neither
a < bnorb<a?

An implication A — B will said to be a relevant implication if the intersection of
the set of variables occuring in A and the set of variables occuring in B is nonempty;
in the opposite case this implication is said to be non-relevant. Moreover, we will say
that the relevance principle hold for a logic L if L does not contain any non-relevant
implication. Thus Belnap’s Theorem just quoted above states that the matriz Ms falsifies
all non-relevant implications and that if a logic L is contained in the logic determined by
the Belnap’s matrix Mg then the relevance principle holds for L.

The definition of the next notion needs some assumptions. Let Cg-matrix (C, V()
contain two <-incomparable submatrices: (Cy,V¢,) and (Cz, V,). Moreover, let each
non-relevant implication A — B be falsified in (C,V¢) by any valuation h¥ which is
the homomorphic extension of a valuation v such that v(p;) € Cy if p; is a variable
which occurs in the formula A and v(p;) € C; if p; occurs in the formula B. Then the
submatrices (Cq,Vg,) and (C3, Vc,) will be called falsifying submatrices of the matrix
Cpr-matrix (C, V¢).

Lemma 7 (on the matrix Ms) Let C = (C,V¢) be a Cr-matriz. Let < be the partial
ordering relation which defines the lattice of the algebra C and let the algebra C has two
<-incomparable subalgebras A, B with units and zero’s; let us denote by a,-a the unit
and the zero of A and by b,—b - the unit and the zero of B and let a # -a and b # -b.
Then if C satisfies the equalities:

(a = b)=(b—a)=(b— —a)=(~a—b)=-aA~b,

then the submatriz of the matriz C generated by the elements a,b (i.e. the matriz
([a,b]cs Viap)c)) is isomorphic to the matriz Ms.

Proof: Let [a,b]c be the subalgebra of the algebra C generated by a,b. By the as-
sumptions it is known that —a < a,-b < b and moreover the following equalities hold
in C (thus in [a,b]¢ as well): ¢ - a = "¢ = a = ~a — —a = ¢;a — -~a = -a and
b—>b=-b—b=-b— -b=10,b— -b=-b. By the W. Dziobiak’s theorem (cf. Lemma
4. above) the filter Vi, . of designated elements of the matrix ([a, b]c, V(4 4) is the filter
[(a— a) A (b= b))pie = [aAD)aye

The algebra [a,b]c contains, of course, the elements a,—~a,b, =b,—~a A =b,a A =b,—~a A
b,aVb,aV-b,maVb,~aV-b,~(aAb). Since the subalgebras [a]c, [b]c of the algebra C are
two-element <-incomparable algebras, the lattice operations and the operation - reduce
the number of elements of the algebra [a,b]¢ to the following eight ones: a,-a,b,~b,~a A

21t is not excluded that two Cg-subalgebras of a Cr-algebra are disjoint, but <-comparable; cf. e.g. the
subalgebras {1,0} and {a, —a} of the algebra of the matrix Mg

(@]



-b,a A b,maV =b,aV b; the remaining ones from the list above are equal to some of those
eight, €.g. a A2b=—-aAb=-aA-bj-aV-b=-(aAb)etc. It can be shown very easily
that the lattice (with the ”negation” —) of the algebra [a,b]c is isomorphic to the lattice
of the algebra of the matrix Ms.

We will show that if the equalities listed in the Lemma are satisfied by the elements
a,b then the set {a,=a,b,~b,~aA=b,aAb,~aV —~b,aV b} is closed under the operation —
and the ”table of values” for the operation — is just the ”table of values” of the operation
— in the matrix Msg.

To abbreviate the calculations let us denote by 0 the element —a A =b and by 1 the
element aVb; of course, we will sometimes write a — b,b — a etc. instead of 0, if necessary;
similarly, we will sometimes write a V b, 7(a — b) etc. instead of 1.

Let us begin with proving the following useful equality:
1=(01-1)=(0-0)
i.e. the equality
(*)a,vb:aVb—>aVb:(a—>b)——>(a—>b):—|(a—>b).

Proof of (*): Since a - b < a — b,a - b < a — (a — b), (by (t5), Lemma 1)
a<(a—b)—(a—b)ie a<aVb— aVb. Similarly we get b<(a—b)— (a—b),ie.
b< aVb— aVb. These inequalities entail a Vb < (a V) — (aVb),ie. 1< (1 — 1). For
the converse inequality, let us observe that (aVb) — (aVb) < (aVb) because aVb € Vi,
(cf. Lemma 3), i.e. (1 — 1) < 1. Since the De Morgan laws are valid in R,1 —1=0—0.

Now we will fill the "table of values” for the operation —.

a) Values for 0 — z.

1.0 — 0=1.

Proof: Cf. (*) above.

2.0 — —a =1.

Proof: (i) By the Principle of Transposition we have 0 — —a = a — 1, thusa — 1 <1
because @ € Vg ).

(ii) By the proof of (*),a <1 -1, thus 1 < a — 1, and it is the second inequality we
need.

3.0 b=1

Proof: See the case 2.

4.0 —a=1.

Proof: (i) By the Principle of Transposition we have 0 — a = —a — 1. Since —a < a, by
the proof of (*) we have ~a <1 — 1, thus 1 < -a — L.

(i) Since in each C'r-algebra the inequality @ A =y < =(z — y) is satisfied, 0 = 0 A —a <
-(0 — a), thus (na — 1) < 1.

5 0—b=1.

Proof: See the case 4.

6.0—(anb)=1.

Proof: (i) Since aAb < a,0 — aAb < 0 — a (cf. Lemma 3), i.e. (by 4.above) 0 — aAb < 1.
(i) By Lemma 1, (12) we have (0 — a) A (0 — b) < (0 — a A D), thus by 4. and 5. (cf.
above) 1 < (0 — a AD).

7.0 > (anbd)=1.



Proof: (i) By the Principle of Transposition we have 0 — -(a Ab) =aAb— 1. Since
aNb e V[a,b]ca aNb—1<1.

(ii) The inequalities proved in the proof of (*) imply the inequality a A b < 1 — 1, thus
1<anb—1.

8.0— 1=1.

Proof: (i) As in the proof of 4. (cf. above) we have -a < 1 — 1,-b < 1 — 1, thus
—aAN—-b<1—>1,thus1 <0—1.

(i) We have 0 = (@ — b) A(a — b) < ~((a — b) — ~(a — b)) = =(0 — 1), ie.
0<—(0—1),thus0—1<1,andit finishes the proof of part a).

b) The values for ma — 2. The first five cases are obvious.
._|a__->0:—la,-—>(b—>—|a):b—>(l=0.
g — a=ada.

,-1a,-——>_'b=0.

B

.M — a = a.

.aag — b=0.

6. na —aNAb=0. )

Proof: (i) By thesis (¢1) of Lemma 1, (ma — a) A (na — b) < (ma — a Ab), thus
0<-a—aAlb.

By (t3), (ma— aAb) < —a—b,ie —ma—aAbSO.

7.2a — (aAb)=aAb—a=a.

Proof: (i) Since a Ab € Vi, 3y, a Ab—a<a.

Since a Ab<a,a—a<aAb— a,ie a<aAb— a(cf Lemma 3).
8 ~a—1=0—a=1.

Proof: Cf. a) 4.

[ ]

c) The values for -b — z.

1.-b—0=-b—(a—-b)=a—b=0.
2. -b—a=a—b=0.
3.—|b——>—!b:b.

4. =b—a=0.

5.—.b—-—>b:“|b.

6. -b—aNb=0.

Proof: See the the case b) 6.
7. =b— —~(aAD) =0
Proof: See the case b) 7.

8. -b—1=0—-0=1.
Proof: Cf. a) 5.

d) The values for a — z.
l.a—0=a—(b—a)=b—(a—a)=0.
2. ¢ — "a = Na.

3,0,——)"1():0.
4. a—0a=a.
5,a—>b—_—0.



6.a — aANb=0.

Proof: (i) a Ab<bimpliesa —»aAb<a—bie.a—aNb<0.

(i) By thesis (t1) of Lemma 1 we have 0 = (¢ — a) A (a — b) < (a — a AD).
7.a — (aAb)=aAb— -a=-a.

Proof: (i) Since a Ab € Vg4, a ANb— —a < -a.

(i) Since a Ab < a,a — —a < aAb— -a (cf. Lemma 3).

8.a— 1=1.

Proof: (i) @ € Vg ), thusa — 1 < 1.

(ii) By an inequality used in the proof of (*),a <1 —1,thus1 <a— 1.

e) The values for b — z.
.b— 0=0.
b— —a=0.
b— —b=-b.
.b—a=0.
b—b=0b.
6.6 — aNb=0.
Proof: Similar to d) 6.(cf. above).
7.6 — (aAb) = -b.
Proof: Similar to d) 7.
8.b—1=1.
Proof: As in the case d) 8.

AR S

f) The values for a A b — z.
l.anb—0=0
Proof: (ii) Since a Ab € V4., a Ab— 0<0.
(ii) By the inequalities used in the proof of (*),a Ab <0 — 0, thus0 < aAb — 0.
2.aNb——a=a— -(aAb)=a.
Proof: By d) 7.
3.aAb— b= b
Proof: Cf. e) 7.
4. aNb—a=-a— -(aAb)=a.
Proof: Cf. b) 7.
5.aANb—b=0.
Proof: Cf. ¢) 7.
6.aNb—>aANb=aAb.
Proof: (i) a Ab € Va4, thus a Ab— aAb<aAb.
(ii) Since @ A b is the generator of the filter of the designated elements of the submatrix
we consider, a Ab < aAb— aAb.
7.aNb— =(aAD)=—(aAb).
Proof: (i) a Ab € Vg4, thus a Ab — =(aAb) < =(aAb) (cf. Lemma 3).
(i) By the inequality a Ab < a A b — a A b (cf. the proof of the previous equality) we have
aNb<—(aAb) = =(aAb), thus 2(a AD) <aAb— —~(aAd).
8.aNb—1=1
Proof: (i) a Ab— 1 <1, because a A b € Vg ).



(i) We have a Ab <1 — 1 (cf. the proof of (*)), thus 1 <aAb — 1

g) The values for =(a A b) — z.

1.~(aAb)=0=1—anb=0.
Proof: (i) By (#2) (Le
e (—2 (ay/\(b) )=(1e_1_1)11(1112;\ })) d) 6. and e) 6. we have 0 = (¢ — a AD)A (b — aAb) <
ii) By Lemma 1, (#4
g')—‘(g/\b)_)ﬂaia)in((ll/(\lgji\(;/'ehavel —(aAb)<(aVbd)— (aAd)<a—aAb=0.
Proof: Cf. d) 6.
3. =2(a Ab)— -b=0.
Proof: Cf. e) 6.
4. -(a ANb)—a=0.
Proof: Cf. b) 6.
5.-(a ANb) = b=0.
Proof: Cf. c) 6.
g. ﬂ(;l, g\.)b%}-% (aAb)=(naV -b)— (anbd)=0.

roof: (i) Using the same i iti i
ere Vg—’b) _)a;n; 1bn)e.!qua,ht1es asin g) 1.,by c) 6. we have 0 = (na — aAb)A(-b —
(i) (maV-b) = aAb<-a—anb=0.
7. ~(a Ab) = ~(aAb)=anbd.
Proof: Cf. f) 6.
8. 2(aNbd)—=1=0—anb=1.
Proof: Cf. a) 6.

h) The values for 1 — z.
1.1 — 0=0.
Proof: (i) 1 — 0 < 0, because 1 € V[q )
(i) Since by () 1<0—0,0<1—0.
2.1—=a=a—0=0.
Proof: Cf. d) 1.
3.1—--b=0.
Proof: Cf. e) 1.
4.1 —a= 0.
Proof: Cf. b) 1.
51— b=0.
Proof: Cf. ¢) 1.
6.1 —aAl b=0.
Proof: Cf. g) 1.
7.1 = -(anbd)=0.
Proof: Cf. f) 1.
R.1— 1=1.
Proof: Cf. (*),
and it finishes the proof of the Lemma.



3 The matrix Mg.

Denote now by Mg the matrix (({0,a,b,a A b,aV b,1},—,A,V,=),{a,b,a A b,aV b,1})
whose lattice operations A and V are defined as it is shown in the following diagram:

aVb

alb

0

and whose operations — and - are defined by the following tables:

— |0 aAb a b aVvd 1
0 1 1 1 1 1 1
aANb|0 aAb a 0 aVd 1
a 0 0 a 0 a 1
b (0 0 0 Db D 1
aVb|0 0 0 0 aAd 1
1 ]0 0 0 0 O 1

We have the following

Theorem 8 (i) Mg is a Cg-matriz;
(ii) If in A — B sets of variables of A and B are disjoint then there exists a valuation v
such that v(A — B) = 0 in Mg.

To prove part (ii) it suffices to note that the valuation function h¥ can be defined as
the homomorphic extension of a function v defined as follows: if p; occurs in A then we
put v(pi) = @ and if p; occurs in B then we put v(p;) = b. It is easy to check that
hv(A— B) = 0.

Similarly as in the case of the matrix Mg the proof of the property (ii) is based on the
fact that Mg has two one-element (i.e. trivial)> <-incomparable submatrices: {a} and {b}.

3 A similar 6-element Cr-matrix (called “crystal”) was used by P. B. Thistlewaite, M. A. Mc Robbie
and R. K. Meyer in their book [88]. However, the ”negation” operation in the "crystal” is defined in a
quite different way: =a =b and —a = b, thus their "crystal” does not contain trivial subalgebras.

10



Moreo ver, the matrix Mg is the least matrix which has two one-element <-incomparable
falsifying submatrices. Namely, we have

Proposition 9 Let A = (A,V ) be a Cr-matriz and let the lattice of the algebra A be
defined by the partial ordering relation <. Then if A contains two trivial <-incomparable
falsifying submatrices then the matriz Mg is a submatriz of A.

Proof: Let us denote the universes of these trivial submatrices by {a}, {b}, respectively.
Of course, ¢ = —a,b = =b,a — a = a,b — b = b. Let us consider the subalgebra
of A generated by the elements a,b. Of course, it will contain (besides of a,b) at least
the following elements: a V b,a A b,a — b,b A a,=(a — b),=(b — a). It is clear that
(cf. Lemma 4 (W. Dziobiak [83]), see above) the filter of designated elements of this
submatrix is generated by a A b. Since (by the Principle of Transposition) a - b=>5 — a
and @ — b < a,b — a < a (cf. Lemma 3, see above), a — b < a A b, because (by the
assumption that the trivial submatrices {a} and {b} are falsifying submatrices) a — b
does not belong to the filter of designated elements of the algebra A.

In the following we will show that (i) the submatrix of A generated by a,b consists
of the following elements: a,b,a A b,aV b,a — b,~(a — b), (¢7) the element a — b is the
least and the element —(a — b) is the greatest element of the algebra of this submatrix
and (zm) the submatrix in question is isomorphic to Me.

Let us observe first that the following inequalities hold for our elements a,b of the

matrix A:
(1) a<(a—bd)— (a—0b),

2) b<(a—1b)—(a—b),
(3) aAnb<(a—b)— (a—D),
(4) aVb<(a—b)— (a—b),
(5) —(a—=b<(a—b)—(a—0D)
For the proof of (1) and (2) - cf. the proof of the equality (*) in Lemma 7; (3) and (4)
follow from (1) and (2). The proof for (5) is the following sequence
a<(a—b)—=(a—0b) iff (a—=b)<a—(a—0D)
iff (a—b)<a—(a—(b—b)
iff (a—b)<a—(b—(a—0D))
iff (a—b)<a—(=(a—b)—b)
iff (a=1b)<~(a—1b)—(a—b)
iff -(a—b)<(a—bd)— (a—b)).
The inequalities (1) - (5) imply the following

Claim. The element ~(a — b) is an upper bound for the elements a,b,aV b,aAb, and
a—b.

To prove Claim let us note that by the inequalities (1) - (5) (cf. above) the element
(a — b) — (¢ — b) is an upper bound for the elements a,b,aV b,a A b, =(a — b). By the
assumptions concerning the matrix A we have a — b < aAb, so (by (3)) we have the follo-
wing inequality: (e — b) < (¢ — b) — (a — b), thus (¢ — b) — (@ — b) is an upper bound
for the elements we consider. Now it suffices to prove that (¢ — b) = (¢ — b) — (a — b).
Sosince a — b < aAb,aVb < =(a — b), thus =(a — b) € Vo and in consequence —~(a — b)
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is a designated element of the submatrix we consider. It is known (cf. Lemma 3, see above)
that if € V then & — y <y thus =(a — b) — =(a — b) < ~(a — b) and by the Principle
of Transposition we get (¢ — b) — (a — b) < ~(a — b). Now we join the last inequality
with the inequality (5) from the previous Lemma and get ~(a — b) = (a — b) — (a — b).
It finishes the proof of our Claim.

Let us return to the proof of the Proposition. Since - as we just proved - a — b is the
lower bound and —(a — b) the upper bound of this set, we will sometimes denote them
by 0 and 1, respectively. It is clear that the set {a,b,aVb,aAb,a— b,~(a — b)} is closed
under the lattice operations A and V and under the operation —. We will prove now that
this set is closed under the operation — and that the submatrix generated by a,b is iso-
morphic to Mg. To show it we will fill row by row the "table of values” for the operation —.

a) Values for 0 — z.
1.0—0=1.
Proof: Cf. above.
2.(c) 0= (anb)=1.
Proof: (i) (¢ = b) = (aAd) < aVb— ~(a—b) < ~(a— b) (because a Vb € Vyu),ie.
(a—> b)—>a/\b§—|(a—>b).
(ii) Since a Vb < =(a — b),~(a = b) = ~(a = b) <aVb— =(a — b) (cf. Lemma 3), the
Principle of Transposition and the inequality (5) (cf. above) ~(a — b) < (a — b) — (aAb).
3.0—a=1.
Proof: (i) @ — b < a, thus (¢ — b) — (¢ — b) < (¢ = b) — a (cf. Lemma 3) i.e.
~(a—b)<(a—b)—a.
(i) (@ = b) = a < a— ~(a—b) < =(a — b) (because a € V4 ), thus (¢ — b) — a <
4.0 —>b=1.
Proof: As in the case 3.
50—>aVb=1.
Proof: (i) Since aAb € Vo, aAb — =(a — b) < ~(a — b)ie. (a = b) = aVb< ~(a—b).
(ii) We have a Ab < =(a — b) , thus by (5), cf. above, a Ab < —(a — b) — =(a — b), thus
—(a — b) < (a—b) = (aVd).
6.0—-1=1
Proof: (i) Since z — —a¢ < = for all  of A, (¢ — b) = ~(a — b) < =(a — b).
(i) Since (a — b) < =(a — b) (cf. (5) and the proof of Claim, cf. above), (¢ — b) < ~(a —
b) — —(a — b), thus =(a = b) < (a — b) = =(a — D).

b) The values for a A b — z.
1.anb—0=0.
Proof: (i) a Ab— 0 <0, because a Ab € Vy.
(i) We have a Ab < 1 i.e. aANb<(a—=b)—-(a—b)ifa -=b<anb— (a —0D)ie.
0<aAnb—0.
2.aANb—=aANb=aANb.
Proof: (i) Since a Ab € Vp,aANb—=aAb<aAbd.
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(ii) Since a A b is the generator of the filter of designated elements of the submatrix in
question, a Ab<aAb— aAb.

3.aAb—a=a v

Proof: (i) a Ab— a < a because a Ab € Vy.

(ii) Since aAb < a,a—wa<aAb—a by Lemma 3.

4. aNb—b=0b.

Proof: As for 3., cf. above.

5. aAb—aVb=aVb.

Proof: (i) Since a Ab € Vp,anNb—aVb<aVhb.

(i) Since a Ab < aAb — aAb (cf. the part (ii) of the proof of b) 2., cf. above),
aAb < aVb— aVb (by the Principle of Transposition), thusaVb <aAb— aVb.
6.anb—1=1

Proof: (i) a Ab—1<1, because a Ab € Vy.

(i) a A b < =(a — b) = =(a — b) (cf. (5) above), thus =(a — b) < (¢ A b) — —(a — b),
ie.1 <anb- 1.

c). The values for a — .
l.a— 0=0.
Proof: (i) Since a € Vp, a — 0 < 0.
(ii) @ < (@ = b) = (a — b) (cf. (5) above), thusa - b < a — (a = b).
2.a—aANb=0.
Proof: (i) Since b < (aVb),(aVd) —a<b—a,thussa—anb<a—bd
(ii) Byb—>a§b—>aweget(*)b§(b—>a)—>aandbyb—>a§a(i.e.byb—eag
a — a) we have (**) ¢ < (b — a) — a. By (*) and (**) we get aVb < (b — a) — a, ie.
avb < a— =(a—b),thusa <aVb— —(a— b)and in consequence a < (a — b) — aAb
and atlasta = b<a— aAb.
3. a — a = a - by the assumption.
4.a—b=0.
5. a—aVb=a.
Proof: a Ab — a = a (cf. b) 2.).
6.a—1=1.
Proof: (i) a = 1 < 1, because a € V4.
(i) Since @ < ~(a — b) — =(a — b) (cf. the inequality (1), see above), =(a — b) < a —
—-(a — b).

d) The values for b — 2 - can be determined as in c).

e) The values for a Vb — z.
1.avVb—0=0.
Proof: (i) a Vb — 0 <0, because a Vb € Vija.
(ii) Cf. the inequality (4) above.
2.aVb—aAnb=0.
Proof: (i) Since (pVg — r) — (p — r)A(g — r) € R,aVb — aAb < (a — aAb)A(b — aAb),
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soby ¢)2.aVb—aAb<(a—b)A(a—b),and in consequence a Vb — aAb< (a—b)
ie.aVb—anb<O.

(ii) Conversely, since a — b<a—-bbyc)2.a —-b<a— aAnb, thus (*a < (a —
b) — a Ab. Similarly we get (**) b < (@ — b) — a A b, so by (*) and (**) we have
aVvb < (a—b)—anb,thus (a—d)<(aVb)—aAnbd.

3.avb—a=o.

Proof: a — aAb =0 (cf. ¢) 2.); we apply the Transposition Principle.
4.avVb—b=a—0b.

Proof: As in the previous case.

5.avb—=aVb=aAb.

Proof: We apply the Transposition Principle to a Ab — aAb= a Ab (cf. b) 2.).
6.avb—1=1

Proof: By a) 2.

f) The values for 1 — z.
1.1 — 0=0.
Proof: (i) 1 € V4, thus1 — 0 <0.
(i) Since 0 — 0 =1 (cf. a) 1. above), 1 <0 — 0, thus 0 < 1 — 0.
2.1—aANb=0.
Proof: Cf. e) 1.

3.1—a=0.
Proof: Cf. ¢) 1.
4.1 — b=0.

Proof: As in case 3.
5 1—aVb=0.
Proof: Cf. b) 1.
6.1—-1=1.
Proof: Cf. a) 1.

Thus the set {a,b,a Ab,aV b,a — b,~(a — b)} is closed under all basic operations; it
suffices now to compare the "table of values” for the operation — we have just filled with
the ”table of values” for the operation — in the matrix Mg to state that the matrix we
have obtained in the proof of this Proposition is just the matrix Mg. It finishes the proof
of this Proposition.

As the last proposition of ths section let us note the following

Proposition 10 The algebras of the matrices Mg and Mg are subdirectly irreducible.

Proof: Proposition 1.5 of: W. Dziobiak [83].
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4 Fundamental result.

Let us begin with the following

Lemma 11 There does not exist a Cr-matriz (C,V ) which contains two proper subma-
trices which satisfy the conditions

(i) the algebras of these submatrices are incomparable with respect to the partial order re-
lation < which defines the lattice of the algebra C and

(ii) the first submatriz is the trivial matriz and the second one is the two-element matriz.

Proof: Let us assume that such a matrix exists. Let us denote by a, ~a the elements of
the two-element submatrix of the matrix in question (let @ € V,7a ¢ V) and by b
the only element of the trivial submatrix of this matrix (b € V, of course). Note now
that (since the Principle of Transposition hold for Cgr-matrices) if a Vb = —a V b then
-aAb = aAb. However in such a case the set {a,—a,b,aVb,—~a Ab} forms the well-known
lattice Ns, thus the lattice of the C'r-matrix in question cannot be distributive. From
—a < a it follows now that =aAb < aAb,—~aVb < aVb. MoreoveraAb < b< —-aVb. But
in this case the elements {a, aAb,b,~aVb,aVb} form the lattice N5 which finishes the proof.

To formulate the next Proposition a new notion is useful.
A variety V of Cgr-matrices will said to be a variety with the relevance principle if V
falsifies all non-relevant implications, i.e. for each non-relevant implication A — B there
exists a matrix A of V and a valuation h such that A(A — B) does not belong to the set
of designated elements of A.

We have now

Proposition 12 Let V be a Cr-variety with the relevance principle. Then V' contains a
matriz C = (C, V) that falsifies all non-relevant implications and contains two submatri-
ces A, B whose algebras are 1-generated and incomparable with respect to the partial order
which defines the lattice of the algebra C.

Proof: Let V be a variety with the relevance principle. Let us consider the V-free alge-
bra C over two generators a,b. Of course, the matrix (C, V¢) falsifies all non-relevant
implications. Let us denote by < the partial order which defines the lattice of the alge-
bra C. Let us consider the subalgebras of C generated by a, b, respectively; let us denote
them by [a]c and [b]c. By Theorem 5 (cf. W. Dziobiak, unpublished, see above) both
of these algebras have units and zero’s; let us denote them by 1,,0,, 14, 0,. Observe now
that the algebras [a]c, [b]c are <-incomparable. If not then there exist elements a;,b;
such that a; € [a]c, b1 € [b]c and e.g. a1 < by. But in such a case 0, < 1, and in conse-
quence this free algebra cannot falsify all non-relevant implications. This finishes the proof.

Let us observe here that the submatrices [a]c and [b]c described in this Proposition
are falsifying submatrices.
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Theorem 13 Let V be a Cr-variety with the relevance principle. Then V contains either
the Belnap matrizc Mg or the matriz Mg.

Proof: We know from the previous Proposition that there exists in V' a matrix C =
(C,V ) such that C contains two submatrices whose algebras are <-incomparable (<
denotes here the partial order which defines the lattice of the algebra C); let us denote
the subalgebras of these submatrices by A and B, respectively. We may assume that both
of these subalgebras have a greatest and a least element; let us denote these elements as
follows: the unit of A by a, the zero of A by —a, and by b, b - the unit and the zero of
the algebra B, respectively. If a = —a and b = —b then (cf. Proposition 9) the matrix Mg
belongs to V; let us assume that a # -a, b # -b.

Let us denote by [a,b]c the subalgebra of the algebra C generated by the elements
a,b. The algebra [a, b]c contains in particular the following eight elements: a, ~a,b,-b,aV
b,a A b,na A —b; it is easy to observe that the lattice operations A,V on these elements
as well as the operation — can be described here as in the algebra of the matrix Ms;
this eight-element set is closed under these lattice operations and under —. Our further
investigations will concern only the operation —.

Let us write down first the following obvious connections between the elements a, ~a:
a— a :a,ﬁa-—}a:a,a—)—la:_|(),"‘I(],—)_|a:a.
We have quite similar connections for the elements b, -b.

By the Lemma 4. (cf. W. Dziobiak (83)) the filter [(a — a) A (b — b))[a,b]c i.e. (by the
previous remark) the filter [a A b)(, 4 c i the filter of designated elements of the matrix
([a,b)cs Viatle)s i€ Ve 4ye = [@ AD). By the construction of the algebra [a,b]c the
elements @ — b,b — a,a — —b,~a — b cannot belong to the filter [a A b).

Since ma < a,-b < b, by Lemma 3 we have the following equalities and inequalities:
(1)b__>—.a:a-—>—|b§a—>b§—|a—>b=—-b—>a,and
hb—o-a=a—-b<b—=a<-a—b=-b—a.

The next connections, which are important for our proof we get by the following con-
nection valid for any C'r-matrix (C,Vg) :
If ze V then z — 2 <z for any z € C'
(cf. Lemma 3); thus we have the following useful inequalities:
(z)aabgb,b—»aga,aé—-bs—-b,b—>—|a§—‘a,
which imply the next important connection
(3)a—>—ab=b—e—-a§—|a/\—1b.

Since the proofs of the two connections which are the basis of our proof are rather
long, we present them in the form of two lemmas.

Lemma 14 The following equalities hold in [a,b]c:
(4)a—+b:b—>a:ﬂa—+b,
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Proof of the Lemma: Since {[(p — ¢) A p] — ¢} € R, we have
(na — b)A-a <band (=b—a)A-b<aq,
ie. (—mb—a)A=b)Va=aand((-a— b)A-a)Vb=b. Since the equality -bVa=>bVa
holds in [a,bd]c, we have:
a = ((—b— a)A=b)Va = [(=b — a)Va]A(-bVa) = [(=b — a)Va]A(bVa) = [(-b — a)Ab]Va,
ie. [(mb — a) Ab] < a. In a quite similar way we get the inequality [(—=a — b) A a] < b.
From these inequalities the following inequalities follow:
[(=b — a) AD] < [aA(-b— a)
[(=b — a)Aa] < [bA(=b— a)],
thus [(—ae — b) A b] = [(ma — D) A a], because (-a — b) = (=b — a).

Since in all C'g-algebras holds the inequality ¢ — y < ~z V y, we have: (na — b) <
(a VD). Thus we have: (na — b) = (ma = b) A (aVd) =[(-a = b)Aa]V[(~a — b) A D] =
[(ma — b) Ad],ie. (ma— b) < a. In the same way we get (~a — b) <b.

As we remember, in all ('g-algebras the following implication holds:
if < y then z —» z < z — y (cf. Lemma 3, see above).
By this implication and the first inequality from the last two we have: b — (ma — b) <
b — a,ie —a— (b—10)<b-—a,ie na—b<b— a The second inequality (i.e.
(~b — a) < b) implies (-b — a) < a — b, i.e. (ma — b) < b — a. Since the inequalities (1)
(cf. above) hold, the Lemma has been proved.

Let us add that the inequalities shown in the proof of this Lemma imply the following
useful inequality:
(5) ma = b<anb.

The next connection is given by

Lemma 15 Let the algebra [a,b]a we consider satisfy the equalities
(man—b) = (a—b) = (b— a).

Then this algebra satisfies the equality:

(a — —b) = (-a —b).

Proof of the Lemma: Let us prove the inequality b < (a V b) — (a V b) first; the proof
of this inequality is as follows:

—aA-b<—=aAN-b iff
—aAN-b<a—=b iff
—aA-b< b — —a iff
-1a/\—|bS—|b—>(a—>—1a) iff
-aA-b<a— (a—D) iff

—|a/\—|bSa—>(a—->("|b—>b) iff

—aAN-b<a— (-b— (a—0b)) iff

—aAN-b<a— (-(a—0b)—0) iff

—aA-b<=(a—0b)— (a—0b) iff

ﬂ(l/\“bSGVb“’(ar—"‘)b) iff

aVb<(man=b)— (man=b) iff

avb<aVb—aVb.

The last inequality also implies b < a Vb — a V b. It follows from this last inequality that
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avb<b—aVb,thusa<b—aVb,ie a<b— ~(a—b),thusa < (a — b)— b, and

in consequence (a — b) < (a — -b). The inverse inequality we get from inequalities (1)
(cf. above).

Let us return to the proof of Theorem.

Now arises the question where the "arrow elements” of the algebra [a,b]p are situated
in relation to the remaining elements of this algebra. Since it is known that the following
equalities hold in this algebra: a - b =b — a =-b - a = —a — b (cf. Lemma 14)
and a — —b = b — —a, we have to consider here only two ”arrow elements”: a — b and
a — —lb.

Let us note now that the inequality (5) entails that @ — b < a A b, and it is known from
the construction of the algebra [a,b]4 that (¢ — b) does not belong to the filter [a A b),
thus we have the first important inequality
(a) a — b <aAl b.

Moreover, we have established before that in the algebra [a,b]s the two following intere-
sting inequalities hold:

(b)a——>-lb§—-a/\—=b<a/\b

(c)a— ~b<a—b

The remainder of the proof will be devoted to considering the question where the ele-
ments ¢ — b and a — —b may be situated in the lattice of the algebra [a, b] 5. Below we will
prove that in each of possible cases (determined by the inequalities (a) - (c), of course) ei-
ther Mg € HS([a,b]p) or Mg € HS([a,b]a) and that will finish the proof of the Theorem.

We have here the following possibilities:
A.—aAN-b<a—b<aAbd
(it occurs - cf. below - that in this case it is not important (cf. the inequality (c)) whether
a—-b=-aA-bora—b<-an-b).
B. -aA-b=a—D,
(in this case a — =b = a — b, cf. Lemma 15).
C.a— b< —aA-b,
D. ¢ — b is <-incomparable with =a A =b, but, of course a — -b < a—b<aAb.

Thus let us consider now the four cases listed above.
A. Let us assume first that —a A =b < a — b.

Since a Ab < (a = b) — (¢ = b) < ~(a — b)V (a — b), by the inequalities we have
just assumed, i.e. by ma A =b < (¢ — b) < a Ab we have ma V —b < =(a — b) < a Vb, and
the last two inequalities give —a V =b < (¢ — b) V ~(a — b) < a V b. The last inequality
can be strenghted to the equality (¢ — b)V (¢ — b) = aV b, because a - b < a — b
implies ¢ — b < a — (a¢ — b) and it implies a < (a — b) — (a — b); similarly we show
that b< (@ = b) — (a = b),thusaVbd < (a—b) = (a = b) < (a — b))V ~(a — b).
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Let us observe now that if ~aAb < a — b < a Ab then we have the obvious equalities:
aANbA-a=-aN-b -aA(a —b)=-aA-aand ~aV (aAb) = a. If moreover
(a — b)V-a = a then the elements {~aA-a,-a,a,a Ab,a — b} form the lattice N3, thus
the lattice of the algebra [a,b]4 is not distributive. However, that is not possible, so we
must assume that (¢ — b) V -a < a and that ~a < (¢ — b) V —a. The second inequality is
justified as follows. It is obvious that —=a < (a — b)V —a. But if ~a = (¢ — b) V —a then on
one hand ~a A -b = a AbA-a, and on the other hand ~a A-b=aAbA((a = b)V —-a) =
(aANbA(a— b)YV (aAbA=-a)=(a—b)V(~aA-b)=a—b,ie (naA-b)=(a—b),
which is not consistent with the assumption that =a A =b < (@ — b). Thus we have
-a< (a—b)V-a<a,and
-a< ~(e—=b)Aa<a.

Let us denote: ¢ =: (a — b) V —a. By the equality: (a — b) V =(a — b) = a V b we have:
ch-c =[(a—=b)V-aA[~(a—b)Aa] =[(a = b)A-(a = b)Aa]V[-ahaA-(a—Dd)]=
(ma A —bA a)V =a = (ma A=b)V -a = -a,ie cA-c=-a,thus ¢V -c = a. Analogously
we prove that between the elements b and -b there exist elements =b V (¢ — b) and
b A =(a — b) which satisfy the inequalities

-b< bA-(a—0b)<b,and

-b< bV (a—b)<b.

Let us denote: d =: =bV (a — b); we have, as above, that dV ~d = b and d A =d = -b.

Let us consider now the element ~aA—d. We have ~¢cA—d = [aA—~(a — b)]A[bA-(a —
b)]=aAbA-(a—D).

On one hand we have (mcA=d)A(a —b)=aAbA-(a — b)A(argb) =aAbA-aN-b=
~aA-b,ie (neA-d)A(a— b) = =aA-b,on the other hand - (-cA-d)V(a —b) = (a —
b)V[aAbA=(a—b)]=[(a—=Db)V(aAd)]A[(@a—b)V-(a—b)]=(ard)V(aVd)=aAb,
i.e. (mc A =d) = aAb. In consequence we have the inequalities:
—aA-b<eAd<aNnd

and moreover (a — b) # -c A ~d.

Since ¢ A ~d < a A b, the filter F' = [-¢ A —b) is a normal filter, thus it determines
a congruence relation on the algebra [a,b]4, and moreover does not contain the element
(a — b). Let us investigate the quotient algebra [a,b]4/O(F). We have in particular
(a) (a = b) = (ma A =b)(O(F)).

To prove it let us observe that by the assumption we have —a A =b < (a — b), thus
(~aA=b) — (a — D) € [aAD), thus (naA=b) — (a — b) € F. On the other hand we have:
a—b<a—b iff (avd)<(a—b)— (a—0b)
iff(aVb) < (e — b) = —(a — b)
iff ~(¢ = b)<aVvbdb— —(aVb)
iff =(a — b) < (a — b) — (—a A -b).
But since ~(a — b) € F, [(a — b) — —~a A =b)] € F. Thus a — b = —a A -b(O(F)).

(b) ~c A ~d = a AND(O(F)).
The proof of (b): It it obvious that =(a — b)AaAb < aAb, thus [(a ADA=(a — b) —
a A b] € F. On the other hand, since each element of the form z — z belongs to the filter

of designated elements of each Cr-matrix, a Ab < [a ADA—(a — )] = [aAbA~(a — b)],
thus [ AbA=(a—=b)]<aAb—[aAbA(a—b)],thusaAb— [aAbA—(a—b)]€F,
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because F =[a AbA =(a — b)).

Moreover, let us note that since a Ab — (¢ — b) = (¢ — b), it is not true that
(a — b) = a Ab(O(F)), because a Ab — (a — b) does not belong to F.

It is easy to prove that a = a A ~(a — b)(O(F)),(i.e. that a = —¢(O(F))), —a
¢(O(F)),b=-d(0(F)),~b = d(0(F)) and that it is not the case that a = ~a(O(F)),b
-b(O(F)).

As concerns the element (¢ — =b) = (b — —a), we did not consider this element yet;
however, since in the quotient algebra [a,b]4/O(F) we have ~a A =b = (a — b)(O(F)),
by the connection (*) (cf. the second lemma of this proof) we know that (¢ — -b) =
(ma A ~b)(O(F)).

Let us consider now the subalgebra [a/O(F),b/O(F)](.5,/0(F) of the algebra [a, b]/O(F)
(i.e. the subalgebra generated by the elements a/O(F), b/O(F)). In particular we have in
this subalgebra: (a — b) = (b — a) = (¢ — -b) = (ma — b) = ~a A ~b(O(F)). By Lemma
7 (on Belnap’s matrix Ms) we have that the matrix ([a/O(F),b/O(F)ap/0F) [(a A
b)/O(F)) is isomorphic to Belnap’s matrix Ms.

This finishes the proof of the fact that if ~a A -b < (¢ — b) < a A b in [a,b]4 then our
variety V contains the Belnap’s matrix Msg; let us add that our proof of this fact did not
depend on the position of the element @ — -b in the algebra [a, b]4.

B. Let us assume now that ma A =b = a — b. Thus, by (*)the second lemma of this
proof we have a — b = a — -b, and by the Lemma on Belnap’s matrix My it follows that
My is isomorphic to the matrix ([a,b]4,[a A D)q),)-

C. Let us assume now that (¢ — b) < -a A =b.. Since (a — -b) < (a — b),
(a — —b) < —a A —b*. Then the filter F = [~a A =b) is a normal filter in [a,b]4, i.e.
this filter determines a congruence relation on [a,b]4. Let us consider the quotient algebra
[a,0)4/O(F). It is obvious that (b — =b),(=b — b) € F and (a — —a),(-a — a) € F,
thus ¢ = —a(O(F)),b = —-b(O(F)). However, it is not the case that a = b(O(F)),
because by the assumption @ — b does not belong to F. Thus the quotient algebra
[a,b]4/O(F) contains two one-point falsifying subalgebras, and by Proposition 9 (on the
matrix Mg) a matrix isomorphic to the matrix Mg will be a submatrix of the quotient

matrix {[a,0]4/O(F),[(a A b)/O(F))a b ./0(F))-

D. a — b is <-incomparable with —a A —b. Let us note first that ¢ — -b < —a A b
in this case, because in general it is known that ¢ — —b < —a A =b (cf. (b)above), but
if @ — b = —~a A b, then this case reduces to the case A. As in C. let us consider now
the quotient algebra [a,b]s/O(F) where F' = [-a A =b). Since neither a — b nor a — -b
belongs to F', the quotient algebra contains two trivial falsifying subalgebras - and we can
argue as in the previous case to show that the matrix Mg is a submatrix of the quotient

matrix ([@,0]a/O(F),[(a A b)/O(F))ap./0(F))-

This finishes the proof of the Theorem.

4There exists at least one Cr-algebra generated by the elements a, b such that the following equalities
and inequalities hold in it: ¢ — b= a — —=b < —a A =b.
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From the last Theorem follows the following

Theorem 16 Let L be an extension of the relevant logic R. Then the relevance principle
holds for L if and only if L is either a sublogic of the logic determined by Mg or a sublogic
of the logic determined by Ms.
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