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1 Introduction

In this paper, we will consider sentences like (1) and (2) from the point of
view of quantification and predication.

(1)  Three girls mailed a letter
(2)  Three girls mailed four letters

As to the issue of quantification, Verkuyl & Van der Does 1991 tried to
reduce the large numbers of readings often assigned to these sentences to
just one by adopting a so-called scalar approach. This approach is based
on the following observation.

Scha 1981 stipulated that NPs are ambiguous between a distributive
(D) reading and two collective readings (C; and Cz). In sentences with two
NPs, combinations of these three readings lead to at least nine readings for
(2): DD, DCy, ..., C2Cs. For example, on the DD-reading of (2), each
of the girls mailed four letters, each letter on a different occasion. On the
C;1Cq-reading, the girls mailed the four letters together on one occasion.
The C;Cs-reading would say that the three girls as a group mailed four
letters, say on one occasion one letter, and one day later the three other
letters. Observe that C, allows both 143- and 2+2-configurations of the
set of four letters. In fact it also comprises D and C;. On the C;C,- reading
just mentioned, Cs allows also the 4- and the 1+1+1+1-configuration. Here
the idea of a scale comes up quite naturally, but this idea was not taken
up by Scha himself, nor did Link 1984 pay attention to it.

Verkuyl & Van der Does 1991 decided to take a strengthening of the
C,-reading as basic, in fact as the only reading that can be attached to (1)
and (2). They chose (3) as the format for the analysis of the denotation of
NPs like three girls in sentences such as (1) and (2):

(3) AP.AX[X C [gir]] A | X| =3 A3Qcv,X[Q = P|[[girl]]]]

*This article is to appear in: K. van Deemter and S. Peters (eds.), Semantic ambiguity
and underspecification (provisional title), CSLI Lecture Notes Series, Stanford. A first
version was written while the first author was a postdoc at the 0Ts. Now he is a postdoc
at the PIONIER-project ‘Reasoning with Uncertainty’ (NWO pgs—22-262).
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It says that there is a set X of three girls that can be partitioned into a
collection Q which is the predicate P restricted to the set of girls.! In this
way, we obtain Scha’s D just in case Q is partitioned into three singletons
whereas (an instance of) Scha’s C; is obtained when Q = Pl[[girl]] ={X}.

The leading idea of the scalar approach is the empirical fact that sen-
tences like (1) and (2) do not give away which configuration is actualized,
and that the variant of Cz in (3) seems the right way of expressing this.
It includes the whole range between and including the extremes D and Cj.
However, although (3) has the virtue of scalarity and thus captures the un-
derdeterminedness of information inherent in (1) and (2), it still has some
shortcomings. For one, it does not capture the so-called cumulative read-
ing of these sentences. In case of (2) this reading would say that the total
number of girls mailing letters is three and that the total number of letters
being mailed is four. This cannot be obtained by (3) because the predicate
Pl[[girl]] will always contain information about the second argument NP,

whereas the cumulative reading requires the scope of the two NPs to be
independent.

At this point, the second conjunct of the title of the present paper
comes in: one cannot have a theory of (collective) quantification without a
theory of (collective) predication which tells us how exactly the argument
denotations and their members are involved in the predication itself; i.e.,
we want to account for the possible ways in which the members of the
argument NP satisfy the predicate. The problem is—informally speaking—
that in (1) we use the predicate mail a letter whereas in fact we might speak
about mailing three letters. Sentences like (4) show the problem even more
clearly.

(4)  Four men lifted three tables

They allow us to speak about between three and twelve tables which were
lifted, whereas the predicate is ‘lift three tables’. This means that in order
to maintain our scalarity thesis we need the formal means to provide un-
derdeterminedness as to how the different tables in (4) have been involved
in the predication, and to establish how this affects the quantification ex-
pressed by the NP.

It is this perspective which will be worked out in detail here. We will for-
malize such notions as VP-predication, Path, ‘mode’ within the framework
of generalized quantification, but with the explicit purpose of integrating
in it some points of view from the linguistic tradition called localism. Sen-
tences like (1) express a change of state which in a localistic approach is

11n (3), cvp stands for partitioning, a form of covering. For a discussion on other forms
of covering see Verkuyl & Van der Does 1991, Van der Does 1993.
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analyzed in terms of an abstract “movement” from a point of origin to a
point at which the predicate is satisfied. In

(5) Mary mailed a letter

one may say that Mary is “going through” a Path as a way of saying that
she underwent the predication. Similar things can be said of the set of
three girls, in the sense that we need to pay attention to the way in which
each of the girls undergoes the predication, i.e., has an individual Path.
In particular we are interested in the way the individual Paths of the girls
may interfere. In Verkuyl 1988 it was argued that only two modes are
available in this respect: either the Paths are totally disjoint or they are
essentially one. It is obvious that the metaphoric way of introducing the
intuitive notion of localism—change in time expressed by a verb like masl
can be dealt with in terms of a cumulative structure built up from an
origin to an end—is to be replaced by a precise formalism. This has been
done in Verkuyl 1993 and a simplified version will be used in section 3.1.
We shall show that the incorporation of localistic insights into the model-
theoretic approach of generalized quantification makes it possible to reduce
ambiguities.

This paper has the following structure. In section 2 we give an overview of
our earlier attempt to reduce the ambiguity of plural sentences, and also
of the problems this gave rise to. Next, section 3 introduces the linguistic
tradition of localism and its core concept of a Path. After formalizing
this notion, we focus on two ‘modes’ namely the one in which the relevant
members of the external object have distinct verbal Paths, and the one
in which they share the same verbal Path. These extremes are called the
m-injective and the m-constant modes. In section 4, we prove that the
m-constant mode, which captures a special kind of collectivity, gives an
impressive collapse of plural as well as of polyadic readings. We therefore
suggest to capture the readings by means of the two 7 modes combined with
iterated neutral plural quantification, but to use no further representation
within the semantics.

2 The Scalar Approach

In this section we formally characterize our earlier attempts to reduce the
ambiguity of sentences like (1) and (2). To this end, section 2.1 first dis-
cusses the quantifier liftings in Van der Does 1993, which generalize the
treatment of numerals in Scha 1981. In section 2.2 we give a short overview
of the considerations which led to the attempt in Verkuyl and Van der Does
1991 to reduce ambiguities, and of the subsequent discussion it gave rise
to. Finally, in section 2.3 we discuss some problems we and others have
with that proposal. So, the present section paves the way for a further
development of our theory in section 3 and section 4.
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2.1 Quantifier liftings

Determiners as they are studied in the theory of generalized quantification
live in type (et)(ett); they are relations among sets. These relations have to
satisfy some constraints. In particular, most natural language determiners
are conservative, and have extension and isomorphy.

Definition 1 A determiner D is a functor which assigns to each non-empty
domain E an element from p(p(E) x p(E)). D is conservative (CONS)
iff for each F and all A,B C E: DgAB <& DgAAN B. D has extension
(EXT) iff for all E,E' O A,B: DgAB < Dg/AB. D has isomorphy
(ISOM) iff for all bijections 7 : E — E": Dy AB < Dg f[A]f[B], where
fIX] == {f(z) : z € X}. D is a quantifier iff D has CONS, EXT, and
ISOM.

Due to EXT we may forget about E and stipulate that DAB iff for some
E: DgAB. Also, for a quantifier D the truth of DAB only depends on
the two cardinals: |[{a € A:a & B}| and |{a € A: a € B}|. In this article,
we shall often use positive determiners which require their arguments to be
non-empty: DAB implies A # () # B.

The above treatment of determiners does not cover the phenomena
typical of plural noun phrases. Following up on a suggestion in Van Ben-
them 1991, Van der Does 1992,1993,1994 studies different approaches to
plural quantification by means of liftings from type (et)((et)t) to type
(et)(((et)t)t). In the latter type the verbal part of a quantifier can be
taken to hold of sets instead of just atoms, which makes quantification
over these sets possible. The relevant liftings, given in (6), turn out to be
generalizations of the numeral denotations in Scha 1981.2

6) D DMD)XY <& DX{d|{d}eY}
C CD)XY & 3IZDXZ A XNZEY]
N N(D)XY & DXU(YNpX))

The names of the liftings are mnemonic for ‘distributive’, ‘collective’, and
‘neutral’, respectively. On the conceptual side they are based on the three
perspectives we seem to employ in describing collections. We either quan-
tify over ‘atomic’ partless individuals (D), or over genuine collections (C,
Scha’s C;), or over the atoms which take part in certain collections (N,
Scha’s C;)). In the latter situation we remain neutral as to the precise
structure and size of these collections.?

2Scha (1981) discerns two forms of collective quantification instead of collective and
neutral quantification.

31t is perhaps misleading to talk about distributive quantification as pointed out in
Verkuyl 1994. The quantification is over atoms (i.e., the elements of type e or, equiva-
lently, the singletons in type (et)), so ‘atomic quantification’ seems more accurate (Van
der Does 1992, 1993). A predicate of sets can be distributive in that it is closed under
non-empty subsets. Atomic predicates, which only contain singletons, are trivially dis-
tributive in this sense. Yet, the two notions should not be confused. E.g., a predicate
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Disregarding scopal ambiguities and non-iterative forms of quantifica-
tion, the determiner readings in (6) make (4) Four men lifted three tables
nine times ambiguous. The readings are summarized in (7).

Nine readings is a bit much for the simple (4), and it is tempting to try
to do with less. In the next subsection, we give an overview of our earlier
proposal in that direction.*

(7)

NPy /NP2 | D N C
D DD DN DC
N ND NN NC
C CD CN CC

2.2 The One-Reading Hypothesis

The proposal in Verkuyl and Van der Does 1991 grew out of Verkuyl’s idea
to reduce the number of readings of (4) to one by taking the neutral reading
of numerals as their plural denotation. The distributive and the collective
readings could then be seen as depending on the nature of its verbal ar-
gument in a particular context. The verbal argument takes its value on a
scale ranging from sets of singletons at the one end via several intermediate
cases to singletons of sets at the other. The endpoints yield the distributive
and collective ‘reading’, which, however, need not be represented at logical
form.5 As proposition 1 shows, the liftings in (6) can be used to formalize
and generalize these intuitions.

Proposition 1 (FIN) Call Y positive iff 0 ¢ Y. For all positive Y Np(A)
it holds that VX € Y N p(A)[|X| = 1] #f for all D, X: N(D)XY and
D(D)XY are equivalent. For all Y it holds that |'Y N p(A)| = 1 iff for all
conservative D and all X: N(D)XY and C(D)XY are equivalent.

ProOF. It is plain that for the appropriate Y N(D) is either equivalent
to D(D) or to C(D). For the other directions we need FIN.® By way of
example we show the distributive case. Assume that Y N p(A) contains a
Z which is not a singleton. Since Y N p(A) is positive |Z| > 1. By FIN

can also be distributive up to a certain size, if it is closed under subsets of this size and
larger. Still the concepts are intimately related: each atomic predicate gives rise to a
unique predicate which is closed under non-empty subsets and arbitrary unions. Van der
Does calls such sets of sets strictly distributive as opposed to the partly distributive ones,
which are closed under subsets of size greater than one. A quantifier D(D) is equivalent
to a relation between sets and (strictly) distributive sets of sets, and it derives its name
from the latter (cf. Van der Does ibidem).

4We do not discuss Link’s proposal not to discern between C and N ‘for methodological
reasons’ (Link 1991). The logical differences between the denotations do not sustain this
strategy (cf. Van der Does 1993 for details).

50f course the proposal is limited to the NPs which allow the readings. Inherently
distributive (i.e. atomic) NPs, such as every man, are obtained via the D-denotation of
its determiner.

6<FIN’ indicates that we assume the models to have a finite domain.
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{d e A:{d} € Y} < |UY ngpA))|. Set n =|J(Y Np(A4))]. Then
N(n)AY but not D(n)AY. O

Given proposition 1 it seems natural to give (2) only its NN reading and
leave the other interpretations to context. However, there are some prob-
lems with this strategy.

2.3 Problems

The problems concern neutral readings of the external argument NP in a
sentence with a complex VP. They are followed by suggested solutions.

Problem I In his reaction to an earlier version of Van der Does 1993,
Lgnning 1991 pointed out that the neutral reading allows a splitting of the
collections quantified over. For example, on the neutral reading of four
men in (4) the sentence may be true if there is a single man who lifted
three tables besides a set of three men who also lifted three tables. That
this is so, is best seen by means of (8), which is equivalent to N(D)X'Y for
conservative D:

(8) Y CXDXY A3TZcvY:Z=YNgp(X)

Here the relation Z cv Y—Z covers Y ,—is defined by (JZ = Y. For (4),
Y is the set of Z such that ‘Z lifted three tables’. On the subject neutral
reading (8) says: there is a set Y of four men and a cover Z of Y which
is identical to the set of ‘men-parts’ of the collections Z which lifted three
tables. But such a cover could be of the form {{m1}, {ms, m3,m4}}. The
judgements whether or not these truth-conditions are correct differ widely.

Problem II Van der Does 1993 observes that the application of neutral
quantifiers is also limited for another reason. Call a quantifier bounded
iff there is an n such that for all A, B: if DAB then |[AN B| < n (cf.
Westerstahl 1989). Numerals are prime examples of bounded quantifiers.
In sentence (4), which iterates two numerals n and m, one expects under
the normal scoping that the number of tables described lies between m
and n * m. But neutral plural quantification allows an upper bound of
2™ xm. In the truth-conditions of (4) as given by (8) Z may vary over the
poorest cover {Y} of YV via intermediate alternatives to its richest cover
p(Y). Thus, a neutral reading of the subject in (4) allows the number of
tables to range from three to 2* % 3.

2.4 Suggested Solutions

Problem II can be solved by strengthening the notion of cover in (8) to
that of partition, mimimal cover, or pseudo-partition (cf. Verkuyl and Van
der Does 1991, Van der Does 1993, for details). On the localistic analysis
advocated in Verkuyl 1993, and introduced in section 3, partitions are a
natural choice. As we shall point out in sections 3.1 and 4.1 the subject
NP should then vary over the partition which arises from the equivalence
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relation ‘to share the same Path’. However, this strategy offers no solution
to Problem I.

As an alternative solution to Problem II, one could use a referential
rather than a quantificational treatment of the NP, as suggested by Van
der Does 1993,1994. To be precise, (8) could be replaced by (9).”

(9) DXUP A P partitions UP A P=Y N p(X)

Here P is a contextually given set of sets. On this view the meaning of
a determiner is a Kaplanian character; it needs contextual information
to yield a denotation. In uttering (4) P remains underspecified, but (4)
will be false with respect to any situation that does not comply with its
structure. Note that this solution, too, leaves Problem I unsolved. The
partitional reading still allows the spliced subject NP noted by Lgnning.
Verkuyl (1992, 1994) has some examples where such a split is not unlikely,
and there may be pragmatical principles which rule out the remaining odd
cases.

Van der Does 1993 feels uncomfortable with the spliced subjects. He
seeks a semantical solution by holding that they only occur in case of
non-iterative forms of quantification, such as the cumulative reading. On
this reading arbitrary covers are allowed, for it leaves the quantificational
elements of the internal argument NPs outside the scope of the external
one. In the case of iterations there is an asymmetry between the external
and the internal argument NP (cf. section 3.1). The internal argument NP
favours a neutral reading—again allowing for covers,—while the external
argument may be either distributive or collective. On this view a simple
transitive sentence can have one of the following three readings:

(10) DN D(D,)AN(D.)BR
CN C(D:)AN(D:)BR

NN N(D;)ApoM(RN p(A) x p(B))

A N(D2)BRNG(R N p(A) x p(B))

Van der Does does not explain why these readings are realized and no
others. Below we point out that the first two readings are strict analogues
of Verkuyl’s Tinj and 7eon modes (cf. section 3.2 and 4.2). Here 7 is the
localistic Path-function accounting for the participancy of the members
of the NP-denotation. The next section gives a detailed exposition of a
formalization of this localistic notion. This prepares the ground for clearing
up how Verkuyl’s localistic approach figures within the wider landscape of
plural and polyadic quantification.

"Recall that a set of sets Y partitions a set X iff (i.e., if and only if)) the following three
requirements are met: (i) UY =X,{H)VX,YEYXAY=>XNY =0], (i) 0 &Y.
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3 Two modes of Predication
3.1 The w-function

Linguists have a long tradition of analyzing sentences like (1) and (11) into
a NP VP structure, as in figure 1. In generative grammar, there are two
independent lines of thought which lead to the idea of a certain asymmetry
between the two NPs in figure 1.

(11) John loves Mary

NP, VP

A% NP,
FIGURE 1 NP VP

The first line is syntactic and it shows up in the issue about whether or
not languages are configurational, the leading hypothesis being that this
is universally the case. Around 1980 it became standard to distinguish
in sentences like (11) between the external NPj-argument John and an
internal NPy-argument Mary. This means that the basic format of the
sentences of natural language is the one in figure 1. The second line is the
localistic one as it has developed in the generative framework. In Jackendoff
(1978;1983;1990) and in Verkuyl (1978;1987;1993), the internal argument
has closer ties with the verb than the external argument, at least when
temporal structure is taken into account. Jackendoff (1972) still analyzed
change expressed in sentences like

(12) a. John went to New York
b. John became angry

in terms of the 3-place format GO(X,Y,Z), where in (12a) X = John, Y =
some point of departure and Z = New York, whereas in (12b) X = John,
Y = some peace of mind, and Z = the state of being angry, but in his later
work he comprised the two arguments of the GO-predicate into a Path
obtaining asymmetry. Verkuyl (1972:106) accepted the NP VP asymmetry
in view of the composition of aspectuality and has maintained it.

For the purpose of this paper, the notion of compositionally formed
aspectuality is best discussed in terms of features assigned to the verb and
its arguments. These features have a precise model-theoretic interpretation
which is given in Verkuyl 1993. It would carry too far to discuss the
formal machinery dealing with aspectuality here. It suffices to observe that
sentences like (5) are called terminative, i.e. have terminative aspectuality:
they pertain to a bounded event as opposed to sentences like Mary mailed
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letters, Mary mailed no letter and Nobody mailed a letter. These are called
durative: they pertain to events that can be prolonged indefinitely or to
non-events. One of the standard litmus test is given in (13):

(13) a. #For hours Mary mailed a letter
b. For hours Mary mailed letters
¢. For hours nobody mailed a letter

Sentence (13a) is odd: it enforces a queer sort of repetition. In any case, it
blocks the one-event reading of (5). The other two sentences in (13) have a
normal interpretation: they pertain to the same sort of event or non-event
as the sentences without the durational adverbial. In Verkuyl’s compo-
sitional theory (simplified here to an algebra of features) the terminative
aspectuality in (13), in (12) and in (1) and (2) are due to the fact that these
sentences all satisfy two conditions: (a) their verb is a [+ADD TO]-verb, i.e.
a nonstative verb, which builds up a cumulative index structure;® (b) the
arguments of the verb are [+sQA]-NPs. The abbreviatory label sQa stands
for Specified Quantity of A, where A is the head noun denotation. The
idea behind the model-theoretic definition is that in a type-logical analysis
of the NP as a semantic object of type (ettt) the basic format of the rep-
resentation is ... AX[X C AA|X| =k.... In four letters k = 4, in a letter
k =1, in some letters, k > 1, etc. Compositionally, for the verb the aspec-
tually relevant information of NPs (with Count Nouns) is the cardinality
information, either explicitly expressed (numerals, both) or implicitly given
(some, many, few), in order to establish terminative aspectuality.

In the theory of aspectuality of Verkuyl 1993 VP-aspectuality is essen-
tially different from sentential aspectuality. Intuitively, the terminativity
in sentences like (1) and (2) must be dealt with exactly in the way we
deal with the quantificational structure of these sentences: if the girls each
mailed a letter, then aspectually we must end up with three terminative
events, whereas if they mailed just one letter we should end up with one
terminative event. Localistically, this is just another way of saying that the
Path of each of the girls is assigned at the VP-level. Note that the Path
in (1) is bounded, whereas in Three girls mailed letters, which is durative,
the Path is unbounded.

The above informal introduction of the aspectual asymmetry is our
point of departure for explicating the functions associated with the infor-
mation expressed by figure 1, which are depicted in figure 2. Intuitively,
two functions, m and ¢, are involved in the interaction between the tem-
poral ([+ADD TO]) information expressed by verbs like mail, lift, eat, (but

8Nonstative verbs, i.e. verbs expressing change, like walk, talk, eat, etc. are distinguished
from stative verbs like hate, love, by their being able to invoke an interpretation in which
their arguments participate in a temporal structure. One may call the nonstative verbs
[+ADD TO] and the stative verbs [-ADD TO] to distinguish them lexically. To say that
a verb compositionally contributes to the formation of the VP is taken to say that it
contributes semantic information to the VP by interacting with the NP3-information.
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S[41s]

NPiisqa) VPl p)

/N

V(+ADD TO] NP[1sqa)
l

FIGURE 2 Basic structure of aspect construal.

not love and believe), and the atemporal ([+sQa]) information expressed
by their arguments. In terms of the informal notions used above: ¢ is the
function defining a Path, whereas m determines how the members of the
external argument NP; are mapped onto the Path assigned to them by the
predication.

This intuition can be formalized as follows. For the sake of the present
exposition, let verbs take their denotation in type e(i(et)), with i the type
of indices. Then 7 is the function from DOM([V] N [N1] x [N2]) to the
function space

D; — p(rng([V] N [N:1] x [N2])

where the £’s take values. To be precise, for each a € DOM([V]N[N1] % [N2])
7(a) is the £, defined by: AiAd' € [N2].[V]aid'. So, £,(%) is the set of [N2]’s
a is [V]-related to at i. For (4), Four men lifted three tables, this says that
the function 7 assigns to each of the relevant men m a function £,,, which
is a map from indices to subsets of the tables. E.g., the function 7 could
be spelled out as in (14) with the situation sketched in (15) as a possible
outcome of its application (only non-zero values of £,, are depicted).

(14) mip — 61 mo — eg
ms =l my =l

(15)  my > {5, {t1,t2}), (4, {ts})} m2 > {(5, {ta,t5,t6})}
mg — {<-77 {tl})a <m7 {t77t8})} my — {(iJ{tl})’ <k7 {t9at10}>}

In fact the notion of Path in Verkuyl 1993 is much richer, as it involves
the use of structured indices in an essential way. In particular, a [+ADD
TO] -verb V is interpreted over intervals of natural numbers, which model
progress in time among other things. Moving from the beginpoint of an
interval, an object a makes successive steps to go through its V-Path. Each
possible step from the beginpoint to the endpoint of an interval contributes
a cell of a partition of the set £,(a). The partition is warranted on the
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basis of the equivalence relation ‘being lifted at the same index as’.’ In
this way, £ as part of the definition of 7 ensures that in a sentence like (4)
the number of tables may vary from 3 to 12, and that a large number of
different situations are captured, among which (15).

One of the purposes of the present paper is to investigate how far we
can get without using indices. Our wish to abstract away from indices is
to provide for a common ground for the treatment of [+ADD TO]-verbs like
lift and [-ADD TO]-verbs like love, for which the 7-function has not been
defined. After this, it may be easier to account for the difference between
these verbs in domains with temporal structure.

There are two ways of disregarding indices, which become plain by con-
sidering an intermediate step of abstraction where they are structureless.
At this level, a transitive verb can be of type e(i(ett)) or of type e(i(et)).
In the first case, the way in which the set of objects comes about while
going through an index, is represented within the second argument as a set
of sets. In the second case only the set itself is given. To start with, we
concentrate on the first option. Without indices, it leads us to consider a
transitive verb R as of type e(ett), so that mgr(a) is a set of sets for each
a € DOM(R). It should be kept in mind, however, that intuitively such an
a is R-related to | mr(a); i.e., the set obtained after ‘processing’ the entire
interval.

3.2 Two Modes

Verkuyl (1988) proposed to put an empirically motivated restriction on 7
by assuming that it should either be an injection or a constant function.
This amounts to holding that the elements in the domain of 7y either have
their own Path (injective) or all share the same Path (constant).'® In (15)
Tif is an injection, due to the fact that none of the men has the same
Path, even when sometimes the same tables have been lifted at different
indices. In particular, (i, {t1}) # (¢, {t1,t2}) # (J, {t1}) because t; occurs
in different index-set pairs. But 75 can also map all the originals to one
and the same image, as in (16):

(16) my — {(i,{t1,t2,t3})}
mo — {(i,{tl,t27t3})}
ma — {<i7{t15t27t3}>}
my = {<i7{t15t27t3}>}

9Recall that partitions are closely related to equivalence relations (i.e., two-place rela-
tions which are reflexive, symmetrical, and transitive). For if Y partitions X, then Rxy
iff 3Y € Y[z, y € Y] is an equivalence relation. In section 4.1 we give the canonical way
to turn an equivalence relation into a partition.

10A function f : A — B is an injection iff for all a,a’ € A: if f(a) = f(a’), then a = a'.
The function is constant iff for all a,a’ € A: f(a) = f(a’). In section 4 it will appear
that Verkuyl’s intuition should be formalized by: relative to an index i the function 7r§'2,
defined by Ad\d'.wrdid', should be either constant or injective.
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The function myp is now constant. At this point the notion of kolkhoz-
collectivity comes in. At the index ¢, the men are not just related to the
same collection of three tables but this collection is required to be unique.!!
None of the men can be said to have his own Path, so it is impossible for
the relevant members of the Ni-denotation to be ‘held responsible’ for the
satisfaction of the predicate ‘lift two tables’. The following sentences show
that this is in fact a frequently used mode of predication:

(17) a. The twelve passengers killed that horrible man
b. Hans and Uwe wrote a book about DRT
¢. 500 Dutch firms own 6000 American computers

In (17a) none of the passengers may claim that he or she killed that horrible
man. The purpose of the sentence seems to be to evade such a claim. In
(17b) neither of the two men may claim ‘I have written a book about DRT".
The essence of the information is that they did it together, blurring the
individual contribution to the satisfaction of the VP-predicate. In a sense,
Scha’s famous (17c) appears to fall under the notion of kolkhoz-collectivity
as well. It can be seen as a claim about a unique set of Dutch firms and a
unique set of American computers which somehow stand in the own-relation
to each other (cf. section 4.3).

In section 4, we will argue that the distinction between the constancy
and injectivity of m underlies two basic modes of predication. Moreover,
these modes should provide for a considerable reduction of ambiguity of
sentences like (1) and (2). Rather than specifying many different readings
in terms of NP denotations or quantificational structures, we aim to show
that to a large extent these ‘readings’ are encompassed by the modes of .
In particular we want to argue that the difference between the distributive
and the totalizing collective use of a sentence is a matter of mode rather
than of representation.

In the above, the two modes of handling verbal information are made
dependent on indices. The function £ has indices in its domain, and the
distinction between the two forms of 7 is based on indices as well. In
section 4 we show that the two modes are available without any appeal
to indices. This does not imply that indices are not necessary. Rather it
implies that the intuition on which the modes are based are independent
of them.

Now, we want to clarify how the modes of 7 are related to the readings in
terms of plural NP denotations. As a first step in that direction we give an

11We use the term ‘collection’ to remain neutral with respect to their precise nature
(sets, sums, groups). In this article, we use sets. Also, Verkuyl (1994) took kolkhoz-
collectivity to be about collections which are minimal within the VP. But now we hold
that this notion should be strengthened to uniqueness (cf. Van der Does’ (1994) discus-
sion of kolkhoz-collectivity in terms of maximized, minimized, and referential collective
readings). The use of maximized, not necessarily unique sets in collective readings is
also an important theme in Van den Berg 1995 (and earlier).
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explicit account of the intuitions concerning Kolkhoz-collectivity. We do so
by means of liftings and lowerings of the basic relations, and characterize
the higher level relations which arise in this manner (section 4.1). It is
shown what reduction in readings is effected if attention is restricted to
these relations (section 4.2), and how they can be used to give a connection
between plural and polyadic quantification (section 4.4).12 In this way we
make precise how these readings relate to the modes of predication.

4 The Present Framework

Localistically, a standard model can be seen to give what is the case at a
certain index (interval, event, . ..). In the previous section we noted that on
this view it is natural to take a two-place relation as carrying information
concerning maximal, even unique sets. On the one hand there is for each
a € A in the domain of the relation the unique set of B’s standing in the
R-relation to it (i.e., the set of Bs on a’s R-path). On the other hand,
there are the unique sets of A’s which stand in the R-relation to the same
B’s (i.e., the set of A’s which share the same R-path as restricted to B).13
As soon as the totalizing nature of this is made explicit at the level of
relations among sets, it suggests that at the higher level not all relations
are admissible. We now characterize the relations which are obtained in
this manner. Intuitively, only those transitive verb denotations are allowed
which relate two unique sets per index. In fact, we prove a slightly more
general result to enable a discussion of the options concerning transitive
verbs in type e(et) and in type e(ett) discerned above.

4.1 Lifting Relations
Let R be a two-place relation of type a(8t). Define
mr : DOM(R) — p(RNG(R))
by: mr(a) — R, with R, := {b: Rab}, and define (DOM(R), ~g) by:
a~ga iff tr(a) = mr(a)
Clearly ~pg is an equivalence relation, which induces a partition of DOM(R).
The cells of this partition are:
[a]g := {a’ € DOM(R) | @’ ~g a}

Using these notions, we define a lifting T from type a(St) to type (at)(Btt)
as follows:

(18) 1,(R)XY iff 3a € DOM(R)[X = [a]g and ¥ = 7g(a)]

The subscript 7 is dropped if no confusion is likely. Notice that we have

R, as the value of 1(R) on [a]g: T(R)([a]r) = Ra. In fact, the relations

12Such a connection is first noted in the appendix of Hoeksema 1983. The question is
often raised by Van Benthem (cf. the issues for further study in Westerstahl 1994).
13 Another view on models takes each tuple in a relation as a unique ‘atomic’ event.
With explicit indices, this would satisfy: Rxj ...zn% and Rz ... Tni implies i = i'.
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within the image of T can be characterized as the partitional injections in
type (at)(Btt); i.e., the injections R : boM(R) — RNG(R) with boM(R)
partitions | JDoM(R).

Proposition 2 The partitional injections R in type (at)(Btt) are precisely
those of the form R = T(R) for an R of type a(ft).

ProOF. It is clear from its definition that T(R) is a function with a
partitioned domain. To see that it is even an injection, assume for
X, X' € poM(TR) that X # X'. There are a, a’ € DOM(R) such that
X = [a]g and X' = [d|g. Since [a]r # [a']r, also mr(a) # wr(a"). That
is, TR(X) # TR(X").

In order to show that any partitional injection R is of the form T(R),
we introduce the lowering | defined by:

(19) [(R)zy iff IXY[RXY and z € X and y € Y]

That is, |R := [J{X x Y | RXY}. Our proof is complete if we can show
that for all the R’s under consideration T(JR) = R. So, let R be an
partitional injection. Then, [(R) = J{X x R(X) | X € poMm(R)}. Here
the X’s are pairwise disjoint and R(X) is only assigned to X. Consequently,
for all @ € DOM(/(R)): m g(a) = R(X), where X is the unique X €
DOoM(R) with a € X. But then for all a € DOM([(R)): [a] R is that X as
well. Thus, RXY iff 3a € DoM(|R)[X = [a] g & Y =7 g(a)] iff T(IR);

as required. O

Proposition 2 highlights once more the notion of kolkhoz-collectivity. First,
the sets of objects which share the same Path occur uniquely within the
domain of R. Second, these unique sets are R-related to a unique set in
the range of R.

A next step is to determine the specific form of T(R) in case mg has
special properties. It is at this point that clear connections with collective
quantification emerge. The properties of m we are interested in are given
in the formulation of proposition 3, which can be proved along the same
lines as proposition 2.

Proposition 3 The atomic injections R in type (at)(Btt) — i.e., the in-
jections with a domain which consists of singletons — are precisely those
of the form R = 1,.(R) for an R of type a(Bt) and © an injection. The
singletons R in type (at)(Btt) are precisely those of the form R = 1_(R)
for an R of type a(Bt) and w constant. O

The above observations are preliminary to showing how iterative quantifi-
cation at the lower level is related to a form of iterative quantification at
the level of sets. It is this relation which allows us to establish in what way
the readings at the higher level vary with the nature of a Path function «.
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4.2 Plural Quantification

In this section we take transitive verbs to be of type e(ett) (cf. section 3.1).
These denotations are obtained from their denotation in type e(i(ett)) by
fixing a certain index 2. In Verkuyl 1993 the indices are totally ordered.
The Path-function 7R of a verb R of type e(ett) assigns to each individual
in its domain a set of sets, which intuitively comes about by going trough
the ordered index i. For example, one could have the injective (20) or the
constant (21):

(20) mi = {{t1,t2}}, ma = {{ta}, {ta}}, ma = {{ts}, {ts}}
(21) my,ma,m3 — {{t1,t2}}

To be able to adapt to this diversity, the internal argument NP should
receive a neutral plural interpretation. As to the plural interpretation of the
external argument NP, the lifting used in section 4.1 may yield an arbitrary
partition as the domain of the shifted verbal denotation. Therefore, the
plural form of this NP should be neutral as well. The basic connection
between the atomic and the plural version of the external argument is
given by proposition 4.

Proposition 4 Let A and B be sets of type (et), and R a relation of type
e(ett). One has for all Dy and all positive Dy :

N(D1)A{X | N(D2)B1(R)(X)} & D1 AN(D2)BR

N.B. We write 1(R)(X) rather than 1(R)x. The latter is a set of sets of
sets, which is one level too high.

PRrOOF. It follows from the positivity of Dy that a—c are true:

a. {X:N(D2)B1(R)(X)}
= {X € poM(1(R)) | N(D2)BT(R)(X)}
b. U{X € poM(T(R)) | N(D2)BT(R)(X)}
= {a € DoM(R) | N(D>)BR,}
c. {a€epoM(R)|N(D:2)BR,}
= {a | N(D2)BR,}

Given these identities, the required equivalence is almost immediate. O

Observe that the plural forms of the NPs show the NN configuration. This
was also our point of departure in section 2.2, but it was found problematic
in section 2.3 since not all neutral NPs can take scope over each other. In
the present situation it the NN configuration is unproblematic, because
T(R) is not just any relation between sets and sets of sets. In particular,
proposition 2 shows its domain to be a partition. As we have seen in
section 2.4, moves like this eliminate the unwanted effects of a wide-scope
N reading.

Proposition 5 determines the effects of the m-modes in terms of plural
NP denotations.
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Proposition 5 (FIN) Let A, B be of type (et), and R of type e(ett). We
write R[a,g for RN A x p(B).

i) TRi, p 5 an injection iff for all positive D, and D, D; AN(Dy)BR
is equivalent to D(D1)A{X : N(D2)BT(R)(X)}.

ii) TR[4p 15 constant iff for all positive D1 and Dy D; AN(D>)BR is
equivalent to C(D1)A{X : N(D3)BT(R)(X)}.

PRroOF. We prove the characterization of mg[, , injective. Since D; and
D, are conservative, D1 AN(D2)BR is equivalent to D1 AN(D9)BR[ 4,5.

By proposition 4 this, in turn, is equivalent to
a) N(D1)A{X : N(D2)B1(R[4,8)(X)}
Further, D5 is positive, so (a) is equivalent to:
N(D1)A{X € DoM(R[4,B) : N(D2)B1(R[4,8)(X)}
Since D, is positive too, the set

{X € poM(T(R[4,8)) | N(D2)B1(R[4,8)(X)}

is non-empty. In case 7g[, , is an injection, proposition 3 with @ = e and
B = (et) says that the domain of T(R[4,g) is atomic. So proposition 1 in
combination with the above observations shows that D; AN(D2)BR and
D(D;)A{X : N(D5)B1(R)(X)} are equivalent.

As to the converse direction of (i), assume that 7gf, , is not an in-
jection. Then there are a,a’ € DOM(R[ 4, p) with 7g[, ,(a) # TRr[, 5(a’).
Set n = |mgy, z(a)|. Since a € DOM(R[4,p), n is positive. Next, set
m = ||J{X € DOM(TR[4,B) : N(n)BT(R[4,8)(X)}| Since

N(n)B1(R[4,8)([a]r[4,5)

m is positive, too. Also, N(m)A{X : N(n)B1(R[4,8)(X)}, and so with
proposition 4 and the conservativity of the numerals: mAN(n)BR. But
by FIN not D(m)A{X : N(n)BT(R[a,5)(X)}, for the set of singletons
in {X € DOM(TR[4,8) : N(n)BT(R[4,8)(X)} is strictly smaller than the
number of elements in the union of this set. For one, the cel [a]g[, , is in
this set but is not a singleton. The characterization of mg[, , constant is
proved along similar lines. O

Proposition 5 proves the external argument to be distributive iff the rele-
vant A’s have their own Path. They share the same Path iff the argument
is collective. As to the internal argument, recall that the sets of sets within
the image of 7 represents how the set of elements to which an element j is
V-related comes about while going through a well-ordered index. There-
fore, this set has information on the nature of the internal argument NP
at a particular index. If the set is given one atom after the other the in-
ternal argument is used distributively; if the set is given in one go its use
is collective; etc.
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According to proposition 5 there is a strict analogue between the read-
ings (10DN) and (10CN) proposed by Van der Does (1993), and the present
formalization of the injective and constant mode of m in Verkuyl 1988.
These treatments are essentially the same but for their treatments of tran-
sitive verbs. In Van der Does (1993) these verbs are relations among sets,
whereas on the present interpretation Verkuyl (1988) uses relations among
individuals and sets of sets. This difference is eliminated by means of the
lift operation.

The status of the cumulative reading (10NN) remains. Here we do
not find such characterizations as the above. But we shall show that the
m-constant mode is a strong assumption, which makes several readings col-
lapse. To this end, we concentrate on polyadic quantification in section 4.3,
and then on a connection between polyadic and collective quantification in
section 4.4.

4.3 Polyadic Quantification

In this section we give examples of cases where the readings of sentences
‘collapse’ given specific information concerning the lowest level of predi-
cation. In particular we show that the iterative, the cumulative, and a
branching reading of a transitive quantificational sentence are equivalent
as soon as 7 is a constant function for the transitive verbs of type e(et).
For the next two sections we first concentrate on the relation between
iterative and cumulative quantification, and then on the relation between
cumulative quantification and some simple versions of branching quantifi-
cation. We observe that they are all equivalent iff 7g[, , is constant.

4.3.1 Iterative and Cumulative Quantification

The most familiar notion of quantification is iterative. It corresponds to
subsequently combining the internal argument NP with the transitive verb
and then combining the result of this with the external argument NP to
yield a sentence. Formally:

(22) IT(Dy,D3)ABR =D, A{a:D2BR,}
Cumulative quantification is due to Scha (1981), and is defined by:
(23) CM(D;,D»)ABR =D;ApoM(RN A x B) AD2BRNG(RN A x B)

In case of (4) it says that the total number of men who lifted tables is 4
and that the total number of tables lifted by men is 3. D; and D5 are used
to determine the size of two unique sets: the domain and range of RN A x
B. Lemma 6 describes the logical relation between IT(D;,D5)ABR and
CM(D;,D5)ABR. Its proof is close to that of the product decomposition
lemma’s of Keenan (1992) and Westerstahl (1993).

Lemma 6 (FIN) For all A, B, R: RN A X B is a non-empty product
iff for all positive Dy, Do: IT(Dy,D2)ABR and CM(D;,D>)ABR are

equivalent.
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PRrOOF. [=:] First note that if RN A x B is the non-empty product X xY,
one has:

i)Vae X:(RNAxB),=Y

ii; {a| DngR NA X B;a} =X, if -DyB{ and D>BY".

Assume CM(D;,D3)ABR, i.e.: D;ADOM(RN A x B) and D3 BRNG(R N
A x B). Since RNAXx B =X xY, also D;AX and DyBY. Given (i)
and (ii), it follows that IT(D;,D2)ABR N A x B. But D; and D, are
conservative, so this is equivalent to IT(D¢,D2)ABR.

Conversely, assume IT(D;,D2)ABR and that RNAXx B=XxY # 0.
Conservativity gives IT(Dy,D3)ABRN A X B, i.e., DiA{a | D2B(RN A x
B),}. D; is positive, so there is a a € DOM(RN A x B) with Dy B(RN A x
B),. But (RNAx B), =Y for all a € boM(RN A x B), so D,BY. Since
D, is positive as well, it follows from (ii) that:

{a| D2aB(RNA X B),} = X

so Dy AX. All in all, we see that D; ADOM(R N A x B) and Dy BRNG(R N
A x B). That is, CM(D;,D3)ABR.

[«<:] Let RN A x B fail to be a product, and let n = |[DoM(RN A x B))|
and m = |RNG(RN A x B)|. Since n,m > 0, the quantifiers (exactly) n and
m are positive, and clearly CM(n,m)ABR. But not IT(n,m)ABR. For
this would imply that |RN A x B| > n % m, which in a finite model only
holds if the relation is a product. O

It is an almost immediate consequence of this lemma that iteration and
cumulation are indistinguishable as soon as 7 is constant for the given
relation and sets. Indeed, the remaining step consists in observing the
simple truth of lemma 7.

Lemma 7 For all A, B, and R: g is constant iff RN A X B s a product.

ProoF. Plainly, if RN A Xx B = X XY wg(a) is constant. Assume for
a contradiction that RN A x B is no product. Then there is a {d,d’) €
(pDoM(RNAxB)XRNG(RNAxXB))\RNAx B. This implies that d' ¢ mr(d).
But also that there is a d” with d' € mg(d"). So, mr(d) # wgr(d"), i-e., Tg
is not constant. o

Combining the lemma’s 6 and 7 we get a proof of the following proposition:
Proposition 8 (FIN) For all A, B, and R: the function

7R : DOM(RN A x B) — p(RNG(RN A x B))
is constant iff: IT(D;,Ds)ABR, and CM(D;,D2)ABR are equivalent, for
all positive Dy, Da. O

Along these lines we obtain a logical reconstruction of the claim in Verkuyl
1994 that the cumulative reading is brought about by = constant. Propo-
sition 8 says that in this case iteration and cumulation collapse. As a
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corollary we see that under these circumstances the issue of scope ambigu-
ity does not arise:

Corollary 9 (FIN) For all A, B, and R: if mg is constant then for all
positive D1, Do (i) and (i) are equivalent.

i) IT(Dy,D,)ABR
ii) IT(Dy,D;)BAR™!

PROOF. Since CM(D;,D2)ABR is equivalent to CM(D2, D;)BAR™!, the

corollary is immediate from proposition 8. O

Of course we should not conclude from proposition 8 that in general it-
erations and cumulations are identical. As is well-known, there logical
behaviour differs widely. Verkuyl’s claim is rather an empirical one: cumu-
lation is only used when 7 is constant. This is an issue which is open for
further discussion. As an argument in favour of it, Verkuyl (1994) high-
lights the notion of totalization, which also plays a crucial role in the way
we lifted relations. In section 4.2, on plural quantification, we have already
seen that the constancy of 7 is closely tied up with this notion.

This ends our discussion of the relationship between iterative and cumula-
tive quantification. We now turn to similar observations concerning cumu-
lative and branching quantification.

4.3.2 Branching quantification

Hintikka (1973) claimed that natural language quantification is sometimes
branching. Barwise (1979) found convincing arguments to support this
claim by considering generalized quantifiers (rather than just first-order
ones). He considered the most prominent readings of (24).

Few at most four
(24) Two | of these girls and | three of those boys
Most quite a few

all dated each other

E.g., for the monotone increasing most and quite a few, (24) comes to
mean: there are sets X and Y containing most boys and quite a few girls
such that the product X x Y is part of the relation denoted by to date.
Similarly for the other cases. Formally, we have the schemes:

Definition 2 [branching quantification]
i) Monotone decreasing: BR™4(Dy, D;)ABR =
IXYD;AX AD:BY ARNAXBCX XxYNAx B
ii) Non-monotone: BR(D;,D»)ABR =
AXYDAX AD:BY AX XYNAXxB=RnNAx B
iii) Monotone increasing: BR™(D;, D,)ABR =
AXYD;AX ADsBY A X XxYNAXxBCRNA x B
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These schemes are partial, in that they apply depending on the monotonic-
ity behaviour of the determiners.'* The schemes for monotone quantifiers
are due to Barwise (1979), and that for non-monotone quantifiers to Van
Benthem (cf. Westerstahl 1987, 274).1> A more general definition for con-
tinuous determiners is in Westerstahl 1987.1¢ Recently there is a renewed
attention for the phenomena. For instance, Sher (1990) and Spaan (1993)
argue that branching quantification involves a notion of maximality which
is lacking in the earlier proposals. Here we concentrate on the simpler
notions of branching given above.

We want to know how the schemes relate to other forms of quantifi-
cation, and in particular to cumulative quantification. In case of BR™d
we can be quick, since Westerstahl (1987, 285) observes that for monotone
decreasing determiners BR™4 and CM are equivalent. The scheme for non-
monotone quantifiers is more interesting. Although the observation below
holds for the intended class, we shall in fact treat it as a general scheme.
Lemma 10 describes the logical relationship between BR and cumulative
quantification for arbitrary quantifiers.

Lemma 10 For all A, B, R: RN A x B is a product iff for all quantifiers
D;, Dy, CM(Dy,D2)ABR is equivalent to BR(D1,D2)ABR.

PrOOF. [=:] First note that branching quantification is stronger than
cumulative quantification. Conversely, if we know CM(D;,D»)ABR and
in addition that RN A x B is a product, then BR(D;,D»)ABR. For in
this case, RN A x B=DoM(RN A x B) x RNG(RN A x B).

[<:] It is sufficient to observe that if R N A x B is not a prod-
uct, (DoM(RN A x B) x RNG(RN A Xx B)) \RNAx B # 0. So,
CM(some, some)ABR, but not BR(some, some)ABR. O

Branching for monotone increasing quantifiers remains. As it happens, we
can use the previous proof to give the same kind of characterization here.!”

Lemma 11 (FIN) For all A, B, R: RNAXB is a product iff for all
monotone increasing D1, Do CM(D;,D3)ABR and BR™(D;,D2)ABR
are equivalent.

ProOF. For monotone increasing D; and Do, BR™ implies CM. On the

other hand, if RN A X B is a product, it follows from lemma 10 that CM
is equivalent to BR for all quantifiers. But BR implies BR™  and this

14 A determiner D is (right) monotone decreasing iff for all A, B, C: if DAC and B C C
then DAB. D is (right) monotone increasing iff for all A, B, C: if DAB and B C C
then DAC.

151n fact we use slight variations in order to get a better fit with the notion of collective
quantification in (6).

16 A determiner D is continuous iff for all A, B,C,D: if DAB, BC C C D, and DAD,
then DAC.

17 Checking the proof one notes that lemma 11 also holds in case BRI quantifies over
products which are maximal with respect to the inclusion relation, as in Sher 1990.
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holds in particular for monotone increasing quantifiers. Finally, whenever
RN A x B is not a product, we can adapt the proof of lemma 6 to show
that

CM(at least n,at least m)ABR
while not BR™i(at least n,at least m)ABR for certain n and m. O

Let us take stock. We have shown that as soon as RN A x B is a product,
branching is indistinguishable from cumulation. As a consequence we have:

Corollary 12 (FIN) For all A, B, R: RN A x B is a non-empty product
(that is: TRy, 5 is constant) iff for all positive Dy, Dy: IT(Dy,D2)ABR,
CM(D;,D5)ABR, and BR(D1,D2)ABR are equivalent. O

With a view to the reduction of ambiguity, corollary 12 suggests to
consider to treat (2ii) as a general scheme. This would have the drawback
that RN A x B is required to be a product, which seems too strict, even in
case of non-monotonic quantifiers. However, in order to enforce a branching
reading one often has to resort to such linguistic means as reciprocals. And
it might well be possible to interpret the reciprocal used so as to turn a
transitive verb into a product; e.g., by selecting a contextually salient or
maximal product part of its denotation. Cf. Schwarzchild 1992. For the
present case one might have:

(25) [EO](R,A,B)e {X xY : X xY CRNAxB}

Consequently, the meaning of (24) can either be written as (26a) or as

(26b).

(26) a. CM(D;,D,)AB[EO](R, A, B)
b. BR(Dy,D,)AB[EO](R, A, B)

If so, the linguistic use of branching could be dispensed with in favour
of cumulative quantification. And if the quantifiers are positive, even to
‘standard’ iterative quantification (cf. lemma 6). Needless to say that this
observation disregards the many subtleties concerning the other meanings
of reciprocals. Cf. Dalrymple et al. 1994.

This finishes our discussion of polyadic quantification. In the next section
we shall use the present observations to give a connection between polyadic
and collective quantification.

4.4 Polyadic vs. Collective Quantification

It remains to clarify the status of the cumulative and other non-iterative
forms of quantification in case 7g is constant, for R a plural verb. To this
end, recall that on the localistic view we took such verbs to be of type e(ett)
in order to represent the main effect of ‘passing trough’ a structured index.
Now, if 7R is constant, this set of sets is the same for all a € DOM(R).
This correctly predicts that a collective use of (4), which more or less
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corresponds to a use of (27), allows for some variation with respect to the
internal argument NP.

(27) Three men lifted two tables together

The men may have jointly lifted two different tables, or they may have
lifted two tables in one go. That is, in case of (27) the constancy of mg is
compatible with such configurations as in (28).

(28) my,ma,mz — {{t1,t2}}
my,ma,mz —  {{t1},{t2}}
It should be observed, however, that the underlying set of tables the men
turn out to be related to is the same.
Formally, one may abstract from the process of generation by means of
the type-shift ABs:

ABS := ’\Re(ett) )‘me)\ye-zlz(et) (R.’L’Z ANy € Z)

Then the above observation becomes: for all Re(ett)7 if g is constant, so
is Tabs(R)- The converse need not be true: at an index 7 one can ultimately
be R-related to the same set (Fabs(R) is constant), even though this set is
arrived at in different ways within ¢ (7g is not).

It might be clear now how the constancy of mg within type e(ett) con-
nects collective with polyadic quantification. In that circumstance two
unique sets are related to each other. The collective use takes these sets as

they come, while the polyadic forms of quantification uses their product.
Proposition 15 has the details, but first some lemma’s.

Lemma 13 Let R be a relation between sets, and D, and Dy positive
determiners. If |R| =1 then (i) and (i7) are equivalent.

i) N(D1)AN(Dy)BR

ii) C(D;)AC(Dy)BR
PROOF. In case R is a singleton, it follows from the positivity of Dy and
proposition 1 that:

{X | N(D2)BRx} = {X | C(D2)BRx}

Since D; is positive: |{X | C(D2)BRx}| = 1. So the equivalence follows
by applying proposition 1 once more. O
The converse of this lemma is false. For take R C p(A) x p(B) to be:

{({a}, {b}), {a}, {c}), ({d},{c})}. Then, C(1)AC(1)BR is equivalent to
N(1)AN(1)BR, but R is no singleton. Lemma 14 proves a similar equiva-
lence between the doubly collective and the branching reading.

Lemma 14 Let R be a relation between sets. If |R| =1 then (i) and (i7)
are equivalent.

i) C(D1)AC(D2)BR

ii) BR(D1,D2)AB|(R)
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PRrOOF. First define R[4, p:= RN p(A4) x p(B). If |IR| =1, |[(R[a,B) =
L(R) N A x B. Using this, we reason as follows:

C(D;)AC(D,)BR

IXY[D1AX A DyBY A RXNAY NB

IXY[D1AX A DyBY A X xYNAxB=|(R[45)
IXY[D1AX A DyBY A X xYNAxB=|(R)NA x B
BR(D;,D,)AB|(R)

teoe

O
Again the converse of lemma 14 is false. The constancy of 7g with R of
type e(ett) can now be shown to have the following effect.

Proposition 15 Let A and B be sets, R a relation of type e(ett), and Dy
and D positive determiners. If g is constant, (i —iv) are equivalent.

i) N(D1)A{X : N(D2)BT(R)(X)}
if) N(Dy)A{X : N(D2)B1(ans(R))}
iii) C(D1)A{X : C(D2)B1(ABs(R))}
iv) BR(D;,D2)ABABS(R)

According to theorem 8 similar equivalences hold with respect to the iterative
and cumulative reading.

PROOF. Observe that for all X € poM(R): |J(TR(X)) = (T1ABS(R))x. The
equivalence of (i) and (ii) now follows from the positivity of Dy. Moreover,
if g is constant so is ,pg(r). Proposition 3 with o = § = e gives that
Tabs(R) is a singleton. Therefore, lemma 13 and 14 can be used to obtain
the remaining equivalences. O

On this view, the differences in readings merely result from a shift in per-
spective on the underlying collections. The crudest view pertains in case
of the kolkhoz-collective use, which states that at an index two unique col-
lections are related to each other. The doubly neutral use, on the other
hand, relates the same two collections, but employs the way the second
collection is generated within the index. Finally, branching takes the mem-
bers of the two collections to be all related to each other, which yields
perhaps the finest perspective possible. For the present investigations it
is important to note that these uses cannot be distinguished in terms of
truth-conditions. We therefore suggest to capture them by means of the
Tinj- and the meon-mode of the verbal components combined with iterated
neutral quantification, but to use no further representation within the se-
mantics.

5 Conclusions

In 1991 the present authors agreed upon the need to reduce the ambiguity
of sentences like (1) and (2) and decided to embark on an enterprise to end
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up with just one reading to these sentences rather than the usual six, eight,
nine or more.

Verkuyl 1988 offered the intuition to bring back the number of readings
to just two by means of the two modes of the w-function. This reduction
was possible due to the integration of an important linguistic tradition
called localism with the theory of generalized quantification. At the time
of our common enterprise the constant and the injective functions appeared
to be two sides of a coin, so our optimism seemed to be justified, as we
suggested in Verkuyl and Van der Does 1991.

In separate studies—Van der Does 1993,1994 and Verkuyl 1993, 1994—
it became clear that there were some problems. Even if it were possible to
reduce Scha’s nine reading to one on the basis of the scale approach, the
cumulative reading required a special treatment. Van de Does 1993 ended
up with the three readings in (10) as the minimal number of readings to
be assigned to sentences like (1) and (2), and Verkuyl 1994 ended up with
one reading for the combinations predicted by a scalar approach and one
reading which was called kolkhoz-collectivity.

In the present paper, the number of readings is reduced to two by
analyzing the relation between kolkhoz-collectivity and Scha’s cumulativity.
Whenever 7 is constant, a transitive doubly collective sentence is equivalent
to a cumulative one. To show this, among other things, we introduced an
abstract notion of Path. The main insight is that the notion of kolkhoz-
collectivity, i.e., the m constant mode, can be used to connect the different
forms of quantification.

Kolkhoz-collectivity arises naturally within the localist framework, but
it is also of independent interest. Plainly, this notion requires a strong
appeal to context, and we suggest to use indices for this purpose. It is
shown that the two modes of predication, which correspond to natural re-
strictions on the Paths provided by a verb, covers the ‘readings’ discerned
in the literature. We would wish to maintain that it is less natural to
speak about two readings rather than modes; the difference between the
reading corresponding to the m;pjective-function and the kolkhoz-collective
Teonstant-function is not visible in the logical form. Of course, the restric-
tion on the denotation of the verb can be seen in terms of a representational
clue, but linguistically it makes more sense to continue to think about this
matter in terms of modes.
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