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INTRODUCTION

Intriguing parallels can be observed between the execution of computer programs
and the interpretation of ordinary discourse. Various elements of discourse, such
as assertions, suppositions and questions, may well be compared with statements
or sequences of statements in an imperative program. Let us concentrate on asser-
tions for the moment. Stalnaker 1979 sums up some of their more or less obvious
characteristics in the following way.

Let me begin with some truisms about assertions. First, assertions have content; an act
of assertion is, among other things, the expression of a proposition—something that



represents the world as being a certain way. Second, assertions are made in a context—a
situation that includes a speaker with certain beliefs and intentions, and some people
with their own beliefs and intentions to whom the assertion is addressed. Third, some-
times the content of the assertion is dependent on the context in which it is made, for
example, on who is speaking or when the assertion takes place. Fourth, acts of
assertion affect, and are intended to affect, the context, in particular the attitudes of the
participants in the situation; how the assertion affects the context will depend on its
content.

If we are prepared to think about assertions as if they were some special kind of
programs, much of this behaviour falls into place. That assertions are made in a
context may then be likened to the fact that execution of a program always starts in
a given initial state; that the content of an assertion may depend on the context
parallels the situation that the effect of a program will usually depend on this input
state (for example, the effect of x :=y + 7 will crucially depend on the value of y
before execution); and that a program or part of a program will change and is in-
tended to change the current program state is no less a truism as the contention that
an act of assertion changes the context. After the change has taken place, the new
state or the new context can serve as an input for the next part of the program or
the next assertion.

The metaphor helps to explain some other features of discourse as well. For
instance, it makes it easier to see why the meaning of a series of assertions is
sensitive to order, why saying “John left. Mary started to cry.” is different from
saying “Mary started to cry. John left.”. Clearly, the result of executing two pro-
grams will in general also depend on the order in which we run them. If we think
about sequences of sentences as ordinary conjunctions on the other hand, this
non-commutativity remains a puzzle. The picture also helps us see how it can be
that some assertions are inappropriate in certain contexts, why we cannot say
“Harry is guilty too” with a certain intonation just after it has been established that
nobody else is guilty. This is like dividing by x just after x has been set to 0.

Discourse and programming then, seem to share some important structural
properties, to the extent that one can serve as a useful metaphor for the other. We
need not restrict application of the metaphor to that part of discourse that is ex-
pressed by overt linguistic means. Not only are assertions, suppositions and ques-
tions made in a context, other, non-verbal, contributions to conversation, such as
gestures and gazes, are too. These non-verbal acts of communication likewise
have a potential to change the current context state. A speaker may for instance
introduce discourse referents into the conversation with the help of a gesture or a
gaze, or may use such means (or more overt linguistic ones such as changes in
tense and aspect or rise in pitch) to announce the introduction of a new ‘discourse
segment purpose’ (Grosz & Sidner 1986, Polanyi 1985). Appropriateness
conditions for gestures or gazes do not seem to differ in principle from those for
linguistic acts: a case of pointing where there is nothing to be pointed at may be
likened to saying “The king is bald” where there is no king, or the use of a
variable that has not been declared.

But if even gestures and gazes share the structural properties that we have seen
are common to computer programs and linguistic acts, then we may wonder
whether the properties involved are not simply those that all actions (or at least all
rule-based actions) have in common, and indeed we feel that this is the right level
of abstraction to think about these matters. An action—whether it be a commu-
nicative act, the execution of an assignment statement, a move in chess, or simply
the movement of an arm—is perfomed in a given situation, typically changes that
situation, and is dependent upon that situation for the change that it brings about.
The effect of castling is dependent on the previous configuration on the board and
your friend’s stepping forward may result in his stepping on your toe in some sit-



uations but not in others. The order in which we perform our actions will typically
effect the result, as we are all aware, and in many situations an action may be
inappropriate—you cannot move your rook if this exposes your king.

The similarity between linguistic acts and moves in a game was stressed by the
philosopher Ludwig Wittgenstein (Wittgenstein 1953), but the first paper with
immediate relevance to theoretical linguistics that explicitly took such similarities
as its point of departure was the influential Lewis 1979. In this article, which
refers to Wittgenstein in its title, Lewis compares conversation with baseball and
says that ‘with any stage in a well-run conversation, there are many things
analogous to the components of a baseball score.” The latter is defined as a
septuple of numbers: the number of home team runs, the number of runs that the
visiting team has, the half (1 or 2), and so on. And in a similar way Lewis lets
conversational score consist of several components: a component that keeps track
of the presuppositions at any moment of conversation, a component that ranks the
objects in the domain of discourse according to salience, the point of reference,
the possible worlds that are accessible at any given point, and many others. Just
as the rules of baseball tell us how the actions of the players alter the baseball
score, the rules of conversation specify the kinematics of context change. If you
mention a particular cat during conversation, for example, the rules bring it about
that that cat will become salient and that a subsequent use of the definite
description “the cat” will most likely refer to it. And if you say “John went to
Amsterdam” the point of reference will move to Amsterdam as well, so that if you
continue by saying “Mary came the following day”, it will be understood that
Mary came to Amsterdam and not to any other place.

Clearly, Lewis’ picture of a conversational scoreboard that gets updated
through linguistic acts of the participants in a conversation has much in common
with our previous computational picture. In fact, we can imagine the
conversational scoreboard to be a list of variables that the agents may operate on
by means of programs according to certain rules. But a caveat is in order, for
although there are important structural similarities between games and programs
on the one hand and discourse on the other, there are of course also many features
that are particular to conversation and our metaphor is not intended to make us
blind to these. An example is the phenomenon of accommodation that Lewis
describes. If at some point during a conversation a contribution is made that, in
order to be appropriate, requires some item of conversational score to have a
certain value, that item will automatically assume that value. For instance, if you
say “Harry is guilty too” in a situation where the presupposition component of
conversational score does not entail that someone else is guilty (or that Harry has
some salient property besides being guilty), that very presupposition will
immediately come into existence. This accommodation does not seem to have a
parallel in games or computing: trying to divide by x after this variable has been
set to O will not reset x to another value and, to take an example used by Lewis, a
batter’s walking to first base after only three balls will not make it the case that
there were four balls after all.

Such examples, however, need not change the basic picture. That conversation
and other cognitive activities have many special properties besides the ones that
they have in virtue of being examples of rule-governed activities in general need
not surprise us. Accommodation can be thought of as such a special property and
we may model it as one of the particular effects that the programs that model
communicative acts have; one of the effects that they have in virtue of being a spe-
cial kind of program rather than just any program. It is the logic of the general
properties that we are after in this paper.

The paper is divided into two parts. In part I, without any attempt at giving a
complete rubrication, we shall give an overview of some important dynamic theo-
ries in linguistics and artificial intelligence which have emerged in the last two
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decades and we shall see how these fit into the general perspective on communica-
tion sketched in this introduction. In part II we shall offer some more general logi-
cal considerations on dynamic phenomena, discussing various ways to model
their logic and discussing how the logic that emerges is related to its classical static
predecessors.

PART I: SOME SPECIFIC DYNAMIC SYSTEMS

I.1 The kinematics of context change: Stalnaker, Karttunen, Heim
and Veltman »

Certain things can only be said if other things are taken for granted. For example,
if you say (1a) you signal that you take the truth of (1b) for granted, and a similar
relation obtains between (2a) and (2b) and between (3a) and (3b). The (b)-sen-
tences are presuppositions of the (a)-sentences and in a situation where the falsity
of any of the (b)-sentences is established, the corresponding (a)-sentence cannot
be uttered felicitously (for an overview of theories of presupposition cf. Soames
1989, Beaver 1996, this Handbook).

(1a) The king of France likes bagels
(1b) France has a king

(2a) All of Jack’s children are fools
(2b) Jack has children

(3a) John has stopped seeing your wife
(3b) John was seeing your wife

Stalnaker 1974 gives a rough definition of the notion of presupposition which
runs as follows: a speaker presupposes that P at a given moment in a conversation
just in case he is disposed to act, in his linguistic behavior, as if he takes the truth
of P for granted, and as if he assumes that his audience recognizes that he is doing
so. Note that this defines the notion of presupposition not only relative to a
speaker and the assumptions that he makes regarding his audience, but also rela-
tive to a moment in conversation. This leaves open the possibility that the set of
propositions that can be assumed to be taken for granted changes during discourse
and indeed this is what normally happens. When you say: ‘John was seeing your
wife’, you may from that moment on assume that your audience recognizes that
you take it for granted that he did. Consequently, in order to be able to say (4) you
need not assume in advance that your audience recognizes anything at all about
your views on his wife’s past fidelity; the necessary precondition for a felicitous
uttering of the second conjunct will be in force from the moment on that the first
conjunct has been uttered, regardless of the assumptions that were made be-
forehand.

(4) John was seeing your wife but he has stopped doing so
(5) If France has a king, then the king of France likes bagels
(6) Either Jack has no children or all of his children are fools
(7)  The king of France does not like bagels

In (5) and in (6) something similar happens. If a speaker utters a conditional, his
audience can be assumed to take the truth of the antecedent for granted during the
evaluation of the consequent and hence a speaker need not presuppose that France
has a king in order to utter (5) in a felicitous way. Similarly, when evaluating the
second part of a disjunction, a hearer will conventionally take the falsity of the
first part for granted and so (6) can be uttered by someone who does not



presuppose that Jack has children. The presuppositions that a speaker must make
in order to make a felicitous contribution to discourse with a negated sentence on
the other hand do not seem to differ from those of the sentence itself and so (7)
simply requires (1b) to be presupposed.

Such regularities suggest the possibility of calculating which presuppositions
are in force at any given moment during the evaluation of a sentence and indeed
rules for calculating these are given in Karttunen 1974. Let us call the set of sen-
tences C that are being presupposed at the start of the evaluation of a given sen-
tence S the initial context of S. Then we can assign local contexts LC(S") to all
subclauses S’ of S by letting LC(S) = C and, proceeding in a top-down fashion,
by assigning local contexts to the proper subclauses of S with the help of the
following rules.

G LCmot$)=C = LCE)=C

(i) LC@GfSthenS)=C = LCS)=C&LCES)=Cu {S}
i) LC(Sand$H=C = LC(S)=C&LC(S)=Cu {8}
(ivy LC(SorS)=C = LCW)=C&LCS)=CuU {not S}

The local context of a clause consists of the presuppositions that are in force at the
time the clause is uttered. The rules allow us to compute e.g. the local context of
the first occurrence of S”in ‘if (S and S%) then (S”or $*)’ as C U {S}, where C is
the initial context, and the local context of the second occurrence of this sentence
can be computed to be C U {S and S’, not S”}.

A speaker who presupposes an initial set of sentences C is now predicted to be
able to utter a sentence S felicitously just in case the local context of each sub-
clause of S entails all presuppositions that are triggered at the level of that sub-
clause. If this is the case we say that C admits or satisfies the presuppositions of
S. Since e.g. C need not entail that Jack has children in order to admit (6) it is
predicted that a speaker need not presuppose that he has in order to be able to
make a suitable contribution to discourse with the help of this sentence.

Rules (i)-(iv) only allow us to compute the admittance conditions of sentences
that are built from atomic clauses with the usual propositional connectives, but
Karttunen also extends the theory to sentences constructed with complementizable
verbs. The latter are divided into three: (a) verbs of saying such as say, mention,
warn, announce and the like, which are called plugs; (b) verbs such as believe,
fear, think, doubt and want, which are filters; and (c) verbs such as know, regret,
understand and force, which are holes. Three extra rules are needed for assigning
local contexts to the subclauses of sentences containing these constructions.

v) LC(NP V. $)=C = LC(S)={Ll}
(vi) LCWNP Vo $)=C = LC(S) = {S’| NP believes S’e C}
(vii) LC(NP V},,S)=C = LC(S)=C

For example, in (8) the local context for ‘the king of France announced that John
had stopped seeing his wife’ is simply the initial context C, and so a speaker who
is to utter (8) should presuppose that there is a king. But it need not be presup-
posed that John was seeing Bill’s wife since the local context for the complement
of announce is simply the falsum L, from which the required presupposition
follows of course. With respect to (9) it is predicted that the initial context must
entail that Sue believes there to be a king of France and that she believes that Jack
has children for the utterance to be felicitous.

(8)  Joe forced the king of France to announce that John had stopped seeing
Bill’s wife



(9) Sue doubts that the king of France regrets that all of Jack’s children are
fools

Karttunen’s rules for the admittance conditions of a sentence are completely inde-
pendent from the rules that determine its truth conditions (a feature of the theory
criticised in Gazdar 1979), but Heim 19832 shows that there is an intimate connec-
tion. Many authors (e.g. Stalnaker 1979) had already observed that a sequence of
sentences Si,...,5, suggests a dynamic view of shrinking sets of possibilities
[S:1, [S;1 N [S,], ..., [S1] m...n [S,], where each [S;] denotes the possibilities
that are compatible with sentence S;. The idea is illustrated by the game of Master
Mind, where some initial space of possibilites for a hidden sequence of coloured
pegs is reduced by successive answers to one’s guesses, encodeable in
conjunctions of propositions like “either the green peg is in its correct position or
the blue one is”. Complete information corresponds to the case where just one
possibility is left. Identifying the possibilities that are still open at any point with
the local context C, we may let the context change potential ||S|| of a sentence S be
defined as the function that assigns C N [S] to any C. Processing S1,...,S, will
then reduce an initial context C to S]] o...0 ||S,|[(C), where o denotes composition
of functions.

This last set-up defines the context change potential of a sentence in terms of its
truth conditions, but Heim takes the more radical approach of defining truth con-
ditions in terms of context change potentials. The context change potential of a
complex expression in her theory is a function of the context change potentials of
its parts. In particular, she dynamicizes the interpretation of the propositional con-
nectives by giving the following clauses for negation and implication.!

[Inot S|I(C) = C - IS||(C)
llif S then ST(C) = C - (ISIC) — ISTAISIC))

The functions ||S]| considered here may be undefined on contexts C where the pre-
suppositions of S fail to hold and it is to be understood that if an argument of a
function is undefined, the value of that function also is. For example, [|if § then
SN(C) is defined if and only if both ||S[|(C) and [|SY|(|IS|I(C)) are. This means that
C acts as a local context of S, while ||S||(C) is the local context of S”. The local
context for S in |not S||(C) simply is C. Essentially then, Karttunen’s local
contexts for a sentence can be derived from the definition of its context change
potential, but the definition also determines the sentence’s truth conditions, as we
may define S to be true in a point i iff ||S||({i}) = {i} and false in i iff |[S||({i}) =
.2 For sentences not containing any presupposition this is just the standard
notion, but a sentence S may be neither true nor false in i if ||S]|({i}) is undefined.

Heim’s idea suggests adding a two-place presupposition connective / to the
syntax of propositional logic, where ¢/ y is to mean that y holds but that ¢ is
presupposed.? We shall interpret the resulting system dynamically, letting contexts
be sets of ordinary valuations V, and defining context change potentials as
follows.

1Heim writes C + S where we prefer ||S]|(C).

2Heim 19832 and Heim 1982, page 330 let a context (or a file) be true iff it is non-empty. A
sentence S is then stipulated to be true with respect to a given C if ||S]|(C) is true, and false with
respect to C if C is true and ||S[|(C) is false. The case where both C and |[S]|(C) are false is not
covered. Heim notices this and in Heim 1982 makes an effort to defend the definition. The
present definition is more limited than Heim’s original one, since it essentially instantiates C as
{i}. But truth in i is always defined in our definition and the definition serves its purpose of
showing that classical truth conditions can be derived from context change potentials.

3See Beaver 1992 for a unary presupposition connective d which is interdefinable with /.



@ |l =Cn{V|V(p)=1} if p is atomic
i) [I~elC)  =C-[lalC)

(i) @A wl(O) =IwllPl(C)

i) Nle/vO) =viC) if|l¢i(C)=C

= undefined otherwise

The demand that ||¢}|(C) = C is a way to express admittance of ¢ by the context C
(compare the notion of acceptance in Veltman 1991). Again, it is to be understood
that if an argument of a function is undefined, the value of that function also is.
Conjunction and disjunction can be defined as usual, i.e. ¢ — y is to abbreviate
=(¢ A =) and @ v yis short for ¢ — y. The reader is invited to verify that the
resulting logic gives us exactly the same admittance conditions as we had in (the
propositional part of) Karttunen’s theory. In particular, we may formalise sen-
tences (4), (5) and (6) as p A (p/q), p = (p/q) and —p Vv (p/q) respectively and
see that these are admitted by any context.

This then is a version of propositional logic which supports presuppositions
and is truly dynamic, as its fundamental semantic notion is that of context change
potential rather than truth. The reader be warned though that an alternative static
definition gives exactly the same results. To see this, define the positive extension
[@]* and the negative extension [@]~ of each sentence @ as follows.

@) [+ ={VIV)=1) pl-  ={VIV(p)=0}

i) [~el* =lol- R

(i) [@Ayl* =[o]* N [y]* [pAyl~ =[¢]-U ([t N [y])
iv) [@/ylt =lol* N [y]* /vy~ =[ol" N[yl

The connectives = and A are essentially treated as in Peters 1975 here (see also
Karttunen & Peters 1979), while / is the so-called transplication of Blamey 1986.
An induction on the complexity of ¢ will show for any C (a) that ||¢||(C) is
defined iff C < [¢]* U [¢]~ and (b) that [|@|(C) = C N [¢]* if ||@l|(C) is defined.
This means that Heim’s logic is not essentialy dynamic after all, even if its dy-
namic formulation is certainly natural.

Essentially dynamic operators do exist, however. Let us call a total unary func-
tion F on some power set continuous if it commutes with arbitrary unions of its
arguments, i.e. if for any indexed set {C; | i € I} it holds that U{F(C)) | i € I} =
F(U{C;| i€ I}). Call Fintrospective if F(C) ¢ C for any C. Van Benthem 1986
shows that these two properties give a necessary and sufficient criterion for an op-
erator to be static: F is continuous and introspective if and only if there is some P
such that F(C) = C n P for all C (see also Groenendijk, Stokhof & Veltman
1994). This means that an essentially dynamic operator must either not be contin-
uous or not be introspective. A key example of a non-continuous operator is
Veltman’s 1991 epistemic might in a theory called Update Semantics. A minimal
version of Veltman’s system can be obtained by taking propositional modal logic
and interpreting it by adding the following clause to (i)-(iii) above.

0Al(C) = D if |¢ll(C)=D

C otherwise

The operator helps explain the difference between the acceptability of discourses
such as (10) and (11).

(10) Maybe it is raining. ... Itis not raining.
(11) Itis not raining. ... #Maybe it is raining.
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A naive translation into modal logic would make this into the commutative pair
Or A =r , =r A Or. But dynamically, there is a difference. In (10) the initial state
can still be consistently updated with the information that it is raining. Only after
the second sentence is processed this possibility is cut off. In (11), however, the
information that it is not raining has been added at the start, after which the test for
possibility of raining will fail. This modality is no longer a continuous function,
and it does not reduce to classical propositions in an obvious way. Nevertheless,
there are still strong connections with classical systems. Van Benthem 1988 pro-
vides a translation into monadic predicate logic computing the update transitions,
and van Eijck & de Vries 1995 improve this to a translation into the modal logic
S5, where ¢ behaves like a modality after all. This means that these systems are
still highly decidable.

In addition to mere elimination of possibilities the update framework also sup-
ports other forms of movement through its phase space. A phrase like unless ¢,
for instance, may call for enlargement of the current state by reinstating those ear-
lier situations where ¢ held. Other plausible revision operators which are not in-
trospective in the sense given above are not hard to come by.

Clearly the picture of updating information that is sketched here, with contexts
or information states being flatly equated with sets of valuations, gives an ex-
tremely simplified model of what goes on in actual natural language understanding
and it is worthwhile to look for subtler definitions of the notion of information
state and for operations on information states subtler than just taking away pos-
sibilities or adding them. Assertions, for example, may not only change our views
as to which things are possible, they may also upgrade our preferences between
possibilities, i.e. change our views as to which possibilities are more likely than
others. The latter phenomenon may be represented in terms of preference relations
between models, as it is currently done in Artificial Intelligence (Shoham 1988) in
a tradition that derives from Lewis’s possible worlds semantics for conditional
logic (cf. Lewis 1973, Veltman 1985). For instance, processing a conditional de-
fault rule if A, then B need not mean that any exceptions (i.e., A & not B worlds)
are forcibly removed, but rather that the latter are downgraded in some sense. This
idea has been proposed in Spohn 1988, Boutilier 1993, Boutilier and Goldszmidt
1993 — and most extensively, for natural language, in Veltman 1991. In the latter
system, static operators may model adverbs like presumably or normally, whereas
a default conditional leads to a change in expectation patterns. To simplify matters,
in what follows, ¢, ¥ are classical formulas. States C now consist of a set of
worlds plus a preference order < over them, forming a so-called expectation
pattern. Maximally preferred worlds in such patterns are called normal. Incoming
propositions may either change the former ‘factual’ component, or the latter (or
both). For instance, given C and ¢ we may define the upgrade C,, as that
expectation pattern which has the same factual component as C, but whose
preference relation consists of < with all pairs (w,v) taken out in which we have
v |= @ without wl=0.

llnormally Il(C) = C,, if @ is consistent with some normal world
&  otherwise

|presumably @ll(C)= C if ¢ holds in all maximally preferred situations in C
& otherwise

A much more complicated explication takes care of the binary operator if ¢, then
y. Cf. Veltman 1991 for details, basic theory and applications of the resulting
system. In particular, this paper provides a systematic comparison of the predic-
tions of this system against intuitions about natural default reasoning. A more ab-
stract perspective on update semantics is provided in van Benthem, van Eijck &
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Frolova 1993, which also includes connections with dynamized versions of
conditional logic.

1.2 Change of assignments: Heim, Kamp, Groenendijk & Stokhof

A person who is reading a text must keep track of the items that are being intro-
duced, since these items may be referred to again at a later point. The first
sentence of text (12), for example, requires its reader to set up discourse referents
(the term and the idea are from Karttunen 1976) for the indefinite noun phrases a
woman and a cat. The anaphoric pronoun if in the second sentence can then be
interpreted as picking up the discourse referent that was introduced for a cat and
the pronoun her may pick up the referent for a woman. Thus, while you are
reading, not only the set of sentences that you can be assumed to take for granted
changes, but your set of discourse referents grows as well. This latter growth
gives us another example of contextual change.

(12) A woman catches a cat. It scratches her.

There are many semantic theories that use this kind of change to explain the pos-
sibilities and impossibilities of anaphoric linking in natural language. Here we
shall briefly discuss three important ones, File Change Semantics (F'CS, Heim
1982, 1983b), Discourse Representation Theory (DRT, Kamp 1981, Kamp &
Reyle 1993, Van Eijck & Kamp 1996, this Handbook ), and Dynamic Predicate
Logic (DPL, Groenendijk & Stokhof 1991). The first two of these theories were
formulated independently in the beginning of the eighties, address roughly the
same questions and make roughly the same predictions (see also Seuren 1975,
1985), the third was formulated at a later time and differs mainly from the first and
second from a methodological point of view.

1.2.1File Change Semantics

The basic metaphor underlying Heim’s theory is a comparison between the reader
of a text and a clerk who has to keep track of all that has been said by means of a
file of cards. Each card in the file stands for a discourse referent and the informa-
tion that is written on the cards tells us what we have learned about this discourse
referent thus far. Reading text (12), for example, the clerk would first have to
make a card for the indefinite noun phrase a woman.

[x1]

X; is a woman |

His next step would be to set up a card for a cat. His file now looks as follows.

B 1, ]

x;isawoman | [x,isacat |

The information that the woman catches the cat is now written upon both cards,

x| B
x; is a woman X, 1s a cat
x; catches X, X, is caught by x;

and finally the second sentence is interpreted. It is interpreted as x, and her is
identified with x;. This leads to the following file.
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B B

x; is a woman X, is a cat

x; catches x; x, is caught by x;
x; is scratched by x; scratches x;
X2

In this way our clerk proceeds, setting up a new card for each indefinite noun
phrase that he encounters and identifying each definite noun phrase with a card
that was already there. A file is said to be frue if there is some way of assigning
objects to the discourse referents occurring in it such that all the statements on the
cards come out true, i.e. a file is true (in a given model) if there is some finite as-
signment satisfying all the open sentences in it, it is false if there is no such as-
signment. In fact, for the purposes at hand we can identify a file F' with a pair
(Dom(F), Sat(F)), where Dom(F), the domain of F, is the set of all discourse ref-
erents (i.e. variables) occurring in F and Sat(F), the satisfaction set of F, is the set
of assignments with domain Dom(F) which satisfy F. The meaning of a text is
now identified with its file change potential, the way in which it alters the current
file. Formally, it is a partial function from files to files.

Texts are connected to their file change potentials via a two-tier procedure in
Heim’s system. First, at the level of syntax, the text is associated with its so-
called logical form. Logical forms are then interpreted compositionally by means
of file change potentials. We shall look at each of these steps in a little detail.

The logical form of a sentence, which may be compared to the analysis tree that
it gets in Montague Grammar, or to its logical form (LF) in contemporary genera-
tive grammar, is obtained from the syntactic structure of that sentence via three
rules. The first, NP Indexing, assigns each NP a referential index. For ease of ex-
position we shall assume here that this index appears on the determiner of the
noun phrase. If we apply NP Indexing to (14) (which for our purposes we may
take to be the surface structure of (13)), for instance, (15) is a possible outcome.
The second rule, NP Prefixing, adjoins every non-pronominal NP to S and leaves
a coindexed empty NP behind. A possible result of this transformation when ap-
plied to (15) is (16), but another possibility (which will result in the wide scope
specific reading for a caf) is (17). The last rule, Quantifier Construal, attaches each
quantifier as a leftmost immediate constituent of S. Determiners such as every,
most and no count as quantifiers in Heim’s system, but the determiners a and the
do not. The result of applying the transformation to (16) is (18) and applying it to
(17) gives (19).

(13) Every woman catches a cat

(14) [g[npevery woman][ypcatches[ypa cat]]]

(15) [g[npevery; woman][ypcatches[ypa, cat]]]

(16) [g[npevery; woman][g[npa, cat][g e; catches e;]]]
(17) [s[npay cat][s[npevery; woman][g e; catches e,]]]
(18) [gevery[np—jwoman][s[npa, cat][g e; catches e,]]]
(19) [s[npa, cat][severy[yp—;woman][g e; catches e,]]]

The logical form of a text consisting of sentences S,...,S, (in that order) will
simply be [1&;...&,], where each of the &; is the logical form of the corresponding
S;. For example, (20) will be the logical form of text (12).

(20) [1ls[npa; woman][g[npa, cat][se; catches e,]]][sit, scratches her]]

Logical forms such as (18), (19) and (20) can now be interpreted compositionally;
each will be associated with a partial function from files to files. The smallest
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building blocks that the interpretation process will recognise are atoms such as
[np2; Wwoman], [yp—;woman], [e; catches e,] and [it, scratches her,], all of the
form [x; Rx;,...x; ], with definite and indefinite determiners, pronouns, empty
NP’s and the trace — identified with variables x. We shall assume that indefinite
determiners and the trace — carry a feature [—def] and that the other variables are
[+def]. The following condition gives us the domain of the file change potential
[1Lx;, Rxiy - - - xi ll-

(@) |I[x;Rx;,...x; JI(F) is defined iff for each x;, (1 <k <n):
(Novelty) if x;,_is [-def] then x; ¢ Dom(F) and
(Familiarity) if x;, is [-+def] then x;_ e Dom(F)

This requirement, which Heim calls the Novelty/Familiarity Condition, corre-
sponds to the file clerk’s instruction to make a new card whenever he encounters
an indefinite noun phrase but to update an old card whenever he encounters a def-
inite NP.

In order to define what ||[x; Rx;,...x; ]||(F) is in case the Novelty/Familiarity re-
quirement is met, we suppose that a first-order model M = (D,I) that interprets the
predicates of our language is given and stipulate the following.

@i  If [I[x;,Rx;,...x; JII(F) is defined then
Dom(|[x; Rx;,.-.x; M1(F) = Dom(F) U {xi,,.... xi,}
Sat(||[x;,Rxi,...x; NF)) = {a | dom(a) = Dom(F) U {xi,....xi_} &

3b c a: b € Sat(F) & (a(x;),....a(x)) € [(R)}

For example, if we apply [|[ypa; woman]|| to the empty file (J,{}), i.e. the file
with empty domain and satisfaction set {J}, we obtain the file with domain {x; }
and satisfaction set (21). If we apply ||[ypa, cat]|| to the latter we get (22) as our
new satisfaction set and {x;, x,} as the new domain. Applying |[[se; catches e,]||
to this file sets the satisfaction set to (23) and leaves the domain as it is. A last
application of ||[sit, scratches her;]|| changes the satisfaction set to (24). Of course
this set is non-empty if and only if (25) is true.

1) {{{x1,d)}| d’€ I(woman)}

22) {{{x1,d"), (x5,d”)} | d’€ I(woman) & d”’ e I(cat)}

(23) {{{(x1,d), (x5,d")} | d’e€ I(woman) & d” e I(cat) & (d’,d”) €
I(catches)}

24) {{{(x1,d), (x5,d”)} | d’e I(woman) & d” e I(cat) & (d’,d”)
I(catches) & (d”,d’) € I(scratches)}

(25) dxjxy(woman x; A cat x, A catches x1x, A scratches x,x;)

Thus by successively applying the atoms of (20) in a left-to-right fashion we have
obtained its satisfaction set and thereby its truth conditions. Indeed the general rule
for obtaining the file change potential of two or more juxtaposed elements from
the file change potentials of those elements is simply functional composition.

() L& SlllE) = I llo. ..ol S,IICF)

Note that the interpretation process of (20) would have broken down if [\pa, cat]
would have been replaced by [wpa; cat] (a violation of the Novelty condition) or
if, say, it, would have been replaced by its, which would violate Familiarity.
Thus some ways to index NPs lead to uninterpretability.

With the help of rules (i) and (ii) we can only interpret purely existential texts;
universals are treated somewhat differently. While an indefinite makes the domain
of the current file grow, application of a universal sentence leaves it as it is. On the
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other hand, in general it will cause the satisfaction set to decrease. The following
definition gives us the file change potential of a universal sentence.

(iiiy Dom(||[every & O)[(F)) = Dom(F)
Sat(ll[every & 6]||(F)) =
{a e Sa(F)| Vb2 a:be Sat(GI(F)) — e 2 b: ¢ € Sar(l|E|loll AI(F)))

Here it is understood that ||[every & 0]||(F) is undefined iff ||&o]|Q|(F) is. Applying
this rule we can find truth conditions for logical forms (18) and (19): as the reader
may verify, the value of ||(18)|| applied to the empty file will have a non-empty sat-
isfaction set if and only if (26) is true, and similarly Sa#(]|(19)||({(D,{}))) will be
non-empty iff (27) holds. A crucial difference between these two readings is their
impact on the domain of any given file. While Dom(||(18)||(F)) will simply be
Dom(F) for any F, Dom(]|(19)||(F)) will be Dom(F) U {x,}, which makes it pos-
sible to pick up the discourse referent connected with a cat at a later stage in the
conversation. And indeed (28) does not violate the Novelty/Familiarity constraint,
provided that its first sentence is analysed along the lines of (19), not along the
lines of (18).

(26) Vx;(woman x; — Jxy(cat x, A catches x;x,))
(27) dx,(cat x, A Vx;(woman x; — catches x;x,))
(28) Every, woman caught a, cat. The, cat scratched every; woman.

Thus rule (iii) predicts that a definite element can only be anaphorically related to
an indefinite occurring within the scope of the quantifier every if the definite itself
also occurs within that scope. If the first sentence of (28) is analysed as (18), the
universal quantifier blocks a coreferential interpretation of a cat and the cat, but in
(29) we see that an anaphoric link between a donkey and it is possible since both
elements are within the scope of every and, as the reader may verify, the file
change potential of (30) is defined and leads to the truth conditions of (31).4

(29) Every farmer who owns a donkey beats it

(30) [severy[nplnp—1farmer][swho[s[npa, donkey][s e; owns e;]]]]
[se; beats it;]]

(31) Vxjxy((farmer x; A donkey x, A owns x1x,) — beats x;x,)

(29) is of course one of Geach’s famous “donkey” sentences and its treatment
may serve to illustrate another important feature of Heim’s system. Since rule (iii)
involves a universal quantification over all extensions of the finite assignment a
satisfying [I§I(F) and since all indefinites in & will increase the domain of F, the
latter will all be interpreted universally, not existentially. For a similar reason
indefinites occurring in 6 will get an existential interpretation. This explains the
chameleontic behaviour of indefinites: if they are not within the scope of any op-
erator they are interpreted existentially, within the “restrictor” & of a universal
quantifier or the antecedent of an implication they behave universally, but occur-
ring within the “nuclear scope” 6 of a universal quantifier or within the conse-
quent of an implication they are existentials again.

1.2.2 Discourse Representation Theory

The basic ideas of Heim’s FCS and Kamp’s Discourse Representation Theory
(DRT) are very much the same. While in Heim’s theory the reader or hearer of a
text represents the information that he has obtained by means of a file, DRT lets
him keep track of that information with the help of a Discourse Representation

4Here ||who|| may be interpreted as the identity function.
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Structure (a DRS or box for short) and, just as a file is defined to be true iff some
assignment satisfies all the open sentences in it, a box is also defined to be true iff
it is satisfied by some assignment. Simple DRSs are much like files, be it that all
information is written upon one card only. Thus the DRS corresponding to the
first sentence of (12) is (32) and that corresponding to both sentences is (33). The
variables written at the top of these boxes are called discourse referents, the open
sentences underneath are called conditions.

(32) P

woman x,
cat x,

x, catches x,

(33) P

woman x,
cat x,

x, catches x,

x, scratches x,

Boxes such as these are built from the discourses that they represent with the help
of a construction algorithm. Box (32), for instance, can be obtained from the tree
representing the surface structure of the first sentence in (12) by (a) putting this
tree in an otherwise empty box and then (b) applying certain rules called construc-
tion principles until none of these principles is applicable any longer. Box (33) can
then be obtained by extending (32) with a tree for the second sentence of the text
and applying the construction principles again. A sentence can thus be interpreted
as an instruction to update the current box, just as in FCS it can be interpreted as
an instruction to change the current file.

Unlike Heim’s files however, boxes can also directly represent universal infor-
mation. (34), for instance, is a box that results from applying the construction al-
gorithm to a tree for the suface structure of (13). It contains only one condition, an
implication whose antecedent and consequence are themselves boxes, and it ex-
presses that any way to satisfy the condition in the antecedent box can be extended
to a way to satisfy the conditions in the consequence.

(34)
x, ¥2
—
cat x,
woman 1 x, catches x,

It would take us too far to spell out the construction principles that lead to boxes
such as these in any detail here (see Kamp & Reyle 1993 for these), but it should
be mentioned, firstly, that processing an indefinite noun phrase leads to the cre-
ation of a new discourse referent, and, secondly, that anaphoric pronouns must be
linked to already existing discourse referents. However, not all existing discourse
referents are accessible to a pronoun that is being processed at some level of em-
bedding in the DRS. For example, no pronoun may be linked to a discourse refer-
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ent that exists at some deeper level of embedding, a pronoun in the antecedent of
an implication cannot be linked to a discourse referent in the consequence, and so
on. With the help of such accessibility conditions DRT makes predictions about
the possibilities and impossibilities of anaphoric linking that correspond to the
predictions that are made by FCS by means of the Novelty / Familiarity condition.

While Discourse Representation Structures are being thought of as psycholog-
ically real, in the sense that a language user really creates representations analo-
gous to them while interpreting a text, they also form the language of a logic that
can be interpreted on first-order models in a more or less standard way. It is
handy to linearize the syntax of this language. The following rules in Backus-
Naur Form define the basic constructs, conditions (}) and boxes (XK), for the core
part of DRT.

Y = PJCI .X']RXZIJC1=X2|"|K|K]VK2|K1=>K2
K = [xI...xnlyl,...,’J/m]

We can write (33) now more concisely as [x; x, | woman x;, cat x,, x; catches
X5, Xy scratches x;] and (34) as [ | [x; | woman x;] = [x; | cat x,, x; catches
x,]]. These, by the way, are examples of closed boxes, boxes containing no free
discourse referents;> all boxes that result from the construction algorithm are
closed.

The dynamic character of DRT does not only reside in the fact that the theory
interprets sentences as instructions to change the current discourse representation,
it also manifests itself in the formal evaluation of these discourse representations
themselves. For a discourse representation structure in its turn can very well be
interpreted as an instruction to change the current context, contexts being for-
malised with the help of finite assignments here. Formally, we shall define the
value ||K|M of a box K on a first order model M = (D,I) (superscripts M will be
suppressed) to be a binary relation between finite assignments, the idea being that
if {a, b) € ||K]|, carrying out the instruction K with a for an input may nondeter-
ministically give us b as output.6 The semantic value ||| of a condition y will sim-
ply be a set of finite assignments for the given model. Clauses (i)-(iii) give a com-
positional definition of the intended meanings;’ in the last clause we write
alx;...x,]b for ‘a c b and dom(b) = dom(a) U {x,....x,}’.

@ 1P = {a|x € dom(a) & a(x) € I(P)}
[lx ;R ={a | x;,x, € dom(a) & {a(x;), a(x,)) € I(R)}
) [lx; = x| = {a | x;.x; € dom(a) & a(x;) = a(x;)}
i) =Kl ={a|=3b(a b) € |KII}
IK; v Kl ={a|3b((a, b) € lIK/ll v {a, b) € |IK,ID}
K=K = {a | Vb((a, b) € IIK;| - 3c (b, c) € KD}
(i) [[x7---Xp | Vpe oo sYulll = €@ D) | alxg...x,1b & b € NIyl ... (1)

A box K is defined to be true in a model M under an assignment a iff the domain
of a consists of exactly those discourse referents that are free in K and there is an
assignment b such that (a, b) € ||K]|. The reader may verify that the closed box

5For the definition of a free discourse referent see Kamp & Reyle 1993.

6The first author to describe the dynamic potential of a discourse as a relation between finite
variable assignments was Barwise in Barwise 1987, a paper which was presented at CSLI in the
spring of 1984 and at the Lund meeting on generalised quantifiers in May 1985.

7The definition is formally equivalent to the one given in Kamp & Reyle 1993 but its form is
inspired by the discussion in Groenendijk & Stokhof 1991. See especially definition 26 of that

paper.
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(33) is true in any model iff (25) is, and that the truth conditions of (34) corre-
spond to those of (26).

The semantic definition given here differs somewhat from the set-up in Kamp
& Reyle 1993, but is in fact equivalent, as it is easy to show that a closed box is
true in our set-up if and only if it is true in Kamp & Reyle’s. A slightly different
semantics for DRT is given in Groenendijk & Stokhof 1991. The Groenendijk &
Stokhof semantics is obtained by letting a, b and c range over fotal assignments in
the above definition and letting a[x;...x,]b stand for ‘a(y) = b(y) for all y ¢
{x},...,x,}. In later sections we will refer back to this definition as to the fotal se-
mantics for DRT.

We have seen that DRT does not only predict certain possibilities of anaphoric
linking, but, like Heim’s FCS, also assigns truth conditions to the discourses that
it considers. Both theories, moreover, to a certain extent fit within the framework
of semantics that was laid out by Richard Montague in his ‘Universal Grammar’
(Montague 1970). Both first replace the constructs of ordinary language by a
‘disambiguated language’, which is the language of logical forms in Heim’s the-
ory and the language of conditions and boxes in Kamp’s case. The relation that
connects ordinary language and unambiguous language (Montague’s R) is given
by a set of transformations in Heim’s theory and a construction algorithm in
Kamp’s DRT. In both cases the ‘disambiguated language’ can be interpreted in a
fully compositional way with the help of first-order models and assignments for
these models.

1.2.3 Dynamic Predicate Logic

In an attempt to make the Kamp/Heim theory of discourse anaphora look even
more like a conventional Montagovian theory, Jeroen Groenendijk and Martin
Stokhof have published an alternative formulation called Dynamic Predicate Logic
(DPL, Groenendijk & Stokhof 1991), which offers a dynamic interpretation of the
formulae of ordinary predicate logic and gives an interesting alternative to the
Kamp / Heim approach.

The usual Tarski truth definition for predicate logic provides us with a three-
place satisfaction relation |= between models, formulae and assignments and we
can identify the meaning of a formula in a model with the set of assignments that
satisfy it in that model. But here too, the definition can be generalised so that the
meaning of a formula is rendered as a binary relation between (total) assignments.
The DPL definition runs as follows (we write a[x]b for ‘a(y) = b(y) for all y #
x’).

(i) RGp--xp)ll = {(a, a) | {alx)),....a(x,)) € I(R)}

k=l = (@ a) | atxg) =a(x)
) ol = {{@ a) | ~3b(a, b) € ligl}
lovyl = {{aa)|3b(a b) < 9]l v (a b) € i)
lo—> vl = {{a a)| Vb((a, by € [lp] = 3c (b, )  [[wiD}
_leaull = {{a c)|3b(a by < llgl &b, ©) € llvD)
Gi) |Fxell = {{a o) |3balxlb & b, o) € llgi)
IVxl = {{a, a) | Vb(alxlb — 3c (b, c) € llol))

A formula @ is defined to be true under an assignment a if (a, b) € ||@| for some
assignment b. Note that |[~¢|| is given as the set of those {a, a) such that ¢ is not
true under a, ||@ v Y| as those (a, a) such that either ¢ or yis true under a. But the
clause for implication is close to the corresponding DRT clause and conjunction is
treated as relational composition. The value of 3x¢ is in fact given as the relational
composition of {{a, b) | a[x]b} (random assignment to x) and the value of ¢; and
Vx¢ is treated as "3x—¢. Operators that have a semantics of the form {{a, a) |
...} are called tests.
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By the associativity of relational composition we immediately see that Jx¢ A y
is equivalent to Ix(¢ A y) in this set-up, even if x is free in Y, and this enables
Groenendijk and Stokhof to propose the following straightforward translation of
text (12).

(35) dx;x,(woman x; A cat x, A catches x;x;) A scratches x;x;

The first conjunct of this formula clearly corresponds to the first sentence of the
text that is formalised, the second conjunct to the second sentence. But unlike in
ordinary predicate logic, (35) is equivalent with (26), and since it is provable that
truth conditions in DPL and ordinary logic correspond for closed sentences, the
text gets the right truth conditions. In a similar way, since 3x¢ —  is equivalent
with Vx(¢@ — V), as the reader may verify, (29) can be rendered as (36), which is
equivalent with (37) and hence with (31).

(36) Vx((farmer x; A Ix,(donkey x, A owns x;x,)) — beats x;x;)
(37) Vx;(3xy(farmer x; A donkey x, A owns x;x,) —> beats x;x,)

Thus it is possible to give rather straightforward translations of texts into predicate
logical formulae in DPL, while at the same time accounting for the possibility of
anaphora between a pronoun and an indefinite in a preceding sentence, or between
a pronoun in the consequence of an implication and an indefinite in the antecedent.
Anaphoric linking is predicted to be impossible if any test intervenes. This
conforms to the predictions that are made by Kamp and Heim’s theories.

Extensions of DPL to dynamic theories of generalized quantifiers have been
proposed in Chierchia 1988, Van Eijck & de Vries 1992, Kanazawa 1993, van
der Does 1992, and extensions to full type theories have been achieved in the
Dynamic Montague Grammar of Groenendijk & Stokhof 1990 and the
Compositional DRT of Muskens 1991, 1994, 1995a, 1995b (see also 11.3.3).
Extensions such as these raise the issue of systematic strategies of dynamization
for existing systems of static semantics, which would somehow operate
uniformly, while transforming the traditional semantic theory in systematic ways.
For instance, in dynamic accounts of generalized quantifiers, a key role has been
played by the fate of the Conservativity and Monotonicity principles that play such
a prominent role in the standard theory (cf. Keenan and Westerstahl 1996, this
Handbook).

Several variations have been investigated for the basic DPL framework. For in-
stance, van den Berg 1995 proposes a three-valued partial version, in which new
operators appear (cf. also Beaver 1992, Krahmer 1995). This system allows for a
distinction between ‘false’ transitions, such as staying in a state where an atomic
test has failed, and merely ‘inappropriate’ ones, such as moving to a different state
when testing. A more radical partialization, using analogies with partial functions
in Recursion Theory, has been proposed in Fernando 1992. This will allow for a
natural distinction between re-assignment to an old variable and pristine assign-
ment to a new variable. Versions with still richer accounts of data structures, and
thereby of the dynamic function of predicate-logical syntax, may be found in
Visser 1994, Vermeulen 1994.

1.2.4 Integrating Dynamic Predicate Logic and Update Semantics

Natural language involves different dynamic mechanisms. For instance, DRT and
DPL highlight changing anaphoric bindings, whereas Veltman’s Update
Semantics (US), described in 1.1 focuses on information flow and epistemic
statements about its stages. Obviously, a combination of the two is desirable.
There have been some technical obstacles to this endeavour, however, in that the
two systems have different flavours of implementation. DPL involves an algebra
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of binary relations over assignments, and US rather a family of functions
operating on sets of valuations. Various proposals have been made for a
mathematical unification of the two, but the most sophisticated attempt is surely
Groenendijk, Stokhof & Veltman 1994. The latter paper takes its empirical point
of departure in the linguistic evidence which normally drives modal predicate
logic. Here is a typical example. Consider the pair of sentences

(38) A man who might be wearing a blue sweater is walking in the park
(39) A man is walking in the park. He might be wearing a blue sweater

The relative clause in the first discourse clearly expresses a property of the man
introduced in the main clause: what we learn is that he might be wearing a blue
sweater. But intuitively, Groenendijk, Stokhof and Veltman argue, this is not the
function of the second sentence in the second discourse. The latter rather serves to
express the possibility that some discourse individual introduced in the antecedent
sentence might be wearing a blue sweater. A combined dynamic semantics will
have to account for this. Since these two discourses are equivalent in standard
DPL, some essential departure is needed from the latter system, in which an-
tecedent existentials need no longer scope over free variables in succedents. The
combined semantics is a more sophisticated follow-up to that of Van Eijck &
Cepparello 1993, employing so-called ‘referent systems’ from Vermeulen 1994.
In particular, the new information states consist of three components, namely: (1)
an assignment of variables to ‘pegs’ (discourse individuals; as in Landman 1986),
(2) an assignment of pegs to individuals in some standard domain, (3) a set of
possible worlds over that domain (encoding the current range of descriptive uncer-
tainty). Updating will now combine several processes: such as elimination of pos-
sibilities and enrichment of assignments. One noticeable feature of this approach is
its treatment of the existential quantifier. In DPL, dx is essentially a single in-
struction for performing a random assignment. Thus, in the current setting, it
would denote an enrichment for a given state so as to include every possible as-
signment of objects to (the peg associated with) the variable x. A compound for-
mula Jx¢ will then denote the composition of this move with the ordinary update
for ¢. But this account will yield unintuitive results on a modal statement like
Ix0Px: the resulting state may still contain assignments to x denoting objects
which cannot have the property P. Therefore, the new proposal is to make Jx¢
a syncategorematic operation after all, whose update instruction is as follows:
“Take the union of all actions x :=d ; ¢ for all objects d in the domain”. This
will make an update for Ix0Px end up with x assigned only to those objects
which have P in some available possible world. In this richer setting, one can
also review the vast semantic evidence surrounding the usual puzzles of modality
and identity in the philosophical literature, and propose a dynamic cut on their
solution. (Groenendijk, Stokhof & Veltman 1994 contains further innovations in
its discussion of consistency and discourse coherence, which we must forego
here.) Whatever technical theory exists for this paradigm is contained in this single
reference (but cf. Cepparello 1995).

1.3 Change of attentional state: Grosz & Sidner

Discourse Representation Theory models the way in which anaphoric elements
can pick up accessible discourse referents, it tells us which referents are accessible
at any given point of discourse, but it tells us little about the question which refer-
ent must be chosen if more than one of them is accessible. There are of course
obvious linguistic clues that restrict the range of suitable antecedents for any given
anaphoric element, such as the constraint that antecedent and anaphoric element
must agree in gender and number, but it is also believed that the structure of dis-
course itself puts important further constraints on the use of referring expressions.
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ﬁ(a) E: First you have to remove the flywheel. )
(b) A: How do I remove the flywheel?
(c) E: First, loosen the two allen head setscrews holding it
to the shaft, then pull it off.
(d) A: OK.
0 I can only find one screw. Where’s the other one?
(f) E: On the hub of the flywheel. 7
(g) A: That’s the one I found. Where’s the other one?
(h) E: About ninety degrees around the hub from the first one.
(i) A: Idon’tunderstand. I can only find one. Oh wait, yes I think
I was on the wrong wheel.
(3) E: Show me what you are doing. DS2
k) A: I was on the wrong wheel and I can find them both now.
) The tool I have is awkward. Is there another tool that I N\
could use instead?
(m) E: Show me the tool you are using.
(n) A: OK.
(o) E: Are you sure you are using the right size key?
(p) A: T'll try some others.
\ (qQ) I found an angle I can get at it. DS3)
/ (r)  The two screws are loose, but I'm having trouble getting \
the wheel off.
ﬁsT E: Use the wheelpuller. Do you know how to use it? )
(t) A: No.
(u) E: Do you know what it looks like?
(v) A: Yes.
(w) E: Show it to me please.
(x) A: OK.
(y) E: Good. Loosen the screw in the center and place the jaws
around the hub of the wheel, then tighten the screw onto
\\k the center of the shaft. The wheel should slide off. DS5 /g 4)

DSy

Figure 1: A segment of a task oriented dialogue

Thus theories of discourse structure, such as the ones discussed in Polanyi 1985,
Scha & Polanyi 1988, and Grosz & Sidner 1986, are a natural complement to the
theories discussed in I.2. Since these discourse theories are also good examples of
dynamic modelling of natural language phenomena in linguistics, we shall have a
closer look at one of them here. Of the theories mentioned, we shall choose Grosz
and Sidner’s, being the one that is most explicitly dynamic.

Grosz and Sidner distinguish three parts of discourse structure. The first of
these, called linguistic structure, consists of a segmentation of any given discourse
in various discourse segments. Experimental data suggest that a segmentation of
this kind is present in discourses. Speakers, when asked to segment any given
discourse, seem to do so more or less along the same lines. Moreover, the
boundaries that are drawn between segments correspond to speech rate differences
and differences in pause lengths when the text is read out aloud. There are also
certain clue words that signal a discourse boundary. For example the expressions
‘in the first place’, ‘in the second place’ and ‘anyway’ are such clues. Changes in
tense and aspect also indicate discourse boundaries.

In Figure 1 a segment of a dialogue between an expert (E) and an apprentice
(A) is given and factored into further discourse segments. Each segment comes
with a discourse segment purpose (DSP). The expert wants the apprentice to re-
move a flywheel and this, or rather DSP1 in Figure 2, is the purpose of the dis-
course segment as a whole. The apprentice adopts the intention to remove the fly
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wheel, but in order to do this he must perform certain subactions such as loosen-
ing screws and pulling off the wheel. In order to loosen the screws, he must first
locate them, and, as it turns out that he can only find one, DSP2 is generated. This
intention is connected to a discourse segment (DS2) that consists of utterances (e)
to (k).

DSP1: E intends A to intend to remove the flywheel

DSP2: A intends E to intend to tell him the location of the other setscrew
DSP3: A intends E to intend to show him another tool

DSP4: A intends E to intend to tell him how to get off the wheel

DSP5: E intends A to know how to use the wheelpuller

Figure 2: Discourse Segment Purposes connected to task oriented dialogue

In the same manner two other discourse segment purposes that are connected to
subtasks of the apprentice’s task of removing the wheel come up, DSP3 and
DSP4, and both intentions give rise to the creation of discourse segments (DS3
and DS4). The last, moreover, invokes DSPS5 as a response from the expert, an
intention related to DSS.

One discourse segment purpose may dominate another in the sense that satisfy-
ing the second segment’s purpose provides part of the satisfaction of the first
segment’s purpose. For example, DSP4 in our example dominates DSPS5. It may
also occur that the satisfaction of one discourse segment purpose must precede
another, it is then said to satisfaction-precede it. For example, since DSP2 and
DSP3 both contribute to loosening the setscrews, DSP4 contributes to pulling off
the wheel and, since world-knowledge tells us that the screws must be loosened
before the wheel can be pulled off, it can be inferred that DSP2 and DSP3 satis-
faction-precede DSP4. The relations of dominance and satisfaction-precedence
constitute the second part of discourse structure which is identified by Grosz and
Sidner, the intentional state. The intentional state connected with the discourse
segment in Figure 1 consists of the seven statements given in Figure 3.

DSP1 dominates DSP2 DSP2 satisfaction-precedes DSP3
DSP1 dominates DSP3 DSP2 satisfaction-precedes DSP4
DSP1 dominates DSP4 DSP3 satisfaction-precedes DSP4
DSP4 dominates DSP5

Figure 3: Intentional structure for the task oriented dialogue

The third and last part of discourse structure, attentional state, is the part that is
most truly dynamic. It consists of a stack of focus spaces containing the objects
(discourse referents), properties, relations and discourse purposes that are salient
at any given moment. Each focus space is connected to a discourse segment and
contains its purpose. The closer a focus space is to the top of the stack, the more
salient the objects in it are. Anaphoric expressions pick up the referent on the stack
that is most salient, so if more than one focus space on the stack would contain,
say, a pink elephant, then the definite description the pink elephant would refer to
the elephant represented in the space that is nearer to the top of the stack.

Change is brought about by pushing and popping the stack. Entering a dis-
course segment causes its focus space to be pushed onto the stack and leaving a
segment causes its space to be popped. In Figure 4 a series of stacks leading up to
the utterance in (y) is given. Note that the theory predicts that in DS5 no reference
to the allen wrench is possible: its discourse referent was contained in FS3, which
is popped from the stack at the time that DSS5 is processed. Note also that the noun
phrase the screw in the center refers to a screw on the wheelpuller, not to one of
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wheelpuller
DSPs
FS«¢
Screw, allen wrench setscrews
screw, keys flywheel
DSP, DSP; DSP,

FS, FS, FS,4
setscrews = setscrews = setscrews = setscrews
flywheel flywheel flywheel flywheel
DSP, DSP;, DSP, DSP,

FS, FS, FS, FS,

Figure 4: Focus stack transitions leading up to utterance (y)

the two setscrews. Since the wheelpuller is in the focus space on top of the stack
at the moment this noun phrase is uttered, its central screw is chosen as a referent
instead of one of the setscrews that are in a lower focus space.

Two similarities strike us when we consider the Grosz & Sidner model of dis-
course. First there is a strong resemblance between the structure that the model
assigns to ordinary discourse and the structure of programs in an imperative lan-
guage such as PASCAL. The nested discourse segments of figure 1 remind us of
the nested loops and subloops that we find in a typical program. We can also
compare the nested structure with the structure of procedures calling subroutines,
which may in their turn also call subroutines etc. In this case the stack of focus
spaces which constitutes attentional state finds its equivalent in the computer
stack.

A second similarity that is to be noted is that between the structure of discourse
and the structure of proofs in a natural deduction system. The discourse segments
in figure 1 here compare to those fragments of a proof that start with the adoption
of an assumption and end when that assumption is discharged. The purpose of
such a segment may perhaps be compared with the conclusion it is intended to es-
tablish and there is a clear notion of satisfaction-precedence since one such seg-
ment may need the conclusion of another. That there is also a natural connection to
the concept of a stack will be shown in the next section where we shall discuss the
semantics of proofs.

1.4 Change of assumptions: intuitionistic propositional logic in
Zeinstra’s style

Douglas Hofstadter, in his delightful Hofstadter 1980, gives an exposition of
natural deduction systems using the idea of fantasies. Making an assumption is
‘pushing into fantasy’, discharging one is ‘popping out of fantasy’ in his termi-
nology. Hofstadter’s system has explicit push and pop operators, ‘[* and ‘] re-
spectively, and a simple derivation looks as follows.

[ push into fantasy

D assumption

—-p double negation rule
] pop out of fantasy

The next step in this derivation would be an application of detachment (the
‘fantasy rule’ in Hofstadter’s words) to obtain p — —-p. It is usual of course to
distinguish between the latter (object level) sentence and the (metalevel) derivation
given above, which we shall write in linear form as ([p, —=—p]). For some
purposes, however, one might want to have a system in which the distinction
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between metalevel entailment and object level implication is not made. Consider
the following pair of texts.

ASuppose x > 0. Then x+y > 0.
BIf x > O, then x+y > 0.

The assertive production of A can be described as follows. First an assumption is
introduced. Then a conclusion is drawn from it (possibly in combination with in-
formation derived from preceding text). Finally there is the hidden act of can-
celling the assumption. The assertion of B, on the other hand, on the classical ac-
count does not involve introducing, cancelling, etc. It is simply an utterance with
assertive force of a sentence. What, then, are we to do with the strong intuition
that A and B are ‘assertively equivalent’?

The intuition that A and B should be treated on a par motivated Zeinstra 1990 to
give a semantics for a simple propositional system which bases itself upon
Hofstadter, has explicit push and pop operators, but in which the equivalence is
retained. The assertive utterance of a sentence is viewed—quite in the spirit of the
more general dynamic program—as consisting of a sequence of all kinds of acts
and an utterance of if is taken as being just a variant of an utterance of suppose.
Before we give an exposition of Zeinstra’s logic, let us rehearse the Kripke se-
mantics for the {1, A, —} fragment of intuitionistic propositional logic (IPL[.L,
A, —]), as Zeinstra’s system can be viewed as an extension of the latter. A model
K for this logic is a triple (W, <, V) such that—in the present set-up—W, the set
of worlds, contains the absurd world T; the relation < is a reflexive and transitive
ordering on W, such that w < T for all w € W; and V is a function sending
propositional letters to subsets of W such that (a) w € V(p) implies w” e V(p) if
w<w’and (b) T € V(p) for each propositional letter p. The relation w |=¢ ¢ (¢ is
true on a model K = (W, <, V) in a world w € W) is defined inductively as
follows (we suppress subscripts K).

i. wl=p iff w € V(p), for propositional letters p
ii. wlEl iff w=T

ili. wlEQAY iff wl=¢ and wil=y

iv. wlEoeo>y iff Vw2wiwl=e=>wl=y

The language of Zeinstra’s logic is given by the following Backus-Naur Form.

ex=p | L1 11 [| (@, @) | @159,

Here p stands for arbitrary propositional letters, L is the falsum, ] and [ are the
pop and push operators we have met before, (¢, ) is to be read as @, hence vy,
and the semicolon is our sign for conjunction. We prefer the latter over the more
conventional A since its semantics will be relational composition as in Groenendijk
& Stokhof’s system, not intersection or meet as in standard logic. We usually
write @ for ¢ ; y. Since the negation —¢ of a formula ¢ can be considered to be
an abbreviation of ([¢,L]) the toy derivation in Hofstadter’s system given above
can now indeed be represented as ([p, =—p]) or ([p, ([([p,L]),LD]). The latter are
examples of formulae in which the push and pop brackets are well-balanced, but
in general no such condition need be imposed.

Kripke’s semantics for IPL provides us with good candidates for the explica-
tion of Hofstadter’s fantasies: fantasies are worlds. Since fantasies can be nested,
we need stacks (sequences) of worlds for our semantics. For stacks ¢ =
(wy,...,w,) we demand that w;<w,,, for all i < n, i.e. worlds that are higher in
a stack, are also higher in the underlying model. We write Last({w,...,w,)) to
refer to w, and we write 0<; Tif c=(w,...,w,) and T=(w,...,w,,w),ie.if T
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is a possible result of pushing the stack o. The meaning ||@|| of a formula ¢ in
Zeinstra’s language is a binary relation between stacks of worlds in a Kripke
model K, defined with the help of the following clauses.

i. allpllt iff o= 7and Last(o) € V(p),for propositional p
ii. oll Lt iff o=r7andLast(o)=T

ii. ol [T iff o<;7

iv. dlllz iff 75,0

v. olllgwir iff 3p(alelp & plvii7) and Vp(allellp = 3v pllyilv)
vi. olle;vit iff  3pollellp & pllvilT)

Truth is defined just as it was done in Discourse Representation Theory or in
Dynamic Predicate Logic: in terms of the domain of the given relation. Formally,
we write K, o |= ¢ if of|¢||7 for some stack 7.

As an example of how this semantics works consider the formula ([p,q]). We
have:

all(p.gDlIT itf Ip(lilpllp & pligllin) and Vp(ail[pllp = v pligliIv)
iff o= Tand Vp(ail[pllo = v pliqlilv)
iff co=tand Vp2;,0(pl=p=pl=9)
iff c=7and Vw 2> Last(o) w|=p=>w|=q)
iff o= 7and Last(o) |=p — ¢q

The first equivalence is an instantiation of clause v, the second follows since the
required p in 3p(all[pllp & plig]ll7) can simply be o extended with T, and the last
two equivalences are simple consequences of the definitions. It may amuse the
reader to try her hand at ([p[q,r]s]). _

The equivalence given above shows a connection between the formula ([p,q])
in Zeinstra’s language and the implication p — ¢ in IPL and indeed there is a more
systematic connection between the two logics. Let (.)" be the translation of IPL[L,
A, —] into Zeinstra’s language such that (p)° = p for all propositional p, (1)’ =1,
@Ay =0 ; Y, and (9= ¥)’ = ([¢",y’']). Then K, (w) |= ¢" iff w |=¢ ¢, for
all formulae in IPL[L, A, —], as the reader may care to verify. But a converse
holds as well since Zeinstra has shown that for all formulae ¢ in her language
such that the pop and push operators ] and [ are well-balanced in ¢ there is an
IPL[L, A, =] formula ¢”such that K, (w) |= @ iff w |=g ¢’ for any K and w.

In essence then, the logic contains a fragment of well-balanced formulae which
is equivalent to IPL[L, A, —] and in which there is no longer a distinction
between implication and entailment. But the logic is a true extension of that
fragment, as it also gives a semantics for formulae that are not well-balanced. The
latter correspond to almost arbitrary segments of proofs in which assumptions
may be made without discharging them and where even pops may occur without
the corresponding pushes.

1.5 Change of beliefs: Girdenfors’ theory of Belief Revision

Let us return to the Stalnaker-Karttunen theory of presuppositions temporarily and
ask ourselves what will happen when a speaker utters a sentence A that carries a
presupposition B which the hearer in fact does not take for granted. In many cases
no problem will arise at all, because the very utterance of A will tell the hearer that
B is presupposed by the speaker and the hearer may tacitly add B to his stock of
beliefs or, in any case, he may pretend to do so. This process, which is called ac-
commodation in Lewis 1979, allows a presupposition to spring into existence if it
was not there when the sentence requiring it was uttered. But what if the required
presupposition cannot be accommodated because it is not consistent with the hear-
er’s existing set of beliefs? Karttunen 1973 remarks that this problem is reminis-
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cent of a problem that arises in connection with conditionals. An influential theory
- about the evaluation of the latter, first proposed by Ramsey 1929, and later for-
malised in Stalnaker 1968 and Lewis 1973, wants you to hypothetically add the
antecedent of a conditional to your stock of beliefs. If it turns out that the conse-
quent of the conditional follows from this new set of beliefs, you may conclude
that the conditional itself is true. Again the problem arises how consistency can be
maintained. Disbelieving the antecedent of a counterfactual should not necessarily
lead to acceptance of the counterfactual itself, simply because adding the an-
tecedent to your stock of beliefs would lead to inconsistency. This means that
some beliefs must be given up (hypothetically) before the (hypothetical) addition
can take place. But not all ways to discard beliefs are equally rational, for instance,
you do not want to end up with a proper subset of some set of beliefs that is con-
sistent with the antecedent.

Of course the question how beliefs can be given up and how opinions can be
revised rationally in the light of new evidence is a general one. The problem is
central to an interesting research line that was initiated by Peter Gérdenfors and
that is exemplified by papers such as Makinson 1985, Gérdenfors 1988,
Girdenfors & Makinson 1988 and Rott 1992. Suppose we have a set of beliefs
K, which we may for present purposes take to be a deductively closed theory of
predicate logic, and a new insight ¢ (a predicate logical sentence) and suppose we
revise K in the light of ¢, obtaining a new theory K * ¢. What are the properties
that K * ¢ should conform to? Géirdenfors gives eight postulates. Writing K + ¢
for {y| K, @ |- y} (the expansion of K by ¢), he demands the following.

(*1) K * @is deductively closed

(*2) pe K* o

(*3) K*ocK+0¢

(*4) If K+ @is consistent then K+ ¢ C K * @

(*5) K * @is consistent if { ¢} is consistent

(¥*6) If ¢isequivalent with ythen K * ¢=K * y

(*7) K*oAyc (K*Q)+y

(*8) If(K* @)+ yisconsistentthen (K * @)+ W K* oAy

We can think of the first of these postulates as being merely a matter of technical
convenience: it allows us to formulate principles about K * ¢ instead of principles
about its deductive closure. Postulates (*2)-(*6) seem reasonable in view of the
intended meaning of K * ¢: (*2) states that after revising K in the light of ¢ we
should come to believe ¢, (*3) and (*4) that revising in the light of ¢ is just
adding ¢ to one’s set of beliefs, if this can be done consistently, (*5) is the re-
quirement that consistency should be maintained if at all possible and (*6) de-
mands that K * ¢ depends on the content rather than on the particular form of ¢.
Principles (*7) and (*8) are supplementary postulates about iterated revisions, the
idea being that K * ¢ A yought to be the same as the expansion of K * ¢ by v, as
long as y does not contradict the beliefs in K * ¢.

Girdenfors also considers the process of giving up a belief, i.e. subtracting
some belief ¢ from a set of beliefs K. The result K = ¢, the contraction of K with
respect to ¢, should conform to the following axioms.

(~1) K = ¢@is deductively closed
(=2) K - pcK
(=3) Ifp¢ KthenK -~ ¢=K

(=4) Ifpe K = ¢ then |- ¢

(=) KcK=-9+0

(=6) If pis equivalent with ythen K - ¢=K - y
(<D K=PNEK=ySK = (pAY)
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(=8) If o K~ (pAy)thenK = (pA YK = ¢

Again, motivations for the basic postulates (= 1)-(=6) follow readily from the in-
tended meaning of ~. For a motivation of the (supplementary) postulates (=7)
and (=~ 8) see Gérdenfors 1988.

The operations * and - are not unrelated as revising in the light of ¢ can in fact
be thought to consist of two operations, namely first contracting with respect to
the negation of ¢ and then adding ¢ itself. Conversely, we may define the
contraction with respect to ¢ as the set of those of our original beliefs that would
still hold after a revision in the light of the negation of ¢.

(DefL) K*¢ = (K ~=Q)+¢ (Levi Identity)
(DefH) K ~¢@:= KNK* - (Harper Identity)

Write L( =) for the revision function obtained from - by the Levi identity and
H(*) for the contraction function obtained from * by the Harper identity. The
following theorem (see Gérdenfors 1988) connects revisions and contractions and
states the duality of L and H.

THEOREM 1.

i. If * satisfies (*1)—(*8) then H(*) satisfies (= 1)—(=8)
ii. If - satisfies (=1)—(=8) then L(-) satisfies (*1)—(*8)
iii. If * satisfies (*1)—(*6) then L(H(*)) = *

iv. If = satisfies (= 1)—(=6) then H({L(~)) = =

In fact this theorem can be generalised to some degree since the number 8 can be
replaced uniformly by 6 or 7 in each of the first two clauses. This is satisfactory
as in both sets of postulates the first six seem to give some very general properties
of the concept under investigation, while the last two more in particular pertain to
conjunctions.

It is one thing to give a set of postulates for a concept and another to give
structures which satisfy them. One need not go as far as Russell, who said that the
method of postulation has ‘the advantages of theft over honest toil’ (the quote is
from Makinson 1985), to feel that an abstract set of postulates should be comple-
mented with more explicit constructions if at all possible. But there are many ways
to obtain constructs satisfying the Gérdenfors postulates and we shall consider
three of them. The first construction—from Alchourrén et al. 1985—takes K - ¢
to be the intersection of some maximal subsets of K that fail to imply ¢. More
precisely, let K L ¢ (K less ) be the set of all such maximal subsets, i.e. the set
(XcK|X |+ o&VYXCcYCcK &Y |+ o= X =Y)}, and let ybe a
function such that UK L @)z J, UK L o) c K L @if K L ¢ # & and UK L ¢)
= {K} otherwise. Then the partial meet contraction K - ¢ can be defined as
NYK L ¢). The following representation theorem holds.

THEOREM 2. The operation of partial meet contraction satisfies (=1)—(=6).
Conversely, any operation that satisfies (= 1)—(=6) is itself a partial meet contrac-
tion operation.

The theorem can be extended to a representation theorem for (- 1)—(=8) by plac-
ing extra conditions on ¥. Of course, the Levi identity also allows us to obtain an
operation of partial meet revision from the operation of partial meet contraction.
This operation then satisfies (*1)—(*6), or (*1)—(*8) if extra conditions are added.

Another way to construct a contraction function makes use of the notion of
epistemic entrenchment. Giving up some beliefs will have more drastic conse-
quences as giving up others and consequently some beliefs have preferential status
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over others. Write ¢ < y (yis at least as epistemologically entrenched as @) if ¢
and y are both logical truths (and hence cannot be given up), or if ¢ is not
believed at all, or if a need to give up one of ¢ or y will lead to discarding ¢ (or
both). It seems reasonable to demand the following.

(EBEDIf o< yand y<y, then p<y

(EE2)If @ |- y then o<y

(EE3) @< QA WYOrYy<QoAY

(EE4) If K is consistent then ¢ ¢ Kiff ¢ < yforall y
(EE5) If ¢ < yfor all ¢ then |- v

Transitivity of < (EE1) must be required if < is to be an ordering relation. If ¢ en-
tails y, then y cannot be given up without giving up ¢, whence (EE2). Since a
choice between giving up ¢ or ¢ A Y is in fact a choice between giving up ¢ or v,
(EE3) in fact states that ¢ < yor Y < ¢, a natural requirement. (EE4) identifies the
sentences that are not believed with those that are least entrenched and the last re-
quirement says that only logically valid sentences are maximal in <, i.e. that any-
thing can be given up, logical truths excepted.

Given a contraction relation we can define a relation of epistemic entrenchment
with the help of (C) below. Conversely, supposing that an entrenchment relation
< is given, then (E) defines a contraction relation in terms ofit. ‘o< y is
defined as ‘¢ < yand not y< ¢@’.)

C) o=svyiff o K = (pary)orl-oAy
E) K - 9o=Kn{y|p<ovy} ifnot|-¢
=K otherwise

Write C(<) for the contraction function obtained from < by (C) and E(~) for the
relation of epistemic entrenchment obtained from -~ by def (E). The following
representation theorem is proved in Gérdenfors and Makinson 1988.

THEOREM 3.

i. If < satisfies (EE1)—(EES) then C(<) satisfies (=~ 1)—(=8)
ii. If - satisfies (=1)—(=38) then E(-) satisfies (EE1)—(EES)
iii. If < satisfies (EE1)—(EES) then E(C(<)) =<

iv. If = satisfies (= 1)—(=8) then C(E(~)) = -

A third way to construct operations satisfying the Gérdenfors postulates that we
want to mention is the oldest of them all and in fact precedes the formulation of the
postulates themselves. Girdenfors 1988 notes that the probability functions that
we find in the Bayesian tradition provide us with the necessary material to con-
struct such operations. For example, the conditional probability functions axioma-
tised in Popper 1959 immediately give us revision functions satisfying (*1)—(*8)
above and again a representation theorem can be proved. For more details and a
careful discussion see Gérdenfors 1988.

PART II: LOGICAL OBSERVATIONS

I1.1 General Dynamic Logic

Dynamic semantics provides a fresh look at most aspects of logical theory. In this
section we shall use the paradigm of Dynamic Logic (Pratt 1976, Harel 1984,
Goldblatt 1987, Harel & Kozen 1994), broadly conceived, and twisted to suit our
purposes wherever this is needed, for bringing out some of these. To appreciate
what follows, there is a useful analogy with Generalized Quantifier Theory (cf.
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Keenan & Westerstahl 1996, this Handbook): Dynamic Logic provides a broad
logical space for dynamic operators and inference and this logical space may be
contrasted fruitfully with the empirical space of what we find realized in natural
language and human cognition. But the most fruitful analogy is the earlier one of
the Introduction. Dynamic semantics has many counterparts in computer science,
for obvious reasons. There are striking similarities between variable binding
mechanisms in programming languages and what is currently being proposed for
natural language. Similar observations may be made about Artificial Intelligence,
witness the parallels in the study of default reasoning between Veltman 1991,
Boutilier 1993, Boutilier and Goldszmidt 1993, and van Benthem, van FEijck and
Frolova 1993. For our current purposes, we wish to emphasize the richer process
theory available in the computational literature. We hope that, eventually, natural
language semantics will come up with a similar refined view of its dynamic struc-
tures.

I.1.1 Dynamic Logic

The expressions of Propositional Dynamic Logic (PDL) are divided in two cate-
gories: the category of formulae, which form the static part of the language, and
the category of programs, the truly dynamic part. But formulae can be constructed
from programs and vice versa, so that there is an active interplay between the two
parts. The following Backus-Naur Form defines formulae (¢) and programs (1)
from basic propositional letters (p) and atomic programs ().

ox=p | L | ¢oy> ¢, | [7lp
m=o| Q| mm | mpoum | Tt

The intuitive meaning of [7]¢ is the statement that ¢ will be true after any success-
ful execution of 7. A test program ¢? tests whether ¢ is true, continues if it is, but
fails if it is not. The sequence m; ; 7, is an instruction to do 7; and then 7,. The
choice program 1; U T, can be executed by either carrying out 7; or by doing 7,
and the iteration m* is an instruction to do 7z any number (= 0) of times.

The last two constructs introduce nondeterminism into the language. An execu-
tion of p ; p ; g will count as an execution of (p U ¢g)*, but an execution of g
alone, or of any finite sequence of p’s and g’s, will do as well. Programs are
regular expressions and an execution of any sequence in the denotation of such an
expression will count as an execution of the program itself.

The semantics of PDL is obtained by considering poly-modal Kripke models
(S, {R, | ¢ € AT}, V), consisting of a set of abstract program states S, a set of
binary relations R, over S, indexed by the set of atomic programs AT, and a
valuation function V which assigns a subset of S to each propositional letter in the
language. In general, the meaning of a formula is identified with the set of all
states where the formula is true, the meaning of a program with the set of pairs {(a,
b) such that the program if started in state @ may end up in state b. Writing R o R’
for the relational composition of R and R’ and (R)* for the reflexive transitive
closure of R, we can define the meaning [|@||¥ of a formula ¢ and the meaning
||7d|™ of a program 7 with respect to a given model M =(S, {R, | ¢ € AT}, V) as
follows.

@ el =V(p)

@) =

(i) o= @ll =S —lloglh  llell
iv) ll~el =
v) o =R,
(vi) [l ={{a, @) a e |l¢l}

i) 1T s mll =l o Il
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(i) ey W mll =7l w izl
@ix) |zl = (l|d)*

We see that [7]@ is in fact interpreted as a modal statement (‘in all 7--successors
@) with the modal accessibility relation given by the denotation of 7 and we may
define a dual modality by letting (7)¢ be an abbreviation of =[7]—¢@. This new
statement will then have the meaning that it is possible that ¢ will hold after execu-
tion of 7z. Abbreviations will also give us a host of constructs that are familiar
from the usual imperative programming languages. For example, while ¢ do 7
od can be viewed as an abbreviation of (¢? ; m)* ; ~¢?; a little reflection will
show that the latter has the intended input / output behaviour. Correctness
statements (in Hoare’s sense) about such programs can be formalised too; for
example {@}n{y]}, the assertion that in any state where ¢ holds any successful
execution of 7 will lead to a state where y holds, can be taken to be an
abbreviation of ¢ — [7]y.

A formula @ is said to be universally valid if ||| = S for each model (S, {R, |
o e AT}, V). Segerberg 1982 shows that this notion is axiomatisable by means
of the following seven axiom schemes and two rules of inference.

(A1) all instances of tautologies of the propositional calculus

(A2) [7l(@— y) — ([7le = [7]y) (Distribution)
(A3) [Py e (0 Y) (Test axiom)

(A4) [ mly & [m]llmly (Sequence axiom)
(A5) [mr; Y mly < ([7ly A [mo]y) (Choice axiom)
(A6) [m*ly < (v A [n]l7*]y) (Iteration axiom)
(A7) (@A [*](@ = [7]@) — [7*]@ (Induction axiom)
(MP) from ¢ and ¢ — yto infer y (Modus Ponens)
(N)  from @to infer [7]¢ (Necessitation)

As a simple illustration we give a derivation of one of Hoare’s rules of
Composition, the rule that {@}x; ; m,{x} can be inferred from {¢}r;{y} and

{yim{x}

1. o - [mly

2. v - [mly

3. [7; 1y = [7,]x) necessitation, 2

4, [z;ly = [m;][7]x distribution, 3

5. o= [mllm)x propositional logic, 1, 4
6. o[ mlx sequence axiom, 5

We invite the reader to show that { ¢p}while wdo w od{¢® A =y} can be derived
from {@ A y}7{¢}.

The system of Quantificational Dynamic Logic (QDL) can be obtained from
PDL by specifying the structure of atomic formulae and atomic programs. In par-
ticular, the atomic formulae of standard predicate logic will be atomic formulae of
the new logic and assignment statements of the forms x ;= ? (random assignment)
and x := t are its atomic programs. The following Backus-Naur Form gives a
precise syntax.

R(tpoty) | 1=t | L | o> ¢, | [7le
x:=?|x1=t| (p‘7 | ﬂ'];ﬂle ﬂ]Uﬂzl ¥

@
T

The idea here is that x := ? sets x to an arbitrary new value and that x = ¢ sets x to
the current value of ¢. The semantics of this logic is given relative to ordinary first-
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order models M = (D, I) with the set of states S now being played by the set of all
M-assignments, i.e. the set of all (total) functions from the variables in the lan-
guage to D. Letting ||f]|4 (the value of a term ¢ under an assignment a) be defined as
usual, we can define ||@j|™ and ||7j|¥ by taking the clauses for the PDL semantics
given above, but replacing those for atomic formulae and programs by the follow-
ing. (Here a[x]b is to mean that a(y) = b(y)ifx#y.)

IRG .-t = {allglle,.. Il € IR)}

lle; =2l = {allitl* = lle2ll*}
e =2l = {{a, b) | alx]b}
e =1l = {{a, b) | alx]b & b(x) = [||*}

We say that yfollows from @, ¢ |=qp, ¥, iff |0II¥ <[yl for every model M.
The logic thus obtained is a truly quantificational logic since Vx¢ can taken to be
an abbreviation of [x := ?]¢ and Jx¢ of (x := ?)¢. Note also that [x := f]¢ and
(x := )¢ are both equivalent with the result of substitution of # for x in ¢.
However, the logic really extends first-order logic. Consider [x := ?1(y :=0 ; (y
:= Sy)*)x =y in the language of Peano Arithmetic. Together with the usual first-
order Peano axioms this sentence will characterise the natural numbers, a feat
which first-order logic cannot perform.

The price that must be paid is non-axiomatisability of the system, of course.
However, there is a simple proof system which is complete relative to structures
containing a copy of the natural numbers (see Harel 1984). Note that the iteration
operator * is the sole culprit for non-axiomatisability: the Segerberg axioms (A3)-
(AS) plus the equivalences between [x := ?]¢ and Vx¢ and [x := f]@ and [t/ x]¢@
provide an easy method to find a predicate logical equivalent for any formula [7]¢
not containing the star (see also I1.3.4).

The interest of QDL for natural language semantics derives partly from the fact
that the DRT and DPL systems that were considered in section 1.2 can easily be
shown to be fragments of the star free part of this logic. For example, we can
translate DRT into QDL in the following way.

(o)t = if @ is atomic

(=K)* = [KT]L

K, v Ko = (KNT v (K,NT

(K; = Kt = [K;//KKHT

([x)seeesXn | @ppees @Dt = =75 52 =75 0177 0005 9,77

If we let DRT be interpreted by means of its total semantics (see 1.2.2), we have
that ||§PRT = [|67]|2°L for any condition or DRS 6. If both DRT and QDL are pro-
vided with a semantics based on partial assignments an embedding is possible as
well—see Fernando 1992. The reader will have no difficulty in defining a transla-
tion function from DPL to QDL either (see also Groenendijk & Stokhof 1991).

11.1.2 Dynamization of Classical Systems

Systems of dynamic semantics may often be derived from static predecessors. For
this purpose one has to identify parameters of change in classical systems, and
then design dynamic logics exploiting these. For instance, consider Tarski’s basic
truth definition for a formula ¢ in a model M = (D, I) under some variable as-
signment a. Its atomic clause involves a static test whether some fact obtains. But
intuitively, the clause for an existential quantifier dx involves shifting an assign-
ment value for x until some verifying object has been found. A system like DPL
makes the latter process explicit, by assigning to each formula a binary relation
consisting of those transitions between assignments which result in its successful
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verification. Entirely analogously, other components of the truth definition admit
of such shifts too. For instance, shifting interpretation functions / are involved in
questions (cf. Groenendijk & Stokhof 1984) and ambiguity (van Deemter 1991),
and shifting of individual domains D occurs with ranges for generalized quanti-
fiers across sentences (Westerstdhl 1984).

In addition to these ‘Tarskian Variations’ for extensional logics (van Benthem
1991a), there are also ‘Kripkean Variations’ for intensional logics. Consider,
e.g., the best-known classical information-oriented model structures, namely
Kripke models for intuitionistic logic. Here, worlds stand for information states,
ordered by a relation of growth <, which are traversed by a cognitive agent.
Intuitively, intuitionistic formulas refer to transitions in this information pattern
(cf. Troelstra & van Dalen 1988). E.g., to see that =¢ holds, one has to inspect
all possible extensions of the current state for absence of ¢. Van Benthem 1991
makes this dynamics into an explicit part of the logic, by creating a system of
cognitive transitions, such as updates taking us to some minimal extension where
a certain proposition has become true. While intuitionistic negation, which is
expressible as APAx.Vy(x € y — —Py), takes us from sets of worlds to sets of
worlds, Van Benthem is also interested in functions which take us from sets of
worlds to binary relations between worlds, such as for example:

AP.Axy.x €y A Py (loose updating)
APAxy. xS yAPyA-dzxczcy A P2) (strict updating)
AP.AXxy.y S x A 2Py (loose downdating)

AP Axy.y C x A Py A =dz(y C 2 C x A 2P2) (strict downdating)

Standard intuitionistic logic is a forward-looking system, but the full dynamic
logic will include backward-looking downdates and revisions. The resulting
Dynamic Modal Logic covers all cognitive tasks covered in the Gérdenfors theory
of section 1.5, and admits much more elaborate statements about them. The sys-
tem has been studied extensively in De Rijke 1993, which has results on its ex-
pressive power and axiomatization and proves its undecidability. (Van Benthem
1993 presents a decidable reformulation.) Extensions of the formalism may be
defined using operators from Temporal Logic. For instance, appropriate pre- and
postconditions for strict updating and downdating will involve the well-known
temporal operators since and until.

Other static systems which have been turned into dynamic ones include the the-
ory of generalized quantifiers. There are many forms of change here: in bindings,
ranges of quantification, drawing samples from domains, and model construction.
(Cf. Van den Berg 1995, Van Eijck & De Vries 1992, Kanazawa 1993, Keenan
& Westerstahl 1996, Van Eijck & Kamp 1996, Hintikka & Sandu 1996.)

11.1.3 Dynamic Constants as Operators in Relational Algebra

Our general perspective employs the usual mathematical notion of a state space
(i.e. poly-modal Kripke model) (S, {R, | & € AT}, V). Over the atomic actions
R, there is a procedural repertoire of operations creating compound actions.
Examples of such procedural operations are sequential composition, choice,
iteration as found in computer programs. Less standard examples include the DPL
test negation:

SR ={{x x| -3y (x y) € R}

or the directed functions of categorial grammar (cf. Moortgat 1996, this
Handbook):

A\B ={{x, »|Vz({z, x) € A= {(z y) € B)}
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B/A = {{x, W|Vz({y, 2y € A—{x, z) € B)}

What we see here is a move from a standard Boolean Algebra of propositions to a
Relational Algebra of procedures. The standard repertoire in relational algebras is:

Boolean operations: — (complement) M (intersection) U (union)
Ordering operations: o (composition) ~ (converse)

with a distinguished diagonal A for the identity relation. These operations are de-
finable in a standard predicate logic with variables over states:

-R Axy.mRxy

RNS Axy.Rxy A Sxy
RUS Axy.Rxy v Sxy
RoS Axy.3z(Rxz A Szy)
R Axy.Ryx

This formalism can define many other procedural operators. In particular,

~R AN—RoR)
A\B —(A” 0-B)
B/A —(-B oA

The literature on Relational Algebra contains many relevant results concerning
axiomatization of valid identities between such relational expressions, as well as
expressive power of various choices of operators (see Németi 1991). One natural
measure of fine-structure here is the number of state variables needed in their def-
initions. This tells us the largest configuration of states involved in determining
the action of the operator. The resulting Finite Variable Hierarchy of semantic
complexity relates Relational Algebra with Modal Logic (cf. Andréka, van
Benthem and Németi 1994). Its mathematical properties seem significant for
dynamic logical operators in general: (1) the above vocabulary of Relational
Algebra suffices for defining all relational operators with a 3-variable first-order
definition (these include most common cases), (2) each n-variable level has a finite
functionally complete set of operators, (3) there is no finite functionally complete
set of algebraic operators for the whole hierarchy at once. The latter result shows
how the logical space of dynamic propositional operators is much richer than that
of classical Boolean Algebra.

11.1.4 Process Equivalences and Invariance

In order to understand a certain kind of process, one has to set up a criterion of
identity among its different representations. One important notion to this effect is
bisimulation, prominent in the computational literature, which tends to be richer in
this respect than traditional logical semantics (cf. Milner 1980, Hennessy &
Milner 1985). A bisimulation is a binary relation C between states in two ‘labeled
transition systems’ (i.e., our dynamic transition models) (S, {R, | @ € AT}, V)
and (S’, {R’, | & € AT}, V') which connects only states with the same atomic
valuation, and which satisfies the following back-and-forth clauses:

if xCx,xRyYy,then there exists some y” with y Cy’, xR’y y’
if xCx’,x"R’yy’, then there exists some y with y Cy’, xRy y.

This allows mutual tracing of the process in the two transition models, including
its choice points. There are many other notions of process simulation: a coarser
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one is the‘trace equivalence’ discussed in van Benthem & Bergstra 1993, and a
finer one is the‘generated graph equivalence’ discussed in the same paper.

There is a close connection between process equivalences and the design of a
dynamic language. In particular, bisimulation is the key semantic invariance for a
modal language describing labeled transition systems, which has the usual
Boolean operators as well as indexed modalities (@) for each atomic action a e
A. Whenever C is a bisimulation between two models M, M” with s C s’, we
have

se |lolM iff s” e ||lM’, forall modal formulas ¢.
This observation can be reversed:

A first-order formula over labeled transition systems is invariant for
bisimulation iff it is definable by means of a modal formula.

In propositional dynamic logic, this invariance persists for formulas, but there is
also a new aspect. The above back-and-forth clauses in bisimulation are inherited
by all program relations ||z, not just the atomic ones. More specifically, all
regular program operations O are safe for bisimulation, in the sense that,
whenever C is a bisimulation between two models with transition relations
R;,...,R,, it must also be a bisimulation for the transition relation O(Rj,...,R,).
This observation, too, can be reversed (van Benthem 1993):

A first-order relational operation O(R,,...,R,) is safe for bisimulation
iff it can be defined using atomic relations R,xy and atomic tests a?,
using only the three relational operations of o (composition), U (union)
and - (DPL negation).

Thus, bisimulation seems very close to the mark for dynamic semantic operators
with a modal flavour. Different outcomes will be obtained with coarser or finer
notions of process equivalence. It would be of interest to see which level of
invariance is plausible for the procedures involved in processing natural language.

11.1.5 Typology of Dynamic Procedures

Another source of more specific dynamic structure is the search for denotational
constraints, suggested by semantic analysis of key linguistic items (cf. again the
theory of generalized quantifiers). For instance, relational operators may obey
various natural Boolean constraints (cf. van Benthem 1986, Keenan & Faltz
1985), often of a computational character. One well-known example is continuity
of an operator in one of its arguments:

OC...,Ujc Ri,..) =U;e; OC..,R;...)

Continuous operations compute their values locally, on single transitions (note
that R = U{{{x, y)} | Rxy}). Boolean intersection and union are continuous in
both arguments, and so are relational composition and converse. A non-example
is Boolean complement. This restriction has some bite. Van Benthem 1991 proves
that, for each fixed arity, there are only finitely many continuous permutation-in-
variant relational operators. (Belnap 1977 proposes a weaker notion of Scort
continuity admitting more candidates.) Another source of constraints in dynamic
semantics is the typology of cognitive actions themselves. For instance, updates
are often taken to be idempotent: repeating them is unnecessary (Vxy(Rxy —
Ryy)). Veltman 1991 wants them to be functions. Such basic choices will
influence the choice of a procedural repertoire. For instance, if all admissible
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actions are to be idempotent, then composition is not a safe combination, while
choice or iteration are. Likewise, special atomic repertoires may be of interest. For
instance, the basic DPL actions R of propositional test and random assignment
both satisfy the identity R o R = R, and both are symmetric relations. Other
interesting denotational constraints of this kind occur in Zeinstra 1990 (cf. section
L.4).

11.1.6 Styles of Inference

We now turn from matters of dynamic vocabulary and expressive power to the is-
sue of dynamic inference. The standard Tarskian explication of valid inference ex-
presses transmission of truth: “in every situation where all premises are true, so is
the conclusion”. But what is the sense of this when propositions are procedures
changing information states? There are plausible options here, and no single can-
didate has won universal favour so far. Here is a characteristic general feature. If
premises and conclusions are instructions for achieving cognitive effects, then
their presentation must be crucial, including sequential order, multiplicity of
occurrences, and relevance of each move. This brings us into conflict with the
basic structural rules of standard logic that allow us to disregard such aspects in
classical reasoning (cf. Moortgat 1996, this Handbook). Here are some dynamic
styles of inference. The first employs fixed points for propositions (where their
update procedure effects no state change) as approximations to classical truth, the
second focuses on transitions to achieve an effect, and the third is a compromise
between the two (Veltman 1991, van Benthem 1991).

test-test consequence

In all models, each state which is a fixed point for all premises is also a fixed
point for the conclusion:

@1 s On [Ftesttest W T AN @M ... (|9, lIM < WM, for all models M

update-update consequence
in all models, each transition for the sequential composition of the premises is a
transition for the conclusion:

P15+ Pn I=update—update v iff ”(DIHM 0...0 "(Pn”M c [lyiM, for all models M

update-test consequence
in all models, each state reached after succesful processing of the premises is a
fixed point for the conclusion:

@1 .-> O Fupdate-test Y Iff range(lo(IM o...0 |l M) < fix(lyli™), for all
models M

Thus a variety of dynamic styles of inference emerges, reflecting different intu-
itions and possibly different applications. These show a certain coherence. For in-
stance, Beaver 1992 analyzes presupposition as a test-update consequence stating
that the premises can be processed only from states where the conclusion has a
fixed point. Groenendijk & Stokhof 1991 require that the conclusion be process-
able after the premises have been processed succesfully.

DPL consequence
in all models, in each state that is reached after succesful processing of the
premises, processing of the conclusion is possible:

@1s...» O [Eppr W iff range(|@g|M o. ..o ||@,IIM) < dom(]|yi|™), for all M

Here, the existential quantification for the conclusion takes care of free variables
that are to be captured from the premises. (This “for all—there exists” format may
also be observed with implications in DRT.) Van Eijck & de Vries 1995 require a



33

converse, proposing that the domain of the composed premises be contained in the
domain of the conclusion.

One way of defining a style of inference is through its general properties, ex-
pressed in structural rules. For instance, test-test consequence behaves like stan-
dard inference:

=0 Reflexivity
X=¢ Y92y Cut Rule
Y. X,Z7=vy
X, 0,0, Y=y Permutation
X, ¢2’ q)l > Y = w
X.0Y,0.Z=y Right Contraction
X, 0Y.Z= vy
X, 0.Y, 9.2y Left Contraction
XY, 0Z=>vy
_E’_I,:)_W Monotonicity
X, 0.Y=>vy

By contrast, update-update satisfies only Reflexivity and Cut. There are some ex-
act representation results (van Benthem 1991): (1) {Monotonicity, Contraction,
Reflexivity, Cut} completely determine test-test consequence, (2) {Reflexivity,
Cut} completely determine update-update inference. But this is not an all-or-
nothing matter. Inferential styles may in fact modify standard structural rules, re-
flecting a more delicate handling of premises. Update-test consequence has none
of the above structural properties, but it is completely characterized by

X=vy .
_— Left Monot

o Xo v eft Monotonicity
X=¢ X0zZ3y Left Cut

XZ=vy

The DPL style of inference is also non-classical, in that various structural rules
from classical logic fail. For instance, it is

non-monotonic: IxAx |=pp; Ax , but not IxAx, ~Ax |=pp; Ax
non-contractive: 3xAx, -Ax, IxAx |=pp; Ax, but not IxAx, -Ax |=pp; Ax
non-transitive: 3xAx, =Ax |=pp;, IxAx |=pp; Ax, but not IxAx, ~Ax |=ppp Ax.

The only valid structural rule of inference is Left Monotonicity. It is not
completely clear, however, that this is the last word. In practice, applications of
DPL to natural language will use only very special ‘decorations’ of grammatical
structures with individual variables. For instance, it seems reasonable to require
that every quantifier have a unique bound variable associated with it. But then, the
DPL fragment with this property may be shown to satisfy unrestricted
monotonicity, allowing insertion of premises in arbitrary positions (van Benthem,
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unpublished). Other well-behaved fragments may be relevant for natural language
analysis, too.

Often, one inferential style can be simulated inside another, by adding suitable
logical operators. Here is an illustration. Test-test consequence may be reduced to
update-update consequence using a relational fixed point operator @ sending
relations R to their diagonal Axy.Rxy Ay=x:

P15 3P Ftest-test WIEE D@, X Py) Fupdate-update XY)

There is no similar faithful converse embedding. (This would imply Monotonicity
for update-update consequence.) Another interplay between structural rules and
logical constants arises as follows. Operators may license additional structural be-
haviour, not for all propositions, but for special kinds only (cf. Girard 1987). For
instance, in dynamic styles of inference, let O be some operator that is to admit
of arbitrary monotonic insertion:

XY=y
X,0(0),Y=> vy

This can only be the case if O(¢) is a test contained in the diagonal relation. It
would be of interest to see how the linguistic formulation of actual arguments
provides cues for adopting and switching between inferential styles.

Completeness theorems for dynamic styles of inference in various fragments of
propositional dynamic logic may be found in Kanazawa 19932, Blackburn and
Venema 1993. These results exemplify one direction of thinking in logic: from
semantic notions of inference to their complete axiomatic description. Another line
in the literature starts from given axiomatic properties of dynamic operators, and
then determines corresponding complete semantics via representation theorems
(cf. Alchourrén, Girdenfors and Makinson 1985 and the ensuing tradition).
Eventually, both logical treatments of dynamic inference may be too conservative.
Perhaps, the very notion of formal proof needs re-thinking in a dynamic setting (a
first attempt at defining ‘proofs as texts’ may be found in Vermeulen 1994).
Natural reasoning seems to involve the interplay of a greater variety of mecha-
nisms at the same time (inferring, updating, querying, etcetera).

I1.2 Categories for dynamic semantics

Dynamic logic is by no means the only mathematical paradigm for implementing
the fundamental ideas of dynamic semantics. As a counterpoint to the preceding
sections, we outline an alternative logical framework based on category theory,
sometimes called the ‘Utrecht approach’. Its basic tenet is this: the business of
dynamic semantics is modelling interpretation processes. Thus, it is not sufficient
to compositionally specify correct meanings: one should also specify these in a
way that reflects temporal processes of interpretation. Category Theory provides
the tools to do this.

Category theory is a branch of mathematics that is widely applied in both math-
ematics and computer science. (Some good textbooks are McLane 1971, Manes
and Arbib 1975, Barr and Wells 1989.) The uses of Category Theory in linguis-
tics are less widespread, but multiplying. The reader is referred to Reyes &
Macnamara 1994 for another application in linguistics.

I11.2.1 The program of monoidal updating
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The Utrecht approach develops radical versions of file-change semantics / DRT
(see Visser & Vermeulen 1995). Consider a simple sample sentence: John cuts the
bread with a sharp knife. This will be analysed as follows:

((subject John;) cuts (object the,, bread) (with a,, sharp knife))

Here, virtually all grammatical structure will be interpreted as semantic actions
such as pushing a new file to a data stack or popping the last file from the stack.
In an alternative notation:

push push subject John; pop cuts push object the, bread pop push with a,
sharp knife pop pop

In other words, all grammatical structure gets a dynamic potential similar to the
existential quantifier in DPL/DRT or to the dynamic suppose operator in Zeinstra’s
logic. As a consequence, the usual components of a sentence, such as (object the,
bread), are not necessarily the only possible inputs in a compositional interpreta-
tion. In fact, the meaning of any contiguous linguistic chunk of text can be speci-
fied. Thus, the source algebra of the interpretation is the language of arbitrary
strings over an alphabet including such characters as subject, with, a,, pop,
whose basic operation is concatenation. This syntactic operation is matched at the
semantic level with an associative dynamic operation, say merge or composition.
This merge will be associative, thus reflecting the associativity of concatenation at
the syntactic level. This has as a consequence, that the ambiguity of dividing up a
sentence into chunks does not result in the assignment of different meanings.
Components in the traditional sense, i.e., chunks with matching opening and
closing brackets, correspond to local files that are introduced, used for some time
and then discarded. (The words subject, object, and with contain machinery to
arrange that the information of the discarded files is stored in the correct files
associated with cuts at the sentence level.) So far, this semantics has been
developed for narrative with existential quantifiers only. Even so, it exemplifies
some broad programmatic features for a full-fledged dynamic semantics in the
above sense.

In this approach, genuine grammaticality is decided at the semantic level, since
the syntactic specification language does not have any interesting grammar at all.
The fact that tasks that are traditionally assigned to grammar are now shifted to the
semantic level, reflects a move that is typical in dynamic semantics: redivision of
labour between syntax and semantics.

Since the semantic objects form a monoid (the basic operation is associative
and there is a unit element), the semantics satisfies the break-in principle: any
contiguous chunk of text can be assigned a meaning. As a result, one can process
meanings incrementally. This seems a linguistically realistic, and hence desirable
feature.

I1.2.2Meanings and contexts

Meanings in this approach are databases, just as in DRT. The main difference with
ordinary DRT is that much more ‘dynamic potential’ is present in contexts.
Contexts contain both global information connected to the anaphoric machinery
(‘variables’) and local syntactic information (e.g., a file that stores local informa-
tion about the subject of a sentence). Contexts regulate the way in which informa-
tion is stored in case new information is added to a database.

Words like with and object stand for argument places. Their meanings are little
machines that look for the place where information connected with the word (with
a knife) is to be stored in the database that is being built. (“The knife is the
Instrument of the cutting”—compare Davidson 1967, Parsons 1990). An anaphor
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like he, links files introduced in the sentence (thematic roles such as Agent and
Instrument) with files globally present in the discourse. In this way the chunk
(subj he,) ensures that the file locally known as the subject is connected to the file
globally known as v. Thus, ke, gets the correct role in the semantics: it is a locus
where local and global information are fused.

11.2.3 Diachronic information orderings as categories
Let us look at some chunks of our earlier example.

((subject John;) cuts ( object
and
the, bread) (with a, sharp knife))

The meanings associated with these chunks are databases containing files /
discourse objects. These databases have a layered structure that reflects some
aspects of the local syntactic structure —e.g. the discourse objects are stored on
the levels of a stack that represents part of the bracket structure. This structure on
discourse objects occurs in the context part of the databases. Our problem now be-
comes fo describe what happens if two dynamic databases are ‘clicked together’.
We do not only want to describe what the new object looks like, but also want to
describe the flow of files: where do the files of the original databases re-occur in
the new one? Apart from philosophical reasons to insist on describing the flow of
files there is a pragmatic one: the description of the new meaning object and the
verification that it has the desired properties quickly becomes too complicated if
we do not have a principled way of describing the flow. This is where categories
make their appearance: the flow of files is described by a diachronic information
ordering and this ordering turns out to be a category.

One should distinguish (at least) two ways of ordering linguistic information.
First, there is a synchronic ordering. For example, consider two slips of paper.
One states Jan is wearing something new, the other Jan is wearing a new hat.
Evidently, the first slip is less informative than the second. Whatever information
state someone is in, being offered the second slip will make her at least as in-
formed as being offered the first. So we compare the effects of pieces of informa-
tion offered at the same time to the same person in different possible situations.
The second ordering is the one we are after presently: the diachronic ordering,
which looks at information as it occurs in time. Consider Genever is a wonderful
beverage. Not only the Dutch are fond of it. The information content of these two
statements forms an indissoluble whole, by virtue of their consecutive presen-
tation. A mathematical analysis of the diachronic ordering < leads to the core of
the Utrecht approach. For a start, assume that < is a pre-order, i.e., a transitive
and reflexive binary relation. (There is no strong evidence for antisymmetry, and
hence partial order.) But, there is further relevant dynamic structure. Consider this
example:

(40) Genever is a wonderful beverage, I like it. Cognac is not too bad either. I
like it too.

Here, the meaning of / like it is embedded in the meaning of the whole text twice.
But not in the same way: the first it will be linked to Genever, the second one to
Cognac. This suggests that the diachronic ordering should rather be a labelled pre-
ordering, which adds information about the kind of embedding involved.

The preceding observation suggests a move to ‘labelled transition systems’
similar to those encountered in section II.1 above. Such transition systems can be
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described in many ways. We describe them here as logical generalizations of par-
tial pre-orders. We have structures (O, L, R) , where O is a domain of objects, L
a set of labels, and R a ternary relation between objects, labels and objects. A
triple (x,A,y) in R is called an arrow. We shall write x <, y for: (x,A4,y) € R.
Here are the analogues of the pre-order principles. Reflexivity says that everything
can be embedded into itself in a trivial way. This requires a special label id such
that, for every x,y in O, x <;;y iff x = y. Next, transitivity says we can compose
ways of embedding in suitable circumstances. Suppose we have x <, y and y <

z. Then Aoyt is defined and we have: x <, z. We demand that ldof Aoid = A
and Ao(UoV) = (Aop)oV. (Here an equatlon Y= 0 states that yis defined iff § is,

and that yand & are equal where defined). Finally, for the sake of parsimony we
demand that every label is used at least once in some arrow. (There are obvious
analogies here with Dynamic Logic and the Arrow Logic of 11.4.8.) Now, with
the label id we can associate a function from objects to arrows. Moreover the
partial operation o on labels induces one on arrows. The resulting structure of
objects and arrows is a category in the sense of Category Theory. (In fact our
labelled pre-orderings have slightly more structure than a category.) Thus dynamic
semantics can now avail itself of useful notions from an established mathematical
discipline. (For instance, an arrow x <, y is an isomorphism if there is an arrow y
<, x such that Aoyt = ,uoﬂ. id.)

The diachronic ordering may be viewed as a special kind of category, suitable
for dynamic meanings. We already had a monoidal merge e on objects. We relax
the notion of monoid by allowing that (x*y)ez is not strictly identical to x*(y*z),
but that there is a standard isomorphism &(x,y,z) from (x*y)ez to x*(yez). (This
ensures category-theoretic coherence: see McLane 1971 pp. 161-176.) To make
updating yield information growth along our ordering, we also assume standard
embeddings of x and y into x*y, say, via inj(x,y): x = x*y and in,(x,y): y —
xey. For example, then, x may be embedded in (x*y)*z as follows. First x is
embedded in xey by 1n1(x,y) and (x*y) in its turn is embedded in (xey)ez by
1n1(x°y,z) Now (xey)ez is identified with xe(yez) by o(x,y,z). Alternatively,
x is embedded in xe(y*z) by inj(x,yez). Putting all this together, one obtains
equalities like the following.

inj(x,y)oiny (x*y,z)o0(x,y,z) = in;(x,y*z).
iny(x,y)oin;(x*y,2)o0(x,y,z) = iny(y,2)oiny(x,y*z)
inz(x°y,Z)0 (X(x,y,Z) = 1n2(yaz)01n2(x’y.z)

The resulting mathematical structures are called m-categories. m-categories are the
natural medium for thinking about dynamic updating and dynamic contexts.
Starting from simple m-categories that describe contexts and contents, we can
now assemble meanings by the well-known categorical Grothendieck construction
(see Barr & Wells 1989, Visser & Vermeulen 1995).

I1.3 Dynamics Related to Statics

11.3.1 Translations

It is often useful to define functions from the expressions of one logic to those of
another. If such a function preserves logical consequence it is called a translation
and in the following section we shall define translations from PDL and QDL to
classical logic. Our method will be to take the truth conditions of the source logics
and transcribe them in the object language of the target logic. This is in fact an old
procedure, as the so-called standard translation from modal logic into predicate
logic may witness. To obtain this translation, associate a unary predicate symbol P
with each propositional letter p of the modal language and let R be some binary
relation symbol. Then define the translation ST, sending sentences from proposi-
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tional modal logic to formulae of predicate logic having at most the fixed variable i
free, as follows.

ST(p) = P

ST(L) = 1

ST(p—>y) =  ST(¢) = ST(Y)
ST@) = JiRij A [/IST(9))

Whether this function really preserves entailment depends on the modal system
under investigation, of course. For the minimal modal logic K the translation will
do as it stands, but for stronger logics we need to put additional constraints on the
relation denoted by R. For many modal systems S a lemma of the following form
will hold.

EMBEDDINGLEMMA ¢ |=g v iff AX, ST(¢) |= ST(y)

Here AX is some set of axioms putting extra requirements on R. For example, we
can take AX to be the requirement that R be reflexive and transitive, while instan-
tiating S as the system S4. In general, the correctness of a translation may require
working with special classes of models.

There are various reasons why it is handy to have translations around
whenever they are available. One reason is that it is often possible to derive
information about the source logic of a translation from properties of the target
logic that are already known. For example, the standard translation immediately
tells us that the modal logics that can be treated in this way are recursively
axiomatisable and will have the Lowenheim-Skolem property. Other translations
often give us decidability of a system. Some information may not be obtainable in
this easy way, of course. For example, although the above translation shows that
there are recursive axiomatisations of the modal logics under consideration, it does
not tell us what these axiomatisations look like. Moreover, some semantic
characteristics of the original logic may be lost in translation. Traduttore traditore,
not only in real life, but in logic as well.

Reasons for studying translation functions also include some of a more applied
character. One is that a translation into classical logic will make it possible to use a
general purpose classical theorem prover for the source logic. Another reason is
that for applied purposes we often need to have many logics working in tandem.
In linguistics, for example, we need logics that can deal with modalities, with
temporal expressions, with verbs of perception, with propositional attitudes, with
defaults, with dynamics, and with many other things. Trying to set up a logic that
can simultaneously deal with all these things by adding up the characteristics of
modal logic, temporal logic, default logic, dynamic logic, etc. will almost certainly
result in disaster. Translating all these special logics into one common general
purpose target logic may be a viable strategy, however.

11.3.2 From Dynamic Logic to Classical Logic

In this section we shall give translations of Dynamic Logic into classical logic. It
will not be possible to let elementary predicate logic be our target language, be-
cause of the infinitary nature of the iteration operator. However, if we allow
infinite disjunctions, and thus obtain the logic known as L,,, translations are
possible. The following function 7 sends PDL constructs to classical formulae.
The idea is that each PDL formula is translated as a formula which may have one
variable i free and that a PDL program goes to a formula which may contain an
additional free variable j. The variables i and j are fixed in advance, say as the first
and second variables in some given ordering. Think of i as being the input state,
of j as the output state. Each propositional letter p is associated with a unary
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predicate symbol P and each atomic program ¢ with a binary relation symbol R ,.
Let 70 stand for T? (the skip command) and 7+! for 7" ; 7.

p) = P

L) = 1

o>y = PP

U[7]p) = Vi(a(m) = [//17e)

%) = Ry

nQ?) = i=jAUP)

wm; 3 ) = Fk([k/17(7;) A [K/i]T(7T,)),  where k is new
My U mp) = a7z v Umyp)

o7*) = n WA

This translation, which obviously follows the semantics for PDL given in II.1.1
above, can be extended to a translation of QDL into L, , (cf. Harel 1984). PDL
may also be translated into second-order logic: with clauses as before, except that
now

T(7*) = VX((Xi A VER((Xk A [K/i,h/j]1T(7)) = Xh) = X)),

where k and & are fresh variables and X varies over sets of states. The formula
says that i and j are in the reflexive transitive closure of the denotation of 7, which
is true iff j is in all sets containing i which are closed under 7 successors.

We shall extend the last translation to a translation of QDL into three-sorted
second order logic plus some axioms. There will be three types of objects: states,
entities and registers. We use the following notation: # (with or without
superscripts or subscripts) will be a constant that denotes a register; v will be a
variable over registers; p will vary over terms of type register. The constant V will
denote a two-place function from registers and states to entities; V(p,i) can be
thought of as the value of register p in state i. We define i[p;...p,]j to be short for
Yv({(p; 2V AeA ppEV) = Vi) = V(v,j)) (i and j differ at most in
Prs---»Py)- We require the following: for each state, each register and each entity,
there must be a second state that is just like the first one, except that the given
entity is a value of the given register. Moreover, we demand that different
constants denote different registers.

AX1  ViVwWVx 3ji[v]i A VO,j) = x)
AX2 u#u’ foreach two syntactically different constants u and u”

The translation is now obtained in the following way. We assume the set of QDL
variables and the set of register constants to have a fixed ordering each. We let

(x,) = V(u,,i); 7(c) = c, for each constant ¢ and 7(f(z;,...,t,)) = f(T(t),...,7(t,)).
Moreover, we let

T(R(t]9~~°7tn)) = R(T(t])aar(tn))
qny=1) = W)=t

(x, :=7) = i[u,lj

=0 = ilu,l A V(wj) = [0

The remaining constructs of QDL are translated as before. It is not difficult to
prove the following lemma.

EMBEDDING LEMMA Let |=, be the semantical consequence relation of three
sorted second order logic, then

¢ |=QDL v iff AX1, AX2,7(¢) =, Ay)
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Since we have already observed (in II.1.1) that both DRT and DPL can be embed-
ded in the star free part of QDL, this immediately gives us embeddings from DRT
and DPL into (three-sorted) predicate logic; for each DRS K we have a predicate
logical formula with at most the state variables i and j free which shows the same
input / output behaviour as K. In the next section we shall see an application of
this.

11.3.3 An Application: Compositional DRT

Several researchers (e.g. Groenendijk & Stokhof 1990, Asher 1993, Bos et al.
1994) have stressed the desirability to combine the dynamic character of DRT and
DPL with the possibility to interpret expressions compositionally as it is done in
Montague Grammar. To this end one must have a logic that combines the
constructs of DRT with lambda abstraction, but until recently no simple
semantically interpreted system supporting full lambda conversion was
forthcoming. Using the ideas from the previous section it is easy to define such a
logic, however. We shall follow Muskens 1991, 1994, 1995a, 1995b in giving an
interpretation of DRT in the first-order part of classical type logic.

To get the required embedding, let V be a constant of type m(se) (where 7 is the
type of registers) and identify discourse referents with constants of type 7. The
original DRT constructs can now be obtained by means of the following abbrevia-
tions; conditions will be terms of type st, DRSs terms of type s(st).

Pu abbreviates  Ai.P(V(u)(i))

u;Ru, abbreviates  Ai.R(V (u;)(@))(V(uy)(i))

u;is u, abbreviates AN (u;)(i)) = (V(uy)(@)

not K abbreviates  Ai~3jK (1))

K;orKk, abbreviates  AiFj(K ;()(j) v K,(0)()))

K; =K, abbreviates  AiVj(K ,()(j) = IKK,()(K))
[uj...u, | Vi ¥l abbreviates  Aidj(iluy,...,u,lj A ¥,G) A...A %, ()
K;; K, abbreviates  AMiAj3k(K ;(i)(k) A K5(k)(j))

To allow for the possibility of compositional interpretation we have added the
PDL sequencing operator (DPL conjunction) to the constructs under
consideration. The following simple lemma is useful.

MERGING LEMMA. If u,...,u" do not occur in any of ¢;,...,¢,, then

|=AX [ul...unl (P],...,(Dm] y [u'I...u’kI '}’1,...,'}/,.] = [ul...unu'l...u’k I
(TR M Iy A

We sketch the treatment of a small fragment of ordinary language in this system. It
will be assumed that all determiners, proper names and anaphoric pronouns are in-
dexed on the level of syntax. Here are translations for a limited set of basic ex-
pressions (variables P are of type 7(s(s?)), variables p and g of type s(st) and vari-
able Q is of type (7(s(s?)))(s(s1))).

al translatesas ~ AP’AP([u,|1; P{u,) ; P(u,))

no" translatesas ~ AP’AP[ |not([u, | ]; P(u,) ; P(u,))]
every" translates as APAP[ | ([u,]]1; P(u,)) = P(u,)]
he, translatesas ~ AP(P(u,))

who translatesas ~ AP’APAv(P(v) ; P(v))

man translatesas ~ Av[ | man v] ‘

woman translates as [ | woman v]
stink translatesas  Av[| stinks v]
adore translatesas  AQAV(Q(AvT | v adores v7))
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if translates as Apgl | p = 4q]

Note that the translation of (say) no? applied to the translation of man can be re-
duced to AP[ | not([u3 | man us] ; P(u3))] with the help of lambda-conversion and
the merging lemma. In a similar way the sentence a! man adores a? woman
can be translated as suggested in the tree below.

[u,u,| man u,, woman u,,u, adores u,)

/\

AP([u,| man u,]; P(u,))

DET N V'

|l I\'I Mlu,| woman u,, v adores u,]

) i /\

I‘ AP([u,| woman u,] ;P (u,))

adores
DET N’
| 1
d N
woman

The method provides us with an alternative for the construction algorithm in stan-
dard DRT and with a fusion of insights from the Montague tradition with those of
DRT. For more applications see also Van Eijck & Kamp 1996, this Handbook.

I1.3.4 Two-Level Architecture and Static Tracing of Dynamic Procedures

The two-level approach of PDL suggests the following two-level architecture.
Declarative propositions and dynamic procedures both have reasonable motiva-
tions. Presumably, actual inference is a mixture of more dynamic sequential short-
term processes and more static long-term ones, not necessarily over the same
representations. Thus, both systems must interact:

d
Boolean e Relational

Algebra ropositions procedures Algebra
pl‘OJCCthI‘lS

In such a picture, logical connections between the two levels become essential.
There will be modes taking standard propositions to correlated procedures, such
as ‘updating’ to make a proposition true, or ‘testing” whether the proposition
holds already. In the opposite direction, there are projections assigning to each
procedure a standard proposition recording some essential feature of its action.
Examples are the fixed point operator @ giving the states where the procedure is
already satisfied, or set-theoretic domain, giving the states where it can be
performed at all. These new operators of ‘logical management’ may be analyzed
technically much as those in sectio II.1, e.g., through type-theoretic analysis (cf.
Turner, 1996, this Handbook). For instance, fixed-point is the only permutation-
invariant projection that is a Boolean homomorphism (van Benthem 1991). This
style of analysis has been extended to eliminative update logic in van Benthem and
Cepparello 1994.
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The above setting can also be analyzed using concepts from computer science.
In particular, one can trace a dynamic process by means of propositions
describing successive images of sets of states under its action. Define strongest
postconditions and weakest preconditions as follows.

SP(A, R) = RIA] (={b|3a € A: (g, b) € R})
WP(R, A) = R-1[A] (={b|3a e A: (b, a) € R})

The set WP(R, A) is also known as the Peirce product of R and A (cf. Brink et al.
1992). Note that |[{m)¢ll = WP(||], ||¢l]). These notions may be used to render dy-
namic validity. E.g., for update-update consequence, we have

O1s--+> Pn Fupdate-update ¥ if and only if
SP(A, |l@yll o...0 ll9,l) < SP(A, ||y]) for arbitrary sets A.

Moreover, there is an inductive calculus for computing weakest preconditions and
strongest postconditions, with clauses such as:

SP4, RoS) = SP(SP(4, R), S)
WP(R oS, A) = WP(R, WP(S, A))
SP(4, RUS) = SP(4, R) v SP(4, S)
WP(R U S, A) = WP(R, A) v WP(S, A)
SPA, RY) = WP, A)

WP(R*, A) = SP4, R

As an application we give a weakest preconditions calculus which computes the
truth conditions of any DRS or condition, given the total semantics for DRT dis-
cussed in section 1.2.2. A simple induction will prove that TR(¢) is a predicate
logical formula which is true under the same assignments as the condition ¢ is and
that WP(K, ¥) is true under a iff there is some b such that (a,b) € ||K]| and y is
true under b. In particular, WP(K, T) will give the truth conditions of K.

TR(¢) = (1) if @ is atomic
TR(—K) = “WP(K, T)

TR(K; v K3) = WP(K;, T)v WP(K,, T)

TR(K; = K3) = -WP(K;, “WP(K,, T))

WP([x75.- X, | @1 500, ) = 3x;...x,(TR(@;) A...A TR(@,,) A Y)

A similar calculus can be given for DPL:

WP(—o, %) = “WP(p, T) A x

WP(p— ¥, %) = “WP(¢p, “WP(y, T)) A x
WP(p A Y, %) = WP(p, WP(y, 1))
WP(Exo, ) = dx WP(o, x), etc.

And again WP(¢, T) gives ¢’s truth conditions. Van Eijck and de Vries 1992 ex-
tend a calculus such as this one with clauses for generalised quantifiers and a de-
scription operator (See also Van Eijck and de Vries 1995 and Van Eijck and Kamp
1996, this Handbook, where the format of the Segerberg axioms of II.1.1 is
used).

I1.4 General Perspectives
In this final Section, we summarize our main logical themes, and point out some
further issues and lines of formal investigation in dynamic semantics.
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11.4.1 Models for Dynamics

Our main logical paradigm has been Dynamic Logic, broadly conceived (Harel
1984), viewing procedures as sets of transitions over spaces of (information)
states. Dynamic operators then resemble those found in the relation-algebraic lit-
erature. Alternative universal-algebraic approaches are Process Algebra (Baeten
and Weyland 1990) or Arrow Logic (Venema 1994). More sensitive notions of
computation might involve ‘failure paths’ (Segerberg 1991) or ‘trace models’
(Vermeulen 1994). These may suggest richer languages. With processes as sets of
state transition sequences (‘traces’), the proper formalism is a ‘branching time
logic’ combining evaluation at states with that on traces (‘epistemic histories’).
But further mathematical paradigms were available. Girdenfors’ original theory of
belief change (Section 1.5) uses Category Theory, with dynamic procedures as
morphisms that can be combined via categorial limit constructions. Also, Arrow
Logic has categorial models (van Benthem 1994). And we have seen some
Utrecht-style examples of concrete category-theoretic analysis for anaphora.
Clearly, this alternative route deserves exploration.

Dynamic semantic paradigms have proof-theoretic alternatives — with Curry-
Howard-deBruyn isomorphisms assigning algorithmic procedures to derivations
for assertions. (Cf. this Handbook, the chapters by Moortgat, Buszkowski, and
Turner.). Proof Theory has been proposed as a general paradigm of linguistic
meaning in Kneale & Kneale 1962, Dummett 1976, as well as van Benthem 1991
(categorial logic and typed lambda calculus), Ranta 1991 (Martin-Lof style type
theories), Gabbay & Kempson 1992 (‘labeled deductive systems’). We also
briefly considered Game Theory as yet another alternative (Hintikka and Sandu
1996, this Handbook), which provides logical games for evaluating statements,
comparing model structures, or carrying on debates, with suitably assigned roles
for players and winning conventions (cf. the survey van Benthem 1988). Winning
strategies in evaluation or debating games provide analyses for truth and
consequence in the work of Lorenzen 1959, Hintikka 1973. For model-theoretic
‘Ehrenfeucht Games’, cf. Doets 1993.

The paradigms of programs, proofs and games are not mutually exclusive. All
involve movement through a space of deductive stages, information states, or
game configurations. This requires a repertoire of atomic moves over states, that
can be combined into complex procedures through ‘logical constructions’. Thus,
proofs involve basic combinatorics for trees: ‘combination’, ‘arguing by cases’
and ‘hypothesizing’, creating a dynamic block structure. Programs involve the
usual constructions for instructions or plans such as ‘sequential composition’,
‘indeterministic choice’ or ‘iteration’, possibly guided by ‘control assertions’.
Finally, game operations reflect roles of different players, such as conjunctions or
disjunctions indicating their rights of choice and duties of response, as well as the
notion of ‘role change’ (signalled by negation). Finally, all three paradigms in-
volve an explicit interplay between actions changing states, and standard
declarative statements about the states traversed by actions.

11.4.2 Higher Levels of Aggregation

Language use is guided by global strategies, such as ‘preferring the more specific
interpretation’ (Kameyama 1992 has computational linguistic architectures reflect-
ing this.) Global strategies have been most prominent in the game-theoretical
literature. As a result, one also needs global structures, viz. texts or theories, and
the meta-rules that govern our activities at these higher levels. Early work on logi-
cal structure of scientific theories in the Philosophy of Science is suggestive here
(cf. Suppe 1977), as well as the analysis of global structures of definition, proof
and refutation in Lakatos 1976, or recent computational work on structured data
bases (cf. Ryan 1992). But these have not yet been integrated with mainstream
logic. Another global challenge is the fact that cognition is usually a social process
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with more than one participant. The role of multiple agents has been taken seri-
ously in the game-theoretic approach, but hardly in the other two (but cf. Halpern
& Moses 1985). Many-person versions of dynamic theories are needed, replacing
programs by protocols for a group of distributed agents, and proofs by more in-
teractive formats of reasoning. (Jaspars 1994 is an exploration.)

I1.4.3 Resources

Our ‘dynamic turn’ crucially involves cognitive resources. There are no unlimited
supplies of information or ‘deductive energy’, and logical analysis should bring
out which mechanisms are adopted, and which cost in resources is incurred. This
requires management of occurrences of assertions or instructions in proofs, pro-
grams and games. Stating a formula twice in a proof means two calls to its evi-
dence, repeating the same instruction in a program calls for two executions, and
repeating it in the course of a game will signal a new obligation as to its defense
or attack. (Unlimited energy or standing commitment must be encoded explicitly
via a logical ‘repetition operator’: Girard 1987, van Benthem 1993.) Thus, many
recent logics work with occurrences, at a finer level of detail than the usual classi-
cal or intuitionistic calculi. (Moortgat 1996 and Buszkowski 1996, this
Handbook, provide detailed linguistic motivation for this shift in empbhasis).
Another form of fine-structure is dependence. Standard logics assume that all
individuals under discussion can be freely introduced into discourse. But in
general, some objects may depend on others (cf. Fine 1985, Meyer Viol 1995,
Hintikka & Sandu 1996, this Handbook), either ‘in nature’ or procedurally, in the
course of dynamic interpretation. This further degree of freedom has interesting
consequences. E.g., on the usual proof-theoretic account, non-standard
generalized quantifiers like most or many are difficult to analyze (Sundholm
1986). But van Lambalgen 1991 gives a Gentzen calculus with ‘dependence
management’ for variables in quantifier rules to provide complete logics for non-
standard quantifiers, where the classical ones become the limiting case with
‘unlimited access’. Alechina 1995 is a more systematic study of various current
dependence semantics with a dynamic flavour.

I1.4.4 States and Atomic Actions

In this Chapter, we have tried to identify some general strands in a process theory
for natural language, at a suitable level of abstraction. In particular, no single no-
tion of cognitive state can serve all of natural language. For instance, the DRT /
DPL treatment of anaphora uses (partial or total) Tarskian variable assignments.
Dynamic accounts of learning or updating have used probability functions over
propositions, sets of worlds, states in Kripke models, or data bases. More
complex syntactic discourse states occur in the computational literature.
Nevertheless, useful general distinctions have emerged, such as that between
constructive and eliminative views of information processing (cf. Landman 1986),
where epistemic states become ‘richer’ under updating in the former case, but
‘simpler’, by dropping alternatives, in the latter. (The two viewpoints may be
combined in a dynamic epistemic logic; cf. Jaspars 1994.) Another general feature
is ‘dynamization’. Many update calculi may be viewed as ‘dynamizations’ of
ordinary modal logics (cf. van Benthem 1991), and standard extensional or in-
tensional semantics may dynamicized through their natural parameters of variation
(Cepparello 1995). A final interesting issue is combination of different notions of
state, with the resulting marriage of the corresponding logics, as in the merges of
DPL and Update Semantics mentioned in Section 1.2.4.

Atomic actions in linguistics include testing of propositions, as well as the up-
dating, contracting and revision found in the computational literature. Other
speech acts have only been touched upon, such as questions (cf. Groenendijk &
Stokhof 1984). There is little uniformity in basic actions for different notions of
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state (compare assignment change versus updating), unless we either (i) move to a
higher level of abstraction, where pops or pushes are general computational
moves (Visser 1994), or (ii) analyze atomic actions into a combination of ‘modes’
plus resultative static propositions, such as test(¢), achieve(@), query(¢), where
modes may be uniform across many different situations (van Benthem 1991).

11.4.5 Dynamic Operators and Invariance

Which dynamic operations construct complex programs, plans, actions? One can
approach this question at the level of linguistic items (programs, scripts) or their
denotations (executions). There is great diversity here, witness our earlier survey.
The proper definition for various dynamic operators is still under debate, witness
the extensive discussion of an appropriate dynamic negation for natural language
in Dekker 1993. Moreover, different dynamic paradigms may cut the cake in dif-
ferent ways. E.g., negation is less at home in the proof-theoretic perspective,
unless one treats refutation on a par with proof (cf. Wansing 1992). Likewise,
negation as complement of programs is a marginal operation (“avoidance”)—but
negation as role switching is a crucial element in games. Another difference occurs
with quantifiers, which are no longer on a par with propositional connectives in
some dynamic semantics. They rather signal atomic moves establishing some
binding or drawing some object, plus (in some cases) some further assertion
following these. Thus, the syntax of the usual formal languages may even be
misleading, in that it does not allow us to regard, say, a prefix 3x as an inde-
pendent instruction by itself (say,‘pick an object (3), and assign it a temporary
name (x)*). A more sensitive account of quantificational activity, involving chang-
ing data structures and bindings, was found in Section II.2.

What we have outlined in this Chapter is a general framework for the whole
logical space of possibilities. Dynamic logic is all about control operators that
combine procedures. Much dynamic semantics investigates what standard logical
constants mean when viewed as procedural combinators. But dynamics allows for
finer distinctions than statics, so that there may not be any clear sense to this.
Standard conjunction really collapses several notions: sequential composition, but
also various forms of parallel composition. Likewise, standard negation may be
either some test as in DPL, or merely an invitation to make any move refraining
from some forbidden action (“you can do anything, but don’t step on my blue
suede shoes”). Some natural operators in dynamic logic even lack classical coun-
terparts altogether, such as ‘conversion’ or ‘iteration’ of procedures. One general
perspective of semantic invariance relates the static and dynamic notions (Sher
1991, van Benthem 1989). Truly logical operators do not depend on specific indi-
viduals in their arguments. This is also true for procedural operators. What
makes, say, a complement —R a logical negation is that it works uniformly on all
ordered pairs (or arrows) in R , unlike an adjective like “clever” which depends
on the content of its relational arguments. The mathematical generalization is
invariance under permutations 1 of the underlying universe of individuals (here,
information states). Dynamic procedures denote binary relations between states,
and hence procedural operators satisfy the commutation schema:

alO(RR, S,...)]= O(x[R], #[S]....)

For a general type-theoretic formulation of this notion, cf. van Benthem 1991.
Permutation invariance leaves infinitely many potential dynamic logical con-
stants. There are several ways of tightening up. One insists on suitable forms of
linguistic definability. For instance, many dynamic operators have first-order def-
initions with variables over states and binary relation letters for procedures. We
shall encounter this view-point in the next section. Another strengthening
increases the demands on invariance, by requiring commutation for much looser
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forms of process equivalence than isomorphism over the same base domain. A
typical example was the 'safety for bisimulation' discussed earlier.

I1.4.6 Dynamic Styles of Inference

We have identified several dynamic styles of inference. These may still vary ac-
cording to one's dynamic paradigm. The proof-theoretic perspective justifies an
inference by composing it as the result of a number of basic moves. For instance,
the basic inference A v B, 7A /B is a combination of argument by cases and one
basic negation step:

A -A

AvB B B

B

In the programming perspective, this same inference would rather be viewed as an
procedural update instruction:

Updating any information state by A v B and then by —A (given some
suitable procedural meaning for these operations) leads to a new informa-
tion state which may be tested to validate B.

In the context of games, the story is different again. For instance, the ‘agonistic’
Lorenzen style would express the relevant validity as follows:

There exists a winning strategy for defending the claim B in a dialogue
game against any opponent who has already granted the two concessions
AvB,-A.

One locus of difference here lies in the structural rules governing inference.
Important examples are the admissibility, without loss of previous conclusions, of
shuffling premises by Permutation, or of adding new premises by Monotonicity
(section II.1.6 provided detailed formulations). For instance, Permutation is rea-
sonable on both proof-theoretic and game-theoretic views, whereas it seems
unreasonable on the programming view, since the sequential order of instructions
is usually crucial to their total intended effect. Likewise, Monotonicity is plausible
in games (the more concessions from one’s opponent the better), but less so on
the other two accounts. Still, if premise ordering in a game encodes priority of
commitments incurred, then Permutation loses its appeal in the latter model too.

But also, analyzing cognitive activity via different interacting mechanisms
raises issues of logical architecture. What systematic methods are available for
switching between components (proof-theoretic, algorithmic, game-theoretic—
and within these, between different facilities), and how do we transport
information from one to the other? In other words, what are natural constructions
of heterogeneous logical calculi? Some relevant material on these issues exists in
the logical literature (cf. Gabbay 1994), but no general theory exists.

I1.4.7 Connections with Computer Science

Process Algebra views the denotations of procedures, not as binary relations, but
rather as labeled transition models themselves (identified modulo bisimulation, or
some other appropriate semantic equivalence). Some key references in this exten-
sive field are Milner 1980, Bergstra & Klop 1984, Baeten & Weyland 1990. The
result is a family of equational calculi for operations on, rather than inside, labeled
transition systems. These provide abstract algebraic axiomatizations for various
program constructions, including a much richer repertoire than what has been
considered in dynamic semantics. (Examples are various parallel merges, as well
as operators for ‘hiding’ structure, or for performing recursion.) For connections
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between Process Algebra and Dynamic Logic, see Hennessy & Milner 1985, van
Benthem & Bergstra 1993, van Benthem, van Eijck & Stebletsova 1993, van
Benthem 1994. An eventual process theory for natural language may well have to
be of this level of semantic sophistication.

11.4.8 Lowering Complexity: Arrow Logic and Modal State Semantics

One immediate concern in dynamic semantics is computational complexity. Many
systems in part I are supposed to mirror mechanisms in human cognition, and pre-
sumably, these procedures are geared towards speed and efficiency. Nevertheless,
little is known about the complexity of various procedural logics—and what little
is known, often makes their behaviour more complex than that of standard static
systems (cf. Harel 1984). E.g., static propositional logic is decidable, relational
algebra is not. Some recent logical proposals exist for coming to terms with such
apparent paradoxes. We mention two of these.

Relational Algebra is not the only candidate for analyzing dynamic procedures.
Intuitively, the latter seem to consist of transitions or arrows as objects in their
own right. This alternative view is brought out in Arrow Logic, a modal logic
over arrow frames (W, C, R, I) with aset W of arrows, a ternary relation C of
composition, a binary relation R of reversal and a set I of identical arrows.
Formulas ¢ will describe sets of arrows |||, i.e. transition relations in the new
sense. Some key clauses in the basic truth definition are as follows.

llon il = v
lloo wil = {al3bc((abc)e C&be |l¢ & ce |y}
H%III - }a |3b((a.b) € R& b € ||ol)}

Arrow Logic is a minimal theory of composition of actions, which may be studied
by well-known techniques from Modal Logic (cf. Van Benthem 1991, Venema
1991, 1994). Standard principles of Relational Algebra then express constraints
on arrow patterns, which can be determined via frame correspondences (van
Benthem 1985, De Rijke 1993). For instance, the algebraic law (¢ U y)" = (¢" U
V") is a universally valid principle of modal distribution on arrow frames, but (¢
N Y = (¢ N Y’) expresses the genuine constraint that the conversion relation be
a partial function f, whose idempotence would be expressed by the modal axiom

™ = ¢. As an illustration, basic categorial laws of natural language (cf. Moortgat
1996, this Handbook) now acquire dynamic content.

A*(A\B)=> B expresses that Vabc({a,b,c) € C — {c,f(b),a) € C)
(B/A)*A=B expresses that Yabc({a,b,c) € C — (b,a,f(c)) € C)

In particular, one can now study dynamic counterparts of the Lambek Calculus
(cf. Kurtonina 1995 for a full development).

More radically, one can take this same deconstructionist line with respect to
first-order predicate logic, the lingua franca of modern semantics — which suffers
from undecidability. What makes first-order predicate logic tick at an abstract
computational level? As we saw, the basic Tarski truth definition makes choices
that are inessential to a compositional semantics for first-order quantification. In
particular, concrete assignments and the concrete relation a[x]b between
assignments are not needed to make the semantic recursion work. The abstract
core pattern that is needed replaces assignments by abstract states and the relations
[x] by arbitrary binary relations R, between states. Models will then be poly-
modal Kripke models (S, {R,}, ¢ var- V), Where S is the set of states and the
valuation function V assigns a subset of S to each atomic sentence R(x,,...,x,).
The standard truth definition now generalises to the following modal set-up.
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This semantics treats existential quantifiers 3x as labelled modalities (x). Its uni-
versal validities constitute the well-known minimal modal logic, whose principles
are (a) all classical propositional laws, (b) the axiom of Modal Distribution: Jx(¢
v ¥) <> (3xe v Ixy), and (c) the rule of Modal Necessitation: if |~ ¢, then |-
—-dx~¢@. A completeness theorem may be proved using the standard Henkin con-
struction. This poly-modal logic can be analyzed in a standard fashion (Andréka,
van Benthem & Németi 1994 is a modern treatment), yielding the usual meta-
properties such as the Craig Interpolation Theorem, and the Los-Tarski
Preservation Theorem for submodels. In particular, the logic can be shown to be
decidable via any of the usual modal techniques (such as filtration). This means
that the particular set-theoretic implementation of the set S and the relations R, that
we find in the usual Tarski semantics can be diagnosed as the source of undecid-
ability of elementary logic.

The modal perspective on classical logic uncovers a whole fine-structure of
predicate-logical validity. The minimal predicate logic consists of those laws
which are ‘very much valid’. But we can analyze what other standard laws say too
by the technique of modal frame correspondence. Here are some illustrations.

(pATxp) & @ expresses that R, is reflexive

Ax(p A Axy) <& (Ix@ A Ixy) expresses that R, is transitive and euclidean
Axdyp <> Jydxe expresses that R,o R, =R, o R,

AxVye — Vydxe expresses that whenever a R, b R, c, there is a

d suchthat aRyd R, c

The first two constraints make the R, into equivalence relations, as with the
modal logic S5. They do not impose existence of any particular states in frames.
The third axiom, by contrast, is existential in nature; it says that sequences of state
changes may be traversed in any order. Abstract state models need not have
enough intermediate states to follow all alternative routes. The fourth example
says that another well-known quantifier shift expresses a Church-Rosser property
of computational processes. Thus, the valid laws of predicate logic turn have quite
different dynamic content when analyzed in the light of this broader semantics.
We have found a minimal decidable system of predicate logic in addition to the
standard undecidable one. Intermediate systems arise by varying requirements on
states and updates R,. Thus a whole landscape of intermediate predicate logics is
opened up to us. Here, we seek expressive logics that share important properties
with predicate logic (Interpolation, Effective Axiomatizability) and that even im-
prove on this, preferably by being decidable. An attractive option, already known
from Cylindric Algebra (cf. Henkin, Monk & Tarski 1985, Németi 1991) is CRS,
the logic consisting of all predicate-logical validities in the state frames satisfying
all universal frame conditions true in standard assignment models. These are the
general logical properties of assignments that do not make existential demands on
their supply. (The latter would be more ‘mathematical’ or ‘set-theoretic’.) CRS is
known to be decidable, though non-finitely axiomatizable. Moreover, its frame
definition needs only universal Horn clauses, from which Craig Interpolation fol-
lows (van Benthem 1994). Another way of describing CRS has independent ap-
peal. Consider state frames where S is a family of ordinary assignments (but not
necessarily the full function space DVAR), and the R, are the standard relations
[x]. Such frames admit ‘assignment gaps’, i.e. essentially they need not satisfy
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axiom AX1 of section II.3.2 above. This can be used to model dependencies be-
tween variables: changes in value for one variable x may induce, or be correlated
with changes in value for another variable y (cf. our earlier discussion of re-
sources). This phenomenon cannot be modeled in standard Tarskian semantics,
the latter being a degenerate case where all interesting dependencies between vari-
ables have been suppressed. From CRS one can move upward in the hierarchy of
logics by considering only families of assignments that satisfy natural closure
conditions. Such further structure supports the introduction of further operators
into the language (e.g., permutation or substitution operators). For the resulting
logics, cf. Marx 1994, Mikulas 1995.

11.4.9 Philosophical Repercussions

We conclude with some sweeping thoughts. Dynamic paradigms suggest general
cognitive claims. The programming model supports Church’s Thesis which
claims that any form of effective (cognitive) computation can be programmed on a
Turing Machine, or some equivalent device from Recursion Theory. In its broader
sense, the Turing Test is a well-known dramatized version. But similar claims can
be made concerning proofs or games (in the setting of a suitably general Proof
Theory or Game Theory), and that even in two ways. Church’s Thesis may be in-
terpreted as the extensional statement that the input-output behaviour of every ef-
fective function can be adequately programmed on some abstract machine. But it
also has a stronger intensional version, stating that any algorithm can be reflected
faithfully in some specific universal programming repertoire (cf. Moschovakis
1991.) This intensional question returns for proof-theoretic and game-theoretic
approaches. What are their natural repertoires of logical constructions that should
suffice for faithful modelling of any rational form of inference or cognitive play?
(Compare the proof-theoretic functional completeness results in Sundholm 1986,
or the hierarchies of programming operators in van Benthem 1992.) There could
also be ‘Small Church Theses’ at lower levels of computational complexity, closer
to actual linguistic processing (cf. various equivalence results in Kanovich 1993).
Of course, one will have to analyze more carefully to which extent the computa-
tional metaphor is realistic for natural language (Fernando 1992 proposes recur-
sion-theoretic models for this purpose). In this respect, another desideratum
emerges. Our paradigms mostly provide kinematics: an extensional analysis of
transitions made, whereas one eventually wants genuine dynamics: an account of
the underlying processes, which explains observed transition behaviour. So far,
much of logical semantics has had an extensional engineering flavour, following
Lewis’s 1972 dictum: In order to say what a meaning is, we may first ask what a
meaning does, and then find something that does that.
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