FRANGOIS LEPAGE, SERGE LAPIERRE

The Functional Completeness of 4-value
Monotonic Protothetics

LP-96-06, received: June 1996

ILLC Research Report and Technical Notes Series
Series editor: Dick de Jongh

Logic, Philosophy and Linguistics (LP) Series, ISSN: 0928-3307

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

Plantage Muidergracht 24

NL-1018 TV Amsterdam

The Netherlands

e-mail: illc@fwi.uva.nl

The Functional Completeness of 4-value Monotonic
Protothetics

Frangois Lepage
Département de philosophie
Université de Montréal
C.P. 6128 Succursale Centre ville
Montréal, H3C 3J7
e-mail: lepagef@ere.umontreal.ca

Serge Lapierre
College de Bois-de-Boulogne
e-mail: lapierrs@ere.umontreal.ca

ABSTRACT

By protothetics we mean the language of type theory having ¢ (the type of truth values) as
only basic type. This language can be interpreted by various non classical semantics. In
particular, it can be interpreted by a semantics based on four truth values, forming an
approximation lattice, and in which all function spaces are restricted to monotonic
functions. We show that interpreted by this non classical semantics, the language of
protothetics is functionaly complete in the sense that for every monotonic function there is
a name in the language which denotes it. More precisely, using only functional
abstraction, application and Boolean operators, we provide a recursive formula which
gives a name of every object of any type. We conclude on remarks concerning the
definability of the quantifiers.

0. Protothetics

The term protothetics refers to the theory of propositional types. By propositional
types we understand the following.

Definition 1 The set of propositional types is the smallest set 7 such that

(1) te T (tis the type of propositions);
(i) if o, B e T, then <af> e T.

From now on we will abbreviate <af3> by a3 whenever convenient.

The domains of each type are defined as follows.
Definition 2 For each a € T, the set of entities of type o is the set D¢, such that

@) D;={0, 1} (the set of truth values);
(i) Dgp =DpPa(the set of functions of D in Dp).

1

The syntax of protothetics is the following.

Definition 3 First, for every type o, there is a denumerable set Varg = {X¢;}ic Of

variables of that type. The set of terms of type o is the smallest set Trmg, such that :

() Varg < Trmg;

(i) if A, B € Trmy, then —A, [A AB] € Trmy,

(iii) A € Trmg and X € Varg, then AXA € Trmgg;
Gv)ifAe T rmqp and B € Trmy, then [AB] € Trmg;
(v)Fe Trm; and T € Trm;.

Let us call terms of type ¢ sentences. F and T are two special sentences which will
denote respectively the false and the true. If A and B are sentences, then [A v B] is an
abbreviation for —[—A A —B]. The scope of AX in AXyA is A, and a term is closed if
every occurrence of every variable X is in the scope of AX . Henceforth Ag, By, Cq,
... will refer to terms of type o.

We then define an assignment of value.
Definition 5 An assignment of value j is a function
j:(xLe)T Varg = ockeJT Dq

such that j(Xq) € Dg. We write j(a/X) for the assignment that differs from j at most by
the fact that it assigns the value a to X.

Finally, we define a valuation based on j.
Definition 6 A valuation based on j is a function
Vj: oy Trmg— S Do,
such that
@ Vj(Xa) =jXa);
(i) Vi(-Ap =1if Vi4) =0
=0if Vi(A) = 1;

(1) Vi([A; A B)) = 1if Vj(A) = Vj(B) = 1

2

=0if ViA) =0 or j(B) = 0;
@iv) Vj(anAB) is the function which associates Vj(q/x)(4) with
every ac Dg;

() Vi([AapBal) = Vi A)(V(B));
(vi) Vi(F) =0 and Vi(T) = 1.

When a term A is closed, Vj(A) is independent of j and V;(A) is called the denotation
of A and is written A4,

Henkin (1963) showed how to provide a canonical name of each object in Dy for
every type o, using A, fonctional application, A, v, — and an identity operator =. The
identity operator has the classical meaning : Vi([Ag, = Bg]) = 1 iff V(A) = V;(B). One
interesting question concerns the possibility of providing names using only A,
application, A, Vv, and — , i.e., using only functional abstraction, application and the
Boolean operators. van Benthem (1995) gave a positive answer to this question. One
exact formulation of his suggestion is the following.

Definition 7 Let o = <0ip...<opt>...>. Let us call any sequence (empty if o = £)
<p1,....on> € Do, X ... X Dg,, an a-projector. Clearly, for every f € Dg, f(p1)...(pn) €

D; for every o-projector <pi,...,pp>. Let Pr(c) be the set of all a-projectors and let f €
Dg. A projector of f any sequence in Pr(c). 1(f) will denote the set of projectors

<p1,....py> of f such that f(py)...(py) = L.

Clearly, for every f, g € Dy, f = g iff f(p1)...(on) = g@1)...(py) for every a-
projector <p1,...,pn>. We will write 5) for <p1,...,pn> and f(?) for f(p1)...(pn).

A similar syntactic notion will be used. For any term A, with & = <ap...<0t>...>,
we will call a sequence B = <Bt,...,.Bp> € Trmg, X ... X Trmg, a projector of A.
Clearly, [...[AB1]...By] € Trm; for every projector <Bjy,...,B,> of A. We will write
[A B] for [...[AB1]...By].

Let f € Do with o0 = <0...<0ut>...> and suppose, by induction, that we have a
canonical name (g)¢ for every object g of lower types. For any variable X; (1 <i < n),

[X 0;(?)C] is[...[Xq; D] ...(gp)° 1, i.e., the term of type ¢+ made of the variable

X; applied to the projector (?)¢ =<(g1)°%,..., (gk)°>. Now let 1_)) =<pj,...pp> be a
projector of f and let us define 8y, as follows :

85X €)°D) = Ka(€)1 ifp(g)=1

= [Xo:(g)°)] ifpi(g) =0.

Then
Proposition
AMXo.. - AX o, |

vV A S (X (2XDA A A 8 (Ko 2)E
) 1(f)(- p (oG DAcn o A pn(Xon(2) D) |

is a rigid designator or a canonical name of f, i.e., ((f)¢)d =f. Let’s call this formula F1.

With F1, we have a name for every classical propositional function. van Benthem
suggested that this result can be easily extended to the ‘many-valued’ case. A special case
is the three-valued logic where the third value is the undefined value. Can we generalize
the above result in order to have a name for very partial propositional function? The
problem is of some interest because, as we will see, it is not possible to use an identity
operator in partial logic, so we cannot use Henkin’s strategy.

1. Partial Functions

In the following, we identify a partial function with a special kind of monotonic
function!. Formally, we have

Definition 8 For any o € T, the set PMy of partial functions of type o is
recursively defined as follows :

@@ PM;=1{0, 1, L}
(ii) PMop = (PMo, — PMp)

where (PMy — PMp) is the set of monotonic functions of PMq in PMp, the

monotonicity being relative to the following order :

()] for any x € PM;, x = x and 1 C x;

1 For a more extensive presentation of the following, see F. Lepage (1992) or (1995) and S. Lapierre
(1992).

4

@) for any f, g€ PMyp, f =g if and only if for any x € PMy,
fx) & g(x).

Proposition For any o, PM,, is a meet-semi-lattice, where the meet /\ and (when it

exists) the sup V are defined respectively by the recursive clause :

1) for x,ye PM; x Ny=xif x =y and L otherwise;
() forf, g€ PMqug, f /\ g is the function A such that for any x € PM,
h(x) = f(x) N g(0);

and
(iii) forx,yePM,,xVy=xify=J_orx=y
xV y=yif x =1 and does not exist otherwise;

@v) forf,ge PMqyp,f V g is the function 4 such that for any x € PM,,
h(x) = fx) V gx) if fix) V g(x) exists.

The notion of projector is defined as usual. We just need the following additional
notions.

Definition 9 Let fe PMy. 1(f) (resp. 0(f) and L(f)) is the set of projectors
<p1,...,.pn> of f such that f(p1)...(py) =1 (resp. 0 and L1).

Again we have this

Proposition Letf, ge PMgy; f = g iff f(p1)...on) = g1)-..(py) for every o-
projector <pi,...,.pn>.

Now we can define a partial interpretation for the terms of the propositional types
theory.
Definition 10 : A partial value assignment j is a function

ie U U
J°aeTV‘"'0t - o1 PM,,

such that j(X¢) € PMy. As before, we write j(a/X) for the assignment that differs from j
at the most by the fact that it assigns the value a to X

Finally, we define a partial valuation based on j.

Definition 11 A partial valuation based on j is a function

Y. PM,

Vi ot Trma— ot
such that

® Vj(Xa) =jXw);

(i) Vi(—-Ap =1if Vi(Ap =0

=0if Vi(4) =1
= 1 otherwise;

(i) Vj[ArAB) =1if ViA) =VjiB) =1
=0if ViA)=0or;iB) =0
= 1 otherwise;

@iv) Vj(AXoAp) is the function which associates Vij(4/x)(A) with

every ac Dg;

) Vi([AupBa) = Vi(A)(V/B));

(vi) Vj(F) =0 and Vi(T) = 1.

It is easy to verify that negation and conjunction are both monotonic, and that
functional application and abstraction preserve monotonicity. It follows that for every
type a, every term Ag, and every j, Vj(A) € PMy. Now, if we want to keep our
semantics sound, it is not possible - as suggested at the end of the previous section - to
introduce into the language an identity operator ‘=" which behaves classically, because
Vj([Ao = Bq]) would not be monotonic with regard to Vj(A) and V;(B). (For example,
let A; and By such that Vi(A) = L and Vj(B) = L; then we would have V;([A = B]) = 1.
Furthermore let C; and Dy such that V;(C) = 1 and V(D) = 0; then we would have V;([C
= D]) = 0. But since V;(4) < V;(C) and V;(B) < V;(D), monotonicity would be broken.)
We have here a very particular property of partial protothetics : the strongest equivalence
relation definable in the object language of partial protothetics is definitively weaker than

identity.

Again, one easily verifies that, for any closed term A and any j, j', Vj(A) = Vj- (A). In
that case, we will write V;(4) = Vj- (4) = A,

Can we provide a name for any partial object? Yes, but only if we add in the language
a new special symbol ¢ referring to L. Then following Blamey (1986), we may define

[Ar { Bl =gef [A A 9] VA AB] v [¢ A B].2

One can easily verify that for any assignment V;,V; (A; IB) = Vi) AN Vj (B), i.e.,
the infimum of Vj (A) and V; (B). So, V; (4; 1 B)) is the total Boolean value of A; and
B, if they have both the same total value, and is L otherwise. If we add that

Spi[Xo(€) D =Vifpi() =1,
then the following formula F2 is the partial version of F13.

Proposition

AXo AX \Y A 8 (X ZXDA...A A 8y (X 2)E
.. an[[?em(?em} p o DD Awn L A Sy [Ka F) H) |

N Vv A 5o ([Xn (D) A 5 (X (D
[?e 00 (-g-)e Pr(on) Pl([(88X DA A Tg)e P pn([ol &)]))]]

is a canonical name of any partial monotonic f (with the convention that when 1(f) or
0(f) is empty, the default value is F).

3. Four-value Monotonic Protothetics
Let’s go a step further and let’s introduce T, the “top”.

Definition 12 For any o € T, the set FM of partial functions of type o is
recusively dedined as follows :

(1) FMt = {J—’ 07 19 T}a
(i) FMop = (FMo — FMp).

Tis a fourth Boolean value which strictly dominates 0 and 1. FM; is then the lattice
BOOL of Dana Scott (1973). By a classical proof we know that for every type o, the set

2 Of course, we could introduce | as primitive instead, and then define ¢ as [T | F]. But neither ¢ nor |
is definable by means of classical resources.

3 F2 is a generalisation of Thijsse's formula (in E. Thijsse (1992)), which is a simplification of Blamey's
formula (in S. Blamey (1986)).

7

FM,, is a complete lattice. Most of the definitions concerning partial monotonic functions
are easily extended to monotonic functions of FM,.

We can define values for conjunction and disjunction which are quite intuitive, and are
extensions of Kleene strong connectives in the following sense.

(1) When the arguments are taken from {0, 1, L}, then the value is the strong Kleene
value;
(2) All the other values are classical inasmuch as monotonicity is preserved.

The truth tables of —, A and v are then

—“—o |
[.)
N

oo o olo
—— oK~
4 4 o o|l+

- = o |
— o =

—— o>
oF ©F|F
— = o k|«
— =k |-

Notice that De Morgan laws hold according to those definitions, so that A v B may be
considered as an abbreviation of -[-A A —B].

One more time, it is possible to generalize van Benthem’s formula. However, if we
try the formula F2, the result is not in general the name of the intended function but of
another function. One reason why that does not work is that F2 is the infimum of two
formulas. The left one describes the lines where the formula is true and the right one
describes those where the formula is false. The default values being respectively 0 and 1,
when a line is not described the default values appear and the infimum is L. Obviously,

with four values, we need a much more sophisticated device.

Following Muskens (1989), we introduce y as a name of T and a new operator @
defined as

@ [1 0 T
L]t + 0 0
1 |t 1 T T
0|, | 0 o
T 1 1T 7T

We define §,:
Ap)e {0,1, T}, then

8pi[Xoi(2) D = [Xeii(8)E)] ifpi(g) = 1;
= =[Xai(3)°)] it pi(Z) =0;
= Xai(8)] A =Xoi(8)] ifpig)= T
=V ifpi(g)= L.

- -
Iff(p)= 1, then §p;j([Xo;(g)] =F.
The following term denotes f:

MXoq.. AX, V A 5 Xar(DD Any, I\ 8 (Xan(3)E
o1.. Moyl [7 e J_(f)ul(f)uT(f)(?c- ro) p1((Xo1() D A /\?G AN on(Xon(&))]

@-[31 X1 (2)D Aveny, AN Spp(Xan(2)M

? e LOUVOHUTH (E’e Pr(a1) g € Pr(on)

4. About the definability of the ‘usual’ logical operators

One interesting question now concerns the definability of operators like identity and
the quantifiers. Let’s consider first the 3-value case.

We have shown elsewhere (F. Lepage (1995)) that the strongest 3-value monotonic
identity is the following. First, we need the notion of fotal object.

Definiton 13 For any o € T, the set PT, of total objects of type o is the following
@) PT;={0,1}
(i) PTqp is the set of all the f € PMp such that, for any a € PTq, f(a)

ePTB.

Two relations are then introduced.

Definition 14 Two object a and b are weakly equivalent (we write a =*b) iff

(i) fora,b € PM;, a=*biff a=b;
@ii) for a, b € PMop, a =*biff for any c € PTg, a(c) =*b (c).

It can be shown that, for a, b € PTy, a =*b iffa V b exists. a =*b can thus be seen as

a kind of compatibility.
Definition 15 Two object a and b are strongly different (we write a #*b) iff

@) fora,b € PMy,a#*biffa#b,a# Land b= 1
(i) fora,b € PMqp, a #*b iff there is a c € PMg, such that a(c) #*b(c).

Using these two relations we can define identity.

Definition 16 The relation of monotonic identity I, between objects of type o (i.e., I
is of type <a<oit>>) is

Iy(a,b) =1iff a=*b and a,b € PTy
=0 iff a #*b
= @ otherwise.

Since we have a name for every object, we have a name for every /. Once we have a
name for such a function, let’s say =y, we can define the universal quantifier as

VXAt =def [MaA =St }"XQT]-

It is worth noting that with =y having the truth conditions of I, defined above, we
have

Vj(VXoAyp = 1iff for every a € PTq, Vjax)(4) =1
= 0 iff there is an a € PTq such that Vj(g/x)(4) =0
= 1 otherwise.

These truth conditions are the strongest possible for the universal quantifier, i.e., there is
no monotonic functor that stricly dominates this one that behaves as the universal
quantifier when the arguments are total. Moreover, with AXA; =gef =V Xo—A, the same
is true for 3.

10

But having a canonical name for every I is not enough at least for some purposes.
The lack of explicit recursive definition of identity could be an empediment to the
elaboration of a finite axiomatization of 3-value monotonic protothetics. This can be the
case if we have to introduce axioms or rules for every identity of every type.

The question is : can we design a formula denoting /o, which relies recursively on (1)
identity on lower types, (2) canonical names of objects of lower types and (3) Boolean
operators as defined above? The simpler formula is prima facie
[Aap =op Bapl =det VXolA X =p BX].
But that does not work because the definition of VXyC; :
VXoCt =def [MXoC =qr AXoT]

uses the type o which is not lower than af8.

Unfortunatly, there does not seem to be a natural and very simple definition of V. The
following one works but is not very elegant.

Firstly, we define the class of canonical names of total objects.

Definition 17 Let C, be the set of canonical names of objects of type . For any o €
T, the set TC, of canonical names of total objects of type o is the following

() TC;={T, F}
(>i1) TCQB ={Ae Caﬁ : for any B € TC,, ([AB]9)¢ TCﬁ}.

We can then define :

VXA =def ace/}Ca A<at/X>

[Ar=B] =def [[A AB] v [-A A =B]]
[Aap =ap Bapl =det VX al[AX] =p [BX]]

Finally, one can then introduce in the language a functor whose interpretation is ‘to be
total” :

3(Aq) =def IXa[A =¢ X].

11

For the definition of validity as ‘true for any assigment’, a complete system can be
provided.

What about for the 4-value case? The situation is much more intricate. As in the three
value case, we need to define objects that behave like classical objects.

Definition 18 The set of pseudo-classical objects of type o, is the smallest set PS, such
that

@) PS,={0,1}
(ii) PS,s is the set of fe PMgsuch that for any a € PS,, fla) € PS;.

* Pseudo-classical functions behave like classical objects when their arguments are
themselves pseudo-classical.

As in the three values case, let NCq, be the set of canonical names of the four values
objects.

Definition 19 For any type o, the set PCq of canonical names of type of pseudo-
classical objects of type o is

(@) PC;={T, F};
(i) PCop={A € NCqp : for any B € PCy, ([AB19) Pcp}.

We can define the universal quantifier.

Definition 20

VXoA =def A A<at/X>

a‘ePC,

This definition brings us an unpleasant surprise. According to it, the truth conditions of
VXgA; are

Vj(VXaAy) = 1iff a € PSq, Vjax)(4) = 1;
= 0 iff there is an a € PSq such that Vjg/x)(A) =0

orif there is an a and a b € PSgq, such that Vjg/x)(A) = L and
Vjem@A) =T
= L if there is an a € PSq such that Vjg/x)(A) = L and for any
b e PSq, Vjp/x)(A) = L or Vjpxy(A) =1
= T elsewhere.

The second clause is the bad news because we would like to have an universal quantifier
which behave pseudo-classically, i.e., we would like the universal quantifier to obey
following condition

12

C condition

Vj(VXeAp) = 1 iff for any a € PSq, Vjax)(A) =1
Vj(VXoA;) = 0iff there is at least an a € PSgsuch that Vjg/x)(4) = 0.

Unfortunatly, it is not possible to define such a quantifier because

(1) no function f : PM,* = PM, such that

f(ap dp 03, a4) =1 iffal =‘12='aS=a4=1
fla,, a,, a,,a,) =0iffa, =0or a,=0o0ra;=0o0ra,=0

is monotonic;

(2) with a quantifier V satisfying the C condition, we can define an operator

W(A(T), A©0), A(1), A(L)) =4 VXA,

and the value of W will have the property expressed in (1). The generalization to higher
types is trivial.

For the same reasons, it is not possible to define in this logic an existential quantifier
such that Vj(3XA) = 1 is true iff there is at least one pseudo-classical a such that
Vj(ax)A) = 1. These properties are related to the truth tables of v and A. The real
problem is that it is not possible to fill up the following table

Al 01 T
11?2 0o ? ?
010 0 0 O
1 o 1 ?
TI1?2 0 ?7 ?

without using more 0 (and obtaining a monotonic connector) nor to fill up the following
table

13

-4 = O
0O m e
O = O

without using more 1.

All this raises serious doubts about the very possibility of a four-value monotonic logic.

14

Bibliography

Andrews, P. B., ‘A Reduction of the Axioms for the Theory of Propositional
Types’, Fundamenta Mathematice LII, 1963, 345-350.

van Benthem, J., Language in Action, Amsterdam, North-Holland/Cambridge, MIT
Press, 1995.

Blamey, S., ‘Partial Logic’, in Handbook of Philosophical Logic Vol. 111, Gabbay,
D., et al (eds), Dordrecht, Reidel, 1986, 1-70.

Grzegorezyk, A. ‘The Systems of Le$ niewski in Relation to Contemporary Logical
Research’, Studia Logica 3, 1955, 77-95.

Henkin, L., ‘A Theory of Propositionnal Types’, Fundamenta Mathematicee, 52,
1963, 321-344.

Lapierre, S., ‘A Functional Partial Semantics for Intensional Logic’, Notre Dame
Journal of Formal Logic, Vol. 33, No 4, 1992, 517-541.

Lepage, F. ‘Partial Functions in Type Theory’, Notre Dame Journal of Formal
Logic, Vol. 33, No 4, 1992, 493-516.

Lepage, F. ‘Partial Propositional Logic’, in M. Marion and R. S. Cohen (eds.),
Québec Studies in the Philosophy of Science I, Kluwer Academic

Publishers, 1995, 23-39.
Muskens, R. Meaning and Partiality, Ph.D. Dissertation, University of Amsterdam,
1989.

Scott, D., ‘Models for Various Type-free Calculi’, in P. Suppes et al. (eds) Logic,
Methodology and Philosophy of Science IV, Amsterdam, North-
Holland, 1973, 157-187.

SI upecki, J., ‘St. Les niewski protothetics’, Studia Logica, 1,1953, 44-111.

Thijsse, G. C. E., Partial Logic and Knowledge Representation, Delft, Eburon
Publishers, 1992.

15

institute for logic, language and computation

ILLC Research Reports and Technical Notes

Coding for Reports and Dissertations: Series- Year- Number, with LP = Logic, Philosophy and Linguistics; ML = Mathemat-
ical Logic and Foundations; CL = Computational Linguistics; CT = Computation and Complexity Theory; X = Technical
Notes; DS = Dissertations.

All previous ILLC-publications are available from the ILLC bureau. For prepublications before 1994, contact the bureau.

CT-95-01
CT-95-02
CT-95-03
CT-95-04
CT-95-05
CT-95-06
CT-95-07
LP-95-01
LP-95-02
LP-95-03
LP-95-04
LP-95-05
LP-95-06
LP-95-07
LP-95-08
LP-95-09
LP-95-10
LP-96-01
LP-96-02
LP-96-03
LP-96-04
LP-96-05
LP-96-06
ML-95-01
ML-95-02

Marianne Kalsbeek, Yuejun Jiang A Vademecum of Ambivalent Logic

Leen Torenvliet, Marten Trautwein A Note on the Complezity of Restricted Attribute-Value Grammars
Krzysztof Apt, Ingrid Luitjes Verification of Logic Programs with Delay Declarations

Paul Vitanyi Randomness

Joeri Engelfriet Minimal Temporal Epistemic Logic

Krzysztof Apt, Rachel Ben-Eliyahu Meta-variables in Logic Programming, or the Praise of Ambivalent Syntaz
Frans Voorbraak Combining unreliable pieces of evidence

Marten Trautwein Assessing Complexity Results in Feature Theories

S.T. Baban, S. Husein Programmable Grammar of the Kurdish Language

Kazimierz Swirydowicz There ezist ezactly two Magzimal Strictly Relevant Extensions of the Relevant Logic R*
Jaap van der Does, Henk Verkuyl Quantification and Predication

Natasa Raki¢ Past, Present, Future and Special Relativity

David Beaver An Infinite Number of Monkeys

Paul Dekker The Values of Variables in Dynamic Semantics

Jaap van der Does, Jan van Eijck Basic Quantifier Theory

Jeroen Groenendijk, Marin Stokhof, Frank Veltman Coreference and Modality

Jeroen Groenendijk, Martin Stokhof, Frank Veltman Coreference and Conteztually Restricted Quantification
Renate Bartsch Understanding Understanding

David Beaver Presupposition

Theo M.V. Janssen Compositionality

Reinhard Muskens, Johan van Benthem, Albert Visser Dynamics

Dick de Jongh, Makoto Kanazawa Angluin’s theorem for indezed families of r.e. sets and applications
Francois Lepage, Serge Lapierre The Functional Completeness of 4-value Monotonic Protothetics

Michiel van Lambalgen Randomness and Infinity

Johan van Benthem, Giovanna D’Agostino, Angelo Montanari, Alberto Policriti Modal Deduction in Second-Order

Logic and Set Theory

ML-95-03
ML-95-04
ML-95-05
ML-95-06
ML-95-07
ML-95-08
ML-95-09
ML-95-10
ML-96-01
ML-96-02
ML-96-03
ML-96-04

Vladimir Kanovei, Michiel van Lambalgen On a Spector Ultrapower of the Solovay Model

Hajnal Andréka, Johan van Benthem, Istvin Németi Back and Forth between Modal Logic and Classical Logic
Natasha Alechina, Michiel van Lambalgen Generalized Quantification as Substructural Logic

Dick de Jongh, Albert Visser Embeddings of Heyting Algebras (revised version of ML-93-14)

Johan van Benthem Modal Foundations of Predicate Logic

Eric Rosen Modal Logic over Finite Structures

Hiroakira Ono Decidability and finite model property of substructural logics

Alexei P. Kopylov The undecidability of second order linear affine logic

Domenico Zambella Algebraic Methods and Bounded Formulas

Domenico Zambella On Forcing in Bounded Arithmetic

Hajnal Andréka, Johan van Benthem & Istvdn Németi Modal Languages and Bounded Fragments of Predicate Logic

Kees Doets Proper Classes

ML-96-05 Sgren Riis Count(q) versus the Pigeon-Hole Principle

X-95-01 Sophie Fischer, Leen Torenvliet The Malleability of TSP20p¢

X-96-01 Ingmar Visser Mind Rules: a philosophical essay on psychological rules and the rules of psychology
DS-95-01 Jacob Brunekreef On Modular Algebraic Protocol Specification

DS-95-02 Andreja Prijatelj Investigating Bounded Contraction

DS-95-03 Maarten Marx Algebraic Relativization and Arrow Logic

DS-95-04 Dejuan Wang Study on the Formal Semantics of Pictures

DS-95-05 Frank Tip Generation of Program Analysis Tools

DS-95-06 Jos van Wamel Verification Techniques for Elementary Data Types and Retransmission Protocols
DS-95-07 Sandro Etalle Transformation and Analysis of (Constraint) Logic Programs

DS-95-08 Natasha Kurtonina Frames and Labels. A Modal Analysis of Categorial Inference

DS-95-09 G.J. Veltink Tools for PSF

DS-95-10 Giovanna Cepparello Studies in Dynamic Logic

DS-95-11 W.P.M. Meyer Viol Instantial Logic. An Investigation into Reasoning with Instances

DS-95-12 Szabolcs Mikulds Taming Logics

DS-95-13 Marianne Kalsbeek Meta-Logics for Logic Programming

DS-95-14 Rens Bod Enriching Linguistics with Statistics: Performance Models of Natural Language
DS-95-15 Marten Trautwein Computational Pitfalls in Tractable Grammatical Formalisms

DS-95-16 Sophie Fischer The Solution Sets of Local Search Problems

DS-95-17 Michiel Leezenberg Contexts of Metaphor

DS-95-18 Willem Groeneveld Logical Investigations into Dynamic Semantics

DS-95-19 Erik Aarts Investigations in Logic, Language and Computation

DS-95-20 Natasha Alechina Modal Quantifiers

DS-96-01 Lex Hendriks Computations in Propositional Logic

DS-96-02 Erik de Haas Categories for Profit

DS-96-03 Martin H. van den Berg Some Aspects of the Internal Structure of Discourse: the Dynamics of Nominal Anaphora

