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Our mistake lies in supposing that things
present themselves as they really are, mames as
they are written, people as photographzy and psy-
chology give an unalterable picture of them. But
in reality this is not at all what we ordinar-
ily perceive. We see, we hear, we corrceive the
world in a lopsided fashion.

Marcel Proust, La Fugitive

Abstract

This article is on logical aspects of uncertain, unstable perceptual informa-
tion. In a review of logics of direct perception reports we stress that their
semantics is often based on perfect, irretractable ‘points’. We ar gue that
this way of modelling has to be replaced by a more principled orie which
takes the retraction of perceptual information seriously. To do so, our logic
tries to stay close to the psychological models of perception developed in
Marr 1982 and subsequent work. In such models perception is a multi-
layered process. The different layers have filters of different gradation,
which makes perception at each of them approximate. Indeed, our main
tasks will be to formalise the layers and the ways in which they m ay refine
each other, and to develop a logic in which description varies writh such
measures of refinement. Within such a framework, perception cara be ana-
lyzed as consisting of a non-veridical, approximative core, which becomes
veridical by our expectation that what is perceived will remain the case.
We show in detail that this non-monotonic view on perception can be ob-
tained by combining a particular kind of inverse limit for first ordexr models
with the notion of conditional quantification in van Lambalgen 1996.

*This research is part of the PIONIER-project ‘Reasoning with Uncertainty’ sp onsored by
the Netherlands Organization for Scientific Research (NWO) under grant PGS 22-262.
See URL http://www.wins.uva.nl/research/pion/index.html for further iraformation
on the project.
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1 Introduction

It often happens in life that we perceive a person (or an object) only par-
tially, but are nonetheless able to reason about this person and to incor-
porate him or her in our schemes. Such a situation has been eloquently
described by Marcel Proust in La Fugitive

Had I been obliged to draw from memory a portrait of Mlle
d’Eporcheville, to furnish a description of her, or even to recog-
nise her in the street, I should have found it impossible. I had
glimpsed her in profile, on the move, and she had struck me as
being simple, pretty, tall and fair; I could not have said more.
But all the reflexes of desire, of anxiety, of the mortal blow
struck by the fear of not seeing her if my father took me away,
all these things, associated with an image of which on the whole
I knew nothing, and as to which it was enough that I knew it
to be agreeable, already constituted a state of love. (Penguin
Classics ed., p. 577-8)

At the other extreme we may have a situation in which we perceive an
object in its entirety, but nonetheless misidentify it. Again Proust furnishes
an example

I opened the Figaro. What a bore! The main article had the
same title as the article which I had sent to the paper and
which had not appeared. But not merely the same title. .. why,
here were several words that were absolutely identical. This
was really too bad. I must write and complain. But it wasn’t
merely a few words, it was the whole thing, and there was my
signature. .. It was my article that had appeared at last! But
my brain which, even at that period, had begin to show signs of
signs and to tire easily, continued for a moment longer to reason
as though it had not understood that this was my article, like
an old man who is obliged to complete a movement that he has
begun even if it has become unnecessary, even if an unforeseen
obstacle, in the face of which he ought at once to draw back,
makes it dangerous. (ibidem, p. 579)

In this article, we aim to give a semantics for perception reports which is
sufficiently flexible to accomodate these examples, as well as the more com-
mon cases in which we correctly infer the identity of objects on the basis of
partial information. Our methodology is akin to that of Barwise’s work on
naked infinitive perception reports. He maintains that our intuitions about
the semantics of perception are fairly clear, ‘but to square with these intu-
itions, the model-theoretic machinery [of possible worlds semantics] became
quite bizarre’ (Barwise 1981). For this reason, he rather prefers a seman-
tics which ‘fits nicely with a realist philosophical-psychological account of
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perception to be found in the writings of Dretske, R.J. Hirst, and J.J.
Gibson’ (ébidem). In the same vein, we strive to develop a logical model
of vision along the lines of Marr 1982, and show how it complies with
the semantical data. This in contrast to a more instrumentalist approach,
which would allow us to explain the semantic facts in purely abstract terms
(van der Does 1991 is an example).

There is another methodological aspect of our approach worth men-
tioning. The dynamic turn in logical semantics for natural language was
an eye-opener for all people working in the field. Yet, other areas of re-
search, such as probability theory, have been ‘dynamic’ for a long time. The
semantics of perception reports developed in this paper is based on condi-
tional quantification, which resulted from a logical analysis of conditional
expectation. As a consequence, the dynamics of this probabilistic notion
is imported naturally into the semantics. Indeed, we shall make heavy use
of it since retraction of information is crucial to perception. But before we
show in section 4 how this can be, let us first review some basic facts and
received opinions concerning the perception of objects and scenes.

2 Direct perception

This article is mainly concerned with description of direct perception. Lin-
guistically, this can take several forms; e.g., the ‘simple’ perception in (1),
the naked infinitive form in (2), the gerundive form in (3), and the com-
plementised form in (4).

(1)  Jack saw Sharon.

(2)  Jack saw Sharon wash her face.

(3)  Jack saw Sharon washing her face.

(4)  Jack saw that Sharon washed her face.

There are subtle semantic differences between the perception reports, which
have to do with the kinds of object perceived. Sentence (1) describes the
perception of objects, (2) and (3) that of scenes, while (4) gives the content
of what is seen. Also, (1-3) report on what is seen directly, whereas (4) may
state a conclusion inferred from what is actually perceived. The difference
between (2) and (3) is aspectual; (2) concerns a finished action, (3) an
ongoing one.

These differences also manifests themselves in the restrictions placed
on the semantic ingredients of perception reports: (i) the part of objective
reality perceived, (ii) the perceiver’s field of vision, and (iii) the semantic
content of the perceptual description. Direct perception reports require
an immediate link between fields of vision and semantical content. Since
visual fields normally represent part of objective reality, this link often gives
a close connection between reality and semantic content. But of course,
such a connection is not necessary. This is shown by misperceptions and
hallucinations.
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(5)  Macbeth saw a dagger move in front of his eyes.

In case (5) is true, Macbeth’s immediate perceptions should truly involve a
dagger moving in front of his eyes, even though this is fysically impossible.
In what follows we concentrate on the perception of objects, as in (1), and
on naked infinitive perception reports, as in (2).

2.1 Perceiving objects

Simple expression does not mean simplicity of semantics. Although ‘Snow
is white’ is well-suited to explain one’s theory of truth, the semantics of a
mass term as ‘snow’ is still in many ways open. Analogously, sentences like
(6a) are used in textbooks to show that transitive verbs can be interpreted
as two-place relations; here ‘to see’ as ‘S’

(6) a. Jack saw Sharon.
b. 5(j4, s).

But to do so one has to idealise from considerable semantic facts. The in-
troduction has already made clear that Jack need not see much of Sharon
to make (6) true. To perceive an object it is often sufficient to see one of its
(prototypical) parts. In fact, the truth conditions are even weaker, in that
parts of representations may go proxy for the objects themselves. Most
people will only have seen enlivened celluloid or electro-magnetic represen-
tations of famous Sharon, rather than Sharon herself. The important point
is that the weak conditions of truth make simple descriptions of perception
highly fallible. An amusing example is furnished by the following children’s
story.

(7)  As always, poor Jack was short of money. But today Fortune was
at his side. Looking from a window of his parent’s penthouse just
above the 17th floor, his sharp eyes saw a dime lying on Main Street.
He rushed downstairs, checking every now and then whether some
lucky bastard would find it before him. A miracle happened... At
the 11th floor, it turned out to be a quarter, at the 5th floor even a
dollar! How great his disappointment, when out of breath at ground
floor he noticed to have chased a trash can.

The story nicely illustrates another crucial aspect of perceiving objects.
Perceptions and representations not only concern parts of objects, they
also come with a certain granularity. In fact, different parts of a single field
of vision may have varying grades of precision:

(8)  While focussing on Sharon, Jack saw Maria vaguely out of the corner
of his eye.

Change of granularity could induce change of truth value. We sometimes
have to retract our descriptions if we come to see more of an object, or if the
accuracy of the relevant representations and perceptions alter. In the next
section we shall see that similar adjustments are typical of more complex
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perception reports. But even at this point we observe that a psychologi-
cally realistic semantics should contain two ingredients. Firstly, it should
use models which refine each other in several ways (with infinite precision
in the limit). Secondly, the semantics should formalise retractability of
descriptions relative to a certain degree of precision. These ingredients are
developed in section 3, and applied in section 4.

2.2 Naked infinitive perception reports

Ideally, naked infinitive reports (whence: ‘NI reports’) are used to report
on the perception of reality. Indeed, in most semantics an NI report such
as ‘Jack saw Sharon walk’ is true iff Jack stands in the ‘see’-relation with
a part of the world in which Sharon walks.! However, this approach makes
perception highly factual, which can only be sustained under the perfect
circumstance where our perceptual field truly represents reality. Normally
the connection between reality and our fields of vision is rather uncertain.
This looseness between reality on the one hand, and vision and semantics on
the other makes NI reports retractable over time; cf. (9) which is perfectly
in order.

(9) From a distance, Jack saw a dime fall on main street, but on coming
closer he saw it was a dollar.

The intimate relationship between semantic content and reality is often
used to explain the logical transparancy of NI reports. As soon as we take
the uncertainty in this relation seriously, as in the present semantics, most
of the transparancy is lost. To see this, let us revisit some well-known
logical principles which have been considered to hold for NI reports.

2.2.1 Partial perception

One of the most basic non-inferences concerns the interplay between per-
ception of objects and NI reports; (11) does not follow from (10).

(10) Jack saw Sharon, and Sharon winked.

(11) Jack saw Sharon wink.

There is a twofold explanation of this fact: either Sharon’s action is not
within Jack’s visual field, or it is too subtle to be discerned by him. The
two possibilities combined identify a range of vision with a coarsened part
of reality.

2.2.2 Veridicality

Veridicality is the principle which allows us to conclude (13) from (12).
(12) Jack saw Sharon was her face.

(13) Sharon washed her face.

1See Barwise 1981, Higginbotham 1983, Kamp 1984, Asher and Bonevac 1985, Land-
man 1986, Asher and Bonevac 1987, Muskens 1989, van der Does 1991, Hendriks 1993,
Koons 1996, among other people; also for a discussion of the logical principles.
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Since (13) describes ‘the world’ rather than Jack’s field of vision, veridical-
ity does not comply with the acceptability of (9). This is also clear from
(5) and (14) in which the NI complements highly dependent on the viewer’s
perspective.

(14) Jack saw Sharon walk left of Maria and Jill saw Maria walk left of
Sharon.

Of course it does not follow from (14) that Sharon walked left and right of
Maria, as veridicality would have it. Negative NI complements also block
veridicality.

(15) Jack saw no girl wink.

(16) No girl winked.

In general, we shall argue that the principle of veridicality can only be
sustained in idealised situations, which makes it a default rule rather than
a logical inference.

2.2.3 Boolean connectives

Along similar lines, the validity of some of the other logical principles can
be questioned.

Conjunction. On the whole, there is consensus concerning the equiva-
lence of (17) and (18).

(17) Jack saw Sharon wink and Mary smile.

(18) Jack saw Sharon wink and Jack saw Mary smile.

It is indeed hard to find counterexamples to the transparancy of ‘to see’
for conjunctive NI complements. Perhaps the following is one, since (20)
does not appear to be a consequence of (19)

(19) Jack saw an ant walk nearby and Jack saw a beetle walk at a distance.
(20) Jack saw an ant walk nearby and a beetle walk at a distance.

The invalidity should be due to our impossibility to focus on scenes at
different distances at the same time. The conjunction in the premiss allows

a short lapse of time to make both conjuncts true, but not so for the
conjunction in the NI complement.

Disjunction. In case of the logical connective ‘or’ the question is whether
(21) is equivalent to (22).

(21) Jack saw Sharon smile or stare.

(22) Jack saw Sharon smile or Jack saw stare.

There is a natural tendency to interpret the disjunction in (21) exclusively,
which would block the inference from (21) to (22). But Grice has argued
convincingly that this effect is pragmatic, not part of the semantics. And
for inclusive disjunction (21) and (22) are equivalent. See also the discus-
sion in example 6 below.
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Negation. What about negative NI complements? In the literature, one
normally takes (23) to imply (24) but not conversely.

(23) Jack saw Sharon not cry.
(24) Jack didn’t see Sharon cry.

On the assumption that ‘to see’ denotes a relation between an object and
a factual scene, we only have a non-trivial implication if there are nega-
tive facts of some sort. However, in some of us lives a Mr. X, who in a
famous discussion on logical atomism with Bertrand Russell doubted the
existence of such facts (Russell 1988, pp. 215-16). Mr. X would maintain
that the logical form of the premiss has no negation within the scope of
the perception operator. Besides, there are those who read the premiss
as ‘Jack saw Sharon refrain from crying’, with ‘to refrain from crying’ the
antonym of ‘to cry’ (Higginbotham 1983). Formally, this corresponds to
introducing disjoint positive and negative extensions of a relation in the
manner of Feferman 1984. But then we essentially stay within the realm
of positive information, and keep Mr. X satisfied.

Denials in dialogues also ask for a special treatment of negative infor-
mation in perception reports. Consider (25).

(25) ‘Did you see that hawk there?’
‘I saw something, but it was not a hawk.’

It makes perfect sense to retract the last sentence by saying ‘No, you’re
right, it is a hawk’.

2.2.4 Quantifiers

Intuitions similar to those concerning veridicality and the connectives also
influence our judgements on quantificational behaviour. Apart from scope
phenomena pur sang, there is the question to what extent NI reports are
epistemically neutral; i.e, a perceptual field does not alter the inter pretation
of quantifiers within the scope of ‘to see’. If this is not so, someone’s visual
field will determine the extent in which quantifiers may be imported into
or exported out of the scope of a perception verb.

It seems we have to following situation. If NI reports are epistemically
neutral, quantifiers may be moved freely into and out of the scope of ‘to
see’. Then, (26) is equivalent with (27), (28) with (29), and (30) with (31).

(26) Jack saw a girl swim.

(27) A girl is such that Jack saw her swim.
(28) Jack saw no girl swim.

(29) No girl is such that Jack saw her swim.
(30) Jack saw every girl leave his party.

(31) Every girl is such that Jack saw her leave his party.

But if NI reports are not neutral in this sense, all the pairs are independent
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of each other. Jack may be too confused to perceive a ‘real’ girl as a girl,
and what he perceives to be a girl need not be one.

This ends our discussion of the interaction between connectives, quantifiers,
and the perception verb. We now give an informal sketch of the semantics
developed in the remainder of our paper.

2.3 Sketch of the formal semantics

Logics for perception reports are often based on the assumption that the
perceived objects are ‘points’ which cannot be refined any further; all par-
tiality comes from their properties. However, in the previous sections we
have seen many cases where it is more natural to assume that these ob-
jects are underdetermined. We therefore favour an approach where the
infinitely precise points arise in the limit of increasingly refined stages. In
the formalisation each stage is a first order model; and the properties of
an object may vary with the stages, although we normally expect they do
not. Despite such instability, it is possible to define an inverse limit, which
we take to represent reality.

Reality is but one side of perception’s coin, we also need linguistic
means to describe it. Given the evidence that the dynamics of retrac-
tion is crucial to the semantics of perception reports, this cannot be just
a ‘static’ logic. Instead, we shall use so-called conditional quantification
(van Lambalgen 1996) which is rather different from the generalisation of
quantifiers in Mostowski 1957 and Lindstrom 1966. Conditional quantifi-
cation singles out the logical core of conditional expectation in probability
theory. It offers a natural way to relativise quantification to varying mea-
sures of accuracy, and is hence well-suited for our purposes. To be more
precise, we model a range of vision as a stage in the above limit construc-
tion, and show that quantification local to a visual field can be mimicked in
the inverse limit. We prove moreover that background laws of perception
hold in the inverse limit, if they hold at each stage. Within this framework,
perception can be analyzed as consisting of a non-veridical, approximative
core, which becomes veridical by our expectation that what is perceived
will remain the case.

As we have said before, David Marr’s theory of vision is the heuristic
backdrop against which the formal theory is developed (Marr 1982). The
next section starts with the essentials of his theory.

3 Vision, and a blurred view on logic

We have seen in section 2.2.2 that the principle of veridicality is an ideal-
isation which does not allow for the retraction of perception reports. We
believe that retraction is a very real phenomenon, and that any seman-
tics for perception reports should account for this. Moreover, a semantics
should also allow for partially perceived objects. This could possibly be
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achieved by introducing partial objects in the domain, but we favour a
principled solution in which, roughly speaking, partial perception is the
rule not the exception.

The semantics for perceptual expressions introduced here is charac-
terised by the following features:

1) it is completely model theoretic in nature;
2) it tries to stay close to psychological models of perception;

3) it takes veridicality to be a defeasible principle which allows for the
possibility to retract a perception report.

The reader might think there is a certain tension between 1) and 2), since
typically the psychological models involve mathematical constructs such as
Gaussians, Laplace operators etc., which one would not like to have in one’s
semantics. Indeed, it is incumbent on us to show that these psychological
theories contain a model theoretic ‘core’ that is relevant to a semantics
of perception. We believe that the two central notions here are ‘inverse
limit’ and ‘conditional quantification’; whether these indeed capture the
semantically significant part of psychological modelling we must leave for
the reader to judge. In any case, whatever the fate of this proposal, we
are in agreement with Marr when he writes, criticising Gibson’s ‘realistic’
approach

The underlying point is that visual information processing is
actually very complicated, and Gibson was not the only thinker
who was misled by the apparent simplicity of the act of seeing.
The whole tradition of philosophical inquiry seems not to have
taken seriously enough the complexity of the information pro-
cessing involved (Marr 1982, p. 30).

We maintain that, in order to explain the logic of perception, some of these
complications have to be imported in the model theoretic machinery.

Inevitably, this section will be rather technical. We have tried to organ-
ise the presentation in such a manner that the main thrust of the argument
can be followed also by those not willing to delve into the technicalities.
Section 3.1 gives a rapid introduction to David Marr’s theory of vision in so
far as it is relevant to our concerns. In section 3.2 we extract from his work
two model theoretic notions, that of an inverse system of models, and the
inverse limit thereof. A model theoretic correlate of a third notion, that of
a filter (in the sense of stochastic control, not in the familiar logical sense),
is studied in section 3.3. The three notions are linked in section 3.4.

3.1 David Marr on vision

We start by explaining the psychological motivation underlying the model
theory. Here, we base ourselves on an abstract account of Marr’s theory
of vision (1982). Of course, basing one’s semantics on an empirical theory
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brings with it the danger that the empirical theory is wrong; indeed, it has
been claimed that Marr’s views are ‘almost completely wrong’ (Mayhew,
as quoted in Boden 1988, p. 74). Nevertheless, we hope to convince the
reader that Marr’s theory is extremely suggestive from a model theoretic
point of view. In particular Marr’s idea of a hierarchy of three dimensional
models has a good model theoretic correlate; ‘good’ in the sense that the
associated preservation and non-preservation theorems may shed some light
on the logic of perception. The model theory is sufficiently abstract to
be compatible with other approaches based on the idea of a hierarchy of
perceptual models, such as P.K. Allen’s (1987).

Marr’s fundamental idea is that vision is in many ways approximate.
Filtering takes place at many of the earlier levels of visual processing, lead-
ing up to the so called primal sketch; and, at the other end, the perception
of 3-D objects and scenes takes place by means of a hierarchy of ever more
refined, but never completely accurate models.

Here we shall concentrate on the last stage of the visual process, al-
though the proposed mathematical model describes the earlier stages as
well.

Seeing a 3-D object involves two processes: constructing an image from
visual data, and matching the image to a catalogue of 3-D models, where
the matching is based on some salient features derived from the image. At
this point we can do no better than reproduce the following illustration
from Marr 1982, p. 306.

R

1 07
: Am )

By

[N

Refinement of an arm

What is depicted is an increasingly detailed series of models of an arm.
Obviously, this series can be extended further by detailing the shape of
the fingers, by replacing the cylinders by less rigid shapes etc. Marr’s
point is that we recognise an object in the real world in terms of these
3-D models, and that we may often use a rather rough approximation to
correctly identify the object.
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Modularity [...] allows the representation to be used more flex-
ibly in response to the needs of the moment. For example, it is
easy to construct a 3-D model description of just the arm of a
human shape that could later be included in a new 3-D model
description of the whole human shape. Conversely, a rough
but usable description of the human shape need not include an
elaborate arm description. Finally, this form of modular or-
ganisation allows one to trade off scope against detail. This
simplifies the computational processes that derive and use the
representation, because even though a complete 3-D model may
be very elaborate, only one 3-D model has to be dealt with at
any time, and individual 3-D models have a limited and man-
ageable complexity (Marr 1982, p. 307).

There exists an interplay between the clues derived from an image and the
matching process (cf. Marr 1982, p. 321): after a 3-D model has been se-
lected (guided by the image), it can be used to search for additional clues
in the image; in turn, these can be used (when necessary) to match the
image to a more detailed 3-D model. However, it may turn out to be im-
possible to find a more detailed 3-D model of the kind we expected. Indeed,
like all computationally efficient heuristics, the use of such approximate
models brings with it the possibility of error: what is identified as a real
arm with respect to a given approximation may turn out to be something
else (e.g., a wooden arm) when ‘looking closer’, i.e. with respect to a more
refined approximation. (This point is not much emphasised in Marr 1982
though.) In any case a theory such as Marr’s is well-suited to account for
partial perception of an object: this is simply the matching of an object
to a 3-D model without an expectation as to the direction in which the
model can be refined. These observations suggest a formal semantics for
visual reports in terms of approximate models and a stability condition.
For instance, informally still, the expression

(32) 1Iseean arm

can be taken to mean the conjuction of (i) and (ii).

i) with the present approximation the object that I focus on is identified
as an arm;

ii) I expect this to be the case for every more refined approximation.

That is, the arm reported on in (32) is viewed as a (possibly infinite)
series of ever more accurate approximations; recognizing something as an
arm means finding a matching 3-D model somewhere in this series. The
stability condition says that we could also find less approximate models
in this series, if we would care to submit the image to more elaborate
processing. By contrast, if we say: ‘What I see looks like an arm’ we imply
only condition (i), not (ii).



A Logic oF VISION / 12

3.2 Inverse limits

Consider again Marr’s suggestive example of 3-D models of an arm. Viewed
abstractly, what we see is a series of first order models, composed of objects
and relations between them, together with a mapping specifying how an
object occurring at one level is decomposed at the next. This situation can
be represented by means of an inverse system of first order models. The
basic ingredient is the following

Definition 1 Suppose M, M’ are first order models, with domains D, D’.
Let D<“ denote the set of finite sequences of elements of D. A continuous
onto mapping h : M — M’ is a surjective function h : D<¥ —— D'<¥
such that for each formula ¢(z; ...xzn) of M/,

{w € D<¥ : length(h(w)) = n and M’ = p(h(w))}

is definable on M by means of a first order formula (without parameters).
In this situation we write M —, M’.

Intuitively the model M is a refinement which decomposes the objects
in M’; h!(a) is the set of components of a in the refinement AM. The
(technically convenient) surjectivity requirement says that all objects of
M’ are decomposed. It will become clear later why we call these mappings
continuous.

In the example, we could let M’ be a model (D'; 4,...) , with a unary
predicate A for ‘arm’. M could be a model (D;U, F, J,...), where U and
F are unary (for ‘upperarm’ and ’forearm’) and binary J (for ‘joined’)

(]
= Rk

7/1

Arm - Forearm - Hand?

Clearly M represents the same situation in more detail than AA’. The
continuous onto mapping h should be such that for all d,e € D:

if M = U(d) A F(e) A J(d,e), then M’ = A(h((d,e)))

2 After Marr 1982, p. 306.
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But not every element in A may be decomposed in this manner. In the
latter case, we need other relations to decompose the remaining objects to
satisfy the surjectivity requirement.

It is convenient to present the gluing of one model onto another (cf. the
picture) in the following manner: the arms of M’ which are decomposed in
M in a way compatible with the true notion of arm, are present in M as
objects, not just as sets of objects satisfying certain relations. This leads
to the formal notion of a model M being a refinement of a model M’ with
respect to a predicate A :

Definition 2 M —, M’ is a refining pair with respect to the predicate
A if the folowing properties hold:

1. M = A(a) implies M’ = A(h(a));
2. M = A(a) A A(b) A a # b implies h(a) # h(b);
3. M’ = 3z A(x) implies M |= 3z A(x).

M —sp M’ is a proper refining pair with respect to the predicate A
if h({d : M = A(d)}) is not definable on M’ (hence it is in particular a
proper subset of {e : M’ |= A(e)}). The definition has an obvious extension
to simultaneous refinements of several predicates.

If M —} M’ is a refining pair with respect to A, we may glue M onto M’
by identifying the A-elements of the two models which are correlated by h;
this is the content of Marr’s picture. If M —, M’ is a proper refining
pair with respect to A, the difference between M and M’ may show up in
the fact that a statement 3z(A(x) A @) is true on M’, whereas it becomes
false on M. However, we shall see below, in section 3.4 that the rough
approximation of ‘arm’ given by the model M’ may be reproduced inside
M. We now introduce arbitrary sequences of refinements.

Definition 3 Let (T, <) be a directed set, i.e. < is transitive and reflexive
and for each t,t' € T there exists s € T such that ¢,t' < s. An inverse
system of models indexed by T is a tuple

({M;:t €T}, {hst:s,t €Tt <s})
such that for each s,t € T with t < 5, My —p,, M;.2

Observe that the set of 3-D models (in the sense of Marr) will have the
structure of an inverse system of models (in our sense): the condition
of directedness says that two refinements will themselves have a common
refinement. In line with our intuitive motivation, we shall mostly be in-
terested in inverse systems which refine a distinguished predicate A in the
following sense

3The customary notion of inverse limit in model theory (cf. Chang and Keisler 1990,
p. 322; 1977, p. 243) is slightly different because it is based on the algebraic analogue.
In our context the topological analogue is the more useful one.
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Definition 4 The inverse system ({M; : t € T}, {hst : s,t € T,t < s})
refines A if there exists some maximal chain C C T with for all s < ¢:
M —p,, M, is a proper refining pair with respect to A.

Although our perceptual models of reality are always approximate, reality
itself is assumed to be precise. Consider once again the example of the arm.
The situation was the following: there were models M’ := (D'; A, ...), with
a unary predicate A for ‘arm’ and M = (D;U, F, J, A,...), where U and
F are unary (for ‘upperarm’ and ‘forearm’) and binary J (for ‘joined’);
moreover there was a mapping h : M — M/’ such that

if U(d) A F(e) A J(d, e) then: A(h({(d,e)))

for all d,e € D. We now want to think of h as a mapping 7 on assignments
DVar ., D'Var iy the following manner. Rewrite (%) as, for all d,e € D

if M= U(z) AF(y) AJ(z,y) [f] then: M = A(2) [n(f)]
with the understanding that f(z) = d, f(y) = e and n(f) should be such
that n(f)(z) = h({d,e)). To ensure that the values of z and y are compo-
nents of the value of z, we need a bijection V : Var<¥ — Var, satisfying
V({z,y)) = z. Given h and V, we may define by n(f)(z) = h(f|V~1(2)).
By putting a topology on the set of assignments we arrive at a general
definition of the 7 of interest.

Definition 5 A set of assignments on M (i.e., a subset of DV2T) is clopen
if it is of the form {f : M = ¢ [f]} for a first order formula ¢. A function
n : DV — D'Var is continuous if for a clopen C C D'Var, n=1(C) is
clopen.*

Definition 6 An inverse system is a tuple
(Mt €T}Hnst : s,t €Tt <s})
such that T is directed and for s,t € T with t < s: 0y : Mg — M, is
continuous and surjective.
Definition 7 (Adapted from Engelking 1989, p. 98) Let
({Mi:t€T}H{nst : s, t € T,t < s})

be an inverse system. A thread is a sequence (&s)ser such that each &
is an assignment on M, and for all s,t € T with t < s: hg (&) = &.
The inverse limit (M, F) of ({M; : t € ThH{ns : s,t € T,t < s}) is
constructed as follows. Given a thread £ = (&;)ser, define an assignment
fe by fe(z) = (§s(z))ser. The domain D of M will be

{(&s5(z))ser : « € Var, (§)ser a thread}

4¢Clopen’: means closed and open. We think of the definable sets as a basis for the
topology. Since the complement of a definable set is again definable, the basis consists
of clopen sets. If h is continuous in the usual sense, h~1(O) is open for open O and
h~1(F) is closed for closed F, hence our definition.
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but we take only a subset of DV namely F := { fe : € athread} as the
set of admissible assignments. If R(z1,...,zx) is a relation, we define its
interpretation (as a clopen set of admissible assignments) by®

ff € R(xl,...,il?k) iff: €= (gs)seT & Vs € T(ES € R(xl,...,$k) on MS)

Note: the inverse limit is specified as a model M plus a set of admissible
assignments F.

Theorem 1 If ({M; : t € T}, {nst : s,t € T,t < s}) is an inverse
system of wi-saturated models, its inverse limit exists (i.e. its domain is
nonempty).

PROOFSKETCH. The result follows from theorem 3.2.13 in Engelking 1989.
The assumption of w;-saturation (cf. Chang and Keisler 1990, ch. 5; 1977,
214) is necessary to push the requisite topological argument through: it
ensures that the spaces of assignments can be made compact Hausdorff. O

Since any infinite model has an elementary extension to an wi-saturated
model, the assumption appears to be logically harmless. One might try to
restrict oneself to finite A, even though the inverse limit will be infinite;
however, as excercise 2.5 in Engelking 1989, p. 104, shows, the domain of
the inverse limit of an inverse system of finite structures can be empty.

At this point it is appropriate to get rid of a technical nuisance. If
we construct the inverse limit, not only the domain should be nonempty,
but of course also some predicates should receive nonempty interpretation.
By definition of the inverse limit, the interpretation of a predicate A is
empty if it is empty on an M. But this is precisely what happens if one
takes Marr’s picture seriously: there is a stage in which arms have not yet
made their appearance. In order to avoid this problem, there appear to
be two options. The elegant solution is to define a filtered inverse limit,
i.e. to define the inverse limit as a submodel of a reduced product. In
this case, a predicate has nonempty interpretation on the inverse limit if
it is nonempty from a certain stage onward. Unfortunately, this creates
complications for the treatment of conditional quantifiers below, so we
opt for a less elegant alternative: at those stages at which arms have not
appeared yet, we interpret A is the full domain, and mutatis mutandis for
n-ary relations.

So far, the models M; were viewed as approximations to reality, i.e.
the inverse limit. In the next section we study the opposite direction: how
to blur reality to get an approximation.

5This may look formidable, but it is a standard construction of algebraic logic: the
inverse limit is a subdirect product of a collection of cylindric set algebras.
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3.3 Conditional quantification

Consider clause (i) of the proposed semantics for ‘I see an arm’: with the
present approximation the object that I focus on is identified as an arm.
The logical form of this statement is some kind of existential quantification,
namely ‘there exists an arm in my (filtered) perceptual field’, the filter
corresponding to the degree of approximation. (The meaning of the word
‘filter’ here has nothing to do with its logical meaning; one should think
rather of, say, a UV filter in photography, or the Dolby filter on a cassette
deck.) However, this notion of quantification is nonstable: with respect to
a finer filter, the existential statement may become false. The technical
problem is, how to incorporate the filter into the existential quantifier. We
first discuss one way of doing this, and then (in section 3.4) we return to
the question of formally representing Marr’s hierarchy of 3-D models.

The novel notion of a ‘conditional quantifier’ (cf. Van Lambalgen 1996)
originated from an attempt to extract the logical content of conditional ex-
pectation in probability theory.® Since this heuristic motivation is directly
relevant to our theme, vision, we reproduce it here, apologizing to those
readers who are not familiar with probability. In any case we shall first give
a simple example which hopefully succeeds in illustrating the main idea.

Example 1 Suppose we have a variable X on a sample space €2 which
takes values 0 and 1 both with probability % Let A; be the subset of 2
on which X takes value i, then P(A;) = % Suppose furthermore that we
cannot measure X directly, but can only measure X +Y, where Y is some
small perturbation. Let B; C A; be such that P(By) = € # P(B;) =6,
where €,6 < 1; Y takes value % on By and value —% on B;. Then X +Y
takes value 0 on Ag — By, value 1 on A; — B; and value % on BoU B;. The
smallest Boolean algebra B which contains Ag — By, A; — By and BoU By
does not contain Ag and A;. If we can measure only X + Y, not X, this
implies that we cannot determine the expectation E(X) of X, which would
equal %, but only its expectation E(X|B) with respect to B, which equals
% + %e — %—6 # % What we are after is a logical analogue of the expression
‘E(X|B).

Example 2 A more realistic example is furnished by a typical instance
of filtering. As in Marr (1982, pp. 54-61), we may think of a filter as a
blurring operation (in his case applied to an image), usually by means of
a Gaussian. Formally, we have a random variable X on a sample space
Q (measurable with respect to an algebra B) which we want to measure;
however, due to, for example, noise, we can only observe X + c.£, where ¢
is a Gaussian with mean 0 and standard deviation 1. X + ¢.£ is measurable

6There does exist a (largely forgotten) body of work studying quantifiers over Boolean
algebras in a probabilistic context; cf. Wright 1963 and references given therein. What
is new in van Lambalgen 1996 is the addition of these quantifiers to first order logic.
This requires techniques beyond Stone duality.
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with respect to an algebra G, which need not be the same as B (when both B
and G are taken to be minimal). Hence we can only determine properties of
X as filtered through G; this is represented by the conditional expectation
E(X]|9). E(X|G)(w) is a G-measurable random variable on 2, representing
the questions that can be asked about X from the point of view of G.
Suppose an experiment has been performed. The only information available
to us regarding which sample point w has been chosen is the value of Z(w),
for each G-measurable random variable Z. This determines a measurable
set A € G. Then the expected value of X given this information, f 4 XdP,
equals [, E(X|G)dP; from the point of view of G, no other questions about
X can be answered. The Radon-Nikodym theorem is used to show that
a function E(X|G)(w) with these properties exists. A statement of the
form ‘E(p|G) > 0 a.s.” denotes a strong form of existentially quantifying a
formula ¢ (represented by an indicator function) relative to the available
information, codified in G.

‘We shall take conditional expectation as our heuristic model; the form of
quantification we are interested in will be called conditional quantzfication.
Sometimes we shall also speak of filtered quantifiers, especially when it
is helpful to think of the conditioning algebras as filters (in the sense of
blurring operations).

Consider first a rather roundabout way of formalising existential quan-
tification on a model M = (D,...) . Let B be the algebra of first order
definable subsets of DV (D V@I is the set of assignments on M); G. denotes
the subalgebra of B generated by formulas with free variables in Var — {z}.
Then 3z is the unique surjective mapping B — G, satisfying

1) 3z0 =0, 3z1 = 1;

2) ¢ < 9 implies Iz < Jzy;
3) ¢ < Jzyp; and

4) Jz(p A Jzyp) = Jzp A Jzoh.

Intuitively speaking, G, represents the situation that we have precise infor-
mation about variables other than z, and no information about . Indeed,
we may view G, as the set of questions about variables (of the type ‘does y
satisfy 1¥?’) that can be asked and answered in this situation. We assume
that all questions can be formulated in a first order language; since G,
contains all formulas in free variables other than z, it represents maximal
information about those variables. Note that this way of analyzsing the
existential quantifier is very different from the one which led to M ostowski-
Lindstrom generalised quantifiers: there, 3 is interpreted as the set of
nonempty subsets of the domain, and the truth condition reads

M TJzp(z) if {de D: M p(d/z)} €3

The difference is that Mostowski-Lindstrém generalised quantification fol-
lows the Fregean tradition in analysing variables away (variables are just
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place holders), whereas here quantifcation is defined with respect to a given
variable. This is because we think of a variable as an observable quan-
tity, much like the random variables of probability theory. The resulting
very non-Fregean treatment of variables is explained in greater detail in
van Lambalgen 1996.

Suppose we have a formula ¢(z,y) and information ¢ (y) about y. The
question ‘does z satisfy ¢(z,y)?’ cannot be answered on the basis of
G alone. The most we can say is either that it is consistent with ¥(y)
that ¢(z,y), i.e., 3z(p(z,y) A P(y)), or that any x satisfies p(z,y), ie.,
Yz (p(z,y) A ¥(y)), etc. Viewed in this manner, the logical existential
quantifier becomes analogous to the probabilistic conditional expectation
considered above. This then leads to a consideration of arbitrary subal-
gebras G of B, representing the available information about variables. For
instance, if G is a proper subalgebra of G,, this means that for some vari-
able y, not all possible questions about y can actually be asked (e.g., for
lack of a sufficiently accurate measurement device). Below we shall give
several examples illustrating this possibility.

The resulting new notion of generalised quantification is called con-
ditional quantification; we write 3(e|G) for the existential quantifier con-
ditional on the algebra G. Generalizing both from 3z and conditional
expectation, we obtain the following set of properties that 3(e|G) should
satisfy.

1) 3(p|G) € G. This says that the truth value of 3(p|G) is determined
solely on the basis of the information codifiable in G; and implicitly
also that 3(p|G) is a function on the assignment space. This is anal-
ogous to requiring that E(e|G) is G-measurable. Note that we also
implicitly require that B is closed under 3(e|G) (this requirement is
the most difficult to satisfy). In the following statements, = and <
refer to the ordering in B (of course, < equals C).

2) 3(0|G) =0,3(1|9) = 1;

3) ¢ < 1 implies J(¢|G) < I(¢|G) (monotonicity);

4) ¢ < 3(plG) (3(e|G) is increasing);

5) (e VYIG) = 3(plg) v I(¥]G) (additivity)

6) (e AY|G) = I(plG) Ay, where ¥ € G (‘taking out what is known’).
Property 6) is the analogue of the following property of conditional ex-
pectations: if Z is G-measurable, then E(XZ|G) = ZE(X|G) a.s.. Since
E(Y|G) is itself G-measurable, we have the fundamental identity

E(XE(Y|G)) = E(X|G)E(Y|G) a.s.
In logic this corresponds to the so-called Frobenius property

(e A3(I9)NG) = 3(plG) AI(¥IG)
Note that 2) and 6) imply that 3(e|G) is the identity on G.
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All properties mentioned so far are satisfied by a quantifier satisfying
(*) in the following definition.

Definition 8 Let L be a first order language, M a model for L, F the set
of assignments on M, B the algebra of definable subsets of F generated
by M, G C B. J(e|G), an existential quantifier conditional on G, is any
mapping B — G satisfying

(*) For all ¢ € G: ¢ <9 if and only if 3(p|G) < 1.

Condition (*) is known as a Galois correspondence. The reader may wish to
check that in the particular case G = G, (*) is a way of stating the familiar
left and right introduction rules for 3z. The Galois correspondence suggests
that we define 3(p|G) as A{¢ € G : ¢ < ¥}, but G need not contain this
infinite infimum (in the case of G, it does, though). We shall see later what
to do about this, but while reading through the following set of examples
it is helpful to keep the interpretation just given in mind.
Example 3 ‘Blurring of individuals’ In nuce, the following example de-
scribes our approach to a semantics of perception. A statement like ‘y sees
z’ is rendered formally as: ‘Jz[p(z) A S(y, z)]’, where ¢ defines a unique z.
Symbol S gives the denotation of ‘to see’, and it delimits the set of objects
{d : Sad} seen by a. The quantifier 3z ranges over completely accurate
objects; in formal terms, the elements of the inverse limits constructed in
the previous section. To accomodate actual perception, which always has
finite precision, we replace the quantifier 3z by a filtered quantifier 3(e|G),
where G represents the degree of blurring. Here we present only a simple
case.

Let M = ({1,2,3,4,5},S,W,U), with ‘S(a,b
West, and ‘U’ for: up. In particular, S = {(2,1), (
U ={1,2,3}.

)’ for: a sees b, ‘W’ for:
2,3),(4,5)}, W ={1,5},

1= 2 » 3
8]
5 «}——14
w
Up west

Put ¢(z,y) = S(y,z) A W(z) A U(y), then for f such that f(y) = 2:
M E 3lzp(z,y) [f] (‘y occupies the ‘up’ position, and looking to the West
y sees exactly one object’); in fact

{f : M = 3zp(z,y) [f1}
= {f: ME3e(z,9)IG:) [f]}
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= {f:f(y) =2}

The algebra G, represents the case that the viewer y has complete infor-
mation, both about its own position (‘up’) and the direction in which it is
looking (‘west’). Let us now vary this situation, for instance by depriving
the viewer of the information that he is in the ‘up’ position. The algebra
G on the set of assignments, corresponding to this state of affairs, is deter-
mined by the formula algebra generated by the set {S(y,z), W(x)}. We
now have

{f : M= 3(e(z,)19) [£1}

= N{veg: o<y}

— {f: ME S@y2) AW(2) [f]}
{f:(fy)=2Af@)=1)V(fly) =4Af(z) =5}
Similarly, if y is so disoriented that he does not know whether he is looking
East or West, we may describe his predicament by the algebra H generated
by {S(y,z),U(y)}. In this case

{f: M 3(e(z,y)H) [f1}
= Nver: o<y}
= {f: MES(y,z)AU() [f]}
= {f:fly) =2V (f(z) =1Af(z) =3)}
We trust the reader can subject y to a still more savage experiment.

In order to highlight some formal features of this example, a technical
point: we adopt the following convention concerning free variables

FV(3(¢l9)) = FV(e) N U{FV(¥)[y € G}

Notice that the number of free variables need not be reduced by conditional
quantification! Indeed, in the formula 3(¢(x,y)|G) z is neither fully bound
nor fully free; whereas ordinary existential quantification 3z has the effect
of abolishing all restrictions on z, a filtered quantifier need only liberalise
restrictions on x to some extent, without fully abolishing them.

A second feature is: 3(p(z,y)|G) € G. Unfortunately, this is lost in
more intricate cases, the subject of our next example.

Example 4 ‘Truck through door?’ We now replace the dichotomy up-
down by a continuum of possibilities. A truck has to pass through a narrow
door in a wall; a person behind the truck checks whether this is possible.
In this case the viewer must choose his position rather accurately: too far
up or down means that he will see only one side of the truck, if he comes
too close the truck will occlude the door, but if he goes too far to the left
he cannot accurately estimate the distance between truck and doorposts.
See the picture.
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Truck through door

Let O(z) be the predicate ‘z is a (sufficiently large) opening’, S (v, ) the
relation ‘y sees «’ (where the viewer y is identified by the coordinates of his
position in the plane) and let A, (y) be a countable collection of predicates
denoting open sets in the plane. We assume the following logical relations
between these predicates

1) VnVaVy(O(z) A S(y,z) — An(v))

2) Vn(Ant1(y) — An(y))

3) VnIy(—An+1(y) A An(y))

4) Vn3y(An(y) AVz(O(z) — ~S(y,2))).
Condition 4) expresses that it is hard to find the exact position from which
an opening can be accurately observed; each open set A, contains positions

from which no opening is visible.
Suppose G is the Boolean algebra generated by

{0(2)} U {S(y,2)} U{An(y) : n € w}
This algebra represents the situation that the viewer has no precise infor-

mation about his location y; the only available information is in the form
of the open sets A,,(y). This has a twofold consequence

a) 3(0(z) A S(y,7)|9) £ G,
b) 3(O(z) A S(y,z)|G) is not first order definable.
For a), since O(z) A S(y,z) — A,(y), we must have

3(0(z) A S(y, z)|G) — An(y)

If 3(O(z) A S(y,2)|G) € G, then 3(O(z) A S(y,)|G) must be a. Boolean
combination of the A, say ¥. Write ¢ in distributive normal form, then
since ¥ — Ap(y), negative occurrences of the A, cancel out. It follows
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that 1 is equal to some Ag(y). However, this conflicts with

Fy(An(y) A ~Anya(y))

For b), let M be an w-saturated model of the theory 1-4). On M, 3(O(z)A
S(y, z)|G) must equal A\ A,. We show that A A, is not first order definable.
Let x be a first order formula defining 3(O(z) A S(y,z)|G), then for all n:
x — An(y). The set

{-x}U{4a(y) 1 n € w}
must be finitely satisfiable, otherwise for some k, Ax(y) — X, whence
x < Ag(y), in contradiction with Jy(A,(y) A ~An+1(y)). Hence on M,
N\ An = 3(0(z) AS(y, x)|G) is strictly larger than x. In particular 3(O(z) A
S(y,x)|G) is not equivalent to 3z(O(z) A S(y, x)).

Since we require 3(¢|G) € G, the moral of the example is that the set-up
chosen hitherto is too narrow. But before we remedy the situation, we give
a fifth example concerning a logical analogue of probabilistic conditionali-
sation.

Example 5 So far we conditioned quantifiers on restricted information;
in probabilistic terms, we consider a subalgebra of the full algebra, but
retain the measure. Sometimes, however, the measure may change by con-
ditionalisation: if P is the original (‘a priori’) measure, and we know for
sure that B has happened (where P(B) > 0), then a new (‘a posteriori’)
measure P’ is determined by

P'(4) = P(A|B) = %

Logically this corresponds to taking the universe of the conditioning algebra
to be a subset of the full set of assignments. For instance, if M is a
model with domain D, we may move to a submodel M’ of M with domain
D' C D, with corresponding set of assignments F' = D'Va*. Let H be
an algebra on F. We briefly study the properties of 3(e|H). Its defining
conditions are

i) AW|H) e H

ii) Fney C6iff I(P|H) C 6, for all § € H.
For instance, we get (a), but also (b)

a) 3(0x|H) =0y = 3(0|H) =0

b) I(LpH) = L # 3(AIH) = 1
All other properties of I(e|H) are relativised to F as well; e.g., we get, for
all ¢ , FNe C 3(|H), whereas ¢ C I(¢|H) now fails. It is especially the

combination of the two processes, filtering and conditionalisation, that is
useful for a logic of vision. Conditionalisation corresponds to the submodel
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of reality determined by the perceptual field, while filtering represents the
degree of accuracy with which we we can perceive that submodel.

What follows is a technical aside, not directly relevant to the line of argu-
ment of the paper. In example 4 (‘truck through door’) we have seen that
since conditional quantifiers need not be first order definable, they cannot
be functions B — B; a fortiori, subalgebras G C B can be too small to
be consistent with 3(e|G) € G. In order to prove existence of conditional
quantifiers we have to enlarge both B and G to the o-algebras generated
by them.

Definition 9 A o-algebra on X is a set of subsets of X closed under
countable unions and complements, and containing X. If B is a Boolean
algebra, the o-algebra generated by B is the smallest o-algebra containing

B.

However, after enlarging the algebra we face a fresh problem. A o-algebra
is uncountable, hence the infimum necessary to define 3(e|G) will in general
be an infimum over uncountably many sets, so will not be in G. In Van
Lambalgen 1996 it is shown how to overcome this problem. The proof is
again too complicated to be included here. The trick is to leave 3(e|G)
undefined on a ‘small’ set of assignments, where the relevant notion of
smallness is given by the following definition from topology adapted to the
present context

Definition 10 A set N of assignments on M is meagre if there exists a
set of first order formulas {, : n € w} such that

i) N={f:forall n, M [= ¢, [f]}
ii) there is no formula x, such that for all n: M = VZ(x — ¢, )

Here, VZ denotes universal closure.

Definition 11 Let L be a first order language, M a model for L, B the
Borel o-algebra generated by the L-definable sets of assignments, G C B
a sub c-algebra. 3(e|G), an ezistential quantifier conditional on G, is any
mapping B — @ satisfying: there exists a meagre set N such that outside
N: for all € G, ¢ < 9 if and only if I(p|G) < .

Theorem 2 Any first order model M’ has an elementary extension to a
model M such that for any countably generated sub o-algebra G of B (the
o-algebra generated by the first order definable sets of assignments on M),
a version of conditional quantification relative to G exists.

While we have included these results here to convince the reader that con-
ditional quantifiers exist, they are not indispensible for an understanding
(as opposed to a rigorous treatment) of the proposed semantics of percep-
tion reports. The reader may continue to think of conditional quantifiers
as given by definition 8, and as exemplified by the first example, although
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in the next subsection we shall sometimes implicitly use the fact that con-
ditional quantification can be applied to Borel sets.

One thing is crucially important: a conditional quantifier is determined
by its conditioning algebra, considered as algebra of sets of assignments;
hence the variables which occur in the formulas defining the sets of assign-
ments are an essential (non-Fregean) ingredient in this notion of quantifi-
cation. The conditioning algebras cannot be thought of as determined by
subsets of (powers of) the domain (eliminating explicit reference to vari-
ables). The reason is that the conditioning algebras may contain formulas
of arbitrary arity. This makes conditional quantification different from
Mostowski-Lindstrom quantification, where each quantifier can only take
as arguments tuples of relations of which the arities are fixed. As a con-
sequence, if we aim at a formalism in which both types of quantifiers can
occur simultaneously, the definition of Mostowski-Lindstrom quantification
has to be generalised to allow relations between sets of assignments.

We now return to the inverse limits of section 3.2, and show how con-
ditional quantifiers can be interpreted in them.

3.4 Approximate models formalised

In section 3.2 we argued that reality, as relevant to the logic of perception
reports, should be constructed as an inverse limit of approximations. In the
previous section we introduced conditional, or filtered, quantifiers, which
allow one to blur reality. Putting these two ideas together, an obvious
question arises: if M is the inverse limit of the inverse system (M,)ser,
can we recapture the approximations M, by applying a suitable filter to
M? If so, the Mg would have a dual role: as refinements or approximations
(when viewed in relation to M for t < s), or as a blurring of the real world,
as represented by M. The answer is ‘yes’, and to prove this we shall from
now on essentially use the fact that conditional quantifiers ‘live’ on algebras
of sets of assignments.

We ask the reader to once again took a look at definition 7 of inverse
limit. There is a way of approaching this definition, which relates it to the
non-Fregean view of variables briefly discussed in the previous subsection.
A common situation in probability theory is that one wants to refine a
sample space £ into a sample space Q. This means that points of
correspond to sets of points of §2; intuitively, elementary events of Q' are
further subdivided in . Let G be a g-algebra on Q and G’ a o-algebra
on €. The refinement is then given by a surjective map n : Q — '
such that n71(G’) is a subalgebra of G. If X is a random variable on (2,
it can be ‘blurred’ to a random variable on Q' by taking the conditional
expectation E(X|n~1(G")). The analogy between this situation and ours is
the following.

We think of both variables and formulas as random variables on a space,
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namely the set of assignments. Let M be a model with set of assignments
DV If z is a variable, it corresponds to a function X : DV¥ — D by

X(f) = f(=)
for all f € DV2r. Similarly a formula ¢(z1,...,z,) corresponds to a func-
tion F which maps the ‘random variables’ Xi,..., X, to the ‘random vari-

able’ F(Xy,...,X,): DV — {0,1} by
F(X1,..., X)) (f) =1if M | o(z1,...,25) [f]

The meaning of this move is that variables acquire individuality, instead
of being ‘explained away’ as Quine would have it. This is suggestive
when we seek to apply probabilistic concepts to logic. For instance, as
in the probabilistic case, we now want to compare a formula on DVar
with its ‘blurred’ version on D'VaT; given the analogy between formulas
and random variables, conditional quantification seems suited to play the
role of conditional expectation here. So we are given an inverse system
({My¢ :t € T}, {na : s,t € T,t < s}); we shall try to relate truth on model
M with truth, ‘filtered’ by a suitable algebra, on the inverse limit. We
first introduce the various algebras that we shall need.

Lemma 3 Let ({M;:t € T}, {ns: : s,t € T,t < s}) be an inverse system.
For any s € T, if M is a model with set of assignments Fg, let G, be the
Boolean algebra of clopen subsets of Fs. Ift < s, then since the mapping
st s continuous, n,,'(Gy) is a subalgebra of Gs.

Definition 12 Let (M,F) be an inverse limit. We define a projection
Mg ° F — .7:3 by 7'rs(fﬁ) = §37 where g = ({t)tET is a thread.

That the projection mappings 7, are surjective follows from corollary 3.2.15
in Engelking 1989. Also, m, = 13, o m, for s < t.7

The 7, are continuous with respect to the Tychonoff topology on
:erFs; in this topology, F is a closed subset of II;crF;. Note, however,
that there is a second natural topology on F, determined by the formulas.
Recall that, if R(z1,...,Z,) is a relation, we define its interpretation (as a
clopen set of admissible assignments) by

fe € R(zy,...,xzx) iff: £ = (&)ser & Vs €T(§s € R(z1,...,xK) on M)

This shows that, from the point of view of the Tychonoff topology, R is of
the form (), O,. If T' is countable, sets open in the second topology are
Borel, in fact Gg, with respect to the first topology. Henceforth we work
under the assumption that T is countable. In this case the w5 are Borel
measurable with respect to the formula topology; this is useful when we
represent the approximating models M, on the inverse limit.

Indeed, let (M, F) be the limit of the inverse system, with B the corre-
sponding o-algebra generated by the restriction to F of the product topol-

7commutative diagram to be drawn.
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ogy on I;erF;. In this case the first order definable subsets of F determine
a subalgebra of B. By means of the projections 7, each algebra G, of clopen
subsets of F; can be identified with a subalgebra 7;1(G;) of B. We abbre-
viate 7, 1(G;) by Bs. The next results concern the relation between truth
on Mg, and truth on M, conditioned on B;.

Definition 13 A formula is positive primitive if it is equivalent to a for-
mula in which only V, A, 3 occur. A formula is positive if it is equivalent to
a formula in which only V, A, 3,V occur.

The importance of positive primitive formulas (also called geometric formu-
las in the constructive tradition) was emphasised by Monnich in his work in
progress on the semantics of perception reports (personal communication).

Theorem 4 For any formula ¢, let s denote {f € Fs : Ms = ¢ [f]}.
If 4 is positive primitive, we have ¥ C w7 (vs) (where ¥, w71 (s) are
considered as elements of B).

PRroOOF. If 9 is atomic, this is the truth definition of ¢ on M. Cases V,
A are trivial. Suppose f; € 3z, then there exists a thread £ such that

fer =z feand fe € ¢ . But for =; fe implies £ =¢ £, whence & € (Jzyp);.
O

Corollary 5 If v is positive primitive, 3(|Bs) C m; 1 (s).

PROOF. Since 77 1(¢s) € Bs and ¢ C m; 1(3;), the statement follows
from the Galois correspondence. Note that we essentially use the fact that
3(e|B;) can be applied to Borel sets. |

This result is best possible in the sense we cannot even expect it to hold
for negated atomic formulas: —a may be false on M because it fails on a
coordinate t different from s.

Strong additional conditions on the 7, render the theorem true for
positive formulas as well, but in the general case V is troublesome. The
problem is, roughly speaking, that the inverse limit (M, F) comes with a
set of admissible assignments F, which is in general a proper subset of the
set of all assignments on its domain. As a consequence, it is ‘too easy’ for
a universal formula to become true on M. We do not know whether this
is an artefact of our formulation, or a reflection of an essential feature of
the logic of perception.

But the corollary can be strengthened in the sense that in some cases
we may have equality for positive primitive formulas. For convenience, we
restate the definition of a proper refining pair in the present format.

Definition 14 M —, M is a proper refining pair with respect to the
positive primitive formula % if there does not exist a formula 7 such that
¥ C m; }(7s) and 75 is properly contained in ;.

Corollary 6 If M —,,  M; is a proper refining pair with respect to
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the positive primitive formula 1, then either 3(Y|Bs) = 0 or I(Y|Bs) =
W;I(ws)'

PROOFSKETCH. Assume 3(9|B;) # 0, and that there is some C € B, such
that 3(|Bs) € C C 77 (1s). We only do the case when there is clopen
C’ C F, such that C = 7;1(C"). We then have C' = 7s(n;1(C")) C s,
and ¢ C C, whence 7,9 C w,C = C’' C 1,. This contradicts the fact that
M — . M, is a proper refining pair with respect to 1. |

We add a few clarificatory remarks. The purpose of this result and the
next is to relate two processes: one going from the approximations M;
to the inverse limit M, and one going in the opposite direction, from M
to its blurred versions. If A is a predicate, one may view the formula
3(A|B;) as the best estimate of A, given the ‘filter’ B;. This estimate
should be contained in 7, 1(4;), which is what M, proposes as an estimate
of A. However, one doesn’t necessarily have equality, since M, itself might
actually have a better estimate of A than A, namely some formula 6
implying A, but not equivalent to it! In the running example, where A
stands for ‘arm’, this would be the situation for a model M; where

i) A is already decomposed, e.g. in upper arm and forearm, and

ii) A, properly contains the set of objects decomposed in upper arm and
forearm.

If this is not the case, i.e. if M —, M, is a proper refining pair with
respect to A, then we do have 3(A4|B;) = n;1(4s).

In this context it is of interest to observe that, if the inverse system is
refining with respect to A, but not properly refining, i.e. if there does exist
@ such that M = VZ(A — 6) and M |= VZ(§ — A), but M, |= VZ(6 —
A), then there will be a t > s such that M; = VZ(§ — A);® this uses
the theorem on basic Horn formulas below. Hence the assumption that
M — . M, is a proper refining pair with respect to A, means that M,
represents our best guess concerning A; we couldn’t have done better at
stage s. Viewed in this light, the following result, which relates truth in
M, with ‘filtered truth’ on the inverse limit, should come as no surprise.
The proof uses wi-saturation of the models M.

Theorem 7 Let ¢ be a formula of the form 3z0, where § is a conjunction
of predicates, and M — ., M, a proper refining pair with respect to 6
(‘6 is an atom in Bs’). If x is a variable, let Gs » be the subalgebra of G,
determined by formulas not containing x free, and let Bs , be its inverse
image under ws. Then we have either 3(Y|Bs ) =0 or

M | 320 [g] iff: for all fe such that & = g, M |= 3(0|Bs,z) [fe

8 As before, Vi stands for universal closure.
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PROOF. Suppose M = 3z6 [g], and f¢ satisfies & = g. We have to show
that fe € 3(6|Bs,z). There exists g’ =, g such that M, |= 6 [¢']. Corollary
3.2.15 in Engelking 1989, p. 142, assures that there is a thread (£])ter such
that £, = ¢’ (this essentially uses the fact that the assignments spaces F,
are compact, i.e. the wi-saturation of the models M;). Since 6 is an atom,
we have fé € 3(0|B;), hence fé € 3(0|Bs,z). Now 3(6|Bs,z) € Bs,z, hence it
is of the form 7;1(C), where C € G; ;. Then we have f; € 3(0|B;,;) implies
g’ = 7s(fer) € C, but since C cannot distinguish between assignments with
different z-coordinates, it must follow that g = 7,(f¢) € C, ie. fe €
3(0|Bs,z).

For the other direction, assume the thread (&;);er is such that € = ¢
and M | 3(6|B,z) [fe]. By theorem 4, 328 C =, !((3z6),), hence also
6 C m;((328)s). Since 7, }((3z6)s) € Bs,e, the Galois property shows
that 3(0|Bs ;) C ;7 1((3z6)s). i

A few applications of the Galois conditions show that 3(0|Bs ;) = 3z3(6|B;),
which we shall use in section 4 to study the in- and export of quantifiers.

We regard the inverse limit M and the conditional quantifiers as the
fundamental concepts here. We assume that perception always gives us the
best estimate allowed by a filter; this estimate is represented formally by
a condionally quantified statement. The theorem then tells us under what
circumstances truth on M, and truth filtered by M, coincide. This will
be put to use in the next section, on the semantics of perception reports.

The result can easily be extended to formulas of the form 3Z6. Observe
that every positive primitive formula is a disjunction of such formulas.
Hence if a positive primitive formula ¢ can be written in such a way that
for each of the disjuncts 376, M —,_ M, is a proper refining pair with
respect to 6, the theorem holds for ¢ as well.

Thus far we have emphasised the changes that may occur when we move
from a given approximation to a more refined one. However, one would also
expect some general features of the world to be preserved, say concerning
possible spatial arrangements of shapes. For a discussion of the importance
of this topic, cf. Marr 1982, Ch. 5. Logically speaking, these constraints
can often be expressed by means of basic Horn formulas.

Definition 15 A formula is basic Horn if it is of the form VZ(¢ — 1),
where ¢ is positive primitive and 1) is atomic or L. A theory is basic Horn
if it consists of special Horn sentences.

Proposition 8 Let ({M; : t € T}, {ns: : s,t € T,t < s}) be an inverse
system, with inverse limit M. IfT" is a basic Horn theory true on all Mg,
then T is true on M.

PROOF. Choose VZ(¢ — v) in I', and suppose M |= ¢ [fe]. By theorem 4,
@ C w71 (ps), whence M, = ¢ [&]. If 9 is atomic, M, |= 9 []. Since
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this holds for all s € T, we have M = 9 [f¢] by definition of the inverse
limit. If ¢ is L, it follows that M |= ¢ [f¢], and we are done. o

This finishes our introduction of the basic concepts. Next we show how
they can be used to define a semantics of direct perception.

4 Perception, or: non-monotonicity, the hard way

Now that the formal apparatus is in place, we shall develop a logical se-
mantics for direct perception reports in two steps. First, section 4.1 shows
how fields of vision are part of reality (as an inverse limit). This is used
to interpret direct perception reports of form ‘S(a,b)’ for: a sees b, and of
form ‘SEE(a, )’ for: a sees ¢. We discuss some of the inferences of sec-
tion 2 in terms of this semantics. However, it only gives perception relative
to an approximation, which is non-veridical. The important veridical part
expects that what is perceived will remain the case for more refined approx-
imations. Such expectations are defeasible, and should therefore be given
in terms of non-monotonic rules. This is what we shall do in section 4.2.

4.1 Non-veridical perception

The semantics for non-veridical perception is based on the idea that a field
of vision approximates part of reality. Since reality is already identified
with an inverse limit of first order models, the only thing left for a seman-
tics of non-veridical NI reports is to specify the role of approximation and
partiality. Given the discussion in section 3, it is clear that an approxima-
tion should be one of the stages of an inverse system, and in such a stage
s partiality consists of taking a submodel M’ of M.

Section 2 has an example which indicates that someone’s range of vision
may come with different granularities (cf. (19)). This would mean that a
visual field consists of several approximations, not just one. In what follows,
however, we assume that each viewer comes with a unique range of vision.

Definition 16 Let S be the two place relation corresponding to ‘x sees y’.
A perceptual model is a tuple (M, S, F, ) where

i) (M, S;F) is the inverse limit of a system ((Ms, Ss))se (T countable
and directed, F the set of admissible assignments); and
ii) X is a function from dom(S) to {M : M C M,, s T}

We often write M, for the submodel that ¥ assigns to a € dom(S) in a
certain M.

In a perceptual model, the symbol S has a double réle to play: it gives the
denotation of the transitive verb ‘to see’, and it delimits the set of objects
{d : Sad} seen by a. The function ¥ is used to interpret the counterparts
SEE(a, @) of NI reports ‘a sees ¢’, where a is a term and ¢ a formula. For
the moment we disallow iterations of ‘SEE’ (as in van der Does 1991).°

9Presumably, iterations of SEE can be obtained by setting: SEE(a,SEE(b, %)) :=
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Definition 17 Let M be a perceptual model and F its set of admissible
assignments. The interpretation of formulas SEE(a, ¢) in M is defined by

SEE(a, %) = 3(¢|4a)
SEE(a,~x) := JF — SEE(a,X)
SEE(a,dzx) := 3(S(a,z) A x|Aaz)
Here 1) is atomic, conjunctive or disjunctive. 4, is the Boolean algebra of
clopen subsets of the set of assignments for £(a) (thought of as a subalgebra

of the o-algebra B for (M, S), as before). A, . is the subalgebra of A,
generated by the formulas in which z does not occur free.

Let us consider how the semantics fares with respect to the non-veridical
principles discussed in section 2.

4.1.1 Retract of perception

Recall the children’s story on the apparent magic of dimes (i.e. (7), sec-
tion 2.1). In this story, we describe one and the same object = as it goes
from one stage to another. Due to the change of granularity in Jack’s per-
ceptions at these stages, its properties vary. Formally this corresponds to
conditionally quantifying over threads £ in the inverse limit, such that at
consecutive stages s; 7, (£)(z) has the property of being a dime, a quarter,
a dollar, a trash can. ..

4.1.2 Partial perception

In a perceptual model M the function ¥ assigns to a viewer a a submodel
of an approximation M. Consequently, (10) does not entail (11).

(10) Jack saw Sharon, and Sharon winked.

(11) Jack saw Sharon wink.

Let s be a constant denoting the thread Sharon, and let W (z) denote the
predicate ‘z winks’. ‘Jack saw Sharon’ can now be modelled as 3(z = s|H)
and ‘Jack saw Sharon wink’ as 3(x = s A W(z)|H) (conditional quantifiers
only work on real formulas). Then one may have

Nz =s AW(x)|H) < Iz = s|H)
even though W(s) (cf. example 5).
4.1.3 Boolean connectives
It is easily seen that non-veridical perception validates the following infer-
ences
i) SEE(a, A ) < SEE(a, ) A SEE(a, )
ii) SEE(a, ¢ V 9) = SEE(a, ¢) V SEE(a, )
iii) SEE(a, ) = —SEE(a, ¢)

I(seE(b, ¥)|Aa). This would require a study of principles for 3(3(¢/|4p)|.As). E.g.,
SEE(a, SEE(a, ¢)) = SEE(a, ¢) by ‘taking out what is known’ and SEE(a,p) € A,. This
should be compared with Kamp 1984.
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Principle (i) follows from the monotonicity of 3(e|.A,). It’s converse only
holds for veridical perception, as we shall see shortly.

Principle (ii) is just the additivity of 3(e|.4,), but sometimes a more
subtle analysis is available as well. Although a predicate A and its negation
—A determine disjoint sets of assignments, the filtered predicates 3(A|H)
and 3(—A|H) overlap if A ¢ H. We interpret a statement SEE(j, A(z))—
‘Jack sees that x is A’—by means of a formula 3(A(z)|H) with H given
by Jack’s approximation. The world assigns value f(z) to z, and we take
M E I(A(z)|H) [f] to mean that ‘I see that f(z) is A (with filter G) .
Now we can see more precisely how the validity of the inference from (33)
to (34) depends on the kind of disjunction.

(33) Jack saw Sharon smile or not smile.
(34) Jack saw Sharon smile or Jack saw Sharon not smile.

The inference appears to be invalid if ‘or’ is interpreted exclusively, be-
cause we may be uncertain whether Sharon is smiling or not. If ‘or’ is
interpreted inclusively and ‘smile’ is interpreted as a filtered predicate, the
latter feature is reproduced exactly.

Notice that Mr. X, who made his appearence in section 2.2.3, would
be statisfied with principle (iii); it is based on a treatment of negation
where precepts are essentially positive. An alternative would be to interpret
negative formulas in the manner of Feferman 1984 by means of positive
and negative extensions. According to lemma 8 this would work because
requirements of non-overlap are Horn; but we have to leave the details
to the reader. A non-monotonic treatment of negation will be given in
section 4.2.1.

4.1.4 Quantifiers

Recall the following pair of sentences, illustrating in- and exportation of 3
(26) Jack saw a girl swim.

(27) A girl is such that Jack saw her swim.

We remarked that neither of these sentences seems to imply the other,
if one drops veridicality. On the other hand, the usual translation into
first order logic, or even generalised quantifier logic, does give equivalence
(cf. van der Does 1991). We shall now translate these sentences in the
framework of conditional quantification; it is then easily seen under what
conditions one or both of the two implications fail.

So far we did not have occasion to apply ordinary quantifiers to formulas
involving conditional quantifiers, as we need to do now.

Let V be the set of assignments corresponding to Jack’s restricted per-
ceptual field, and let H be an algebra on V, given by ¥, filtering his field
of vision. Whenever this is convenient, we shall assume that V is deter-
mined by the formula D(z) = S(j,z) (‘D’ for ‘domain’). Sentence (26)
then becomes ‘SEE(j, 3x(G(z) A S(z)))’. Disregarding D(z) for a moment,
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this has interpretation (26’a), which was shown to be equivalent to (26’b),
just after theorem 7
(26°) a. I(G(z) A S(x)|Hs)

b. 3z3(G(z) A S(x)|H)
Further, (27) is translated into ‘3z(G(x) A SEE(j, S(z)))’ which means
(27) 3z(G(z) A3(S(z)[H))
In the direction from (26’) to (27’), we distinguish several cases.

Case (a) G(z) € H: ‘Jack recognises a girl when he sees one, and he can
see all girls’. By ‘taking out what is known’ we have

A(G(z) A S(z)|H) = G(z) A I(S(z)|H)
whence also
Az3(G(z) A S(z)|H) = Fz(G(z) A 3(S(z)|H))
Case (b) G(z) A D(z) € H, where D may be nontrivial: ‘Jack recognises
a girl when he sees one, but he might not see all girls’. Let us first try to
derive (26’) from (27).
We have
3(G(z) A D(z)|H) = G(z) A D(x)
Therefore
D(z) AG(z) A3(S(z)|H)
= 3(G(z) A D(z)[H) A3(S()H)
= 3(3(G(z) A D(x)[H) A S(z)[H))
= 3(G(z) AD(z) A S(z)|H)
C 3(G(z) AD(z)|H)

Now notice that 3(S(z)|H) should be a subset of D(z), since H represents
Jack’s perceptual field. Then actually

G(z) AI(S(z)|H) C I(G(z) A D(z)|H)

whence 3z(G(z) A 3(S(z)|H)) | Iz3(G(z) A D(z)|H).

This result may seem surprising; couldn’t it be the case that there is a
girl whom Jack perceives as swimming, without actually being aware that
it is she who swims? No, because the anaphor ‘her’ in the scope of ‘see’ in
(27) is taken to imply that the girl is imported in Jack’s visual field; since
he correctly identifies girls, (26) follows. Of course, we have just restated
the above proof in plain English.

Case (c¢) G(z) ¢ H, V is the full set of assignments: ‘Jack can see all
girls, but he cannot identify them correctly’. In this case the derivation of
(26’) from (27’) fails by an argument similar to example 4 in section 3.3.
Let ‘H be such that

Gz)AS(z)=0eH
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but for every A € H such that Vz(S(z) — A(z)):
Jz(A(z) A G(z))
(This is only possible when G(x) ¢ H!). Then -3z3(G(z) A S(z)|H),

but 3z(G(z) A I(S(z)|H)). Notice that in this situation, (27) could be
formulated more accurately as ‘A girl is such that Jack sees it swim’.

We now turn to the other direction, from (26’) to (27’). Here the analy-
sis has to be considerably more subtle. Consider the sentence Jx(G(x) A
3(S(z)|H)). If it is false, then G(z) A 3(S(x)|H) = 0. However, 0 is an
element of any Boolean algebra; hence 0 covers G(z) A S(x) and we have
3(G(z) A S(z)|H) = 0. So, for instance, if there are no swimming girls
in Jack’s perceptual field, then Jack would know this. This is an irksome
consequence of the fact that 3(p|G) € G and that 0 is allowed as a possible
upper estimate for ¢, an idealisation that is useful otherwise. Nevertheless,
the failure of the implication from (26’) to (27’) can easily be established
when we revert to the approximating models M;. We now model Jack’s
suboptimal perception of swimming girls by
M, = 3z(G(z) A S(x))

hence there exists g such that M, = 3z(G(z) A S(z)) [g]. By surjectivity
of the projections s we may assume that there exists a thread £ = (&;)ter
such that g = &;. If Jack did the best he could as regards perceiving swim-
ming, we have f; € 3(S(z)|B;), but we may easily have M }£ G(z) [fe].
Only in the case when G(z) € Bs does it follow that A = G(z) [fe].

If we now look back at the previous argument, which seemed to show
that (26’) does imply (27’), we can see clearer why it clashes with intuition:
the argument is by contradiction, hence constructively not acceptable. We
submit that the intuitive reading of the implication ‘if (26) then (27)’ is
constructive; (26) should provide evidence for (27), so given x satisfying
3(G(z)AS(z)|H), transform it into an x satisfying G(z)AI(S(x)|H). Thisis
manifestly impossible, so the implication should fail. It is possible to recast
this argument for the non-validity of ‘if (26’) then (27’)’ in the framework
of conditional quantifiers, provided one adopts a forcing definition of truth,
but we shall leave the matter here.

This section has shown that non-veridical perception reports already uses
much of the intricacies of the logic of vision, but the situation becomes
even more interesting in case of veridical perception.

4.2 Veridical perception
Recall that we took the expression ‘I see an arm’ to mean the conjunction
of (i) and (ii).

i) ‘with the present approximation the object that I focus on is identified
as an arm’,
ii) ‘I expect this to be the case for every more refined approximation’.
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The second condition is evidently non-monotonic: more precise information
may contradict the expectation expressed in (ii).

The expectation that a percept is stable under an increasing series of
ever finer approximations can be captured by means of a non-monotonic
rule governing the conditional quantifiers.

Definition 18 Let (T, <) be a directed set. C C T is cofinal in T if for
every t € T, there is s € C such that t < s. A set of algebras {H; :
s € T} indexed by T is called a martingale if s < t implies H; C H;.
The martingale property can be stated equivalently in terms of conditional
quantifiers as follows: s < ¢ implies for all ¢, 3(¢|H;) C I(¢|Hs).

We model reality as the inverse limit of the inverse system ({M; : t €
T}, {nst : s,t € T, t < s}) . The collection of algebras {B; : t € T'} then
forms a martingale; this follows from the commutativity of the diagram in
definition 12.

In section 3.4 we argued that positive primitive information ¢, when
evaluated on a degree of approximation Mg, can also be represented as
3(p|Bs) on the inverse limit M. For positive primitive ¢ we may then

introduce a rule veridicality; formalising the expectation (ii):'°

3(plBs) v
Jcofinal C C T(s € C & Vt € CI(p|By))

We take a cofinal subset of T' containing s rather than the upper cone of
s in T because the series of ever finer approximations may contain gaps.
Also, the restriction to positive formulas is natural, since veridicality fails
for negative ones (section 2.2.2).

The rule is called ‘veridicality’ because we believe that the principle
of veridicality discussed in section 2 is not a logical rule, but rather a de-
fault assumption, valid perhaps in most circumstances, but an assumption
nonetheless.

One may object to this formulation that the principle of veridicality
should sanction inferences of the form

_lseeanarm
There is an arm

without mentioning such things as approximations. Formally, this would
correspond to the principle veridicalitys: ‘from SEE(s, ¢) infer ¢’, or
3(e|Bs)

TV2

followed by J-introduction. The rule says ‘if it is consistent to assume
¢ with respect to approximation s, then assume ¢’. This is indeed the
standard format for a non-monotonic rule; it is similar to, say, autoepis-

10This rule cannot be expressed in terms of ‘SEE’ because it involves quantification over
a set of approximations.
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temic logic (Moore 1985), in that consistency is represented by an object-
language operator, but it differs from other approaches in that consistency
always comes with a degree. Thus there is a natural internal notion of the
‘strength’ of premisses and conclusions; this should be compared to the
external assignment of strength in Nute 1994.

From a logical standpoint the second rule seems more acceptable than
veridicality;, since there is no second order quantifier over cofinal subsets
of the directed set.

The two rules are equivalent, however. This is the content of the ‘mar-
tingale convergence theorem’. We give a formulation stripped of technical
details; for the full formulation and the proof the reader is referred to
van Lambalgen 1996.

Theorem 9 Suppose {Hs : s € T} is a martingale. Let H be the o-algebra
generated by {H; : s € T}. Then for all formulas ¢

lim 3(p[Hs) = (oK)

That 1s, if f is an assignment such that for all s € T, f € I(p|Hs), then
f € 3(p|H); if there exists so such that for all s € T, s > so implies
f € 3(p|Ms), then f € I(p|H).

Now consider the martingale {B; : s € T'}. The least o-algebra containing
all the By is B, the o-algebra determined by the topology on the inverse
limit M; this follows from proposition 2.5.5 in Engelking 1989, p. 99. This
remains true if s takes values in a cofinal subset C C T'. An application of
the martingale convergence theorem shows that

lim 3(|B;) = 3(#IB)
However, since ¢ € B, we have
lim 3(p|B) = ¢

Hence the two rules are equivalent.

This is useful, because we can now understand why ‘see’, with mean-
ing given by conditions (i) and (ii) above, is often assumed to distribute
over conjunction, at least when applied to positive formulas. Indeed, the
rule ‘from SEE(s, ) and SEE(s,v) conclude SEE(s,¢ A 9)’ is valid, non-
monotonically

3(p|Bs) A 3(P|Bs)
pADp
3(p A Y| Bs)

4.2.1 Negation

In the previous section we took care to formulate our results for positive
formulas; this is because the occurrence of negation in perception reports
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seems to necessitate a special treatment. Recall the piece of dialogue in
(25), from section 2.

(25) ‘Did you see that hawk there?’
‘I saw something, but it was not a hawk.’

Again, it makes perfect sense to retract the last sentence by saying ‘No,
you're right, it is a hawk’. Prima facie, this exchange causes a problem
for the analysis presented here, because by definition of the inverse limit,
if M = —H(b), there is no refinement £ of b in M such that M = H(§).

A solution of this difficulty can be found by analysing the sentence ‘I saw
something, but it was not a hawk’ as a conclusion arrived at by means of a
non-monotonic argument. In a model M, we have a predicate H, which is
decomposed in various ways in models My, ,..., My, , fors <ti,...,tx. By
themselves, these models can be thought of as specifying features of hawks,
such as colour, form-in-motion, or sound; as viewed from the inverse limit
M, which represents reality, they act as filters which to a greater or lesser
extent blur that reality. Non-monotonically, we can now argue as follows:
‘If this were a hawk, then it would have such-and-such colour, it would
shriek like this, etc. It shows none of these features, so it cannot be a
hawk.” However, this conclusion might well be mistaken, e.g., because we
did not take into account all possible refinements M;, (we might have
overlooked the refinement corresponding to a juvenile coat),!! or because
the distance between us and the bird was such that we could not actually
apply the filters M;,, ..., My, to the bird, but rather applied much coarser
filters.

5 Conclusion

In this article we have developed a semantics for direct perception reports
based on a logical variant of Marr’s theory of vision (Marr 1982). The main
idea was to develop a non-monotonic logic for veridical perception, on the
basis of approximate, non-veridical perception. To formalise this idea, we
modelled reality as an inverse limit of first order models which refine each
other in different ways. Reality is taken to be infinitely precise. We have
shown in detail that the informal findings on the logic of perception which
we took as our point of departure, have formal counterparts in the model
developed. Besides, the study of principles for negation, veridicality, and
the scope behaviour of quantifiers, has led to unexpected new insights.

11A good example of this kind of situation is furnished by a type of buzzard, buteo
rufinus, whose colour shows two phases: a common light phase and a rare chocolate
brown, almost black, phase. Not knowing that the latter phase exists may easily lead
to misidentification.
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