
   

ERDŐS GRAPHS RESOLVE FINE’S CANONICITY PROBLEM∗

ROBERT GOLDBLATT, IAN HODKINSON+, AND YDE VENEMA

Abstract. We show that there exist 2ℵ0 equational classes of Boolean algebras

with operators that are not generated by the complex algebras of any first-order

definable class of relational structures. Using a variant of this construction, we resolve

a long-standing question of Fine, by exhibiting a bimodal logic that is valid in its

canonical frames, but is not sound and complete for any first-order definable class of

Kripke frames. The constructions use the result of Erdős that there are finite graphs

with arbitrarily large chromatic number and girth.
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§1. The problem and its history. This paper describes a solution
to a problem that has intrigued algebraic and modal logicians for several
decades. It can be formulated as a question about systems of propositional
intensional logic, or as one about equationally definable classes of Boolean
algebras with additional operators. It concerns an intimate relationship
between the first-order logic of relational structures and the equational
logic of their Boolean algebras of subsets.

Jónsson and Tarski introduced in [35, 36] the notion of a Boolean
algebra with additive operators (BAO), thereby laying the foundation
for extensive studies of cylindric algebras [26, 24, 27], relation algebras
[37, 33, 28], and numerous varieties of algebraic models for modal, tempo-
ral, and other kinds of intensional logic [18, 5, 39, 20, 2]. They generalized
the Stone representation of Boolean algebras by showing that any BAO
A has a “perfect” extension Aσ, nowadays called the canonical extension
of A, which is a complete atomic BAO whose operators are completely
additive. They defined a certain relational structure A+ associated with
Aσ, and proved that Aσ itself is isomorphic to an algebra based on the
full powerset of A+. In general the powerset of any relational structure

∗ The authors feel that morally Paul Erdős deserves to be named as a co-author of
this paper, but recognize that this might be mistaken for an attempt to posthumously
award themselves Erdős number 1.
+ The second author thanks the Departments of the other two authors for hosting his
visits in 2003, during which the research presented here was begun; these visits were
supported by UK EPSRC grant GR/S19905/01.
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S defines a BAO S+, called the complex algebra1 of S. Each of its n-ary
operators is constructed from one of the n + 1-ary relations of S. Thus
Aσ ∼= (A+)+. The structure A+ is called the canonical structure of the
algebra A.

Jónsson and Tarski initiated the study of properties that are preserved
in passing from an algebra A to its canonical extension Aσ (or (A+)+),
proving that they include any property expressed by an equation that
does not involve Boolean complementation. Now the class of all alge-
bras satisfying a given equation, or a set of equations, is called a vari-
ety, so we can express these preservation results by saying that certain
equational properties define varieties that are closed under canonical ex-
tensions. It was demonstrated in [36] that a number of such equational
properties of a unary operator of a complex algebra S+ are equivalent
to simple first-order properties of the corresponding binary relation of S,
like reflexivity, transitivity, symmetry and functionality. Putting these
observations together showed that a BAO A satisfying a certain equa-
tion is isomorphically embeddable into the complex algebra (A+)+ which
also satisfies the equation, and so the structure A+ satisfies the corre-
sponding first-order property. This resulted in representations of partic-
ular kinds of BAO as subalgebras of complex algebras that were in turn
defined by conditions on their underlying structures. Thus a closure alge-
bra, which has a unary operator satisfying the Kuratowski equations for
a topological-closure operator, was represented as an algebra of subsets
of a quasi-ordered structure. Certain two-dimensional cylindric algebras
(without diagonals) were similarly represented over structures comprising
a pair of commuting equivalence relations.

Independently of all this, a decade or so later modal logicians began
to study structures called Kripke frames. A modal logic L is said to be
determined by a class C of frames if L is both sound and complete for
validity in the members of C. This means that any given formula is an
L-theorem if, and only if, it is valid in every frame belonging to C. The
Kripke semantics provided an attractive model theory that seemed more
manageable than the previous algebra-based semantics and which has
been of lasting influence, both mathematically and philosophically. One
of the reasons for its early success was that well known logical systems
were shown to be characterized by natural first-order properties of their
frames. Thus Lewis’s system S4 is determined by the class of quasi-
orderings, and S5 by the class of equivalence relations. Different classes
of frames can determine the same logic: for example, S4 is also determined
by the class of partial orderings, the class of reflexive-transitive closures
of tree orderings, and the class of finite quasi-orderings (but not the finite

1At that time the word “complex” was still used in algebra to mean “subset”, a
terminology introduced into group theory by Frobenius in the 1880s.
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partial orderings). We will say that a logic L is elementarily determined
if there is at least one class determining L that is elementary, i.e., is
axiomatised by some first-order sentences. It is quite possible for L to be
determined by some elementary class while at the same time the class of
all frames validating L is not elementary.

Proofs of elementary determination for a number of logics, including S4,
S5 and the system T, could have been obtained by adapting the Jónsson–
Tarski methodology, but this was not noticed at the time.2 Instead a
technique was developed that uses canonical frames, introduced by Lem-
mon and Scott [41].3 These are structures whose points are maximally
consistent sets of formulas, and their use is an extension of the method
of completeness proof due to Henkin [25]. A canonical frame for a logic L

carries a special interpretation that falsifies all non-theorems of L. Some-
times it carries other interpretations that falsify L-theorems as well. But
in more tractable cases, the proof theory of L can be used to show L is
a canonical logic, meaning that it is valid in all its canonical frames. A
canonical logic is determined by these canonical frames alone.

Now the notion of validity in a frame is intrinsically second-order in
nature. Indeed, Thomason [46] gave a semantic reduction of monadic
second-order logic to propositional modal logic. Also work of Blok [3]
showed that there are continuum many modal logics that are not de-
termined by any class of frames at all, let alone an elementary one.
Nonetheless, many logics of mathematical and philosophical interest were
shown to be frame-determined by showing that their canonical frames
satisfy some first-order conditions that enforce validity of the theorems of
the logic. This gave many proofs of canonicity which at the same time
showed that the logic concerned was elementarily determined. Moreover,
the only examples of non-canonical logics that came to light were ones
whose axioms expressed non-elementary properties of structures, such as
well-foundedness or discreteness of orderings. An explanation for this was
soon found in the following seminal theorem of Fine [10]:

(1) if a modal logic is determined by some elementary class of frames,
then it is validated by its canonical frames.

Fine asked whether the converse was true. If a logic is canonical, must it
be elementarily determined? An affirmative answer would completely ac-
count for the observed propinquity between these two conceptually quite
different notions.

Fine’s theorem was extended by the first-named author in two direc-
tions. First, the conclusion was strengthened to show that if a logic is

2Why did Tarski not develop the Kripke semantics himself, given his work on BAOs
and his earlier work with McKinsey [44] on closure-algebraic models of S4? For discus-
sion of this question see [22].

3And independently by Cresswell [6] and Makinson [43].
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determined by some elementary conditions, then it is always determined
by elementary conditions that are satisfied by its canonical frames (see
[16]). Secondly, the result was formulated algebraically and established
for varieties of BAOs of any kind. The link between the worlds of logic
and algebra here is that if S is a canonical frame for a logic L, then S is
isomorphic to the canonical structure A+ of some free algebra A in the
variety of all BAOs that validate equations corresponding to the theo-
rems of L, and so S+ ∼= Aσ. Now if C is a class of relational structures
of the same type, let Var C be the smallest variety that includes the class
C+ = {S+ : S ∈ C} of complex algebras of members of C. Var C is just the
class of all models of the equational theory of C+, or equivalently, the clo-
sure of C+ under homomorphic images, subalgebras, and direct products.
It will be called the variety generated by C. Then the algebraic analogue
of Fine’s theorem is the following result [17]:

(2) if a variety V is generated by some elementary class of structures,
then it is closed under canonical extensions, i.e., A ∈ V implies
Aσ ∈ V.

A variety of BAOs will be called canonical if it is closed under canonical
extensions, and elementarily generated if it is generated by some elemen-
tary class of structures. It turns out that for V to be elementarily gen-
erated, it is enough that V = Var C for some class C that is closed under
ultraproducts. The strengthened version of Fine’s theorem becomes the
result [19] that

(3) if a variety V is generated by some ultraproducts-closed class of struc-
tures, then it is generated by an elementary class that includes the
class {A+ : A ∈ V} of all canonical structures of members of V.

The algebraic version of Fine’s question is the converse of (2): is every
canonical variety elementarily generated? Over the years there have been
many partial confirmations of these converse questions:

• A modal analysis by Sahlqvist [45], generalized to arbitrary types
of BAOs by de Rijke and the third author [7] and analysed further
by Jónsson [34], gives a syntactic scheme producing infinitely many
equations/formulas, each of which defines a canonical variety, and
whose frame-validity is equivalent to an explicit first-order condition.

• Jónsson [34] showed that an equation of the form t(x+y) = t(x)+t(y)
defines a canonical variety whenever t is a unary term whose inter-
pretation commutes with canonical extensions. This implies that a
modal axiom of the form ϕ(p ∨ q) ↔ ϕ(p) ∨ ϕ(q) is canonical when-
ever ϕ(p) is a positive formula. The third author [48] showed that
logics with such axioms are elementarily determined.
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• Fine [11] proved the converse of (1) for any modal logic that is deter-
mined by a class of transitive frames that is closed under subframes.
Wolter [50] removed the transitivity restriction here.

• Wolter [49] proved the converse of (1) for all normal extensions of
linear tense logic.

• In the theory of cylindric and relation algebras, there are a number
of infinite families of varieties that have been shown to be canonical
by various structural means. They include the varieties SNrβCAα of
neat β-dimensional subreducts of α-dimensional cylindric algebras,
defined by Henkin; the varieties SRaCAα of subalgebras of relation
algebra reducts of α-dimensional cylindric algebras, due to Henkin
and Tarski; and the varieties RAn of subalgebras of atomic non-
associative algebras with n-dimensional bases, due to Maddux. All of
these have subsequently been confirmed to be elementarily generated
[23].

• A modal formula is called r-persistent if it is validated by a Kripke
frame S = (W, R) whenever it is validated by some subalgebra of
S+ that is a base for a Hausdorff topology on S in which sets of the
form {y : xRy} are closed. Every logic with r-persistent axioms is
canonical and hence is determined by its validating frames. Lachlan
[40] showed that the class of validating frames for an r-persistent
formula is definable by a first-order sentence.

• The converse of (2) holds for any variety that contains a complex
algebra S+ whenever it contains the subalgebra generated by the
atoms (singletons) of S+ [21]. This also implies the just-mentioned
result that r-persistent logics are elementarily determined.

• Gehrke, Harding and the third author have recently shown that any
variety that is closed under MacNeille completions is both canonical
and elementarily generated [13].

Despite all that positive evidence, this paper shows that the converses of
(1) and (2) are not true in general. Continuum many canonical varieties
are defined, none of which are generated by any elementary class. They
consist of BAOs with two unary operators, one of which models the modal
logic S5. All of the varieties are generated by their finite members, so the
corresponding logics have the finite model property. The universal theory
of each variety is the same as the universal theory of its finite members.
One variety is shown to have a decidable universal theory.

Here is the essential idea behind these examples. It is known that a
variety V must fail to be elementarily generated if there exists a sequence
of finite structures whose complex algebras are all in V, and an ultraprod-
uct of the sequence whose complex algebra is not in V (this can be shown
using (3); see proposition 2.17 and the proof of theorem 2.18 below). It
has long been known that there are varieties for which there is such a
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sequence, but until now no such variety was known to be canonical. The
construction given here involves an application of a famous piece of graph
theory. Erdős showed in [9] that there are finite graphs with arbitrarily
large chromatic number and girth, the girth being the length of the short-
est cycle in the graph. This may seem counter-intuitive, in that a lack
of short cycles should make it easier to colour a graph with few colours.
Nonetheless, by a revolutionary new probabilistic technique, Erdős was
able to show that there is a sequence of finite graphs whose n-th member
Gn cannot be coloured with n or fewer colours and has no cycle of length
n or less. But an ultraproduct of such a sequence will have no cycles at
all, which implies that it can be coloured using only two colours! The task
then is to find a set of conditions that are incompatible with 2-colouring,
are satisfied by the algebras G+

n , and which generate a canonical variety.
The solution has a connection to a canonical modal logic, studied by

Hughes [32], whose validating frames are precisely those directed graphs
in which the children of any node have no finite colouring. This is not
a first-order condition, but the logic is also elementarily determined by
the class of graphs whose edge relation R satisfies ∀x∃y(xRyRy), meaning
that every node has a reflexive child. The modal axioms for Hughes’s logic
impose this elementary condition on canonical frames, and the existence
of reflexive points (yRy) ensures validity of the axioms. Note that a graph
with a reflexive point cannot be coloured at all.

Here we also use conditions that impose reflexive points on canonical
structures A+, but there is a fundamental difference. A canonical struc-
ture is now essentially the disjoint union of a family of directed graphs,
and it is only the infinite members of the family that are required to have
a reflexive point to ensure canonicity. This is a non-elementary require-
ment.

Ultraproducts of Erdős graphs were introduced into algebraic logic by
Hirsch and the second author (see [29] and [28, chapter 14]), who used
them to give a negative answer to Maddux’s question from [42] of whether
the collection {S : S+ ∈ RRA} of structures whose complex algebra
belongs to the variety of representable relation algebras constitutes an
elementary class. Random graph theory has also been used by the last
two authors in [31] to show that there are canonical varieties (including
RRA) that cannot be axiomatised by equations that are individually pre-
served by canonical extensions. The results of [31] show that the varieties
presented in the current paper also have this property.

The language of this paper is for the most part algebraic, and we take
advantage of ideas from duality theory and the theory of discriminator
varieties to present a streamlined treatment. But, as the historical aspects
of this introduction indicate, the work is addressed to two communities of
interest, the logical and the algebraic, each with its own language, range
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of problems, and style of thinking. In recognition of this, we have included
a brief account of the modal approach, exhibiting a bimodal logic EG that
is validated by its canonical frames but not sound and complete for any
elementary class of frames. A fuller account of the modal versions of
our results, including further examples of canonical logics that are not
elementarily determined, will be presented in a companion paper.

Graphs. In this paper, a graph will be a pair G = (V, E), where V is a
non-empty set of ‘vertices’ and E is an irreflexive symmetric binary ‘edge’
relation on V . A set S ⊆ V is said to be independent if for all x, y ∈ S
we have (x, y) /∈ E. For an integer k, a k-colouring of G is a partition of
V into k independent sets. The chromatic number of G is the smallest
k for which it has a k-colouring, and ∞ if it has no k-colouring for any
finite k. A (k-)cycle in G is a sequence (x1, . . . , xk) of distinct nodes of
V , such that (x1, x2), . . . , (xk−1, xk), (xk, x1) are all in E.4 The length
of the cycle is k. It is well known (see, e.g., [8, 1.6.1]) that a graph has
chromatic number at most two if, and only if, it has no cycles of odd
length.

We often identify (notationally) a graph, algebra, structure, or frame,
with its domain — for example, in the above context, we will often write
G for V .

§2. The algebraic approach. We now give a detailed presentation
of the algebraic approach. We begin with a rundown of the necessary
concepts and notation, all well known in the field, and then we review
a general method by which we may prove a variety to be canonical. It
will then be quite easy to show that the variety we introduce in §2.3 is
canonical but not elementarily generated.

2.1. Boolean algebras with operators (BAOs). We assume famil-
iarity with basic ideas from model theory and universal algebra, such as
the notions of homomorphism, product, subalgebra, ultraproduct, ultra-
power, ultraroot, equation, universal formula, and equational class (vari-
ety). We also presuppose some acquaintance with Boolean algebra theory,
including notions such as atom, atomicity, completeness, ideal and (ul-
tra)filter, and Stone representation theory. Readers may consult, e.g.,
[2, chapter 5], [4], [30], or [28, chapter 2] for background.

A similarity type L of BAOs will consist of the boolean function sym-
bols +,− and the constants 0, 1, plus additional function symbols for
operators. An L-BAO is an L-structure A whose reduct to the signa-
ture {+,−, 0, 1} is a boolean algebra and in which the interpretations of
the additional function symbols are ‘operators’: i.e., normal (taking value

4In graph theory, (x1, . . . , xk), (x2, . . . , xk, x1), and (xk, . . . , x1) are regarded as the
same cycle; but this is not important here.
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zero whenever any argument is zero), and additive (hence monotonic) in
each argument. We write x · y for −(−x + −y). We often use the same
notation for a symbol in L and its interpretation in an L-BAO. Given
L-BAOs Ai (i ∈ I), and an ultrafilter D on I, we write

∏

D Ai for the
ultraproduct of the Ai over D. S,P,Pu,Ru denote closure of a class
under isomorphic copies of: subalgebras, products, ultraproducts, and
ultraroots, respectively.

A discriminator on an L-BAO A is a unary function d on A such that
d(0) = 0 and d(x) = 1 for all non-zero x in A. A class K of L-BAOs
is a discriminator class if some L-term t(x) defines a discriminator on
each BAO in K. The following is almost immediate from Givant’s results
[15, theorem 2.2, lemma 2.3].

Proposition 2.1. If K is a discriminator class of BAOs with PuK ⊆
SK, then SPK is a variety whose class of subdirectly irreducible members
is SK.

The dual (n+1)-ary relation symbol for an n-ary operator symbol f ∈ L
will be written Rf , and we write La for the similarity type consisting of
these relation symbols. In this context, a ‘structure’ will usually mean an
La-structure. We write A+ for the canonical structure of an L-BAO A;
it consists of the set of all ultrafilters of (the boolean reduct of) A, made
into an La-structure via A+ |= Rf (µ1, . . . , µn, ν) iff f(a1, . . . , an) ∈ ν
whenever a1 ∈ µ1, . . . , an ∈ µn. We write S+ for the complex algebra
over the structure S; it consists of the set of all subsets of S, made into
an L-BAO by defining f(X1, . . . , Xn) to be the set of all y in S such that
S |= Rf (x1, . . . , xn, y) for some x1 ∈ X1, . . . , xn ∈ Xn. The canonical
extension (A+)+ of a BAO A will be denoted by Aσ; up to isomorphism,
this is the ‘perfect extension’ of A defined by Jónsson and Tarski in [36]. A
class of BAOs is said to be canonical if it is closed under taking canonical
extensions. For a class C of structures, we write C+ for {S+ : S ∈ C},
and Var C for the smallest variety containing C+; this is called the variety
generated by C. A variety of the form Var C for an elementary class C
is said to be elementarily generated. For a variety V of BAOs, we write
CstV = {A+ : A ∈ V}, and StrV = {S : S+ ∈ V}.

If S, T are La-structures, a map f : S → T is called a bounded morphism
if for all n-ary operator symbols f ∈ L and all a ∈ S, b1, . . . , bn ∈ T ,
we have T |= Rf (b1, . . . , bn, f(a)) iff there are a1, . . . , an ∈ S with S |=
Rf (a1, . . . , an, a) and f(a1) = b1, . . . , f(an) = bn. If S is a substructure
of T and the inclusion map from S to T is a bounded morphism, then
S is called an inner substructure of T . If Si (i ∈ I) are pairwise disjoint
inner substructures of T with

⋃

i∈I Si = T , we say that T is the disjoint
union of the Si, and write T =

∑

i∈I Si. Ud C will denote the closure
under disjoint union of a class C of structures.
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2.2. Canonical structures of products. The following is the spe-
cialisation to BAOs of a result proved in [14], with the main argument,
concerning Stone spaces, going back to [12]. It is not so hard to give a
proof in the BAO case, so we will do so to make our paper more self-
contained (we will also use parts of the proof later on).

Theorem 2.2. If K is a canonical class of BAOs that is closed under
ultraproducts, then PK is also canonical.

Notation. Throughout this subsection, let I be a non-empty set and let Ai

(i ∈ I) be a collection of similar BAOs. Write A =
∏

i∈I Ai and S = A+.
Let Spec I denote the set of ultrafilters on I. For X ⊆ I define 1X ∈ A
by

(1X)i =

{

1, if i ∈ X,
0, otherwise.

Define the support set σ(a) of a = 〈ai : i ∈ I〉 ∈ A to be σ(a) = {i ∈ I :
ai 6= 0}. Finally, for µ ∈ A+, define σ(µ) = {σ(a) : a ∈ µ}.

It is clear that σ(1X) = X and σ(µ) = {X ⊆ I : 1X ∈ µ}.

Lemma 2.3. For each µ ∈ A+, σ(µ) is an ultrafilter on I.

Proof. Clearly, 1 ∈ µ and σ(1) = I, so I ∈ σ(µ). If a ∈ µ and σ(a) ⊆
X ⊆ I, then 1X ≥ a so 1X ∈ µ and X = σ(1X) ∈ σ(µ). If a, b ∈ µ then
σ(a) ∩ σ(b) ⊇ σ(a · b) ∈ σ(µ), so σ(µ) is closed under finite intersection.
Finally, for any X ⊆ I, we have X ∈ σ(µ) iff 1X ∈ µ, iff 1I\X = −1X /∈ µ,
iff I \ X /∈ σ(µ). So σ(µ) is an ultrafilter on I. 2

Let D ∈ Spec I. The map a 7→ a/D is a surjective homomorphism : A →
∏

D Ai. By duality (see [2, theorem 5.47]), its inverse yields an injective
bounded morphism νD : (

∏

D Ai)+ → A+. Write rng νD for its range.

Lemma 2.4. rng(νD) = {µ ∈ A+ : σ(µ) = D}.

Proof. Let f ∈ (
∏

D Ai)+. If a ∈ νD(f) then a/D ∈ f , so
∏

D Ai |=
a/D 6= 0. This implies that σ(a) ∈ D. This holds for all such a; hence,
by lemma 2.3, σ(νD(f)) = D.

Conversely, if µ ∈ A+ and σ(µ) = D, the set f = {a/D : a ∈ µ} is
easily seen to be an ultrafilter of

∏

D Ai with νD(f) = µ. 2

Theorem 2.5. For any similar BAOs Ai (i ∈ I), we have
(

∏

i∈I

Ai

)

+

∼=
∑

D∈Spec I

((

∏

D

Ai

)

+

)

,

(

∏

i∈I

Ai

)σ
∼=

∏

D∈Spec I

((

∏

D

Ai

)σ)

.

Proof. Each rng(νD) is (the domain of) an inner substructure of A+.
By lemmas 2.3 and 2.4, the ranges of the νD for distinct D are pairwise
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disjoint, and
⋃

D∈Spec I rng(νD) = A+. So A+ =
∑

D∈Spec I rng(νD) ∼=
∑

D∈Spec I(
∏

D Ai)+, proving the first line. The second line follows by

duality (see [2, theorem 5.48]). 2

Proof of theorem 2.2. Let
∏

i∈I Ai ∈ PK be given, with the Ai in K. By
our assumptions on K, for each ultrafilter D on I,

∏

D Ai ∈ K, and so
(
∏

D Ai)
σ ∈ K. So

∏

D∈Spec I((
∏

D Ai)
σ) ∈ PK. By the theorem, this

is isomorphic to (
∏

i∈I Ai)
σ which is therefore in PK as required (recall

that P denotes closure under isomorphic copies of products). 2

2.3. A non-elementarily generated canonical variety. We con-
sider BAOs in signature L = {+,−, 0, 1, f, d}, where f and d are unary
operator symbols. We will use d as a discriminator.

Definition 2.6. For an L-BAO A, an element a ∈ A is said to be
independent if a · f(a) = 0. We write χ(A) for the least n < ω such that
there are independent a0, . . . , an−1 ∈ A with

∑

i<n ai = 1, and ∞ if there
is no such n.

Note that if a0, . . . , an−1 are as above, and we let bi = ai ·
∏

j<i −aj ,
then b0, . . . , bn−1 have the same properties and are pairwise disjoint. So
the terminology in definition 2.6 is consistent with standard graph theory,
if we regard a graph G as a structure for La = {Rf , Rd} by interpreting
Rf as the graph edge relation (and Rd as the universal relation G × G).
For instance, χ(G+) coincides with the chromatic number of G. Also note
that if A is degenerate (|A| = 1) then 0 = 1 is an independent element,
so χ(A) = 1.

Lemma 2.7. Let A,B be L-BAOs.

1. If A ⊆ B then χ(B) ≤ χ(A).
2. If there is a homomorphism h : A → B, then χ(B) ≤ χ(A).
3. If χ(A) = ∞ then χ(Aσ) = ∞.

Proof.

1. For any finite n, if a0, . . . , an−1 ∈ A are independent and
∑

i<n ai =
1, then these elements are in B too and have the same properties.
So χ(B) ≤ χ(A).

2. For any finite n, if there are independent a0, . . . , an−1 ∈ A with
∑

i<n ai = 1, then h(a0), . . . , h(an−1) ∈ B have the same properties.
So χ(B) ≤ χ(A).

3. Assume that χ(A) = ∞. Let I be the ideal of the boolean reduct
of A generated by the independent elements of A. Since in this
algebra the join of finitely many independent elements is never equal
to 1, I is a proper ideal. Extend it to a maximal ideal I∗, and let
µ = A \ I∗ ∈ A+. We claim that f(a) ∈ µ for all a ∈ µ. For if not,
take a ∈ µ with f(a) /∈ µ. So −f(a) ∈ µ. Let b = a · −f(a) ∈ µ.
Then b ≤ a, so f(b) ≤ f(a) by monotony of f . So b ·f(b) ≤ b ·f(a) =
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a · −f(a) · f(a) = 0. This means that b is independent, and hence in
I ⊆ A \ µ by definition of I, µ. Since we know that b ∈ µ, this is a
contradiction, and proves the claim.

By the claim, µ is an Rf -reflexive element of A+. No element of Aσ

containing µ can be independent. But whenever
∑

i<n ai = 1 in Aσ,
we must have µ ∈ ai for some i < n, and so ai is not independent.
So we see that χ(Aσ) = ∞.

2

For each finite n ≥ 2 fix a finite graph Gn with chromatic number > n
and no cycles of length < n. This exists by Erdős’ famous result [9]
(see [8] for a recent presentation). We can assume that if n < m then
|Gn| < |Gm|. For integers n, m ≥ 1, let

σ[n, m] = ∃≥nx(x = x) → ¬ ∃
i<m

xi

(

∑

i<m

xi = 1 ∧
∧

i<m

(xi · f(xi) = 0)
)

,

saying that if A has at least n elements then χ(A) > m. Define

Σ = {σ[2, 2]} ∪ {σ[2|Gn|, n] : n ≥ 2}
∪ {d(0) = 0 ∧ ∀x(x > 0 → d(x) = 1)},

K = {A : A is an L-BAO, A |= Σ}.

Note that each sentence in Σ is equivalent to a universal sentence; so
K = SK. As K is elementary, it is closed under ultraproducts.

Lemma 2.8. K is canonical.

Proof. Let A ∈ K. If A is finite, then Aσ ∼= A ∈ K. If it is infinite, then
|A| ≥ 2|Gn| for all n ≥ 2, so as A |= σ[2|Gn|, n], we have χ(A) > n for
all n ≥ 2. Hence, χ(A) = ∞. By lemma 2.7(3), χ(Aσ) = ∞ as well; so

certainly, Aσ |= {σ[2, 2]} ∪ {σ[2|Gn|, n] : n ≥ 2}. It is easily seen that if d
is a discriminator on A then it is on Aσ as well. So Aσ ∈ K. 2

Definition 2.9. Let V = SPK.

Lemma 2.10. V is a canonical variety.

Proof. K is closed under ultraproducts, so by lemma 2.8 and theorem 2.2,
PK is canonical. By (e.g.) [28, theorem 2.71], if A ⊆ B then Aσ ⊆
Bσ up to isomorphism. So V = SPK is also canonical. Since K is a
discriminator class, it follows from proposition 2.1 that V is a variety. 2

Lemma 2.11. χ(A) > 2 for each non-degenerate A ∈ V.

Proof. The result holds for each non-degenerate A ∈ K, since A |= σ[2, 2].
Assume that Ai ∈ K (i ∈ I) are not all degenerate and χ(

∏

i∈I Ai) ≤
2. Noting that for each i ∈ I, the projection from

∏

j∈I Aj to Ai is a

homomorphism, by lemma 2.7(2) we must have χ(Ai) ≤ 2 for any i ∈ I
with Ai non-degenerate, a contradiction. So the result holds for PK.
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Finally, if A is non-degenerate, A ⊆ B ∈ PK, and χ(A) ≤ 2, then
χ(B) ≤ 2 by lemma 2.7(1), contradicting the result for PK. So the result
holds for V = SPK, as required. 2

As indicated above, we regard each Gn as a structure for La = {Rf , Rd}
by interpreting Rf as the graph edge relation and Rd as the universal

relation Gn × Gn. Then G+
n is an L-BAO with 2|Gn| elements. Also,

χ(G+
n ) is equal to the chromatic number of Gn, and hence χ(G+

n ) > n.

Lemma 2.12. For each n ≥ 2, Gn ∈ CstV up to isomorphism.

Proof. Let n ≥ 2. We first show that G+
n ∈ K. G+

n has chromatic
number > n ≥ 2, so G+

n |= σ[2, 2]. Let m ≥ 2; we check that G+
n |=

σ[2|Gm|, m]. If m ≤ n then the consequent of σ[2|Gm|, m] is true in G+
n ,

since χ(G+
n ) > n ≥ m. If m > n, then the antecedent of σ[2|Gm|, m] is false

in G+
n , since this algebra has exactly 2|Gn| elements, and |Gm| > |Gn|. So

G+
n |= σ[2|Gm|, m] in each case. Certainly, d is a discriminator in G+

n . So
G+

n |= Σ. By its definition, G+
n is an L-BAO. So G+

n ∈ K for all n ≥ 2.
For each n ≥ 2, G+

n ∈ K ⊆ V, so as Gn is finite, Gn
∼= (G+

n )+ ∈
CstV. 2

Let G be a non-principal ultraproduct of the Gn over ω \ 2.

Lemma 2.13. G /∈ StrV.

Proof. For each k, only finitely many of the Gl have any k-cycles. Now
by ÃLoś’ theorem, any first-order sentence true in G is also true in infinitely
many of the Gl. Since the property of having a k-cycle is expressible by a
first-order sentence, it follows that G has no cycles. So G is 2-colourable,
and hence χ(G+) ≤ 2. Certainly, G+ is non-degenerate. By lemma 2.11,
G+ /∈ V. 2

Remark 2.14. This lemma can also be proved by using proposition 2.1,
from which it follows that if G+ ∈ V then G+ ∈ K. But G is infinite, so
G+ does not validate any of the axioms σ[2|Gn|, n] (n ≥ 2). This approach
obviates the need for lemma 2.11 and the axiom σ[2, 2] in the definition
of K.

Lemma 2.15. The universal theory of V has the finite algebra property:
i.e., any universal L-sentence not valid in V fails in a finite algebra in V.

Proof. Let ρ be a universal L-sentence such that A 6|= ρ for some A ∈ V.
Then Aσ 6|= ρ as ρ is preserved by subalgebras. For the same reason, since
V = SPK we can assume that A ∈ PK. Hence by theorem 2.5, A+

∼= T ,
where T is a disjoint union of structures of the form B+ with B ∈ K.
Then Aσ ∼= T+, so T+ 6|= ρ and T+ ∈ V as V is a canonical variety.

Assume the matrix (quantifier-free part) of ρ is in conjunctive normal
form. Distribute the universal quantifiers across the conjunctions. One
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of the resulting conjuncts τ has T+ 6|= τ . This τ is a universal sentence
whose matrix is a disjunction. Each disjunct of τ is either an equation
which can be taken in the form t = 0, in which case we say that the term
t is positive in τ , or the negation u 6= 0 of an equation, in which case u is
negative in τ . Pick a valuation h mapping the variables of τ into T+ so
that (T+, h) 6|= t = 0 when t is positive and (T+, h) |= u = 0 when u is
negative. Let h(s) ∈ T+ denote the value of the term s in (T+, h).

For each of the finitely many positive terms t in τ pick some at ∈ T with
at ∈ h(t), and some Bt ∈ K such that at ∈ Bt

+ ⊆ T . Let At = (Bt
+)+ =

(Bt)σ. Then At ∈ K as K is canonical. The function f t(X) = X ∩Bt
+ is a

surjective homomorphism T+ → At as Bt
+ is an inner substructure of T .

Let ht = f t ◦ h. Then ht(s) = f t(h(s)) for all terms s as f t is a
homomorphism. Thus ht(u) = 0 for all negative u, and at ∈ h(t) ∩ Bt

+ =
ht(t), so ht(t) 6= 0. Then if t1, . . . tn are all the positive terms in τ , put
B = At1 × · · · × Atn , and h′(v) = (ht1(v), . . . , htn(v)) for all variables
occurring in τ . Then h′(s) = (ht1(s), . . . , htn(s)) for all terms in these
variables, so h′(u) = 0 for all negative u in τ and h′(ti) 6= 0 for all
positive ti. This shows B 6|= τ , and hence ρ fails in B.

But B ∈ V, since each At ∈ K. If each At is finite, then B is the desired
finite falsifying algebra in V for ρ, and the proof is finished. If however
any At is infinite, we use filtration to collapse it to a finite algebra that
still has the properties needed of At.

To do this, let Z be the finite set of all subterms of terms occurring in
τ . Define an equivalence relation ∼ on Bt

+ by a ∼ b iff a ∈ ht(s) ⇐⇒
b ∈ ht(s) for all s ∈ Z. Define the relations Rf , Rd existentially on the
quotient St = (Bt

+)/∼, by St |= Rf (a/∼, b/∼) iff Bt
+ |= Rf (a′, b′) for

some a′, b′ ∈ Bt
+ with a′ ∼ a and b′ ∼ b, and similarly for Rd. For each

variable v occurring in τ , define ht
∼(v) = {a/∼ : a ∈ ht(v)} ∈ S+

t . It
is now easy to check by induction on formation of terms s ∈ Z that
ht
∼(s) = {a/∼ : a ∈ ht(s)}. Hence, ht

∼(u) = 0 in S+
t for all negative u in

τ , while at/∼ ∈ ht
∼(t), so ht

∼(t) 6= 0.
Clearly, S+

t is finite. It remains to check that S+
t ∈ V. Now since At

is infinite, so are Bt
+ and Bt. Hence, by the proof of lemma 2.7(3), Bt

+

contains an Rf -reflexive point, say a. Then a/∼ ∈ St is also reflexive. It

follows that χ(S+
t ) = ∞, so S+

t satisfies the consequents of all the axioms
σ[n, m] defining K. Also, since (Bt

+)+ ∈ K, the property of d being a

discriminator on (Bt
+)+ is inherited by S+

t , since this property means

that Rd is the universal relation on each structure. So in fact S+
t ∈ K.

Thus we can replace the factor At of B by the finite V-algebra S+
t in each

case that At is infinite, to complete the construction as desired. 2

Corollary 2.16. One may choose the Gn (n ≥ 2) so that the universal
theory of V is decidable.
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Proof. Fix a recursive enumeration of all isomorphism types of finite
graphs, in order of their cardinality. If Gm (2 ≤ m < n) have been
defined, define Gn to be the first graph in the enumeration with chromatic
number > n, no cycles of length < n, and with |Gn| > |Gm| for all m with
2 ≤ m < n. This yields a recursive enumeration of the axioms defining K;
from this one may easily obtain a recursive enumeration of the equational
theory of K, which by lemma 2.10 axiomatises V. Hence, the universal
theory of V is also recursively enumerable.

On the other side, a finite non-degenerate L-BAO A is in K iff d is a
discriminator on it, and its chromatic number is > 2 and also > n for
all n ≥ 2 such that 2|Gn| ≤ |A|. There are finitely many such n, so this
constitutes an algorithm to decide whether A ∈ K. Now by [1], any finite
B ∈ V has a subdirect decomposition of the form B ⊆

∏

i∈I Ai, where
each Ai is subdirectly irreducible and a homomorphic image of B. So for
each i, |Ai| ≤ |B| and Ai ∈ V; and by proposition 2.1, Ai ∈ SK = K. For
each nonzero b ∈ B, choose some ib ∈ I such that the projection of B onto
Aib takes b to a non-zero element. Then B ⊆

∏

b∈B Aib , so we can sup-
pose without loss of generality that |I| ≤ |B|. Hence we may recursively
enumerate the isomorphism types of finite algebras in V by enumerat-
ing all subalgebras of finite products of finite algebras in K. So, using
lemma 2.15, we may enumerate all universal sentences not valid in V by
simultaneously enumerating all universal L-sentences α and isomorphism
types of finite L-BAOs B ∈ V, checking whether B |= α, and printing out
α if not.

Any universal L-sentence will occur in just one of these two enumera-
tions. We can use this in the usual way to decide the universal theory of
V. 2

Proposition 2.17. A variety V of BAOs is elementarily generated iff
it is canonical and there is an elementary class S of structures satisfying
CstV ⊆ S ⊆ StrV.

Proof. Assume that V is canonical and there is such an S. Then S+ ⊆ V,
so the variety VarS generated by S is contained in V. But by canonicity,
V ⊆ S(CstV)+ ⊆ SS+ ⊆ VarS.

Conversely, if V = Var C for some class C of structures that is closed
under ultraproducts, then by [19, theorem 4.12], S = RuSHUd C is as
required. By [17, theorem 3.6.7], V is canonical. 2

Theorem 2.18. There is a canonical variety of BAOs with the finite
algebra property and decidable universal theory, that is not elementarily
generated.

Proof. The V of definition 2.9 is a canonical variety and can be taken
to have the other two positive properties, by lemmas 2.10 and 2.15 and
corollary 2.16. If it were determined by an elementary class of frames,
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proposition 2.17 shows that there would be an elementary class S with
CstV ⊆ S ⊆ StrV. Hence, any ultraproduct of structures in CstV would
lie in StrV. But by lemma 2.12, up to isomorphism we have Gn ∈ CstV
(all n ≥ 2); and by lemma 2.13, G /∈ StrV. 2

If we do not desire decidability, we can strengthen this result.

Theorem 2.19. There are 2ℵ0 distinct canonical varieties of L-BAOs
with the finite algebra property and not elementarily generated.

Proof. Let cn be the chromatic number of Gn (for each n ≥ 2). We may
assume that if 2 ≤ m < n then |Gm| < |Gn| and cm < cn. For X ⊆ ω \ 2
let

ΣX = {σ[2|Gn|, cn − 1] : n ∈ X} ∪ {σ[2|Gn|, cn] : n ≥ 2, n /∈ X}
∪ {σ[2, 2]} ∪ {d(0) = 0 ∧ ∀x(x > 0 → d(x) = 1)},

KX = {L-BAOs A : A |= ΣX},
VX = SPKX .

Claim. For each n ≥ 2 we have G+
n ∈ VX iff n ∈ X.

Proof of claim. Assume that n ∈ X. Certainly, χ(G+
n ) = cn > cn − 1 ≥

2, so G+
n |= σ[2, 2] ∧ σ[2|Gn|, cn − 1]. For m ≥ 2, if m < n then cn > cm,

so G+
n |= σ[2|Gm|, cm − 1]∧ σ[2|Gm|, cm]. If m > n then the antecedents of

σ[2|Gm|, cm − 1] and σ[2|Gm|, cm] fail in G+
n , so both sentences are true in

G+
n . Hence G+

n ∈ KX ⊆ VX .
Conversely, assume that n ≥ 2 and G+

n ∈ VX . G+
n is subdirectly irre-

ducible since d is a discriminator on it. We know that PuKX = KX ⊆
SKX . By proposition 2.1, G+

n ∈ SKX . ΣX is a universal theory; so
SKX = KX , G+

n ∈ KX , and G+
n |= ΣX . Hence, if n /∈ X, we must have

G+
n |= σ[2|Gn|, cn]; but |G+

n | ≥ 2|Gn| and χ(G+
n ) 6> cn, a contradiction. So

n ∈ X, proving the claim.

Using the claim, earlier proofs now show that for any infinite X ⊆ ω\2,
VX is canonical and has the finite algebra property, but is not elementarily
generated. (We need X infinite in order that VX contain infinitely many
algebras G+

n , so that the ultraproduct part of the proof of theorem 2.18
goes through.) By the claim, if X, Y ⊆ ω \ 2 are distinct then VX 6= VY .
So {VX : X ⊆ ω\2, X infinite} is a class of 2ℵ0 varieties with the required
properties. 2

There are only countably many algorithms, so not all VX can have
decidable universal theory.

§3. The modal approach. We now briefly give a similar argument in
purely modal terms. We assume some familiarity with modal logic: modal
languages and their semantics, basic frame theory (including bounded
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morphisms and inner subframes), normal modal logics and notions per-
taining to them such as soundness, completeness, canonicity, and the
finite model property, and the Jankov–Fine formula encoding the modal
diagram of a frame. All the material we need can be found in [2] and [5].

We use a modal language with two boxes, written 2,A. We will write
R2, RA for their accessibility relations, and 3,E for the corresponding
diamonds. The operator A is intended as a global or universal modality
(see [2]); frames F = (W, R2, RA) on which, indeed, RA = W × W will
be called standard. For F = (W, R2, RA), we will write |F | for |W |.

A colouring of a frame F = (W, R2, RA) is a collection C of subsets
of W such that

⋃

C = W and F |= ¬R2(x, y) for all x, y ∈ S and all
S ∈ C. The chromatic number χ(F ) of F is the least m < ω for which
there exists a colouring of F of cardinality m; we set χ(F ) = ∞ if F has
no finite colouring. Note that colourings need not partition the domain of
the frame, although any finite colouring can be refined to one that does.
So if we consider a graph G = (V, E) as a frame F = (V, E, V × V ),
the chromatic number of F coincides with the chromatic number of G as
usually defined in graph theory (as in §1).
|F | and χ(F ) are two ‘largeness notions’ for frames F . They are to an

extent modally definable:

Lemma 3.1. Let F = (W, R2, RA) be a standard frame, let n, m < ω,
and let p0, . . . , pn−1, q0, . . . , qm−1 be distinct propositional variables.

1. The formula
∧

i<n E(pi ∧
∧

j<i ¬pj) is satisfiable in F iff |F | ≥ n.

2. The formula A
∨

i<m(qi ∧ 2¬qi) is satisfiable in F iff χ(F ) ≤ m.

Proof. For the first part, assume that
∧

i<n E(pi ∧
∧

j<i ¬pj) is satisfiable
in F under some assignment h of the variables. For each i < n, pick
wi ∈ W with (F, h), wi |= pi ∧

∧

j<i ¬pj . The wi must clearly be pairwise

distinct; so |F | ≥ n. Conversely, if |F | ≥ n then assigning p0, . . . , pn−1 to
distinct singletons in ℘(W ) will satisfy the formula.

Assume now, in order to prove part 2 of the lemma, that A
∨

i<m(qi ∧
2¬qi) is satisfiable in F under some assignment h. For each world w ∈ W ,
we may choose iw < m with (F, h), w |= qiw ∧2¬qiw . For each i < m, let
Si = {w ∈ W : iw = i}. Then the Si witness that χ(F ) ≤ m. Conversely,
assume that there are sets Si ⊆ W (i < m) with union W and such that
F |= ¬R2(x, y) for all x, y ∈ Si and i < m. Assign qi to Si (each i < m)
and observe that the formula is now true at any world of F . 2

Definition 3.2. For n, m < ω and distinct propositional variables
p0, . . . , pn−1, q0, . . . , qm−1, let

α[n, m] =

(

∧

i<n

E(pi ∧
∧

j<i

¬pj)

)

→ E

∧

i<m

(2qi → qi).
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Lemma 3.3. Let F be a standard frame. Then α[n, m] is valid in F iff
(if |F | ≥ n then χ(F ) > m).

Proof. The formula α[n, m] is not valid in F iff
∧

i<n E(pi ∧
∧

j<i ¬pj)

and A
∨

i<m(2qi ∧ ¬qi) are both satisfiable in F (since the truth of these
formulas does not depend on the evaluation point). By lemma 3.1, this
is iff |F | ≥ n and χ(F ) ≤ m. 2

For each n < ω let Gn be a finite graph with chromatic number > n
and no cycles of length < n (see Erdős’ paper [9] for their existence).
We write |Gn| for the number of nodes of Gn. We may suppose that
|G0| < |G1| < · · · .

Definition 3.4. Let EG (standing for ‘Erdős graphs’) be the normal
modal logic (in the modal language above) axiomatised by:

1. all propositional tautologies,
2. normality: 2(p → q) → (2p → 2q), and A(p → q) → (Ap → Aq),
3. {α[|Gn|, n] : n < ω},
4. the axioms Ap → 2p, Ap → p, and Ep → AEp, expressing that A is

a global or universal modality.

Its derivation rules are modus ponens, universal generalisation for each of
the two boxes, and uniform substitution (of variables by formulas).

Lemma 3.5. The logic EG is canonical.

Proof. Fix a set L of propositional variables. Using formulas written
with variables from L, let M = (K, h) be the canonical model of EG, with
underlying frame K. We show that K is a frame for EG.

Let C be any RA-cluster of K, regarded as a subframe of K. C is
an inner subframe, so it suffices to check that C is a frame for EG; and
since C is a standard frame we need not worry about the axioms dealing
with the global modality. Thus it remains to verify that C validates the
formulas α[|Gn|, n] for n < ω. If C is finite, this is clear, as any valuation
into C is definable in M , and the model M validates EG. So assume that
C is infinite.

Claim. There is Γ ∈ C with K |= R2(Γ,Γ).
Proof of claim. There is a similar argument in Hughes’s paper [32].
Pick any ∆ ∈ C. It suffices to show that the set

Γ0 = {2ϕ → ϕ : ϕ an L-formula} ∪ {δ : Aδ ∈ ∆}

is EG-consistent; for any maximal consistent set Γ containing it will be
R2-reflexive and in C.

Assume for contradiction that Γ0 is inconsistent. So by normality, there
are Aδ ∈ ∆ and L-formulas ϕ0, . . . , ϕm−1 for some m < ω, such that
EG ⊢ δ → ¬

∧

i<m(2ϕi → ϕi). Applying universal generalisation and

17



  

normality yields EG ⊢ Aδ → A¬
∧

i<m(2ϕi → ϕi). Hence,

A¬
∧

i<m

(2ϕi → ϕi) ∈ ∆.(1)

Now let n = |Gm| and define formulas ψi (i < n) as follows. Since C
is infinite it is not hard to find distinct Γ0, . . . ,Γn−1 ∈ C and formulas
γij ∈ Γi\Γj separating Γi from Γj . Let ψi =

∧

j 6=i γij . Then for all i, j < n,

we have ψi ∈ Γj iff i = j; in fact, we obtain M, Γi |= ψi ∧
∧

j<i ¬ψj for
each i < n.

Since ∆ ∈ C, we have
∧

i<n E(ψi∧
∧

j<i ¬ψj) ∈ ∆ by the truth lemma for

M . But α[n, m] is an axiom of EG; so we obtain E
∧

i<m(2ϕi → ϕi) ∈ ∆.
Taken with (1), this contradicts the consistency of ∆, and proves the
claim.

Any frame with an R2-reflexive point has chromatic number ∞, so by
lemma 3.3 validates α[n, m] for all n, m. This, with the claim, implies that
C is a frame for EG. Hence, K is also a frame for EG, as required. 2

Lemma 3.6. EG is not sound and complete for any elementary class of
frames.

Proof. Assume for contradiction that EG is sound and complete for some
elementary class K of frames. Let n < ω. We regard Gn as a standard
frame for the modal type above by interpreting R2 as the graph edge
relation (and RA as the universal relation Gn × Gn). It can be checked
using lemma 3.3 that Gn validates EG. Let ψn be the Jankov–Fine formula
of Gn (see, e.g., [2, §3.4] and [5, §9.4]). Then ψn is satisfiable in Gn. So
ψn is EG-consistent, and hence there is Fn ∈ K in which ψn is satisfiable.
The form of ψn implies that there is an inner subframe In ⊆ Fn and a
surjective bounded morphism mn : In → Gn (see, e.g., [2, lemma 3.20]
for details).

Now consider the class T of two-sorted structures of the form (A, B),
where A ∈ K, B is a frame, and m ⊆ A × B is a surjective bounded
morphism from an inner subframe of A onto B. Since K is elementary,
these statements are first-order expressible, and we can find a first-order
theory T , say, containing first-order sentences that together axiomatise T ,
and additional sentences stating that ‘B’ (above) has at least n elements
for each finite n, R2 is irreflexive and symmetric on B, and B has no R2-
cycles of length n for each finite n. Any finite subset of T has a model,
namely, (Fn, Gn) for any large enough n. By compactness for first-order
logic, we may take (F, G) |= T . Then F ∈ K, so F is an EG-frame. The
domain of m is an inner subframe of F , so also an EG-frame. G is a
bounded morphic image of this, so is itself an EG-frame.

But R2 is irreflexive and symmetric on G and has no cycles. Hence,
χ(G) ≤ 2. Also, G is infinite. By lemma 3.3, G does not validate any of

18



 

the axioms α[|Gn|, n] of EG, and so is not an EG-frame. This contradiction
completes the proof. 2

Lemma 3.7. EG has the finite model property and, for a suitable choice
of the Gn, is decidable.

Proof. Let ϕ be an EG-consistent formula; we will show that ϕ is satis-
fiable in a finite frame for EG.

The consistency of ϕ implies that ϕ is satisfiable in some point Γ of the
canonical frame K. Let C be the cluster of M to which Γ belongs; in the
proof of lemma 3.5 we already saw that C (seen as a subframe of K) is a
frame for EG. Hence we are done in the case that C is finite.

If C is infinite then it contains an R2-reflexive point. Now let MC be

the canonical model restricted to C, and take any filtration Mf
C of MC

through the collection of subformulas of ϕ (as in [2, §2.3]). It is a routine

exercise to verify that ϕ is satisfiable in Mf
C , and that Mf

C is based on a
standard, finite frame containing a reflexive world. But any such frame
validates EG.

The proof of the second part of the lemma is done in the usual way, by
choosing the Gn so that the axioms of EG are recursively enumerable, and
observing that it is then decidable whether a finite frame validates the
axioms. See corollary 2.16 and [2, theorem 6.7] for similar arguments. 2

Remark 3.8. Fine formulated his theorem concerning the canonicity of
elementarily determined modal logics in a monomodal language, i.e., with
a single diamond. However, as he mentions in the introduction to [10], his
results can be readily extended to polymodal logics, such as tense logics.

Similarly, we have formulated our results for bimodal languages, but it is
not hard to transform them to the monomodal setting, using Thomason’s
simulation method. Thomason [47] showed how normal, polymodal logics
can be uniformly simulated by normal, monomodal ones, in a way that
preserves negative properties such as incompleteness. A systematic study
of the Thomason simulation by Kracht and Wolter [39] brought out that in
fact it preserves many properties, both positive and negative. Using their
results, it almost immediately follows that the monomodal simulation of
the logic EG is a canonical, but not elementarily determined, modal logic
in a monomodal language.

Better results are possible if we modify the logic EG. In a companion
paper, we will discuss an example of a monomodal logic above K4 which is
canonical but not sound and complete for any elementary class of Kripke
frames.

§4. Further work. It would be interesting to know whether theo-
rem 2.18 and the results of §3 remain true under stronger conditions. In
this regard, we point out an observation and two problems. We state
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them in algebraic terms, but of course the modal approach could be used
instead.

Proposition 4.1. The following are equivalent:

1. Every finitely axiomatisable canonical variety of BAOs is elementar-
ily generated.

2. Every variety of BAOs with a canonical equational axiomatisation is
elementarily generated.

Proof. It is clear that (2) ⇒ (1), since if V is canonical and axiomatised
by finitely many equations t1 = u1, . . . , tn = un, then it is in fact
axiomatisable by a single equation (t1−u1)+(u1−t1)+· · ·+(un−tn) = 0,
which must therefore be canonical.

Conversely, assume (1). Let V be a variety of L-BAOs (for some sig-
nature L) axiomatised by a set Σ of canonical equations. (Of course, V
is canonical.) For ε ∈ Σ, let Vε be the variety of all L-BAOs satisfy-
ing ε. If Lε is a finite subsignature of L containing the symbols of ε,
then the class V ′

ε of Lε-reducts of BAOs in Vε is a finitely axiomatisable
canonical variety, and hence by assumption is elementarily generated. By
proposition 2.17, there is an elementary class K′

ε of La
ε-structures satis-

fying CstV ′
ε ⊆ K′

ε ⊆ StrV ′
ε . Let Kε be the class of La-structures with

La
ε-reducts in K′

ε. It is easily checked that CstVε ⊆ Kε ⊆ StrVε. Let
K =

⋂

ε∈Σ Kε. Certainly, K is elementary. Moreover, we have

CstV ⊆
⋂

ε∈Σ

CstVε ⊆
⋂

ε∈Σ

Kε = K ⊆
⋂

ε∈Σ

StrVε = Str
⋂

ε∈Σ

Vε = StrV.

By proposition 2.17, V is generated by K. 2

Problem 4.2. Is every finitely axiomatisable canonical variety of BAOs
elementarily generated?

Problem 4.3. Is there a variety of BAOs that is (a) canonical, (b)
axiomatisable by a set of equations of the form Σ ∪ Ξ, where Σ is finite
and every equation in Ξ is canonical, and (c) not elementarily generated?

The V of theorem 2.18 and the VX of theorem 2.19 are not finitely
axiomatisable. Indeed, by results in [31], any axiomatisation of them
must involve infinitely many non-canonical equations.
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