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Abstract. The problem of how to remove information from an agent’s stock of beliefs is of
paramount concern in the belief change literature. An inquiring agent may remove beliefs for a
variety of reasons: a belief may be called into doubt or the agent may simply wish to entertain
other possiblities. In the prominent AGM framework [1, 8] for belief change, upon which the
work here is based, one of the three central operations, contraction, addresses this concern (the
other two deal with the incorporation of new information). Makinson [23] has generalised this
work by introducing the notion of a withdrawal operation.

Underlying the account proffered by AGM is the idea of rational belief change. A belief
change operation should be guided by certain principles or integrity constraints in order to
characterise change by a rational agent. One of the most noted principles within the context
of AGM is the Principle of Informational Economy. However, adoption of this principle in
its purest form has been rejected by AGM leading to a more relaxed interpretation. In this
paper, we argue that this weakening of the Principle of Informational Economy suggests that
it is only one of a number of principles which should be taken into account. Furthermore, this
weakening points toward a Principle of Indifference. This motivates the introduction of a new
belief removal operation that we call severe withdrawal. We provide rationality postulates for
severe withdrawal and explore its relationship with AGM contraction. Moreover, we furnish
possible worlds and epistemic entrenchment semantics for severe withdrawals.

Key words: AGM, belief change, belief contraction, epistemic entrenchment, severe with-
drawal, systems of spheres.
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1. Introduction

An inquiring agent must, among other things, deal with the problem of belief
change (or belief revision) — how to modify its current epistemic state (stock
of beliefs) in light of new information. One of the more popular accounts
of belief change in recent times has been that introduced by Alchourrón,
Gärdenfors and Makinson [1] (henceforth referred to as the AGM frame-
work). The AGM framework for belief change distinguishes three types of
transformations on epistemic states: belief contraction ( � .��� ) — removal
of belief � from epistemic state � without addition of any further beliefs;
belief expansion ( ��� � ) — addition of belief � and its consequences with-
out removal of any existing beliefs; and, belief revision ( ��� � ) — addition
of belief � and its consequences with possible removal of existing beliefs in
order to maintain consistency.

In this paper we are predominantly concerned with the process of belief
removal — “contraction” and “withdrawal”. � It is our aim here to introduce
a new, principled, belief removal operation. Although distinct from AGM
contraction, the two are related through their emergent revision behaviour.
Moreover, when attention is restricted to all functions related in this way and
satisfying certain intuitive principles, we find that these two proposals lie at
opposite ends of the spectrum with respect to their degree of belief removal
measured in terms of set-theoretic inclusion. The alternative proposal intro-
duced here is contrasted with AGM contraction which can be seen as a point
of reference in helping to understand the vagaries of this new approach. In
the AGM vein, rationality postulates are provided for our proposal and two
constructions of central importance to the AGM framework — systems of
spheres and epistemic entrenchment — are adapted and used to further pro-
mote this comparison.

There are a number of reasons why an inquiring agent would be inter-
ested in removing beliefs from its current epistemic state. If the agent finds
itself in an inconsistent state — believing contradictory information — then
it can give up certain beliefs in an attempt to regain consistency. 	 On the
other hand, an agent may want to suspend belief in a particular proposition
because it no longer has any confidence in that proposition or simply because
it would like to consider other possibilities. In either case, the overriding con-
cern is that the agent no longer include the proposition in question among
its beliefs. Moreover, if one subscribes to Levi’s Commensurability Thesis
[18, p. 65] which states that any reasonable transition between two epistemic
states can be achieved through a sequence of expansions and contractions,
then the importance of contraction is clearly evident. 


Principally, we are concerned with characterising that belief change under-
gone by those agents which act in accord with certain principles or “integrity
constraints” commonly referred to as rationality criteria (see also Gärdenfors
and Rott [11, p. 38]). Arguably the most well known of these criteria (espe-
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cially in the context of the AGM framework) is the Principle of Informational
Economy [8] which we shall present here in slightly more general guise as the
Principle of Economy: �

� The Principle of Economy:

Keep loss to a minimum.

This principle has, in fact, become largely synonymous with the AGM frame-
work. A special instance of this constraint, where loss is measured in terms of
set-theoretic inclusion (of epistemic states), is known as the Principle of Con-
servatism [16]. It can be considered the starting point for the AGM account
of contraction; the motivating concern underlying the AGM notion of “maxi-
choice contraction” and the pathway to that of “partial meet contraction” [1].

�

An important point to note is that such a comparison, on the basis of set-
theoretic inclusion, presupposes the association of a positive value of utility
with every single item of belief. The Principle of (Informational) Economy
(and consequently that of Conservatism) is a restricted case of the Principle
of Minimal Change [16] which states that addition as well as loss should be
kept to a minimum.

It is our contention here that the Principle of Economy has been severely
compromised in the AGM framework. In its purest form, as the Principle of
Conservatism, it has been shown to lead to undesirable consequences when
applied to logically closed belief sets [2].

�
As a result its imposition is effect-

ed to a much less stringent degree. We claim that this principle is not, in fact,
an overriding criterion but, instead, must be applied in combination with oth-
er, equally important, principles in order to obtain an intuitively satisfactory
account of belief change. Moreover, these principles are in a state of tension
with respect to each other (i.e., they have conflicting concerns). In this paper
we advocate, in particular, Principles of Indifference and Preference. Briefly,
taken together they state that an object held in equal or higher regard than
another should be treated equally or more favourably than the latter. In fact,
we argue that AGM contraction does embrace these principles to a limited
extent. However, this partial adoption does not appear to be clearly motivated
or even justified. Therefore, we propose a stricter adherence to the Princi-
ples of Indifference and Preference. As a result of this change in view, we
propose a new form of contraction differing from that put forward by AGM.
Moreover, the rationality criteria proposed are equally applicable to the two
constructive modellings that we investigate here — systems of spheres and
epistemic entrenchment orderings. Interestingly enough, this new contraction
operation does not affect the AGM belief revision operation.

Let us return our focus of attention to the AGM development of belief
contraction. Applying the Principle of Economy in the form of the Principle
of Conservatism, it was at first suggested that the contraction of a belief set
� by a sentence � could be achieved by selecting some maximal subset of �
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that does not imply � . As mentioned above, this proposal was immediately
abandoned as it has undesirable consequences. Instead, a selection function� was applied to the set of all such maximal non-implying subsets, ��� ��� , in
order to select a set of the “best” elements which are then intersected to obtain
a partial meet contraction function ( � .������� �
	 ��� �� ). It should be noted
that the selection function � is defined for all sentences � but with � held
fixed (i.e., for some belief set � , � may take as an argument ��� � for any ����

). It is clear that this development leads away from conservatism. Certain
objects are under scrutiny. A mechanism is used to discriminate among them
although it may not be possible to distinguish some apart and so these are
all retained and processed together. This leads us to formulate Indifference as
follows:

� The Principle of Indifference

Objects held in equal regard should be treated equally.

The situation in which all maximal non-implying subsets are held in equal
regard is an AGM full meet contraction � which stands at the opposite end of
the spectrum to AGM maxichoice contraction.

In settling on partial meet we realize that the Principle of Economy and the
Principle of Indifference are in a state of tension with respect to one anoth-
er; Economy advocates the selection of a single element from ��� � while
Indiffence recommends to give up more than necessary if the selection mech-
anism does not single out a unique “best” solution. Both of these principles
figure in the rationale behind the choice of “best” elements implicitly adopt-
ed in partial meet contraction. We shall extend this strategy by accepting the
following, intuitively appealing, principle:

� The Principle of Strict Preference

Objects held in higher regard should be afforded a more favourable
treatment.

Taken together with the Principle of Indifference, this principle can be seen
as advancing the following rather general principle:

� The Principle of Weak Preference

If one object is held in equal or higher regard than another, the former
should be treated no worse than the latter.

Such a principle can already be seen to be at work in AGM partial meet con-
traction with “importance” being judged through the selection function � .
However, consideration is restricted to the elements of ��� � for a particular
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sentence � � � . Our aim here is to emphasise an alternative to AGM con-
traction which we believe adheres more faithfully to the Principles of Indif-
ference and Preference. However, adopting the AGM format for belief change
processes (i.e., epistemic inputs as sentences from a suitable object language
and epistemic states as sets of sentences that are deductively closed under
some consequence relation) allows us to effect a straightforward comparison
of the two proposals.

In the following section we outline some technical preliminaries. In sec-
tions 3 and 4 we present an intuitive overview of two important constructive
modellings for AGM belief contraction. We describe how they fail to live up
to the requirements demanded by the Principles of Indifference and Prefer-
ence and outline an approach that resolutely favours these principles over the
Principle of Economy. A common method of presenting AGM contraction
operations is through rationality postulates which we survey in section 5 and
contrast, in section 6, with rationality postulates for the belief removal opera-
tion advocated in the present paper. The relationship between AGM contrac-
tion operations and our account of belief removal is more directly addressed
in section 7. In sections 8 through 11 we return to the constructive modellings
discussed in sections 3 and 4, investigating the technical aspects of their appli-
cation in our belief removal operation. This leads us to an investigation of the
relationship between the two constructive modellings adopted here — sys-
tems of spheres and epistemic entrenchment — in section 12. We conclude
with a discussion of the insights stemming from our approach, its relationship
to other work in the literature (section 13) and, in section 14, a summary of
the contributions made here.

2. Technical Preliminaries

Throughout this paper we assume a fixed propositional language
�

with count-
ably many propositional symbols. We assume that

�
avails of the standard

logical connectives, namely ��������������� and 	 , together with the proposi-
tional constants 
 (truth) and � (falsum). The underlying logic will be iden-
tified with its consequence operator Cn ��

� � �
�

which is assumed to
satisfy the following properties.

���
Cn 	 � � (Inclusion)

If
�����

, then Cn 	 � � � Cn 	 � � (Monotonicity)
Cn 	 � � � Cn 	 Cn 	 � � � (Iteration)
If � can be derived from

�
by classical

truth-functional logic, then � � Cn 	 � � (Supraclassicality)� � Cn 	 ����� ��� � if and only if 	 � � � � � Cn 	 � � (Deduction)
If � � Cn 	 � � , then � � Cn 	 ��� � for some finite

subset
� � ���

(Compactness)
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We often write
��� � to mean ��� Cn 	 � � and

� � for � � � .
We refer to any set of sentences � in

�
as a belief set or theory if � is

closed under Cn (i.e., � � Cn 	 � � ). One special belief set is the absurd
belief set ��� containing all sentences in

�
. A belief set � is consistent in�

if and only if it does not contain sentences � and � � for any � � � , i.e.,
if � does not equal ��� . A belief set is complete in

�
if either � � � or� � � � for every � � � . The set of all belief sets is denoted � . We adopt

the convention of denoting sentences by lower case Greek letters � � � �������
and sets of sentences by upper case Roman letters 	 � � �
����� .

3. Sphere-Based Withdrawal

An interesting way of viewing the process of belief change is in terms of pos-
sible worlds. A construction in this vein, specifically focussed on the AGM
framework, has been proposed by Grove [12] who adapted Lewis’ [21] possi-
ble worlds modelling for counterfactual conditionals. This approach possess-
es a highly intuitive appeal through the pictorial representation by systems of
spheres. � In this section we concentrate on motivating our approach through
this intuition, deferring the main technical details to section 8.

Grove [12] characterises the current beliefs of an agent by the collection
of those possible worlds that are consistent with the agent’s beliefs. But this
is not the entire representation of an epistemic state. The remaining worlds —
those inconsistent with the agent’s current beliefs — are grouped around this
core collection in decreasing order of plausibility. This results in a system
of spheres centred on the set of worlds consistent with the agent’s beliefs.
Change in belief involves the determination of those worlds characterising
the agent’s new beliefs and is guided by the preference ordering over worlds.

More specifically, we denote the possible worlds consistent with a set of
sentences � by � �� and the set of all possible worlds by � . We also adopt the
shorthand � �  for � � ���  . A sphere is simply a set of possible worlds � � � .
A system of spheres centred on � �� is a set of nested spheres (in the sense
of set inclusion) in which the smallest or innermost sphere is � �� and the
outermost sphere is � . This is a generalisation of Lewis [21] whose systems
of spheres are centred on a single world � � � (the actual world) if we
allow ourselves to neglect the fact that Lewis does not require � to be an
element of every system of spheres. Essentially, a system of spheres centred
on � �� orders those worlds inconsistent with the agent’s epistemic state � .
Intuitively, the agent believes the actual world to be one of the � -worlds but
does not have sufficient information to establish which one. However, the
agent may be mistaken, in which case it believes that the actual world is most
likely to be one of those in the next greater sphere and so on. As such, a
system of spheres can be considered an ordering of plausibility over worlds;
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Figure 1. Sphere semantics for AGM belief contraction showing � � .����� shaded.

the more plausible worlds lying further towards the centre of the system of
spheres.

This ordering provides us with a powerful tool for investigating the pro-
cess of belief change. In this paper we concern ourselves with the operation of
belief contraction. That is, the situation in which an agent wishes to suspend
one of its beliefs. In this scenario, information is being removed, opening
up more possibilities. In other words, the agent’s candidate worlds increase;
more worlds being added to � �� . In order to suspend belief in a sentence �
the agent must have some candidate worlds in which � is false and there-
fore, considering the principal case in which � is initially believed ( � � � ),
it must at least introduce some � � -worlds into � �� . The AGM approach to
this problem is motivated to a large extent by the Principle of Informational
Econcomy. Accordingly, simply the closest � � -worlds — those in the small-
est sphere containing � � -worlds — are added to � �� . This situation is illus-
trated in Figure 1. If by ��� 	 �� we denote the � -worlds closest to � and we
introduce a function 	�
 that returns the belief set corresponding to a set of
worlds, then we have the following method for defining an AGM contraction
function .� from a system of spheres:

(Def .� from � ) � .� � � 	
 	 � �� � � � 	 � � � �
It will also be convenient to refer to the smallest sphere intersecting � which
we denote by � � 	 � � . Then � � 	 � � is given by � � 	 � ��� � �  .

Now, if one were to apply the Principle of Informational Economy in
its unadulterated form (i.e., Conservatism), then the aim of contraction —
removal of a belief � from epistemic state � — would be achieved through
the addition of a single � � -world to � �� rather than a number of � � -worlds
as depicted in Figure 1. This form of contraction corresponds to maxichoice
contraction in the AGM literature [1], i.e., the idea of taking belief contrac-
tion of � by � to be some maximal subset of � that fails to imply � . ���
However, this proposal has been shown to possess a number of drawbacks.
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Foremost among these is the fact that any revision function defined from such
a contraction function via the Levi Identity would always lead to a complete
theory, i.e., Cn 	 � .��� � � � � � � is maximally consistent. This indicates that too
little information is being removed. As a result, the Principle of Informational
Economy is imposed on a much weaker level as indicated above. Instead of
including only one � � -world in contraction, AGM incorporate a number of� � -worlds — those held to be most plausible — into the agent’s epistemic
state. However, none of the rationality postulates mentioned thus far specify
precisely how to deal with worlds that are equally preferred by the agent. As
a remedy, we suggest the employment of the Principle of Indifference. As we
have seen, AGM have gone part of the way to adopting such a principle. How-
ever, they limit their embracement of such a strategy to the area covered by� � -worlds only. Presumably, this is due to a desire to remain as faithful to the
Principle of Informational Economy as possible, despite its recognised short-
comings. Yet the Principle of Informational Economy has been compromised
and its relevance called into question. We propose to place still less emphasis
on its application and subordinate it to the Principle of Indifference.

Another principle, relating to the preference structure supplied by the
sphere modelling, that we suggest to respect is the Principle of Strict Prefer-
ence. According to this principle, worlds considered more plausible should be
given more favourable treatment. When contracting its belief set with respect
to � , the agent must at least include some (one, at any rate) � � -world into
its epistemic state. But the aforementioned principles, as applied to possible
worlds and systems of spheres, advocate that any � -worlds just as plausi-
ble as the innermost � � -worlds should be included also. Thus, together they
sanction the following specialisation of the Principle of Weak Preference:

If one world is considered at least as plausible as another, then the former
should be admitted in the agent’s epistemic state if the latter is.

The Principle of Informational Economy, in a weak form, can be viewed as
limiting the extent of change to that sphere containing the closest � � -worlds
and not beyond. The Principle of Weak Preference determines which worlds
inside this limited region should be included in the new epistemic state. With-
out any further restrictions it suggests that all worlds inside this region should
form part of the contracted epistemic state. In a way, even AGM appeal to this
principle. There, however, the principle is only applied relative to � � -worlds,
not all worlds in � . However, no principle authorising a restricted imposition
of this principle is established. The new situation is illustrated in Figure 2.
The agent has determined a preference over worlds and does not prefer the
(closest) � � -worlds over the (closer) � -worlds just because it is giving up
belief in � . Its preferences are established prior to the change and we assume
that there is no reason to alter them in light of the new information (epistemic
input). It is for this reason that the Principle of Conservatism (the Principle
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Figure 2. Sphere semantics for severe withdrawal showing � � ..��� � shaded.

of Informational Economy in its pure form) must give way. We shall refer to
this type of belief removal as severe withdrawal.

Denoting by � � 	 �� the closest sphere to � containing � -worlds, as men-
tioned above, we obtain a severe withdrawal function as follows:

(Def
..� from � ) � ..� � � 	
 	 � � 	 � � � �

It is the study of this class of functions to which we devote ourselves here.
When considered in a common setting, this form of belief removal has been
independently advocated by Levi [20] who refers to such functions as mild
contractions. Levi argues for mild contractions in terms of an information
theoretic argument. We shall return to a consideration of Levi’s arguments in
the discussion (in Section 13). � �

4. Entrenchment-Based Withdrawals

Lewis [21, Section 2.5] was perhaps the first to realise that a total order-
ing over possible worlds could be rephrased as a total ordering over the sen-
tences of a language. Grove [12] provides such an ordering based on systems
of spheres centred on � �� . Gärdenfors and Makinson [9] also introduce an
ordering over sentences known as an epistemic entrenchment. � 	 Intuitively,
an epistemic entrenchment relation

�
is an ordering over the agent’s beliefs

which reflects the plausibilities or degrees of retractability from a given belief
state � . The relation � � �

can be read as “it is at least as hard to discard�
than it is to discard � .” Epistemic entrenchment relations are thought of as

satisfying a number of structural constraints which we need present only in
Section 11.

Now let a relation
�

of epistemic entrenchment be given, and let � be its
asymmetric part. Then the contraction based on � as suggested by Gärdenfors
and Makinson [9, (C-) condition)] is as follows.
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(Def .� from
�

) � .� � �
�
� � � � � � � � � � � if ��� � and �� �
� otherwise

Although Gärdenfors and Makinson [9, p. 89] offer a motivation for this def-
inition, it is rather hard to understand. Besides, as Gärdenfors and Makinson
point out, their argument in support of (Def .� from

�
) depends on the con-

troversial postulate of recovery which we will discuss below.
In contraction, a basic idea seems to be that less epistemically entrenched

sentences are to be given up in favour of more entrenched sentences [8,
pp. 17–18, 75, 87]. Such an interpretation is vaguely reminiscent of an impo-
sition of the Principle of Preference. In a related fashion, a more straightfor-
ward way of using

�
was aired by Rott [29] (also compare Gärdenfors and

Rott [11, p. 73]):

(Def ..� from
�

) � ..� � �
�
� � � � � � �

� � if ��� � and �� �
� otherwise

We shall see that condition (Def ..� from
�

) can in fact be used in both direc-
tions. On the reverse reading, � is epistemically less entrenched then

�
, exact-

ly when the successful removal of � from epistemic state � results in the
retention of

�
.

As in the case of Grovean sphere-based contractions (alias AGM contrac-
tions), the pure idea of minimising the amount of information lost is compro-
mised in GM entrenchment-based contractions determined by (Def .� from�

). In general, the result of an entrenchment contraction is not a maximal
subset of the theory � that does not entail � . � 
 If � is in � , then every
such maximal non-implying subset includes either � � � or � � � � ; if it did
not, then it would not be maximal by disjunctive reasoning (which follows
from our assumptions for Cn ). However, it need not be the case that either
� � � � 	 � � � � or � � � � 	 � � � � � . The reason for this is that there may
be ties in the plausibility of beliefs — just as there were ties in the plausi-
bility of models. In the technical framework used for relations of epistemic
entrenchment, the situation that neither � � � nor � � � � is in the contrac-
tion of � with respect to � arises just in case � � � is as equally plausible
or entrenched as � � � � . So Gärdenfors and Makinson are ready to let the
“Principle of Indifference” override the Principle of Minimal Change at least
as far as disjunctions of � and some other sentence are concerned. However, it
is generally not the case that if

�
remains untouched in � .��� and � is equal-

ly or more entrenched than
�

, then � remains untouched in � .� � as well.
Thus the Principles of Indifference and Preference are violated. We shall ful-
ly install these principles for the entrenchment-based removal of beliefs by
endorsing (Def

..� from
�

) in this paper. According to this definition, only
preferences matter, the content of the beliefs remains totally disregarded.
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5. The AGM Postulates for Contraction

In the preceding two sections we have discussed, from an intuitive standpoint,
two constructive modellings for AGM belief change. These modellings are
more often characterised by rationality postulates which specify axiomatic
constraints that should be satisfied by any contraction operator of that partic-
ular type. As with the constructive modellings, they are guided by the ratio-
nality criteria outlined in the introduction. The following postulates are those
for AGM contraction over a belief set � .

( .� 1) � .� � � Cn 	 � .� ��

( .� 2) � .� � � �
( .� 3) If ���� � , then �

� � .� �

( .� 4) If �� � , then ���� � .���

( .� 5) � � Cn 	 	 � .� �� � � ��� �

( .� 6) If Cn 	 � � � Cn 	 � � , then � .� � � � .� �

( .� 7) � .� � � � .� � � � .� 	 � � � �

( .� 8) If ���� � .� 	 � � � � , then � .� 	 � � � � � � .���

The reader familiar with the AGM postulates for contraction will notice
that postulate ( .� 3) is given in a slightly weaker form than usual [8, p. 61]. The
usual consequent, � .��� � � , is easily recovered with the help of ( .� 2). It
also follows from ( .� 1), ( .� 2) and ( .� 5) that � .� � � � for every � � Cn 	 � � .
This condition is sometimes referred to as Failure (c.f. [14, p. 109]).

The most controversial of the AGM postulates for contraction is ( .� 5)
which is commonly referred to as Recovery. In the presence of postulates
( .� 1) and ( .� 2) it implies that � � Cn 	 	 � .��� � � � ��� � if � is in � . That
is, removing a sentence � and then restoring it leads to the original belief set
whenever � is in that belief set to begin with. Interestingly, recovery has no
counterpart among the postulates for AGM revision � � which may be defined
from contraction via the Levi Identity. �

�
We shall not enter into the polemic

surrounding the recovery property but, instead, refer the interested reader to
the relevant literature [13, 18, 22, 23, 25].

We find it important to also consider the following weaker versions of
( .� 7) and ( .� 8). We note, given postulates ( .� 1) — ( .� 6), that ( .� 7) implies
( .� 7c) and ( .� 8) implies ( .� 8c) (see [30, Lemma 1]).

( .� 7c) If
� � � .� 	 � � � � , then � .��� � � .� 	 � � � �

( .� 8c) If
� � � .� 	 � � � � , then � .� 	 � � � � � � .� �
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The derivation of (
.� 7c) from (

.� 7) uses (
.� 5), while the derivation of

(
.� 8c) from (

.� 8) uses (
.� 4) and Failure. Postulates (

.� 7) and (
.� 8) are, respec-

tively, the contraction counterparts of the rules Or and Rational Monotony
used in nonmonotonic reasoning. On the other hand, postulates ( .� 7c) and
( .� 8c) are the contraction counterparts of the rules Cut and Cumulative Monotony
respectively. �

�
In nonmonotonic reasoning, Cut and Cumulative Monotony

are considered to be much more fundamental than Or and Rational Monotony.
Postulates ( .� 7c) and ( .� 8c) are indeed exceedingly plausible in the context
of belief revision as well. Taken together, they state that if

�
is still present

after the removal of � � � , then that removal just boils down to the removal
of � .

6. Postulates for Severe Withdrawals

As we shall soon see, the following postulates characterise the new belief
removal operation advocated in sections 3 and 4. The most obvious difference
with AGM contractions is marked by the absence of the Recovery postulate. � �

( ..� 1) � ..� � � Cn 	 � ..� ��

( ..� 2) � ..� � � �
( ..� 3) If ���� � or

� � , then � � � ..���

( ..� 4) If �� � , then ���� � ..���

( ..� 6) If Cn 	 � � � Cn 	 � � , then � ..� � � � ..� �

( ..� 7a) If �� � , then � ..� � � � ..� 	 � � � �

( ..� 8) If ���� � ..� 	 � � � � , then � ..� 	 � � � � � � ..���

Postulates ( ..� 1), ( ..� 2) ( ..� 4), ( ..� 6) and ( ..� 8) are simply those for AGM
contraction over � . Postulate ( ..� 3) contains an additional antecedent in order
to take care of the limiting case of Failure (which was previously handled
with the aid of Recovery). We shall call the collection ( ..� 1), ( ..� 2), ( ..� 3), ( ..� 4)
and ( ..� 6) the basic postulates. Postulate ( ..� 7) has been replaced by the much
stronger antitony condition ( ..� 7a). It states that anything that is given up in
order to remove a strong sentence (the conjunction of � and

�
) should also be

given up when removing a weaker sentence ( � ) from the belief set, provided
the latter is not logically true. Intuitively, this makes quite a bit of sense. In
giving up � � � at least one of � or

�
must be abandoned. If � is given up in

� ..� 	 � � � � , we can simply achieve � ..��� by abandoning the same beliefs. If�
is given up instead, we may have to give up more. If we are serious about

adhering to the Principles of Preference and Indifference we should at least
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give up as much because
�

and the beliefs that have been given up thus far
were apparently held in lower regard.

Clearly, the postulate of recovery does not follow from the present col-
lection of postulates. Makinson [23] refers to belief removal operations sat-
isfying postulates ( .� 1) – ( .� 4) and ( .� 6), but not necessarily Recovery, as
withdrawal functions. In this sense, any withdrawal function would be con-
sidered weaker than an AGM contraction function. On the other hand, we
have decisively strengthened ( .� 7) through its replacement by ( ..� 7a). In this
respect (and by the introduction of the Failure condition in ( ..� 3)), the result-
ing withdrawal function is stronger than an AGM contraction function. For
reasons that will become clear later, we call the operations characterised by
the above set of postulates severe withdrawal functions.

Notice also, in the context of the basic postulates ( ..� 1) – ( ..� 4) and ( ..� 6),
that (

..� 7a) implies (
..� 7c) and (

..� 8) implies (
..� 8c). Recovery is not required

for these derivations.
An alternative axiomatisation of severe withdrawal is given by Pagnucco

[27]. It consists of the AGM postulates ( ..� 1) – ( ..� 4) and ( ..� 6) together with
the following two postulates:

( ..� 9) If ���� � ..� � , then � ..� � � � ..���

( ..� 10) If �� � and � � � ..� � , then � ..� � � � ..� �

It is shown that postulates ( ..� 7) and ( ..� 8) follow from these postulates. In fact,
postulate ( ..� 10) is redundant as we show below. We shall soon see (Lemma 3)
that these postulates do not hold in general for AGM contraction.

Postulate ( ..� 9) states that, if � is given up in removing
�

from � , then any-
thing given up in removing � from � should also be given up when removing�

from � . Casting our thoughts back to the principles outlined at the outset,
the antecedent tells us that � is held in no higher regard than

�
(possibly low-

er) and therefore no more (perhaps less) need be given up in order to remove�
when compared to removing � . That is, at least as much work needs to

be done in removing
�

as is required to remove � from � . Postulate ( ..� 10)
states that, if a non-tautological sentence � is retained when removing

�
from

� , then whatever is given up to remove
�

should also be given up to remove
� from � . When � is held in higher regard than

�
, more work may need to

be done in giving up � than is required to give up
�

.
The following lemma shows that these two proposed axiomatisations are

equivalent.

LEMMA 1. Let the basic postulates ( ..� 1) – ( ..� 4) and ( ..� 6) be given. Then
(i) ( ..� 7a) and ( ..� 8) taken together are equivalent with ( ..� 9);
(ii) ( ..� 7a) and ( ..� 8) imply ( ..� 10).

The second part shows that postulate (
..� 10) is indeed redundant and we can

omit it from further consideration although it is of course a property of severe
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withdrawals. Let us briefly look at some further properties following from
our postulates in order to gain a clearer insight into the nature of severe with-
drawal.

LEMMA 2. Let
..� be a severe withdrawal function over � . Then

(i) Either � ..� � � � ..� � or � ..� � � � ..��� .
(ii) Either � ..� 	 � � � � � � ..��� or � ..� 	 � � � � � � ..� � .
(iii) If � ..� � � � � � ..� � , then

� �� � ..��� or
� � or

� �
.

(iv) If �� � and �� � , then either � �� � ..� � or
� �� � ..� � .

The first part of the lemma tells us that severe withdrawals are nested one
within the other. This attests to the strength of the introduced postulates. The
second part states that withdrawal by a conjunction is equivalent to with-
drawal by of one its conjuncts (give up the least preferred). This factoring
condition, called Decomposition [1, p. 525], characterises maxichoice con-
traction within the class of AGM partial meet contraction functions [1, Obser-
vation 6.3(a)]. In the current context however, we are concerned with with-
drawal functions and thus recovery is lacking. The third part of the lemma is
the condition called Converse Conjunctive Inclusion in Fermé and Rodriguez
[7, p. 4]. Our proof shows that this condition is redundant in the axiomatisa-
tion of these authors (which includes ( ..� 9)). The last property is referred to
as Expulsiveness [15, Observation 2.52]. � � It says that for any two arbitrary
non-theorems � and

�
, in the removal of one of them the other will also be

removed. Expulsiveness is an undesirable property since we do not necessari-
ly want sentences that intuitively have nothing to do with one another to affect
each other in belief contractions. This is the bitter pill we have to swallow if
we want to adhere to the Principles of Indifference and Preference.

Before we progress it will be useful to adopt some uniform terminology
in order to better classify the belief removal operations we have come across
thus far. This will also serve to give a clearer picture of how severe withdrawal
fits into the overall scheme of such functions.

DEFINITION 1. Any function .� satisfying ( .� 1) – ( .� 4), ( .� 6) is referred to
as a withdrawal function. Moreover, any function .� satisfying ( .� 1) – ( .� 4),
( .� 6) and���� ���

	 .��� � � � 	 .��� � �
	 .��� � � 	 .��� � �
	 .��� � � 	 .��� �

	 ..�
	 � � 	 ..���� ������� 	 .�
� �

� ���
��� is called a

���� ���
cumulative withdrawal
preferential withdrawal

rational (or AGM) withdrawal
severe withdrawal

� ���
���

function.
Any withdrawal function satisfying the Recovery postulate (

.� 5) is called a
contraction function.

It should be clear from the foregoing discussion that the class of with-
drawals (without recovery) form a linear hierarchy. The labels ‘cumulative’,
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‘preferential’ and ‘rational’ are borrowed from the corresponding notions in
the theory of nonmonotonic reasoning [24, 30]. Severe withdrawal is the most
restricted class of those present and then, in order of increasing generality, we
have rational (or, AGM) withdrawals, preferential withdrawals, cumulative
withdrawals and (unrestricted) withdrawals. Adding recovery to a withdraw-
al function leads to the corresponding contraction function. What, then, is
the nature of the even more restricted class of severe contraction functions?
Significantly, no such contraction function exists (on pain of triviality).

LEMMA 3. There is no contraction function over a non-trivial belief set �
that satisfies postulates ( .� 1) – ( .� 8) and ( ..� 9).

Here we call a belief set � trivial if it does not contain a non-tautological
sentence � that does not already axiomatise � , i.e., for which � �� Cn 	 � � .

We are thus faced with genuine alternatives. It is clear that ( ..� 7a) is not
satisfied by AGM contractions. Unable to obtain a hybrid of AGM contraction
and severe withdrawal however, we devote the remainder of this paper to
explaining the relationship between the two and providing two precise AGM-
like constructive modellings for severe withdrawal functions.

7. Relating AGM Contraction and Severe Withdrawals

Thus far we have motivated our investigation of belief removal primarily
through the intuition behind two constructive modellings dealt with in Sec-
tions 3 and 4 and the way in which they satisfy certain principles of rational-
ity. However, we can study the correspondence between AGM contractions
and severe withdrawals without reference to systems of spheres or entrench-
ment relations and, in fact, without reference to any constructive modelling
at all. Severe withdrawals are far more “skeptical” than AGM contractions in
that they lead to theories that are smaller in terms of set-theoretic inclusion.
This is but one of the interesting relationships between the two.

Makinson [23] observes that withdrawal functions can be partitioned into
revision equivalent classes. Two withdrawal functions, .� and ..� say, are revi-
sion equivalent if the corresponding revision functions, defined from them
via the Levi Identity, are equivalent, i.e., if � .� � � Cn 	 	 � .� � � � � � � � � �
Cn 	 	 � ..� � �� � � ��� � � � ..� � for all � in

�
. Moreover, he noted [23, Obser-

vation p. 389] that in each revision equivalent class � .�  , the maximal element
(in terms of set-theoretic inclusion) was an AGM (partial meet) contraction
function.

The problem addressed in this section is to find the correspondence between
revision equivalent AGM contraction functions and severe withdrawal func-
tions. The idea at the back of our minds is that the relationship between
matching functions should be exactly as that in the constructions by means
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of systems of spheres or entrenchment relations. When talking about the cor-
respondence we presuppose that there is a unique AGM contraction function
and a unique severe withdrawal function in each class � .�  of revision equiva-
lent withdrawal functions. The following lemma shows that this is indeed the
case.

LEMMA 4. Let .� and .� � be two withdrawal functions that are revision
equivalent. Then .� and .� � are identical whenever either of the following
two clauses holds:

(i)
.� and

.� � satisfy (
.� 1), (

.� 2) and Recovery (
.� 5);

(ii) .� and .� � are severe withdrawal functions.

Building on earlier results of Gärdenfors, Makinson [23, p. 389] gives a some-
what roundabout proof of the fact that there is only one element in � .�  which
satisfies ( .� 1) – ( .� 6). Part (i) of the above lemma shows that Recovery almost
alone guarantees an identity in this case. On the other hand, lacking Recovery,
the proof for severe withdrawals in part (ii) makes essential use of postulates
(

.� 7a) and (
.� 8c).

The constructive modellings considered in Sections 3 and 4 have indicated
that, for a severe withdrawal function ..� and its revision equivalent AGM
contraction function .� , the belief set � ..� � will contain no more beliefs than
� .� � . � � Letting .� be an AGM contraction function, the corresponding severe
withdrawal function ..� can be defined as follows.

(Def ..� from .� ) � ..� � �
� � � � � � � .� 	 � � � � � if �� �
� otherwise

Intuitively, in giving up � , (Def ..� from .� ) tells us to retain those beliefs�
that would be retained when given a choice to remove either � or

�
(or

both). If
�

is considered more important than � when there is a possibility of
deciding between them, then this consideration should also be kept in mind
when deciding what to remove in the severe withdrawal of � by � .

An alternative idea is expressed by the following definition.

(Def
� ..� from .� ) � ..� � �

� � � � .� 	 � � � � � � � � � if �� �
� otherwise

According to (Def
� ..� from

.� ), in giving up � we should retain those beliefs
that are always retained when given a choice between giving up � or another
belief. That is, we retain those beliefs that are always retained when there is
the possibility of removing either � or another sentence (or both).

It turns out that these two approaches are, in fact, equivalent.

LEMMA 5. If .� satisfies ( .� 1), ( .� 2), ( .� 5), ( .� 6), ( .� 7) and ( .� 8), then (Def
..� from

.� ) and (Def
� ..� from

.� ) are equivalent.
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It remains, however, to show that these definitions are in fact adequate. More-
over, we ought to show that revision equivalent severe withdrawals are (set-
theoretically) smaller than AGM contractions. The relevant result is as fol-
lows. result.

OBSERVATION 6. If .� is an AGM contraction function, then ..� as obtained
by (Def ..� from .� ) is a severe withdrawal function revision equivalent to .� ,
and � ..� � � � .� � for all ��� � .

To indicate that severe withdrawals are in fact very severe compared to
other withdrawals in regard to the volume of beliefs removed, we note the
following result.

OBSERVATION 7. Let
.� be an AGM contraction function. Then the severe

withdrawal function ..� defined from .� by definition (Def ..� from .� ) is the
smallest withdrawal function satisfying postulate ( .� 8c) which is revision
equivalent to .� .

Smallness is measured here in terms of set-theoretic inclusion. Thus, severe
withdrawal removes more beliefs than a large class of (revision equivalent)
withdrawals which encompasses cumulative, preferential and rational with-
drawals (as well as their contraction counterparts of course). This is an inter-
esting and significant class of belief removal functions because they sat-
isfy the contraction counterpart ( .� 8c) of Cumulative Monotony which is
an important and widely accepted property in the study of (nonmonoton-
ic)consequence relations.

However, severe withdrawals are not the smallest withdrawal functions.
This distinction belongs to a more iron-fisted or procrustean withdrawal func-
tion which may be defined as follows.

(Def ...� from .� ) � ...� � �
�

Cn 	 � ��� � .� � if ��� � and �� �
� otherwise

This definition would work equally well with ..� substituted for .� . It deter-
mines an excessive type of belief removal. First we show that it is, in fact, the
smallest revision equivalent withdrawal function.

OBSERVATION 8. Let .� be an AGM contraction function. Then the with-
drawal function ...� defined from .� by definition (Def ...� from .� ) is the smallest
withdrawal function which is revision equivalent to .� .

From (Def ...� from .� ) it is easy to see that the following property holds: If
� � � and �� � , then � ...� � � Cn 	 � � . Such a withdrawal, uniformly applied,
is drastic indeed and it is also counterintuitive. Why should we retain only
consequences of the very belief we want to retract?

Returning to our discussion of the relationship between severe withdrawal
and AGM contraction, going back in the other direction (i.e., from

..� to
.� ) is
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quite simple. Let
..� be a severe withdrawal function. Then the corresponding

AGM contraction function
.� is defined by

(Def
.� from

..� ) � .� � �
�
� � Cn 	 � ..� � � � � ��� � if �� �
� otherwise

This method consists of consecutively applying the Levi and Harper identi-
ties. It has been advocated as a trick of enforcing the Recovery postulate by
Makinson [23, pp. 389, 391]. Its adequacy is demonstrated by the following
result.

OBSERVATION 9. If ..� is a severe withdrawal function, then .� as obtained
by (Def .� from ..� ) is an AGM contraction function revision equivalent to .� ,
and � ..� � � � .� � for all ��� � .

The appropriateness of the definitions in this section is further indicated by
the following result demonstrating that .� and ..� induce isomorphic structures
[5] via the definitions above. The first part states that successive applications
of (Def

..� from
.� ) and (Def

.� from
..� ), in that order, result in the same AGM

contraction function. The second part states that the corresponding result,
mutatis mutandis, holds for severe withdrawal functions.

OBSERVATION 10. (i) If we start with an AGM contraction function .� , turn
it into a severe withdrawal function ..� by (Def ..� from .� ) and turn the latter
into an AGM contraction function

.� � by (Def
.� from

..� ), then we end up with
.� � � .� .

(ii) If we start with a severe withdrawal function ..� , turn it into an AGM
contraction function .� by (Def .� from ..� ) and turn the latter into a severe
withdrawal function ..� � by (Def ..� from .� ), then we end up with ..� � � ..� .

This result implies that (Def
..� from

.� ) and (Def
.� from

..� ) induce a one-
one correspondence between (revision equivalent) AGM contraction func-
tions and severe withdrawal functions.

In this section we have taken a closer look at the interrelationship between
AGM contraction and severe withdrawal. One very important point to notice
is that, although we are contrasting different belief removal behaviour, there
is no effect on the respective revision operations obtained via the Levi Iden-
tity. Since different revision behaviour is not, in general, linked with identi-
cal belief removal operations, there is a greater degree of freedom in belief
removal than in belief revision functions. It is our aim here to indicate that
there are types of belief removal behaviour, differing from AGM contraction
yet revision equivalent to it, that can be motivated by rational means. In fact,
our main aim is to promote severe withdrawal as a highly principled member
of this community. We have also witnessed another member — viz. the “iron-
fisted” withdrawal — which is the smallest withdrawal function in a class of
revision equivalent withdrawals. Makinson [23, p. 389] points out that AGM
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contraction is the largest withdrawal function in this class. Other possibilities
to be found in the literature include Levi’s [18] saturatable contractions (using
undamped informational value) and the partial meet variety studied by Hans-
son and Olsson [14], Levi [18, 20] contraction using damped informational
value of type 1, Levi [19] contraction using damped informational value of
type 2 (i.e., mild contractions or, using our terminology, severe withdraw-
al), Cantwell’s [4] fallback-based contraction, Meyer et al.’s systematic with-
drawal [26], Lindström and Rabinowicz’s [22] interpolation operator, Fermé
and Rodriguez’s [6] semi-contraction operator and Nayak’s [p.c.] withdraw-
al. Appendix B briefly contrasts these various approaches in terms of systems
of spheres.

Having investigated the relationship between severe withdrawal and AGM
contraction functions, we now return to the system of spheres construction for
belief removal functions.

8. Retrieving Systems of Spheres from Rational Withdrawals

In this section we elaborate upon the ideas presented in Section 3 in a more
technical manner. Grove [12] views maximally consistent sets of sentences
(consistent complete theories) as “possible worlds”. An ordering is then imposed
over the set of all such possible worlds � � . The set of all possible worlds
consistent with a set of sentences � (not necessarily closed under Cn ) is
denoted � �� and may be determined as � �� � ��� � � � � � ��� � . We
use � �  as a shorthand for � � � �  . We also define a function 	�
�������� � �
mapping sets of possible worlds to belief sets by putting 	�
 	 � � � � � for
any � � � � .

Now recall that a system of spheres is a nested collection of sets of worlds
in which � �� is the smallest sphere and � � is the largest. Formally, we have
the following definition due to Adam Grove.

DEFINITION 2. [12] Let � be any collection of subsets of � � . We call
� a system of spheres, centred on � � � � , if it satisfies the following
conditions:

( � 1) � is totally ordered by
�

; that is, if � �
	 � � , then � � 	 or 	 � �

( � 2) � is the
�

-minimum of �

( � 3) � � is the
�

-maximum of �

( � 4) If � � � and �� � � , then there is a smallest sphere in � intersecting � � 
(i.e., there is a sphere � � � such that � � � �  �� � , and 	 � � �  �� �
implies � � 	 for all 	 � � )
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That spheres are nested is specified by condition ( � 1). Condition ( � 4) guar-
antees that there is a smallest or innermost sphere intersecting � �  for any
� � � . This corresponds to Lewis’ [21, p. 19] limit assumption. We denote
this sphere � � 	 � � (cf. Section 3). More formally we have a function � � � � �
� � � defined as follows:

(Def � � � � � 	 � � �

���� ���
the sphere � � � such that

� � � �  �� � and 	 � � �  �� �
implies � � 	 for all 	 � � whenever �� � �

� �� otherwise

This allows us to formally define a function � � � � � � � � returning the � -
worlds closest to � �� (cf. Section 3). With each system of spheres � centred
on � �� we can associate a function � � 	 � � � � �  � � � 	 �� . Note that, in the
case where

� � , by (Def � � ), we automatically have via (Def .� from � ) and
(Def ..� from � ) that � .� � � � ..� ��� � .

Our main interest in this section is the method used to construct the sys-
tem of spheres centred on � �� corresponding to an AGM contraction or severe
withdrawal function. Before turning to severe withdrawal functions, we first
adapt Lewis’ [21, pp. 59 and 133–134] and Grove’s [12, p. 162] methods of
constructing systems of spheres from counterfactuals and revisions, respec-
tively, to the context of AGM contraction functions. The idea is to specify a
method by which each sphere ��� (the minimal sphere intersecting � � �  ) can
be determined. A system of spheres � is then obtained by accumulating all
sets ��� so determined and the set � � of all worlds just in case it is not iden-
tified with one of the ��� ’s. More specifically, � � � ����� � � � � � � � � �
whenever � �� � and � � � ��� � ��� � � � � � � � ��� � � otherwise.

A set of possible worlds � � � � is in the Lewis-Grovean system of
spheres � (i.e., is a sphere in � ) derived from .� if and only if

� � ��� � there is a � such that � .� � � � � and

for all
� � if � � � � �  �� � then � � .� �  � � �

This condition, which we shall refer to as the first construction of Lewis and
Grove, can be rephrased by the following equation:

� is in � if and only if � ��� � � � .� �  � � �� � �  � 	 � .
However, this is not what is actually used in the completeness proofs of

Lewis and Grove. The spheres ��� they need for their proofs (Lewis [21, p.
59], Grove [12, p. 162]) have the following form, here again transferred from
the context of counterfactuals and revisions to the context of contractions. A
set ��� of worlds is in � obtained from .� if and only if

(Def � from
.� ) ��� �

� � � � � .� � �� � �  � � �  � whenever �� �
� �� otherwise
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We shall refer to this condition as the second construction of Lewis and
Grove. Every ��� thus constructed is a Lewis-Grovean sphere according to
the first construction and it is actually the

�
-minimal such sphere intersect-

ing � � �  . 	 � However, there is no guarantee that all spheres of the first con-
struction can be captured by the ��� ’s. Using either of the first or the second
Lewis-Grove construction results in a system of spheres where each sphere
can be represented as the union of model sets of a certain collection of theo-
ries.

The situation changes if we consider severe withdrawal instead of AGM
contraction. If the second construction is applied to severe withdrawals, then
we shall see that each sphere consists of the model set of exactly one theory. 	 	

In order to construct a system of spheres � centred on � �� from a severe
withdrawal function ..� over � , we essentially identify a sphere in � with
the collection � � ..���  for some � � � . Any worlds not accounted for in this
manner (i.e., “irrelevant worlds” — see below) are thrown into the outermost
sphere � � (by the construction of � noted above). More precisely, we have:

(Def � from ..� ) ��� � � � ..� � 
Note that we do not need a special case for �� � because in this scenario,
due to the Failure property captured by postulates ( ..� 2) and ( ..� 3), we have
� ..� � � � so ��� � � �� . We now show that for severe withdrawal functions
..� , this definition coincides with the second Lewis-Grove condition (Def �
from .� ).

LEMMA 11. If
..� is a severe withdrawal function, then the two conditions

(Def � from .� ) and (Def � from ..� ) are equivalent.

This result also highlights the special nature of severe withdrawal functions.
Due to their properties, we obtain a much simplified way to construct systems
of spheres.

We now briefly investigate several transformations that may be applied to a
system of spheres without affecting the AGM contraction or severe withdraw-
al generated from it. They give rise to systems of spheres that are equivalent
in the sense of the following definition.

DEFINITION 3. Let � and � � be two systems of spheres, let .� and .� � be
the contraction functions based on � and � � and ..� and ..� � be the severe
withdrawal functions based on � and � � , respectively. Then � and � � are
called equivalent if and only if for every sentence � it holds that � .��� �
� .� � � and � ..����� � ..� � � .

Consider, now, the following operations on systems of spheres.

DEFINITION 4. Let � be a system of spheres centred on � �� . Then
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��� (the trimming of � ) is obtained by removing from � all the spheres
�

such
that

�
is never the smallest sphere intersecting � �  , i.e., all

�
such that� �� � � 	 � � for all � � � .

��� (the closure under unions of � ) is obtained by adding to � all the unions
� of classes of spheres in � , i.e., all � such that � � � � � for some
subset � � of � .

����� (the topological closure of � ) is obtained by replacing all spheres
�

in
� by the sets of worlds (models) that satisfy the theory of

�
, i.e., by

replacing all
�

in � by � 	
 	 � �  .
In this last case we can define an operator �	� on sets of worlds (models)

as �
� 	 � � � � 	�
 	 � �  . This operation is clearly a closure operator, i.e., (i)
� �

�
� 	 � � , (ii) �
� 	 �	� 	 � � � � �	� 	 � � and (iii)
� � � �

implies �
� 	 � � � �
� 	 � � � . More-
over,

�
and �
� 	 � � have the same theory, 	�
 	 � � � 	
 	 �	� 	 � � � . Notice that for

every � � � , 	
 	 � � 	 � � � � 	�
 	 � ���� 	 � � � and 	
 	 � � 	 � � � � 	
 	 � ���� 	 �� � . Clear-
ly, all the operations on � result in systems of spheres, and � � � � � � � ,
but ����� is in general not comparable to any of the other systems of spheres.
Nevertheless, we have the following result relating systems of spheres and
transformations applied to them.

LEMMA 12. � , ��� , ��� and ����� are all equivalent.

The final result in this section lends further weight to the suitability of the
pairing of AGM contractions and severe withdrawals that we suggested in
Section 7. It shows that any two functions related by the appropriate defini-
tions generate equivalent systems of spheres.

OBSERVATION 13. Let .� and ..� be corresponding AGM contraction and
severe withdrawal functions either via (Def ..� from .� ) or via (Def .� from
..� ). Then .� and ..� lead to equivalent systems of spheres, via (Def � from .� )
and (Def � from ..� ). More precisely, the system of spheres obtained from ..�
is the topological closure of that obtained from .� .

For a contraction or withdrawal function .� , call a world
�

irrelevant
(with respect to .� ) if there is no � � � such that

�
contains � .� � (i.e.,� �� � � .���  ). Lewis-Grove spheres relegate irrelevant worlds to the out-

ermost sphere, thereby sacrificing the
�

-elementarity of their spheres. In
severe withdrawal we, as it were, add the irrelevant worlds to the Lewis-
Grove spheres in such a way that they “make no difference” for withdrawals
but make sure that the resulting spheres are

�
-elementary. 	 


9. Representation Theorems for Sphere-Based Withdrawals

The following analogues of Grove’s results concerning belief contraction
(which we state without proof) show that the construction in terms of systems
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of spheres outlined in Sections 3 and 8 is in fact an appropriate rendering of
the AGM rationality postulates for belief contraction over � . 	 � The first part
of the observation states that the method of adding the innermost � � -worlds
to � �� as described by (Def .� from � ) does indeed produce an AGM contrac-
tion function. The second part shows that for any AGM contraction function
and belief set � , one can construct a system of spheres � centred on � ��
using (Def � from .� ) for which the addition of the innermost � � -worlds to
� �� corresponds to the contraction of � by � .

OBSERVATION 14. [12, Theorems 1 and 2] (i) If � satisfies ( � 1) – ( � 4),
then the function .� obtained from � by (Def .� from � ) is an AGM contrac-
tion function.
(ii) If .� is an AGM contraction function, then .� can be represented as a
sphere-based contraction, where the sphere system � on which .� is based is
obtained by (Def � from .� ) and � satisfies ( � 1) – ( � 4).

This result shows the mutual adequacy of definitions (Def
.� from � ) and

(Def � from
.� ) introduced here. The corresponding representation theorem

can now be established for severe withdrawal over � .

OBSERVATION 15. (i) If � satisfies ( � 1) – ( � 4), then the function ..� obtained
from � by (Def ..� from � ) is a severe withdrawal function.
(ii) If ..� is a severe withdrawal function, then ..� can be represented as a
sphere-based withdrawal, where the sphere system � on which ..� is based
is obtained by (Def � from .� ) (or equivalently, by (Def � from ..� )) and �
satisfies ( � 1) – ( � 4).

The first part shows that the method of taking the smallest sphere intersect-
ing � � �  , expounded by (Def ..� from � ) is an accurate rendering of a severe
withdrawal function. The second part states that the method for construct-
ing systems of spheres via (Def � from ..� ) or, equivalently (Def � from .� )
by Lemma 11, does give a system of spheres for which the smallest sphere
intersecting � � �  corresponds to � ..� � .

This concludes our direct treatment of severe withdrawal in terms of sys-
tems of spheres. We shall return to systems of spheres in a slightly different
context later.

10. Retrieving Epistemic Entrenchment Relations from Rational
Withdrawals

While systems of spheres encode an ordering on worlds (consistent and com-
plete sets of sentences), epistemic entrenchment orders sentences. In this sec-
tion we concentrate on the methods used to generate an epistemic entrench-
ment (relative to � ) from a given AGM contraction or severe withdrawal
function (over � ).
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The fundamental idea of how to retrieve an entrenchment relation from
belief change behaviour is this. A sentence � is epistemically less entrenched
in a belief state � than a sentence

�
if and only if an agent in belief state �

who is forced to give up either � or
�

will give up � and hold on to
�

. This
idea can be set in motion when we realise that to give up either � or

�
can

very well be rephrased as the task of giving up � � � . So let a contraction
function .� (of any kind) be given.

(Def � from .� ) � �
�

iff
� � � .� 	 � � � � and � �� � .� 	 � � � �

The second clause is necessary since the agent may just refuse to withdraw
� � � . Rott [11, 30, 31] argues that it is indeed best to work with strict relations

� of epistemic entrenchment provided one is interested in having the flexi-
bility to sensibly weaken the postulates involved (in particular, to drop the
requirement that everything is comparable in terms of entrenchment) and in
finding one-to-one correspondences between postulates for entrenchment and
postulates relating to contraction behaviour or to rational choices. We shall
not, however, pursue this project further here but keep to the original, more
simple, if less flexible, account of Gärdenfors and Makinson. Thus we shall
work with non-strict relations

�
which may be thought of as the converse

complements of the above-mentioned strict relations and we use the postu-
late ( ..� 4) to restrict refusal of contraction to logically true sentences. The
following is the original definition of Gärdenfors and Makinson [9, p. 89].

(Def
�

from .� ) � � �
iff ���� � .� 	 � � � � or

� � � �

As with systems of spheres, if ..� is a severe withdrawal function, then
the process of retrieving entrenchments from contractions can be simplified
considerably.

(Def
�

from ..� ) � � �
iff ���� � ..� � or

� �

This essentially means that the condition (Def ..� from
�

) (see section 4)
can be used in both directions. Except for some limiting cases,

�
is in � ..� �

if and only if � �
�

. This greatly simplifies the transition between severe
withdrawal functions and their associated epistemic entrenchment relations.

We now show that the two conditions above are equivalent as far as severe
withdrawals are concerned. Again, as in the case for systems of spheres, this
is due to the properties induced by the postulates for severe withdrawal.

LEMMA 16. If ..� is a severe withdrawal function, then the two conditions
(Def

�
from .� ) and (Def

�
from ..� ) are equivalent.

In order to prove these and subsequent results, we recall the definition of
epistemic entrenchment as introduced by Gärdenfors and Makinson [8, 9].
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DEFINITION 5. Let
�

be an ordering of the sentences of
�

. We call
�

a
relation of epistemic entrenchment with respect to some belief set � , if it
satisfies the following conditions:
(E1) If � � �

and
� � � then � � � (Transitivity)

(E2) If �
� �

then � � �
(Dominance)

(E3) � � � � � or
� � � � � (Conjunctiveness)

(E4) If � �� � then: � � �
for every

� � � iff � �� � (Minimality)

(E5) If
� � � for every

� � � , then
� � (Maximality)

It follows from (E1) – (E5) that an epistemic entrenchment is a total pre-
order over sentences in which tautologies are greatest while non-beliefs are
smallest elements. While an entrenchment ordering is an ordering of beliefs
in � , systems of spheres can be seen as ordering worlds outside � �� . We shall
return to the relationship between entrenchment and systems of spheres in a
subsequent section.

The final result in this section lends further weight to our claim that the
pairing of AGM contractions and severe withdrawals that we suggested in
Section 7 is the right one. The result shows that any two functions related by
the appropriate definitions generate identical relations of epistemic entrench-
ment.

OBSERVATION 17. Let .� and ..� be corresponding AGM contraction and
severe withdrawal functions either via (Def ..� from .� ) or via (Def .� from
..� ). Then .� and ..� lead to identical entrenchment relations, via (Def

�
from

.� ) and (Def
�

from ..� ).

11. Representation Theorems for Entrenchment-Based Withdrawals

In this section we turn to more technical results concerning the notion of epis-
temic entrenchment. In essence, we would like to formally show the appro-
priateness of (Def ..� from

�
) and (Def

�
from ..� ) introduced in Sections 4

and 10 just as we were able to do for analogous definitions in terms of sys-
tems of spheres in Section 9. The following representation theorem is due to
Gärdenfors and Makinson. 	

�

OBSERVATION 18. [9, Theorems 4 and 5] (i) If
�

satisfies (E1) – (E5), then
the function .� obtained from

�
by (Def .� from

�
) is an AGM contraction

function, that is, it satisfies ( .� 1) – ( .� 8).
(ii) If .� is an AGM contraction function, then .� can be represented as an
entrenchment-based contraction where the relation

�
on which .� is based is

obtained by (Def
�

from
.� ) and

�
satisfies (E1) – (E5).
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The first part states that the method of retaining
�

in contracting � when � � �
is strictly more entrenched than � gives an AGM entrenchment relation. The
second part shows that the appropriate entrenchment relation can be obtained
from an AGM contraction function using the recipe given by (Def

�
from

.� ).
We can now formulate an entirely parallel representation theorem for severe

withdrawals. This result is the epistemic entrenchment analogue of Observa-
tion 15 for systems of spheres.

OBSERVATION 19. (i) If
�

satisfies (E1) – (E5), then the function ..� obtained
from

�
by (Def ..� from

�
) is a severe withdrawal function.

(ii) If ..� is a severe withdrawal function, then ..� can be represented as an
entrenchment-based withdrawal where the relation

�
on which ..� is based

is obtained by (Def
�

from .� ) (or equivalently, by (Def
�

from ..� )), and
�

satisfies (E1) – (E5).

The first part shows that the technique of retaining
�

whenever it is strictly
more entrenched than � , i.e., the technique expounded in (Def

..� from
�

),
gives a severe withdrawal function. The second part states that the method for
constructing entrenchment relations via (Def

�
from .� ), or equivalently via

(Def
�

from ..� ), gives an entrenchment relation for which the set of beliefs
more entrenched than � is � ..��� .

This result shows that we can use the same sort of entrenchment relation as
Gärdenfors and Makinson but we apply it in a different manner which favours
the Principles of Preference and Indifference over the Principle of Minimal
Change — thereby violating Recovery. We can retain the same definition
(Def

�
from .� ) as in the Gärdenfors-Makinson framework to reconstruct

the underlying entrenchment relation from some observed severe withdraw-
al behaviour; in our framework, however, the definition can be simplified to
(Def

�
from ..� ). Like Gärdenfors and Makinson for the case of AGM con-

tractions, we obtain a perfect match between severe withdrawal functions and
entrenchment relations.

12. Relating Spheres and Entrenchments

Up till now we have been studying AGM contractions and severe withdrawals
from the point of view of both sphere semantics and entrenchment seman-
tics; two important constructive modellings in the setting of AGM-style belief
change. We have found that there is a far-reaching parallel between these two
kinds of semantics or constructions for belief change functions. Now we want
to give an explanation of that parallel in terms of a direct bridge between sys-
tems of spheres and entrenchment relations, bypassing any particular type of
belief change function.
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We begin by considering how to retrieve systems of spheres from epis-
temic entrenchment relations. Given some entrenchment relation

�
, we con-

struct the corresponding system of spheres � 	 � � as follows (that is, we accu-
mulate all such

�
� ’s and � � as in Section 8):

(Def � from
�

)
�
� � � � � � � �

� � 
The set of sentences

� � � � �
� � on the right-hand-side of (Def � from

�
) is

a cut in the sense of [29, p. 159]. First we have to check whether we actually
obtain a system of spheres from this construction.

LEMMA 20. For any entrenchment relation
�

with respect to � , the system
of spheres � 	 � � satisfies conditions ( � 1) – ( � 4) with respect to � �� .

Next we show that the system of spheres obtained from an entrench-
ment relation in this way is equivalent with the latter in the sense that it
leads to the same AGM contraction and the same severe withdrawal func-
tion. More precisely, we show that the AGM contraction function (respec-
tively, severe withdrawal function) obtained from a system of spheres � 	 � �
derived from an entrenchment relation

�
is the same as the AGM contraction

function (respectively, severe withdrawal function) obtained directly from the
entrenchment relation

�
.

OBSERVATION 21. For any entrenchment relation
�

, the AGM contractions
and the severe withdrawals generated from

�
and � 	 � � are identical, i.e.,� 	 � 	 � � � � � 	 � � and � 	 � 	 � � � � � 	 � � .

Here,
� 	 � � refers to the AGM contraction function obtained from the entrench-

ment relation
�

by means of (Def
.� from

�
). Similarly,

� 	 � 	 � � � is the AGM
contraction function obtained from the system of spheres � 	 � � via (Def

.�
from � ). Again, � 	 � � and � 	 � 	 � � � refer to the severe withdrawal function
obtained by the relevant definitions in Sections 3 and 4.

Let us now turn our attention to the reverse problem of obtaining an epis-
temic entrenchment relation from a system of spheres. Given some system of
spheres � , we construct the corresponding entrenchment relation

� ��� 	 � �
as follows.

(Def
�

from � ) � � �
iff for all

� � � if
� � � �  then

� � � � 
We check whether we actually obtain an entrenchment relation from this

construction.

LEMMA 22. For any system of spheres � with respect to � �� , the entrench-
ment relation � 	 � � satisfies conditions (E1) – (E5) with respect to � .

Given the nestedness ( � 1) and the limit assumption ( � 4) for systems of
spheres, this condition reduces to the following. 	

�
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(Def
� �

from � ) � � �
iff � � 	 � � � �� � � 

We first show that this definition fits together with the one for the converse
direction introduced above. The notation employed in the following observa-
tion should be self-explanatory by now.

OBSERVATION 23. Let
�

be an entrenchment relation and � a system of
spheres. Then

(i) � 	 � 	 � � � � �
.

(ii) � 	 � 	 � � � is the topological closure of the trimming of � , i.e., 	 � � � ��� .
The first part of this result exposes a strong connection between epistemic
entrenchment and systems of spheres. The second result, while not quite
as strong, shows that applying (Def

� �
from � ) followed by (Def � from�

) leads to an equivalent (although not necessarily identical — see Lem-
ma 12) system of spheres. Together they indicate an isomorphism between
epistemic entrenchment and a particular subclass (those trimmed and topo-
logically closed) of systems of spheres.

We finally show the sphere analogue of Observation 21. That is, that the
AGM contraction function (respectively, severe withdrawal function) obtained
from an entrenchment relation � 	 � � derived from a system of spheres � is the
same as that obtained directly from � itself.

OBSERVATION 24. For any system of spheres � , the AGM contractions and
the severe withdrawals generated from � and � 	 � � are identical, i.e.,

� 	 � 	 � � � �� 	 � � and � 	 � 	 � � � � � 	 � � .
Taken together, these results demonstrate the appropriateness of the defini-
tions introduced in this section.

13. Discussion

Levi [18] advocates a construction for belief removal based on saturatable
sets rather than AGM’s maximal consistent subsets of � not implying �
(denoted ��� � ). He notes that all elements � � of ��� � have the property
that Cn 	 � � � � � ��� � is a consistent complete theory (i.e., obey the maxi-
choice property). Yet, there are subsets of � not in ��� � also possessing
this property. These sets Levi refers to as saturatable sets (the collection of
which we denote ��� � � here). More precisely, � � � ��� � � if and only if
(i) � � � � , (ii) � �� � � , and (iii) Cn 	 � � � � � � � � is a consistent com-
plete theory. Hansson and Olsson [14] place this work in context with the
AGM showing that a selection function applied to the set of saturatable sets
generates a withdrawal function that satisfies postulates (

.� 1) – (
.� 4), (

.� 6)
and Failure. In other words, this construction can be seen as capturing that
of a withdrawal function satisfying the Failure property. They extend this
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work by showing that a selection function defined via a real-valued measure
(satisfying a weak monotonicity condition) gives a construction satisfying
the supplementary postulates ( .� 7) and ( .� 8). However, they do not supply a
“completeness” result for this extended set of postulates. In light of the work
presented here, severe withdrawal is a further restricted construction that can
be given a complete characterisation. That is, a severe withdrawal represents
an axiomatisable subclass of those belief removal operations characterised by
Hansson and Olsson’s real-valued measure selection function construction.

Let us, however, return to Levi’s arguments on this subject. Levi uses the
term contraction to denote any function removing, say, � from � . In Makin-
son’s [23] terminology which as adopted in our Definition 1 such functions
are termed withdrawals; contraction being reserved for those withdrawals
satisfying the additional Recovery postulate ( .� 5) and characterisable via meets
of maximal non-implying subsets. The class of withdrawals can be obtained
by taking meets of saturatable contractions removing � but not meets of max-
imal subsets not implying � . For this reason Levi maintains that one should
consider meets of saturatable contractions rather than merely meets of maxi-
mal non-implying subsets. While AGM begin with the concept of a maximal
non-implying subset as a way of achieving a minimal (in the sense of set
inclusion) change in removing � from � before settling on (partial) meets of
such sets, Levi begins at the “other end.” He embraces saturatable sets since
meets of these will capture all withdrawal behaviour. Of course, admitting
saturatable sets, and meets of them, violates Recovery (see Figures 4 and 5 in
Appendix B) — a postulate Levi is strongly opposed to.

Now Levi’s major concern in contraction follows the broad aims of the
Principle of Minimal Change and, more specifically, the Principle of Infor-
mational Economy; that is, to minimise the loss of informational value. As
such, it is important to specify how informational value is measured. Levi
considers three different measures at various stages during the development
of his ideas. Initially he considered undamped (or probability-based) infor-
mational value [18, p. 127] where the loss of informational value of the meet
of a set of saturatable contractions is calculated using the sum of the losses of
informational value of the minimal (in the sense of set inclusion) members of
this set. He rejected this proposal immediately as it leads to a saturated con-
traction in every case and therefore satisfies the maxichoice property which
both Levi and AGM agree is unreasonable. In its place he advocated damped
informational value (version 1) [18, 20] in which intersections (meets) of sat-
uratable contractions incur a loss of informational value equal to the largest
loss incurred by a member of the set. However, Levi [20, p. 32] cites an
example where he claims that a class of version 1 contractions which satisfy
Recovery are counterintuitive. Moreover, Levi claims lack of uniformity in
that damped informational value (version 1) equals undamped informational
value in some cases but the two diverge in others. As a result, this was super-
seded by damped informational value (version 2) [19] where loss of infor-
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mational value is minimised by taking the meet of those maximal subsets
of � not implying � with minimal undamped informational value and other
saturatable contractions with (undamped) informational value no greater than
this. In these latter two methods Levi adopts a Rule for Ties where “when two
or more options tie for optimality one should adopt the intersection of all of
them” [20, p. 27] with the proviso that such a “tie breaking” mechanism be
adopted only when the resultant option is optimal. This last class of contrac-
tion functions are referred to as mild contractions by Levi [20]. It turns out
that, when placed in a common setting, mild contractions coincide with severe
withdrawals. Interestingly enough it has turned out, by our observations sur-
rounding (Def

� ..� from .� ), that Levi could have captured “mild contractions”
by considering meets of maximal non-implying subsets — although, to con-
tract � by � you would need to consider meets of certain maximal subsets of
� not implying � � � for all

� � � .
Levi [20] criticises our choice of terminology because it is based on a

measure of loss in terms of subset inclusion (which we do not deny) and he
maintains that informational value should not be measured in these terms; loss
of damped informational value of type 2 is minimised and thus the contrac-
tion (or withdrawal) is mild. We wish to emphasise, however, that while our
terminology is influenced by the fact that severe withdrawals tend to remove
more beliefs than other revision equivalent proposals (see Observation 7), our
arguments in favour of severe withdrawal in this paper are not motivated by
this factor at all (nor, of course, by Informational Economy) but, rather, by the
concerns of principled belief removal behaviour and, most of all, respecting
of Indifference and Preference.

In an elegant paper, Kaluzhny and Lehmann [17] give a characterisation of
nonmonotonic inference operations Inf for which Inf 	 � � can be represented
as the set of all monotonic consequences together with some set Ass 	 � � of
assumptions that are “compatible” with

�
: Inf 	 � � � Cn 	 � � Ass 	 � � � . 	 �

Their intuitive idea is that the assumption operator Ass 	 � � is antitonic in the
sense that for

� � �
we get Ass 	 � � � Ass 	 � � . The more premises, the less

assumptions are compatible with them.
Given the well-known connections between nonmonotonic reasoning and

belief revision (see for instance [10, 11]), it is easy to recognise that for finite� � �
, Kaluzhny and Lehmann’s assumption set Ass 	 � � corresponds to our

severe withdrawal � ..� 	 ��� � � , with � � Inf 	 � � left implicit. Their condi-
tion of antitony is the analogue of our condition ( ..� 7a). The constructions for
Ass 	 � � they use in their Theorems 2.1 and 2.2, viz. Ass 	 � � � � � Inf 	 � � �� � � � and Ass 	 � � � � � Inf 	 � � � � � Cn 	 � � � respectively, are reminis-
cent of our definition (Def

� ..� from .� ). But there are also important differ-
ences. They work on the level of postulates only without considering explicit
constructions of nonmonotonic inference operations or the general principles
that might motivate them. They work in contexts that do not validate the rule
of Rational Monotony which corresponds to the belief revision postulate (

.� � )
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alias (
..�
� ). And, perhaps most importantly, nonmonotonic inference relations

correspond to revisions rather than removals of beliefs. Due to the revision
equivalence of belief contractions and withdrawals, then, the distinction we
are most interested in vanishes. To put it differently, Kaluzhny and Lehmann
do not present a study of their Ass operation in its own right.

14. Conclusions

The AGM account of belief change is guided by principles of rationality.
However, contrary to the popular perception given by the literature, the Prin-
ciple of Informational Economy cannot be given unrestrained prominence
over other rationality principles. It must be seen as only one of a number of
factors to be taken into consideration when deciding which beliefs to discard.
In fact, it works in combination with principles such as those of Indiffer-
ence and Preference in this regard. Once this is accepted, it can be seen that
AGM are in fact applying the latter principles only in so far as the � � -worlds
are concerned and disregarding the � -worlds. This position seems difficult to
motivate and support. As a result, we propose a new form of belief removal
operation, severe withdrawal, which applies these principles uniformly over
all possible worlds. The contentious postulate of recovery is not satisfied by
severe withdrawal.

In the present work we have attempted a comprehensive treatment of an
alternative to AGM contraction which takes the Principles of Indifference
and Preference into account; we call this severe withdrawal. We showed how
these principles point toward a different way of using two important AGM
constructions: systems of spheres and epistemic entrenchment. In these con-
structions the objects to which the principles are applied are, in the first case,
worlds (or models) and, in the second, sentences of the object language. Both
methods lead to simple mechanisms for constructing removals of belief.

Interestingly enough, if one prefers to focus on belief revision rather then
belief removal, then the effects, via the Levi identity, are unnoticeable. That
is, in any revision equivalent class of withdrawal functions there will be exact-
ly one AGM contraction function [23] and one severe withdrawal function.
Severe withdrawal functions can be seen as setting a lower bound on inter-
esting withdrawal behaviour within each of these revision equivalent classes.
We furnished a way of moving backwards and forwards between the cor-
responding AGM contraction function and severe withdrawal function in a
given class. We also supplied methods for obtaining the desired severe with-
drawal behaviour from the constructive modellings of systems of spheres and
epistemic entrenchment relations. Furthermore, mechanisms for going back
the other way — extracting the relevant underlying structure (total pre-order
on worlds or one on sentences) — were given. It is interesting to note in
regard to this latter point that the definitions for AGM contraction can be



32

used for severe withdrawal to achieve the same effect but, in general, may be
simplified. Finally methods were given for mapping directly between systems
of spheres and epistemic entrenchment relations that lead to the same AGM
contraction or severe withdrawal function.

One last, and important, moral can be drawn from this exposition with
regard to the constructive modellings. Clearly the underlying structure (a sys-
tems of spheres or an epistemic entrenchment relation) is important in achiev-
ing belief removal (or belief change in general for that matter). However, the
way we use this structure is also very crucial. Starting with a fixed struc-
ture, different principles give rise to different behaviour. More importantly,
this behaviour, through the principles that bring it about, can be motivated
by rational means. Here, the Principles of Indifference and Preference —
arguably rational integrity constraints — lead to severe withdrawal.
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Appendix

A. Proofs

We reproduce the following properties of 	
�� � � � � � , listed by Grove
[12], for reference. They will be useful for some of the proofs that follow.

LEMMA 0. Properties of 	
 [12].

(i) 	
 	 � �� � � � for all belief sets (i.e., theories) � if the underlying logic is
compact

(ii) 	
 	 � � �� � � if and only if � is nonempty
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(iii) For any sentence � � � and � � � � , 	�
 	 � � � �  � � Cn 	 	
 	 � � � � ��� �
(iv) For � � � � � � � , if � � � � , then 	�
 	 � � � � 	�
 	 � �
(v) For � � � � � � , if �

� � � , then � � �  � � ��

LEMMA 1. Let the basic postulates ( ..� 1) – ( ..� 4) and ( ..� 6) be given. Then
(i) ( ..� 7a) and ( ..� 8) taken together are equivalent with ( ..� 9);
(ii) ( ..� 7a) and ( ..� 8) taken together imply ( ..� 10).

Proof. Assume that the basic postulates ( ..� 1) – ( ..� 4) and ( ..� 6) are satis-
fied.

(i) ( ..� 9) implies ( ..� 7a): Let �� � . Then by ( ..� 4), � �� � ..��� , so by ( ..� 1),
� � � �� � ..��� . Hence, by ( ..� 9), � ..� � � � ..� 	 � � � � .

( ..� 9) implies ( ..� 8): This is immediate on substituting � � � for
�

.
( ..� 7a) and ( ..� 8) imply ( ..� 9): Let � �� � ..� � . With the help of ( .� 8c),

� �� � ..� 	 � � � � . Hence, by ( ..� 8), � ..� 	 � � � � � � ..� � . But by ( ..� 7a),
� ..� � � � ..� 	 � � � � whenever �� � and hence � ..� � � � ..� � as desired.
If
� � , then � ..� � � � by (

..� 2) and (
..� 3). Now � � � ..��� by (

..� 2) and
therefore � ..� � � � ..� � trivially.

(ii) Let �� � and � � � ..� � . If
� �

, then � � � ..� � by ( ..� 3), so � ..� � �
� ..� � follows from ( ..� 2). So let

�
be such that �� � . From � � � ..� � and

( ..� 7a), we conclude that � � � ..� 	 � � � � . Since �� � � � , ( ..� 1) and ( ..� 4) give
us
� �� � ..� 	 � � � � . Hence, by ( ..� 8), � ..� 	 � � � � � � ..� � . On the other

hand, by ( ..� 7a), � ..� � � � ..� 	 � � � � . Hence � ..� � � � ..� � , as desired. �

LEMMA 2. Let ..� be a severe withdrawal function over � . Then
(i) Either � ..� � � � ..� � or � ..� � � � ..��� .
(ii) Either � ..� 	 � � � � � � ..��� or � ..� 	 � � � � � � ..� � .
(iii) If � ..� � � � � � ..� � , then

� �� � ..��� or
� � or

� �
.

(iv) If �� � and �� � , then either � �� � ..� � or
� �� � ..� � .

Proof. (i) Consider two cases: (a) � �� � ..� � and (b) ��� � ..� � In the
former case ( ..� 9) gives � ..� � � � ..� � . In the latter case, if �� � , then ( ..� 10)
gives � ..� � � � ..� � . Otherwise,

� � and by ( ..� 3) � � � ..� � , and by ( ..� 2)
� ..� � � � so � ..� � � � ..� � .

(ii) Using ( .� 7c) and ( .� 8c) it is easily seen that if
� � � ..� 	 � � � � , then

� ..� 	 � � � � � � ..� � , and if � � � ..� 	 � � � � , then � ..� 	 � � � � � � ..� � .
A similar situation holds for � � � ..� 	 � � � � . Consider then, the case where
� � � �� � ..� 	 � � � � . By two applications of ( ..� 8), � ..� 	 � � � � � � ..� � and
� ..� 	 � � � � � � ..� � . Now consider two further subcases: (a) at least one of

�� � or �� � holds, and (b) both
� � and

� �
hold. In the former case, either

� ..� � � � ..� 	 � � � � or � ..� � � � ..� 	 � � � � holds by (
..� 7a). It follows
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that either � ..� � � � ..� 	 � � � � or � ..� � � � ..� 	 � � � � . In the latter case,
� ..� � � � ..� � � � ..� 	 � � � � , by (

..� 2) and (
..� 3).

(iii) Let � ..� � � � � � ..� � and �� � and �� � . Suppose for reductio that� � � ..� � . Then by ( ..� 7a)
� � � ..� 	 � � � � . So since � ..� � � � � � ..� � ,

we also get
� � � ..� � , contradicting ( ..� 4).

(iv) Let �� � and �� � . Suppose for contradiction that both ��� � ..� � and� � � ..��� . Then by ( ..� 10), � ..� � � � ..� � , so � � � ..� � and
� � � ..� � ,

contradicting ( ..� 4). �

LEMMA 3. There is no contraction function over a non-trivial belief set �
that satisfies postulates ( .� 1) – ( .� 8) and ( ..� 9).

Proof. Suppose there is a contraction function
.� over � that satisfies all

of (
.� 1) – (

.� 8) and (
..� 9). Suppose further that � is non-trivial, i.e., that there

is a � such that � � �
�

Cn 	 � � and � �� Cn 	 � � . We first show that � .� � �
Cn 	 � � . Suppose, for reductio ad absurdum, that there is a

� �� Cn 	 � � such
that

� � � .��� . Now
� � � by ( .� 2). It follows by ( ..� 10), which we showed

to follow from ( .� 1) – ( .� 8) and ( ..� 9) (in Lemma 1(i) and (ii)), that � .� � �
� .� � . By ( .� 5), ( .� 1) and the Deduction Theorem

� � ��� � .� � � � .� � .
However, by ( .� 4), � �� � .��� so by ( .� 1),

� �� � .� � contradicting our initial
supposition. Therefore � .� � � Cn 	 � � . Consequently, � �� Cn 	 	 � .� � � �� ��� � � Cn 	 � � violating recovery ( .� 5). �

LEMMA 4. Let .� and .� � be two withdrawal functions that are revision
equivalent. Then .� and .� � are identical whenever either of the following two
clauses holds:

(i) .� and .� � satisfy ( .� 1), ( .� 2) and Recovery ( .� 5);
(ii)

.� and
.� � are severe withdrawal functions.

Proof. Let .� and .� � be revision equivalent withdrawal functions.
(i) Let .� and .� � satisfy ( .� 1), ( .� 2) and Recovery ( .� 5). We need to show

that .� � .� � . Left to right inclusion. Suppose
� � � .� � . We need to show

that
� � � .� � � as well. First we show that � � � � � � .� � � . From

� �
� .� � , we conclude using monotonicity of Cn and the Levi identity that

� �
Cn 	 	 � .��� � � � � ��� � � � � � � . By revision equivalence, we get

� � � � �
	 � � � � Cn 	 	 � .� � �� � � � ��� � , so by the Deduction Theorem for Cn and
( .� 1), � � � � � � .� � � . On the other hand, we know from ( .� 2) that

� �
� .� � � � . So by ( .� 5) and ( .� 1), � � �

is in � .� � � . From this and the
previously established fact that � � � � is in � .� � � , we conclude with ( .� 1)
that

�
is in fact in � .� � � , as desired.

The right to left inclusion can be proved in the same fashion with
.� and

.� � exchanged.
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(ii) Let
.� and

.� � be severe withdrawal functions. We need to show that
.� � .� � . Left to right inclusion. Suppose

� � � .��� . We need to show that� � � .� � � as well. If � � Cn 	 � � , then � .� � � � � � .� � � , by ( ..� 2) and
( ..� 3). So let ���� Cn 	 � � . Then it follows from

� � � .��� that
� � � .� 	 � � � � ,

by ( ..� 7a). Thus also
� � Cn 	 � .� 	 � � � � � � � 	 � � � � � � � � � � 	 � � � � ,

using the monotonicity of Cn and the Levi identity. By revision equivalence,
then

� � � � � � 	 � � � � � Cn 	 � .� � 	 � � � � � � � 	 � � � � � � . By the Deduction
Theorem for Cn and ( ..� 1), we get that � 	 � � � � � � � � .� � 	 � � � � , which
means, by ( ..� 1) again, that

� � � .� � 	 � � � � . Using ( .� 8c) (or alternatively,
( ..� 4) and ( ..� 8)), we get that � .� � 	 � � � � � � .� � � and thus

� � � .� � � , as
desired.

The right to left inclusion can be proved in the same fashion with .� and
.� � exchanged. �

LEMMA 5. (Def
..� from

.� ) and (Def
� .� from

..� ) are equivalent.

Proof. It is sufficient to show, for every � � � such that �� � , that � �
� .� 	 � � � � iff � � � � � .� 	 � � � � � � � � � .

Right to left is trivial. Let � � � � � .� 	 � � � � � � � � � . Consequently,
� � � .� 	 � � � � for all

� � � . Choosing
��� � we get � � � .� 	 � � � � as

desired.
From left to right, let � � � .� 	 � � � � . We need to show � � � � � .� 	 � �� � � � � � � . We can do so by showing that � � � .� 	 � � � � for arbitrary� � � . Now � � � � � � � � � .� 	 � � � �
� � .� 	 	 � � � � � � � � � 	 	 � � � � �

	 � � � � � � using ( .� 1) for the former part and ( .� 6) for the latter. It follows
by (

.� 8c) and (
.� 6) that � .� 	 � � � � � � 	 	 � � � � � 	 � � � � � . Therefore,

� � � .� 	 	 � � � � � 	 � � � � � . From our initial supposition and (
.� 2), � � �

giving by (
.� 5) and (

.� 1) that 	 � � � � � � � � � .� 	 � � � � � . Consequently
� � � .� 	 � ��� � � by ( .� 1). It therefore follows by ( .� 7) and our previous
reasoning that � � � .� 	 	 	 � � � � � 	 � � � � � � 	 � � � � � � . Hence, by ( .� 6)
� � � .� 	 � � � � as desired. �

OBSERVATION 6. If .� is an AGM contraction function, then ..� as obtained
by (Def ..� from .� ) is a severe withdrawal function revision equivalent to .� ,
and � ..� � � � .� � for all ��� � .

Proof. Let .� be an AGM contraction function and ..� be obtained from .�
via (Def

..� from
.� ). We first show that

..� is a severe withdrawal function.
(By Lemma 5, (Def

..� from
.� ) and (Def

� ..� from
.� ) are equivalent so we

can make use of both definitions to simplify the proof.)
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(
..� 1) If �� � , then � ..��� � � � � .� 	 � � � � � � � � � by (Def

� ..� from
.� ).

Since � .� 	 � � � � is a theory for every
� � � by (

.� 1), then clearly � ..� � is
too. Otherwise,

� � in which case � ..� ��� � and again � ..� � is a theory.
( ..� 2) If �� � , then � ..��� � � � � .� 	 � � � � � � � � � by (Def

� ..� from .� ).
Since � .� 	 � � � � � � for all

� � � by ( .� 2) clearly � ..� � � � . Otherwise,� � and by (Def
� ..� from .� ) � ..� � � � therefore � ..� � � � trivially.

( ..� 3) If
� � , � ..� � � � by (Def ..� from .� ) and the desired result follows

trivially. Otherwise, �� � and � �� � . Then � ..� � � � � � .� 	 � � � � � � � � �
by (Def ..� from .� ). Since � �� � , then � � � �� � for all

� � � . Therefore
� � � .� 	 � � � � for all

� � � by ( .� 3). Hence �
� � ..� � as desired.

( ..� 4) Let �� � . Now � �� � .��� by ( .� 4). It follows by ( .� 6) that � ��
� .� 	 � � � � . Therefore, � �� � ..� � by (Def ..� from .� ).

( ..� 6) Follows trivially using ( .� 6).
(
..� 7a) Let �� � . Suppose � � � ..� � . Then via (Def

..� from
.� ) � �

� .� 	 � � � � . It follows by (
.� 7) that � � � .� 	 	 � � � � � � � . (Actually this last

part follows more directly from condition (
.� P) � .��� � Cn 	 � � � � .� 	 � � � �

— with �
� � � � and

� � �
— which is equivalent to ( .� 7) [1, Observa-

tion 3.3 p. 516]). Hence � � � .��� � � by ( .� 6) and (Def ..� from .� ).
( ..� 8) Let � �� � ..� 	 � � � � . We need to show that � ..� 	 � � � � � � ..� � . If� � , then � ..� ��� � by (Def ..� from .� ) and � ..� 	 � � � � � � by ( ..� 2) which

was shown above to hold. Therefore, it follows directly that � ..� 	 � � � � �
� ..� � . Otherwise �� � . Therefore, by (Def ..� from .� ) � ..� 	 � � � � � � � �

� � � .� 	 	 � � � � � � � � and � ..��� � � � � � � � .� 	 � � � � � . Suppose
� � � ..� 	 � � � � . We need to show that � � � ..��� and can do so by showing
that � � � .� 	 � � � � . Since � � � ..� 	 � � � � we have � � � .� 	 	 � � � � � � � ( � )
by (Def ..� from .� ). It follows that � � � �� � .� 	 	 � � � � � � � by ( .� 4) and ( .� 8)
subsequently gives � .� 	 	 � � � � � � � � � .� 	 � � � � (#). Our initial assumption
that � �� � ..� 	 � � � � and (Def

..� from
.� ) give � �� � .� 	 	 � � � � � � � which

by (
.� 6) means � �� � .� 	 � � � � . Using the contrapositive of (#) we get that

� �� � .� 	 	 � � � � � � � and (
.� 1) then gives � � � �� � .� 	 	 � � � � � � � .

Applying ( .� 8) again (and an application of ( .� 6) to the left-hand-side) we
see that � .� 	 	 � � � � � � � � � .� 	 � � � � . It therefore follows from ( � ) that
� � � .� 	 � � � � as required.

We now show that .� and ..� are revision equivalent. That is, we show that
� .� � � � ..� � . Now � .� � � Cn 	 � .� � � � � ��� � and � ..� � � Cn 	 � ..� � � �� ��� � by the Levi identity. We first prove left to right holds. Suppose � �
� .� � . Then � � � � � .� � � by the Levi identity, Deduction Theorem and
( .� 1). Now

� � � � � 	 � � � �  	 � � so by ( .� 6), � � � � � .� 	 � � � 	 � �
� � � ( � ). We consider two cases : (a) �� � � ; and, (b)

� � � . In the former
case, it follows by (Def ..� from .� ) and ( � ) that � � � � � ..� � � . Using the
Deduction Theorem, � � Cn 	 � ..� � � � � ��� � . Hence � � � ..� � as required.
In the latter case � .� � ��� � � � ..� � � by (

.� 1) and (
.� 5) and (Def

..� from
.� ) respectively. It follows that � � � � � ..� � � and consequently � � � ..� �
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via applications of the Deduction Theorem and the Levi identity as required.
Right to left is similar.

It remains to show that � ..��� � � .� � . This follows straightforwardly
from the result by Makinson [23, Observation p. 389] however we include
a proof in terms of our own definitions. Suppose � � � ..� � . If

� � , then
� ..� � � � � � .��� by (Def ..� from .� ) for the former part and ( .� 1) and
( .� 5) for the latter and the result follows trivially. Otherwise �� � . Now � �
� .� 	 � � � � by (Def ..� from .� ). By ( .� 8c) � .� 	 � � � � � � .� � . Therefore
� � � .� � as desired. �

OBSERVATION 7. Let .� be an AGM contraction function. Then the severe
withdrawal function ..� defined from .� by definition (Def ..� from .� ) is the
smallest withdrawal function in terms of set-theoretic inclusion satisfying
postulate ( .� 8c) which is revision equivalent to .� .

Proof. Let .� be an AGM contraction function and ..� defined from .� via
(Def ..� from .� ). Let � be any withdrawal function satisfying ( .� 8c) which is
revision equivalent to .� (and therefore ..� also by Observation 6). We need to
show that � ..��� � � � � .

Suppose
� � � ..� � . If

� � , then � ..����� � .� � � � (the former by
( ..� 3) which is satisfied by Observation 6 and the latter by ( .� 1) and ( .� 5)).
Since � satisfies Failure � � � � � and

� � � � � as desired. Otherwise,
�� � . By (Def ..� from .� ),

� � � .� 	 � � � � so by the Levi identity � � � � �
� .� � 	 � � � � � � .� � 	 � � � � . By the revision equivalence of .� and � (and
..� ), � � � � � � � � 	 � � � � where � is defined from � via the Levi identity.
Using the Levi identity again, � 	 � � � � � 	 � � � � � � � � 	 � � � � . That
is, by (

.� 1),
� � � � 	 � � � � . But then by (

.� 8c), � � 	 � � � � � � � � .
Hence

� � � � � as required. �

OBSERVATION 8. Let .� be an AGM contraction function. Then the with-
drawal function ...� defined from .� by definition (Def ...� from .� ) is the smallest
withdrawal function which is revision equivalent to .� .

Proof. Let .� be an AGM contraction function and ...� defined from .� via
(Def ...� from .� ). We first verify that ...� is a withdrawal function (i.e., satisfies
( .� 1) – ( .� 4) and ( .� 5)).

( .� 1) If � � � and �� � , we have � ...����� Cn 	 � � � � .��� by (Def ...� from
.� ) which is obviously closed by ( .� 1) and the properties of Cn . Otherwise,
� �� � or

� � by (Def
...� from

.� ). Again � ...��� is closed.
(

.� 2) If � �� � or
� � (Def

...� from
.� ) gives � ...� � � � in which case

the desired result follows trivially. Otherwise, � � � and �� � so � ...� � �
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Cn 	 � � � � .� � by (Def
...� from

.� ). Now by (
.� 2) � .� � � � so clearly

Cn 	 � ��� � .� � � � and therefore � ...� � � � .
( .� 3) Let � �� � . By (Def ...� from .� ) � ...��� � � and �

� � ...� � follows
trivially.

( .� 4) Let �� � . If � �� � , then by (Def ...� from .� ) � ...� � � � so � �� � ...� � .
Otherwise, � � � and � ...� � � Cn 	 � � � � .� � by (Def ...� from .� ). However,
� �� � .� � by ( .� 2) and therefore � �� Cn 	 ���� � .� ��� � ...��� .

( .� 6) Let
� � 	 �

. If � �� � and
� � then clearly

� �� � and
� �

. By
(Def ...� from .� ) we have � ...����� � � � ...� � as desired. Otherwise ��� �
and �� � . Clearly then

� � � and �� � . Now � ...� � � Cn 	 � � � � .� � and
� ...� � � Cn 	 � ��� � .� � . Moreover, Cn 	 � � � Cn 	 � � by our supposition at
the outset and � .� � � � .� � by ( .� 6). Hence � ...� � � Cn 	 � � � � .� � �
Cn 	 � ��� � .� � � � ...� � as desired.

(Note: it is easily shown that
...� satisfies Failure also.)

Next we show that ...� and .� are revision equivalent. Left to right. Suppose
� � � ...� � . Then � � � � � ...� � � by the Levi identity, Deduction Theorem
and ( .� 1) (which has been shown above to hold). If � � �� � or

� � � , then
� ...� � � � � by (Def ...� from .� ) and � .� � � � � by ( .� 2) and ( .� 3)/( .� 1)
and ( .� 5). Therefore, � � � � � .� � � and � � � .� � by the Deduction
Theorem and the Levi identity. Otherwise, � � � � and

� � � . By (Def
...�

from
.� ), � ...� � � � Cn 	 � � � � � .� � � and again it follows that � � � �

� .� � � whereby we proceed as above.
Right to left. Suppose � � � .� � � . Then � � � � � .� � � by the Levi

identity, Deduction Theorem and ( .� 1). If � � �� � or
� � � , then � ...� � ���

� � � .� � � as above and therefore � � � � � ...� � � whereby the Deduc-
tion Theorem and the Levi identity give � � � ...� � . Otherwise, � � � � and� � � . Now clearly � � � � Cn 	 � �� . So � � � � Cn 	 � � � � � .� � � and
by (Def ...� from .� ) � � � � � ...� � � . Hence by the Deduction Theorem and
the Levi identity � � � ...��� as desired.

Finally, we show that ...� is the smallest withdrawal function revision equiv-
alent to .� . Suppose

� � � ...��� . We need to show that
� � � � � for any

withdrawal function � revision equivalent to .� . Now
� � � by ( .� 2) which

...� was shown to satisfy above. If
� � or � �� � , then � .��� � � by ( .� 1)

and (
.� 5)/(

.� 2) and (
.� 3). Since � satisfies Failure and (

.� 2) and (
.� 3) (since

it is a withdrawal function) � � ��� � and
� � � � � as desired. Other-

wise, �� � or � �� � . By (Def ...� from .� ),
� � Cn 	 � � � � .� � . Therefore,� � Cn 	 � � (i.e., � � � ) and

� � � .� � . It follows that � � � � � � .� � � �
Cn 	 � .��� ��� � ��� � . The revision equivalence of of .� and � (and ...� ) gives� � � � � � � � � . That is, � � � � � Cn 	 � � � � � � ��� � and the Deduction
Theorem and ( .� 1) give � � � 	 � � � � � � � � � . By ( .� 1) again we obtain
� � � � � � � but since � � � we have

� � � � � as required. �

OBSERVATION 9. If ..� is a severe withdrawal function, then .� as obtained
by (Def

.� from
..� ) is an AGM contraction function, and � ..� � � � .� � for
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all ��� � .

Proof. Let ..� be a severe withdrawal function and .� be obtained from ..�
via (Def .� from ..� ).

We first show that .� is an AGM contraction function.
( .� 1) In the case that �� � , we have � .� � � � � Cn 	 � ..��� � � � ��� � by (Def

.� from ..� ) which is obviously closed by the properties of Cn . Otherwise,
� �

and � .� � � � by (Def .� from ..� ). Again, � .��� is closed.
( .� 2) If

� � , then � .� � � � by (Def .� from ..� ) and so obviously � .� � �
� . Otherwise, �� � and (Def .� from ..� ) gives � .� � � � � Cn 	 � ..��� �� � ��� � . Clearly � .� ��� � � Cn 	 � ..� � � � � ��� � � � so � .��� � � .

( .� 3) Let � � � . If
� � , then � .��� � � by (Def .� from ..� ) and �

�
� .� � . Otherwise,

� � and � .����� � � Cn 	 � ..��� � � � � � � . Now by (
..� 3)

we have �
� � ..� � and therefore, by monotonicity of Cn , �

�
Cn 	 � ..� � �� � ��� � . Hence � � � � Cn 	 � ..��� ��� � ��� � and consequently � � � .� �

as desired.
( .� 4) Let �� � . Then � .� � � � � Cn 	 � ..� � � � � ��� � by (Def .� from

..� ). Suppose � � � .� � . Then � � Cn 	 � ..� � ��� � ��� � by the monotonicity
of Cn . By the Deduction Theorem, and ( ..� 1) � � � � � � ..� � or, again by
( ..� 1), � � � ..� � contradicting ( ..� 4). It follows that � �� � .� � .

( .� 5) If �� � , then � .��� � � � Cn 	 � ..��� � � � ��� � . By (Def .� from
..� ). Suppose for reductio ad absurdum that there is a

� � � such that
� ��

Cn 	 � .��� � � ��� � . That is,
� �� Cn 	 	 � � Cn 	 � ..��� � � � � � � � � � � � � . By

the Deduction Theorem � � � �� Cn 	 � � Cn 	 � ..��� � � � ��� � � . Now either
� � � �� � or � � � �� Cn 	 � ..� � � � � � � � . In the former case we have
an immediate contradiction since

� � � implies � � � � � . In the latter
case we have � � � 	 � � � � �� � ..� � by the Deduction Theorem and (

..� 1).
Equivalently 
 �� � ..� � contradicting (

..� 1). Otherwise
� � in which case

� .� � � � and �
�

Cn 	 � � � ��� � � Cn 	 � .��� � � ��� � by monotonicity.
( .� 6) Let

� � 	 �
. Suppose �� � , then �� � . We have by (Def .� from ..� )

that � .� � � � � Cn 	 � ..� � � � � ��� � � � � Cn 	 � ..� � � � � � � � � � .� � .
Otherwise, �� � implying �� � and � .� � � � � � .� � by (Def .� from ..� ).

( .� 7) Suppose that �� � and �� � . We need to show that � .� � � � .� � �
� .� 	 � � � � . By (Def .� from ..� ) we have the following: � .� � � � �
Cn 	 � ..� ��� � � � � , � .� � � � � Cn 	 � ..� � � � � � � and � .� 	 � � � ���
� � Cn 	 � ..� � � � 	 � � � � � � . Suppose � � � .� � � � .� � . Then � � � .� �
and � � � .� � . So � � � by ( ..� 2) and � � Cn 	 � ..��� ��� � ��� � and
� � Cn 	 � ..� � � � � � � � by the monotonicity of Cn . By the Deduction The-
orem and ( ..� 1) � � � � � � ..� � and � � � � � � ..� � . We need to show
that � � � .� 	 � � � � . We can do so by showing that � � � and � �
Cn 	 � ..� 	 � � � � � � � 	 � � � � � � (i.e., by the Deduction Theorem, � 	 � � � � �
� � � ..� 	 � � � � or, equivalently, 	 � � � � � � 	 � � � � � � � ..� 	 � � � �
). By (

..� 7a) and our reasoning above we have that � � � � � � ..� 	 � � � �
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and � � � � � � ..� 	 � � � � . Therefore, by (
..� 1), 	 � � � � � � 	 � � � � � �

� ..� 	 � � � � as desired.
Otherwise, at least one of

� � , or
� �

holds. If both
� � and

� �
hold and

therefore
� � � � , (Def .� from ..� ) gives � .��� � � .� � � � � � � � �

� .� 	 � � � � with the result holding trivially. So assume only one of
� � , � �

holds. Without loss of generality, suppose
� � and �� � . Now � .� ��� � by

(Def .� from ..� ). It also follows by ( .� 2), which we have shown above to hold,
that � .� � � � . Therefore, � .��� � � .� � � � � � .� � � � .� � � 	 � � � �
(the last of these by ( .� 7a)).

( .� 8) Let � �� � .� 	 � � � � . If
� � � � , then (Def .� from ..� ) gives � .� 	 � �� � � � . It follows by our initial assumption that � �� � . But this contradicts

the fact that
� � � � so this case is not possible. Otherwise �� � � � . Moreover,

we can assume that �� � for, otherwise, � .� � � � by (Def .� from ..� ) and
the result follows directly via (

.� 2) which was shown above to hold. Suppose
now that � � � .� 	 � � � � . By (Def

.� from
..� ) we have � .� 	 � � � � � � �

Cn 	 � ..� 	 � � � � ��� � 	 � � � � � � . This latter fact, together with the Deduction
Theorem and ( ..� 1) give � 	 � � � � � � � � ..� 	 � � � � or, in other words
(again appealing to ( ..� 1)) 	 � � � � � � 	 � � � � � � � 	 � � � � (#). We also
know that either � �� � or � �� Cn 	 � ..� 	 � � � � � � � 	 � � � � � � using the
assumption at the outset of this proof. The former does not hold under our
current assumptions so the latter must hold and, via the Deduction Theorem
and ( ..� 1), we have � 	 � � � � � � �� � ..� 	 � � � � or, in other words � ��
� ..� 	 � � � � . Now ( ..� 8) and (#) give 	 � � � � � � 	 � � � � � � � ..� � . So,
in particular � � � � � � ..� � by ( ..� 1) and the Deduction Theorem gives
� � Cn 	 � ..��� � � � ��� � . Since � � � we have via (Def .� from ..� ) that
� � � .� � as required.

We now show that .� is revision equivalent to ..� . That is, we show that
� .� � � � ..� � . Now � .� � � Cn 	 � .� � � ��� ��� � and � ..� � � Cn 	 � ..� � � �� ��� � Left to right. Suppose � � � .� � � Cn 	 � .� � � � � � � � . Now � �

� � � .� � � by the Deduction Theorem and (
.� 1) which was shown above to

hold. We consider cases (a)
� � � ; and, (b) �� � � . In the former case, by (Def

..� from .� ) � .� � � � � and by ( .� 1) and ( .� 5) � ..� � � � � . Clearly then
� � � � � ..� � � and by the Deduction Theorem � � Cn 	 � ..� � � � � � � � �
� ..� � . In the latter case, we have � � � � � .� � � by the Levi identity and
( .� 1). Right to left. Now suppose � � � ..� � � Cn 	 � ..� � � � � ��� � . By the
Deduction Theorem and ( ..� 1) � � � � � ..� � � . We consider two cases (a)� � � ; and, (b)

� � � . In the former case, by (Def .� from ..� ) � .� � ��� � and
by ( ..� 3) � ..� � � � � . Clearly � � � � � .� � � and the Deduction Theorem
gives � � Cn 	 � .��� � � ��� � � � .� � .

Now, in the latter case, by (Def .� from ..� ) � .� � � � � � Cn 	 � ..� � � �� ��� � . By the monotonicity of Cn , � � � � Cn 	 � ..� � � � � ��� � and � � � �
� . Therefore, � � � � � .� � � by (

.� 2). Hence � � Cn 	 � .� � � � � ��� � �
� .� � by the Deduction Theorem and the Levi identity as desired.
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It remains to show that � ..� � � � .� � for all � . This follows straight-
forwardly from Makinson’s [23, Observation p. 389] result. However, we
include a proof in terms of our definitions here. Consider two cases. (a)

� � ;
and (b) �� � . In the former case, by (Def .� from ..� ) we have � .� � � �
and the result follows straightforwardly by ( ..� 2). In the latter case, by (Def .�
from ..� ) we have � .��� � � � 	 � ..��� � � � � � � . Now suppose � � � ..� � .
Clearly � � � by ( ..� 2) and � � Cn 	 � ..� � ��� � ��� � by monotonicity of Cn .
It therefore follows that � � � .� � . �

OBSERVATION 10. (i) If we start with an AGM contraction function .� ,
turn it into a severe withdrawal function ..� by (Def ..� from .� ) and turn the
latter into an AGM contraction function .� � by (Def .� from ..� ), then we end
up with .� � � .� .

(ii) If we start with a severe withdrawal function ..� , turn it into an AGM
contraction function

.� by (Def
.� from

..� ) and turn the latter into a severe
withdrawal function

..� � by (Def
..� from

.� ), then we end up with
..� � � ..� .

Proof. Let .� , ..� and .� � be defined as in the statement above.
(i) Left to right. Suppose � � � .� � . We need to show that � � � .� � � .

If
� � , then � .��� � � ..� � � � and � .� � � � � by ( .� 1) and ( .� 5), (Def

..� from .� ) and (Def .� from ..� ) respectively. Otherwise �� � . By (Def ..�
from .� ) � ..� ��� � � � � � � .� 	 � � � � � and by (Def .� from ..� ) � .� � ���
� � Cn 	 � ..��� � � � ��� � . Since � � � .��� we have � � � � � .� � by ( .� 1).
Using ( .� 6) we have � � � � � .� 	 � � 	 � � � � � and so � � � � � ..� �
by (Def ..� from .� ). That is, by ( ..� 1) (which is satisfied by Observation 6),� � � � � � ..� � . The Deduction Theorem gives � � Cn 	 � ..��� � � � ��� �
and by (

..� 2) � � � . Hence � � � .� � � by (Def
.� from

..� ) as desired.
Right to left. Suppose � � � .� � � . If

� � we can reason exactly as above.
Otherwise �� � . Now � � � and � � Cn 	 � ..��� � � � ��� � by (Def

.� from
..� ). As a result of applying the Deduction Theorem and ( ..� 1) we have � � �

� � � ..� � . Therefore � � � � � � .� 	 � � 	 � � � � � � � � .� � (the former
part by (Def ..� from .� ) and the latter part by ( .� 6)). But ( .� 5) and ( .� 1) give
� � � � � .� � . Putting these together we get by ( .� 1) that � � � .��� as
required.

(ii) Let ..� , .� and ..� � be defined as in the statement above. If
� � we reason

along the lines of (i). Otherwise, �� � . Left to right. Suppose � � � ..��� . By
(Def .� from ..� ) � .� � � � � Cn 	 � ..��� � � � ��� � and by (Def ..� from .� )
� ..� � � � � � � � � � .� 	 � � � � � . Now clearly � � � by ( ..� 2). So we know
that � � � � � and �� � � � . We need to show that � � � ..� � � which we can
do, according to (Def ..� from .� ), by showing that � � � .� 	 � � � � . This we
can do, according to (Def

.� from
..� ) by showing that � � � � Cn 	 � ..� 	 � �� � ��� � 	 � � � � � � . We have already shown that � � � so it remains to show

that � � Cn 	 � ..� 	 � � � � ��� � 	 � � � � � � or equivalently, by the Deduction
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Theorem and (
..� 1), that � 	 � � � � � � � � ..� 	 � � � � . That is, by (

..� 1) again,
� � � ..� 	 � � � � . Since �� � and � � � ..��� , this fact follows by (

..� 7a).
Right to left. Suppose � � � ..� � � . Now � � � .� 	 � � � � by (Def ..� from

.� ). By (Def .� from ..� ) � � � and � � Cn 	 � ..� 	 � � � � ��� � 	 � � � � � � .
The latter gives � 	 � � � � � � � � ..� 	 � � � � by the Deduction Theorem and
( ..� 1). Therefore � � � ..� 	 � � � � . Hence by ( ..� 4) � �� � ..� 	 � � � � and by
( ..� 8) � � � ..� � as required. �

LEMMA 11. If ..� is a severe withdrawal function, then the two conditions
(Def � from .� ) and (Def � from ..� ) are equivalent.

Proof. In the case where
� � both constructions give the sphere � �� . (For

the right-hand-side use ( ..� 2) and ( ..� 3) and Lemma 0(v)). Therefore, we have
to show that � � � � ..� � �� � �  � � �  � � � � ..��� 
whenever �� � .

Left to right. Suppose
� � � � � � ..� �  � � �  � � �  � . Then

� � � � ..� � 
for some � �  � � �  . We need to show that

� � � � ..� �  . By (
..� 4) � �� � ..� � .

Now since � �  � � �  we have
� � � so, by (

..� 1),
� �� � ..� � . Using (

..� 9) we
have � ..��� � � ..� � . In other words, � � ..� �  � � � ..� �  by Lemma 0(v)) as
desired.

Right to left. Suppose
� � � � ..� �  . We need to show

� � � � ..� �  for
some � �  � � �  . The result follows directly by choosing

�
to be � . �

LEMMA 12. � , ��� , ��� and ��� � are all equivalent.

Proof. If
� � , then by (Def � � ) we have � � 	 � � � � � ��� 	 � � � � � ��� 	 � � � �

� ���� 	 � � � � � �� and by (Def
..� from � ) � ..� � � � � ..� ��� � � � ..� ��� � �

� ..� � �� � . This fact can also be used to show � � 	 � � � � � ��� 	 � � � � � ��� 	 � � � �
� ���� 	 � � � and so, by (Def .� from � ), � .� � � � � .� ��� � � � .� ��� � �
� .� ���� � .

Therefore we consider the case where �� � . Now by ( � 4) (and (Def � � ))
� � 	 � �� exists. It follows directly by the definition of � � that � � 	 � � � �
� ��� 	 � � � .

We now want to show that � � 	 � � � � � ��� 	 � � � . Suppose to the contrary.
Without loss of generality, since any sphere in � is also in � � by definition,
suppose that � � 	 � � ��� � ��� 	 � � � . That is, there is some

� � ��� such that� � � � �  �� � and
� � � � � . By definition of ��� this means that there is some� � � �

and
� � � � and

� � � � � 	 � � � . But this contradicts the definition
of � � 	 � � � via (Def � � ). Hence � � 	 � � � � � ��� 	 � �� . By (Def

..� from � )
and using Lemma 0(iv) we get � ..� � ��� � ..� � � ��� � ..� � � � . We can show
� .� � ��� � .� ��� � � � .� ��� � . in similar fashion.
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It now remains to consider � .� ���� � and � ..� ���� � . We begin by showing
that 	�
 	 � 	�
 	 � �  � � 	�
 	 � � for

� � � � (*). Right to left. Suppose � � 	�
 	 � � .
Now � 	�
 	 � �  � ��� � � � � 	�
 	 � � � � � . Since � � 	�
�� 	 � � , then � � �
for all

� � � 	
 	 � �  . Therefore � � � � 	
 	 � �  and hence � � 	�
 	 � 	�
 	 � �  � as
desired. Left to right. Suppose � � 	�
 	 � 	�
 	 � �  � . Further, suppose for reduc-
tion that � �� 	�
 	 � � . Then there is some

� � � � such that 	�
 	 � � � � and� � � � by Lindenbaum’s lemma. It follows that
� � � 	
 	 � �  . Consequent-

ly, � �� � � 	
 	 � �  � 	�
 	 � 	�
 	 � �  � contradicting our initial supposition. Hence
� � 	�
 	 � � as desired.

Now 	�
 	 � � � � 	 � �� � � 	�
 	 � 	 � � 	 � � � �  � � � �  � by the definition of � �
� and
the definition of ��� . By Lemma 0(iii) 	
 	 � 	 � � 	 � � � �  � � � �  � � Cn 	 	
 	 � 	
 	 � � 	 � � � �  � �� � ��� � . Using (*) we have that 	
 	 � 	
 	 � � 	 � � � �  � � 	
 	 � � 	 � � � � . There-
fore Cn 	 	�
 	 � 	�
 	 � � 	 � � � �  � � � � ��� � � Cn 	 	
 	 � � 	 � � � � � � � ��� � and by
Lemma 0(iii) again Cn 	 	�
 	 � � 	 � �� � ��� � ��� ��� 	
 	 � � 	 � � � � � � �  � . But
this latter part is just 	�
 	 � � 	 � � � � . Therefore 	
 	 � � � � 	 � � � � � 	�
 	 � � 	 � �� � .
We want to show 	
 	 � �� � � � 	 � �� � � 	�
 	 � �� � � � � � 	 � � � � . Left to right.
Now suppose

� � 	�
 	 � �� � � � 	 � �� � . Then
� � � 	 � �� � � � 	 � � � � by

definition. That is,
� � �

for all m � � �� � ��� 	 � � � so
� � �

for all� � � �� and
� � ��� for all

��� � � � 	 � �� . It follows that
� � 	�
 	 � � 	 � �� � .

Consequently, by the above, 	
 	 � � � � 	 � � � � . Therefore
� � � for all

� �
� � � � 	 � � � and it follows that

� � � for all
� � � �� � � � � � 	 � � � . As a result� � 	
 	 � �� � � � � � 	 � � � � . Right to left is proved similarly. Hence by (Def .�

from � ) � .� � � � � � � .� � � . Together with the results above we now have
� .� � ��� � .� ��� � � � .� ��� ��� � .� � � � � .

Now 	�
 	 � � � � 	 � � � � � 	�
 	 � 	�
 	 � � � �  � and using (*), as above, we have
	�
 	 � 	�
 	 � � � �  � � 	�
 	 � � � . Therefore 	
 	 � � � � 	 � � � � � 	�
 	 � � 	 � � � � and by (Def
..� from � ) we get � ..� � � � � � � ..� � � . Together with the results above we
now have � ..� � ��� � ..� � � ��� � ..� � � � � � ..� � � � � .

�

OBSERVATION 13. Let .� and ..� be corresponding AGM contraction and
severe withdrawal functions either via (Def ..� from .� ) or via (Def .� from ..� ).
Then .� and ..� lead to equivalent systems of spheres, via (Def � from .� ) and
(Def � from ..� ). More precisely, the system of spheres obtained from ..� is the
topological closure of that obtained from .� .

Proof. Consider the second Lewis-Grovean construction of � 	 .� � , given
by

(Def
� � from .� ) ��� �

� � � � � .� 	 � � � �  � � � � � whenever �� �
� �� otherwise

and compare it with the construction we get using (Def � from
..� ) and (Def

..� from
.� ):
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� 	 � 	 .� � � : � �� � � � ..� �  �
� � � � � .� 	 � � � � � � � � �  whenever �� �
� �� otherwise

In order to show that � 	 � 	 .� � � is the topological closure of � 	 .� � , we
prove for each � that � �� is the topological closure of � � , i.e., � �� � � 	
 	 ��� �  .
Our claim is that

� � � � .� 	 � � � � � � � � �  � � 	
 	 � � � � .� 	 � � � � �� � � � � � 
Now

�
is in the right-hand side iff

�
satisfies � 	 � � � � .� 	 � � � � �� � � � � � .

This means that

(i)
�

satisfies all � which are satisfied by all
� �

that are in � � .� 	 � � � � 
for some

� � � .

We are done if we can show that this is equivalent to
�

’s being in the left-
hand side which can be reformulated thus:

(ii)
�

satisfies all � which are contained in � .� 	 � � � � for all
� � � .

To see that (i) and (ii) are equivalent, we finally show that (iii) and (iv) are
equivalent:

(iii) � is satisfied by all
� �

that are in � � .� 	 � � � �  for some
� � � .

(iv) � is contained in � .� 	 � � � � for all
� � � .

That (iv) entails (iii) is trivial for if � is contained in all � .� 	 � � � � , then
all
���

that are in some � � .� 	 � � � �  satisfy � . To see that (iii) entails (iv),
suppose that (iv) is not true, i.e., that there is a

�
such that � �� � .� 	 � � � � .

Then � .� 	 � � � � ��� � � � is consistent, so there is an
��� �

such that � .� 	 � �� � � � � � � � � � � , which means that (iii) is not true.
In sum, then, we have shown that � 	 � 	 .� � � � 	 � 	 .� � � � � .
Whereas the construction just considered starts from an AGM contraction

function .� , we might just as well start from a severe withdrawal function ..� ,
without changing the result. We know that .� � � 	 ..� � is an AGM contraction,
so by the result just proved, we get 	 � 	 � 	 ..� � � � ��� � � 	 � 	 � 	 ..� � � � , but the
latter is, by Observation 10(ii), identical with � 	 ..� � . �

OBSERVATION 15. (i) If � satisfies ( � 1) – ( � 4), then the function ..�
obtained from � by (Def ..� from � ) is a severe withdrawal function.
(ii) If ..� is a severe withdrawal function, then ..� can be represented as a
sphere-based withdrawal, where the sphere system � on which ..� is based
is obtained by (Def � from

.� ) (or equivalently, by (Def � from
..� )) and �

satisfies ( � 1) – ( � 4).

Proof. (i) Let � satisfy ( � 1) – ( � 4) and
..� be obtained by (Def

..� from
� ). We need to show

..� is a severe withdrawal function (i.e., satisfies (
..� 1) –

(
..� 4), (

..� 6), (
..� 7a) and (

..� 8)).
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(
..� 1) Directly by (Def

..� from � ) and definition of function 	�
 (see Section
3).

( ..� 2) By (Def ..� from � ) we need to show 	�
 	 � � 	 � �� � � � . Now, if
� � ,

then by (Def � � ) we have � � 	 � �� � � �� . So Lemma 0(i) gives 	
 	 � � 	 � � � � �
	�
 	 � �� � � � and the result holds trivially. Otherwise �� � and by ( � 2) we
have that � �� is the

�
-minimum of � (i.e., � �� � � � 	 � � � ). So by (Def � � )

and Lemma 0(iv) the result is established.
( ..� 3) Let � �� � or

� � . In the latter case, using (Def � � ), (Def ..� from � )
and Lemma 0(i) we have that � ..����� � and the result ensues directly. In the
former case and supposing �� � we have that � � �  � � �� �� � . Therefore ( � 2)
and (Def � � ) give � � 	 � � �
� � �� and by (Def ..� from � ) and Lemma 0(i) we
have � ..� � � � from which the desired result is obtained.

( ..� 4) Let �� � . By definition of � � 	 � � � , � � �  � � � 	 � �� �� � . Therefore,
using Lemma 0(iv) and (Def

..� from � ) we have � �� 	
 	 � � 	 � � � � � � ..��� .
(
..� 6) Let Cn 	 � � � Cn 	 � � . Then � �  � � �  . If

� � , then
� �

and � ..� � �
	�
 	 � �� � � � ..� � . Otherwise �� � and �� � . However � � 	 � � � � � � 	 � � � .
Therefore � ..� � � 	�
 	 � � 	 � � � � � 	�
 	 � � 	 � � � � � � ..� � .

( ..� 7a) Let �� � . We need to show that � ..��� � � ..� 	 � � � � . By (Def ..�
from � ), we need to show that 	
 	 � � 	 � � � � � 	
 	 � � 	 � 	 � � � � � � . That is,
by Lemma 0(iv), � � 	 � 	 � � � � � � � � 	 � � � or, equivalently, � � 	 � � ��� � � �
� � 	 � �� . Since �� � , then �� � � � . Now � � �  � � � � � � �  � � � �  � � � �  , so
clearly � � 	 � � ��� � � � � � 	 � � � as desired.

( ..� 8) Let � �� � ..� 	 � � � � . By (Def ..� from � ), we have � ..����� 	�
 	 � � 	 � � � � �
and � ..� 	 � � � � � 	
 	 � � 	 � 	 � � � � � � . Since � �� � ..� 	 � � � � � 	�
 	 � � 	 � 	 � �� � � � � 	�
 	 � � 	 � � � � � � � , then � � 	 � � � � � � � � � �  �� � . Therefore � � 	 � � � �
� � 	 � � � � � � and 	�
 	 � � 	 � � � � � � � � 	�
 	 � � 	 � � � � by Lemma 0(iv). Thus
� ..� 	 � � � � � � ..� � as desired.

(ii) Let
..� be a severe withdrawal function (i.e., satisfies (

..� 1) – (
..� 4),

(
..� 6), (

..� 7a) and (
..� 8)) and let � be obtained from

..� by (Def � from
.� ) or,

equivalently, (Def � from
..� ). We have to verify that (a)

..� � obtained from �
using (Def ..� from � ) is identical to ..� and (b) that � satisfies the conditions
for a system of spheres (i.e., ( � 1) – ( � 4)).

We prove (b) first as part of it will be useful in shortening the proof of (a).
(b) We verify that � is indeed a system of spheres centred on � �� .
( � 1) The nestedness of spheres follows directly from (Def � from ..� ) and

Lemma 2(i).
( � 2) That � �� is a sphere follows via (Def � from ..� ) and Lemma 0(v))

setting �
� 
 (or any

� � � such that
� �

) since by ( ..� 3) and ( ..� 2) we have
� ..� 
 � � . That � �� is the

�
-minimal sphere then follows by (Def � from

..� ) using ( ..� 2) and Lemma 0(v)).
( � 3) That � � is a sphere follows directly by our constructions as we

include it as a sphere.
( � 4) Let �� � � . We need to show that there is a sphere � � � such

that � � � �  �� � and 	 � � �  �� � implies � � 	 for all 	 � � . We
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show that � � � � ..� � �  satisfies this condition. Since �� � � , then by (
..� 4)� � �� � ..� � � so clearly � � ..� � �  � � �  �� � . Now suppose for reductio there

is some 	 � � such that 	 � � �  �� � and � �� 	 (i.e., 	 � � by ( � 1)
which has been shown above to hold). That is, by (Def � from ..� ), there is
some

� � � such that � � ..� �  � � �  �� � and � � ..� �  � � � ..� � �  . Since
� � ..� �  � � �  �� � , then � � �� � ..� � . It follows by ( ..� 9) that � ..� � � � ..� � �
or, in other words, by Lemma 0(v)) � � ..� � �  � � � ..� �  contradicting the
above.

The proof of ( � 4) actually shows that, for �� � � , � � 	 � � � � � ..� � �  (or,
equivalently, that �� � implies � � 	 � � � � � � ..���  ) which can be conveniently
used in the proof of (a).

(a) Whenever
� � , then � ..��� � � by ( ..� 2) and ( ..� 3). Also, � � 	 � � � �

� �� by (Def � � ) and consequently � ..� � � � � by (Def ..� from � ) and Lem-
ma 0(i). Hence � ..����� � ..� � ��� � .

Consider, then, the case where �� � .
Left to right. Suppose

� � � ..� � . We need to show
� � � ..� � � . Now

clearly � � ..���  � � �  . By following the proof of ( � 4) we get � � ..���  is
a sphere and � � 	 � � � � � � ..���  . Therefore, � � 	 � �� � � �  . Hence

� �
	�
 	 � � 	 � �� � and by Lemma 0(iv))

� � � ..� � � by (Def ..� from � ) as desired.
Right to left. (The proof follows essentially be reversing that for the pre-

vious case.) Suppose
� � � ..� � � . We need to show

� � � ..��� . Since
� �

� ..� � � , then
� � 	�
 	 � � 	 � � � � by (Def ..� from � ). Therefore, � � 	 � � � � � �  .

Now � � 	 � � � � � � ..� �  according to the proof of ( � 4). Hence � � ..���  � � � 
and thus

� � � ..� � as desired. �

LEMMA 16. If ..� is a severe withdrawal function, then the two conditions
(Def

�
from .� ) and (Def

�
from ..� ) are equivalent.

Proof. We have to show that

� �� � ..� 	 � � � � or
� 	 � � � �

holds just in case
� �� � ..� � or

� �
holds. To show that the former implies the latter, let � �� � .� 	 � � � � or� 	 � � � � and assume that �� � . Hence �� 	 � � � � . Then � �� � .� 	 � � � � .
Since �� � , we get � ..� � � � ..� 	 � � � � , by ( ..� 7a). So since ���� � ..� 	 � � � � ,
� �� � ..� � , as desired.

For the converse, let � �� � .� � or
� �

. From the former, we know that
�� � , by ( ..� 1). Now if

� �
, then � �� � ..� � � � ..� 	 � � � � , by ( ..� 4) and ( ..� 6).

So let �� � and thus � �� � ..� � . Assume for reductio that � � � ..� 	 � � � � .
Then by (

..� 8c) � ..� 	 � � � � � � ..� � . But then, since ���� � ..� � , we get that
� �� � ..� 	 � � � � , and we have a contradiction. Hence � �� � ..� 	 � � � � , as
desired. �
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OBSERVATION 17. Let
.� and

..� be corresponding AGM contraction and
severe withdrawal functions either via (Def

..� from
.� ) or via (Def

.� from
..� ).

Then .� and ..� lead to identical entrenchment relations, via (Def
�

from .� )
and (Def

�
from ..� ).

Proof. Let .� and ..� be corresponding AGM contraction and severe with-
drawal functions either via (Def ..� from .� ) or (Def .� from ..� ). It follows from
Observation 10 that it does not matter which of these definitions we apply.

Let
�

be the epistemic entrenchment relation that arises from .� via (Def�
from .� ) and

� �
be the epistemic entrenchment relation arising from ..� via

(Def
�

from ..� ).
We first show � � �

implies � � � �
. Suppose � � �

. Now � �� � .� 	 � �� � or
� � � � by (Def

�
from

.� ). In the former case (and assuming �� �
otherwise the result is trivial) � �� � ..� � by (Def

..� from
.� ). In the latter

case, surely
� �

. In either case, � � � �
by (Def

�
from

..� ).
We now show � � � �

implies � � �
. Suppose � � � �

. Then � �� � ..� �
or
� �

by (Def
�

from ..� ). If
� � , then the former case is not possible by

( ..� 1) and the latter case gives
� � � � whereby � � �

follows by (Def
�

from .� ).
Now let �� � . Consider first the case where � �� � ..� � . By ( ..� 4) � ��

� ..� � . Now it follows by Lemma 2(ii) that � �� � ..� 	 � � � � . Equivalently,� 	 � � � � � � �� � ..� 	 � � � � and consequently, by the Deduction Theorem,
� �� Cn 	 � ..� 	 � � � � � � � 	 � � � � � � . Therefore � �� � � Cn 	 � ..� 	 � � � � �� � 	 � � � � � � and by (Def .� from ..� ) � �� � .� 	 � � � � whereby � � �
follows by (Def

�
from .� ). Consider now the case where

� �
. Then

� �
� .� 	 � � � � by ( .� 1) which we know to hold by Observation 9 and therefore
� �� � .� 	 � � � � (

.� 4) (again, this holds by Observation 9). (Def
�

from
.� )

now gives � � �
as desired. �

OBSERVATION 19. (i) If
�

satisfies (E1) – (E5), then the function ..�
obtained from

�
by (Def ..� from

�
) is a severe withdrawal function.

(ii) If ..� is a severe withdrawal function, then ..� can be represented as an
entrenchment-based withdrawal where the relation

�
on which ..� is based

is obtained by (Def
�

from .� ) (or equivalently, by (Def
�

from ..� )), and
�

satisfies (E1) – (E5).

Proof.
(i) Assume that

�
satisfies (E1) – (E5) and let � ..� � � � � � � � � �

� �
when � � � and �� � , and � ..��� � � otherwise. We have to verify that ..�
satisfies the postulates for severe withdrawals.

(
..� 1) Let � ..��� � � . We want to show that

� � � ..� � . The case where
� ..� � � � is trivial, since � is a theory. So let � � � and �� � . By compact-
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ness, there are � � ������� � ��� � � ..� � � � such that � � � ����� � ��� � � . Since �
is a theory, � � � ����� � ��� and

�
are in � . So it remains to show that � �

�
. By

repeated application of (E3), there is an
�

such that ��� � � � � ����� � ��� . Since
��� is in � ..��� , we have � � ��� . Hence, by the transitivity condition (E1),
� � � � ������� � ��� . But � � � ����� � ��� � � , so by (E2), � � � ����� � ��� � �

.
Hence, by (E1) again, � �

�
, so
�

is in � ..� � .
( ..� 2) and ( ..� 3) are immediate from (Def ..� from

�
).

( ..� 4) Assume for reductio that �� � and � � � ..��� . By the latter and (Def ..�
from

�
), we get � � � . So by (Def ..� from

�
) again, � � � , that is � � �

and � �� � which is impossible.
( ..� 6) If Cn 	 � � � Cn 	 � � , then � � � iff

� � � , and �� � iff �� � . It
remains to show that � � � iff

�
� � , for all � . But this follows from � � �

and
� � � , which is implied by (E2), and transitivity, (E1).

(
..� 7a) Let �� � , and thus �� 	 � � � � . If � � � �� � , then � ..��� � � �

� ..� 	 � � � � by (Def
..� from

�
). If � � � � � , and thus � � � , we need

to show that � � � implies � � � � � for all � . But from (E2), we get
� � � � � , so the claim follows by transitivity, (E1).

( ..� 8) Let � �� � ..� 	 � � � � . Hence �� � , by (E1), and also �� 	 � � � � . If
� �� � , so � ..� 	 � � � � � � � � ..� � by (Def ..� from

�
). So let � � � .

Hence � ..� 	 � � � � �� � , so � � � � � . Hence � �� � ..� 	 � � � � means that
� � � �� � . Now assume that � � � ..� 	 � � � � , i.e., � � � � � . We need
to show that � � � . But since � � � � � , by (E2), � � � �� � means that
� � � � � . From this and � � � � � , we get by transitivity (E1) that � � �
and therefore

� � � ..� � by (Def ..� from
�

), as desired.

(ii) Assume that ..� satisfies ( ..� 1) – ( ..� 4), ( ..� 6), ( ..� 7a), ( ..� 8), and let � �
�

if and only if � �� � ..� � or
� �

. (That is, we use Lemma 16 and base
the following on (Def

�
from

..� ) rather than directly on (Def
�

from
.� ).)

We have to verify (a) that the withdrawal function ..� � obtained from
�

with
the help of (Def ..� from

�
) is identical with ..� , and (b) that

�
satisfies the

defining conditions for epistemic entrenchment.
(a) Using the definition (Def ..� from

�
) we get that

� � � ..� � � iff

� � � and
� ���� � or

� � or
� �

�

which means, by the definition (Def
�

from ..� ), that

	 � � � � � and
� ���� � or

� � or
	 ���� � ..� � or

� � � and
� � � ..��� and �� �

First we show that
� � � ..� � implies

� � � ..� � � . Suppose that
� � � ..� �

holds. If
� � or � �� � , then by (

..� 3) and (
..� 2) � ..� � � � , so

� � �
and

� � � ..� � � by the upper line of 	 � � . So let �� � and � � � . We have� � � ..��� � � , by (
..� 2). For the lower line of 	 � � , it remains to show that
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either
� �

or � �� � ..� � . If �� � , then, we need to show that � �� � ..� � . But
this follows from

� � � ..� � by Lemma 2 (iii) (Expulsiveness).
For the converse, we show that

� � � ..� � � implies
� � � ..� � . So let

	 � � be given. From the upper line, we get
� � � ..� � with the help of ( ..� 3).

So suppose that the lower line is true. But this line contains as a conjunct� � � ..��� , which is just what we set out to prove.

(b) Finally we show that
�

indeed satisfies (E1) – (E5).
(E1) Let � � �

and
� � � , that is, � �� � ..� � or

� �
, and also

� �� � ..� �
or
� � by (Def

�
from ..� ). We need to show that � � � , i.e. � �� � ..� � or� � . Assume that �� � . Then

� �� � ..� � , and hence, by ( ..� 1), �� � . So we
also have ���� � ..� � . We conclude from

� �� � ..� � with the help of ( ..� 9) that
� ..� � � � ..� � . Since ���� � ..� � , we finally get � �� � ..� � , as desired.

(E2) Let �
� �

. In order to see that � � �
, we need to show that � ��

� ..� � or
� �

. Assume �� � . Then by ( ..� 4)
� �� � ..� � . Hence by ( ..� 1),

� �� � ..� � , as desired.
(E3) In order to see that either � � � � � or

� � � � � , we need to show
that either � �� � ..� 	 � � � � or

� � � � , or
� �� � ..� 	 � � � � or

� � � � .
Assume that �� � � � . Then by (

..� 4), � � � �� � ..� 	 � � � � , so by (
..� 1) in fact

either ���� � ..� 	 � � � � or
� �� � ..� 	 � � � � .

(E4) Assume that � �� � . We need to show that � �� � just in case � � �
is true for every

� � � . The latter condition means, by (Def
�

from ..� ), that

� �� � ..� � or
� �

, for every
� � �

We know from (
..� 2) that � �� � is sufficient for this condition. To show that

� �� � is also necessary, observe that the condition entails that � �� � ..� � .
Since � �� � , we know that � �� � . So by (

..� 3), � ..� � � � . So ���� � , as
desired.

(E5) Assume that
� � � for all

� � � . This means, by (Def
�

from ..� ),
that either

� �� � ..� � for all
� � � or

� � . The former cannot be, however,
since if

�
is in Cn 	 � � , it will be in � ..� � no matter what � ..� � looks like, by

( ..� 1). Hence
� � . �

LEMMA 20. For any entrenchment relation
�

with respect to � , the system
of spheres � 	 � � satisfies conditions ( � 1) – ( � 4) with respect to � �� .

Proof. Let
�

be an entrenchment relation. We show that � 	 � � is indeed
a system of spheres centred on � �� .

( � 1) By the connectedness of
�

(which follows from (E1)–(E3) — see [9,
Lemma 3(i) p. 189]) we have that either � � �

or
� � � for � � � � � . It

follows that either
� � � � � � � � ��� � � �

� � or
��� � � �

� � � � � �
� � � � . Denoting � � ��� � � � �  by

�
� and � ��� � � �

� �  by
���

as in (Def
� from

�
), it follows by Lemma 0(v) and the fact the cuts are theories that�

�
� ���

or
��� � �

� for
�
� � ��� � � 	 � � .
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( � 2) If � �� � , then � �� � since � is a belief set. It follows by (E4)
that

� � � � � ����� � . Therefore
� � � � � � � � � ���  � � �� and, by

(Def � from
�

), � �� � � 	 � � . Now suppose for reductio that there is some��� � � 	 � � such that
��� � � �� . That is � � � � � � � �  � � � � � � � ���  . By

Lemma 0(iv) and (i) (for cuts are theories — see [29, p. 159])
� � � � � ��� �� � � � � � � . That is there is some

� � � � � � � � � but
� �� � � � � � ��� .

Therefore
�

�
�

but � ��
�
. By the connectedness of

�
we have

� � � and,
by transitivity of

�
(E1),

�
� � . This contradicts (E2) (for � � � ). Hence no

such
�
� exists and � �� is the

�
-minimum sphere of � 	 � � . Otherwise � � �

and � � � by definition.
( � 3) Take the cut

���
. Now

� � � 
 �
� � � � by (E5). So

��� � � � � �

 �

� �  � � �  � � � .
( � 4) Let � � � and �� � � . It remains to show that � � 	 � � � � � � � � � �� �  for all � .
It follows from the compactness of Cn and from (E1) – (E3) that the set� � � � � �

� � does not entail � � (see [29, proof of Lemma 5, p. 161]), so
� � � � � � �

� �  intersects � �  . It remains to show that every
�

in � which
is a proper subset of � � � � � � �

� �  does not intersect � �  . Suppose that�
in � is a proper subset of � � � � � � �

� �  . Then there is a
�

such that� � � � � � � �
� �  and

� � � � �
� � is a proper superset of

� � � � � �
� � .

Let
�

be in
� � � � �

� ��� � � � � � �
� � . Since

� �� � � � � � �
� � and

�

is connected,
� � � � . But then, since

�
�
�
, we can conclude with the help

of (E1) that
�

� � � as well. Thus � � � � � � � �
� � , so � � � � � �

� �  does
not intersect � �  . We conclude that indeed � � 	 � � � � � � � � � �

� �  . �

OBSERVATION 21. For any entrenchment relation
�

, the AGM contrac-
tions and the severe withdrawals generated from

�
and � 	 � � are identical,

i.e.,
� 	 � 	 � � � � � 	 � � and � 	 � 	 � � � � � 	 � � .

Proof. Let
�

be an entrenchment relation. We know from Lemma 20 that
� 	 � � is indeed a system of spheres centred on � �� .

It remains to show that for � � � 	 � � generated by (Def � from
�

) it
holds that

(i)
� � � � � � � � � � � � 	
 	 � �� � � � 	 � � � �

(ii)
� � � � � � �

� � � 	�
 	 � � 	 � � � �
We begin by showing (ii): Using the proof of the Lemma 20, the part

concerning ��� , we know that for every � , the smallest sphere intersecting
� � �  , that is � � 	 � � � , is identical with the set � � � � � �

� �  . Moreover, since� � � � �
� � is a theory (see [29, p. 159]), by Lemma 0(i), 	�
 	 � � 	 � � � �� � � � �
� � . Furthermore, we conclude ��� 	 � � � � � � 	 � � ��� � � �  � � � � �

� �
� � � � � ���  .
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Knowing this, we have to show for (i) that

	
 	 � �� � � � � � � �
� � � � � ���  � � � � � � � � � � � � �

To show that the left-hand-side is included in the right-hand-side, let � ��
for all

� � � �� � � � � � � �
� � � � � � �  . We need to show that � � � and

� � � � � . But we know from the assumption that � � � for all
� � � �� .

Since � is a theory, � � � . Moreover, � � � for all
� � � � � � � �� � � � � � �  . Hence � � � � � for all

� � � � � � � �
� �  . Hence, by the

completeness of Cn ,
� � � � �

� � � � � � . Since
� � � � �

� � is a theory
(see [29, p. 159]), we get that � � � � � � � � �

� � , that is, � � � � � .
To show conversely that the right-hand-side is included in the left-hand-

side, let � � � and � � � � � . Clearly � � � for all
� � � �� , since � � � .

It remains to show that � � � for all
� � � � � � � �

� � � � � ���  . Let such
an
�

be given. Since � � � � � , we know that from
� � � � � � � �

� � 
we can infer that � � � � � . But also � � � � (since � �� � � � � �

� �
— see [29, proof of Lemma 5, p. 161]). So, since

�
is a theory, � � � . We

have shown that � � � for all
�

in � �� � � � � � � �
� � � � � ���  . But by the

definition of 	�
 , this just means that � is in 	
 	 � �� � � � � � � �
� � � � � ���  � ,

as desired. �

LEMMA 22. For any system of spheres � with respect to � �� , the entrench-
ment relation � 	 � � satisfies conditions (E1) – (E5) with respect to � .

Proof. Let � be a system of spheres centred on � �� . We show that
�

is an
epistemic entrenchment relation on � .

(E1) Let � � �
and

� � � . By (Def
� �

from � ) we have that � � 	 � � � ��
� �  and � � 	 � � � �� � �  . It follows that � � 	 � � � � � � �  �� � and � � 	 � � � �
� � �  �� � . Consequently, from the latter, � � 	 � � � � � � 	 � � � . Therefore
� � 	 � � � � � � �  �� � . Hence � � 	 � � � �� � �  and, by (Def

� �
from � ) � � � as

desired.
(E2) Let � � � . It follows that � �  � � �  . Suppose for reductio that

� � 	 � � � � � �  . It follows that � � 	 � � � � � �  which contradicts the defini-
tion of � � 	 � � � . Hence � � 	 � � � �� � �  as required.

(E3) Suppose � �� � � � . We need to show that
� � � � � . From our

supposition an (Def
� �

from � ) it follows that � � 	 � 	 � � � � � � � �  . Now
� � 	 � � � �  � � � � � � �  � � � �  � � � �  . Therefore � � 	 � 	 � � � � � � � � �  �� � .
Consequently � � 	 � 	 � � � � � �� � �  and hence by (Def

� �
from � ) we have� � � � � as desired.

(E4) Let � �� � We need to show � � �
for every

� � � iff � �� � .
Left to right. we shall prove the contrapositive. Let ��� � . We need to

show � �� �
for some

� � � . By (Def
� �

from � ) this amounts to showing
� � 	 � � � � � �  for some

� � � . Consider
� � � � . � � 	 ��� � �
� � � 	 � � � � ��
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by ( � 2) and since � � � . Since � � � it follows that � �� � � �  and therefore
� � 	 � � � � �  as desired.

Right to left. We shall prove the contrapositive. Let � � �
for some

� �
�

. By (Def
� �

from � ), there is some
� � � such that � � 	 � � � � � �  .

Consequently by ( � 2), � �� � � � 	 � � � � � �  . Hence � � � as required.
(E5) Let �� � . Again, we show this by considering the contrapositive. We

need to show that
� �� � for some

� � � . That is, by (Def
� �

from � ),
we need to show � � 	 � � � � � �  for some

� � � . take
� � 
 . Clearly

� � 	 � �� � � 
  as desired. �

OBSERVATION 23. Let
�

be an entrenchment relation and � a system of
spheres. Then

(i) � 	 � 	 � � � � �
.

(ii) � 	 � 	 � � � is the topological closure of the trimming of � , i.e., 	 � � � ��� .

Proof. (i) Let
�

be an entrenchment relation.
Furthermore, let

� �
be � 	 � 	 � � � . That � 	 � � is a system of spheres was

proved in Observation 21(i) and that
� � � � 	 � 	 � � � is an epistemic entrench-

ment relation subsequently follows by the proof of Observation 24 below.
Now � � � �

iff � � 	 � � � �� � �  iff by (Def
� �

from � ). This is the case
iff � � � � � � � �  �� � �  by (Def � from

�
) (see beginning of the proof of

Observation 21(i)) which holds iff
� ��� � � � � �� � . This holds iff

� �� � iff
(since

� ��� � � � � is a theory (see [29, proof of Lemma 5, p. 161])) which
holds iff � � �

by the connectedness of
�

which follows from (E1)–(E3)
(see [9, Lemma 3(i) p. 189]) as desired.
(ii) Let � be a system of spheres. Furthermore, let � � be � 	 � 	 � � � . That � 	 � �
is indeed an epistemic entrenchment relation has been shown in Lemma 22
and that � 	 � 	 � � � is a system of spheres follows by the proof of Observa-
tion 21(i).

Now
�

is in � � iff there is some � such that
� � � � � � � �

� �  , by
(Def � from

�
). This holds, by (Def

� �
from � ), iff there is some � such

that
� � � � � � � � 	 � � � � � �  �  . Now this holds iff there is some � such that� � � � � � � � 	
 	 � � 	 � � � � �  , Simplifying, this is the case iff there is some

� such that
� � � 	�
 	 � � 	 � � � �  as desired.

Now the trimming of � consists exactly of all the sets of the form � � 	 � � ,
and the operation of taking the topological closure is just the one that takes
every set � of worlds to � 	�
 	 � �  . Thus we have proved that � � is the topo-
logical closure of the trimming of � . �

OBSERVATION 24. For any system of spheres � , the AGM contractions
and the severe withdrawals generated from � and � 	 � � are identical, i.e.,� 	 � 	 � � � � � 	 � � and � 	 � 	 � � � � � 	 � � .
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Proof. Let � be a system of spheres centred on � �� , and
� � � 	 � � as

defined by (Def
� �

from � ). Notice that since
�

is connected (see [9, Lem-
ma 3(i) p. 189]), we have that � �

�
if and only if � � 	 � �� � � �  .

Lemma 22 showed that
�

is indeed an epistemic entrenchment relation
with respect to � .

For the limiting case where
� � all contractions and withdrawals with

respect to � are set to � , so we assume in the following that �� � .
Since

� � � 	 � � is an entrenchment relation, we know from Observation
21 that

� 	 � 	 � � � � � 	 � 	 � 	 � � � � . But since by Observation 23, � 	 � 	 � � � �
	 ��� � ��� , we conclude with Lemma 12 that

� 	 � 	 � � � � � 	 	 ��� � ��� �
� � 	 � � .
Precisely the same argument shows that � 	 � 	 � � � � � 	 � � . �

B. Twelve Methods of Withdrawing a Belief �

In this appendix we contrast various methods for withdrawal of a belief �
from a belief set � currently found in the literature. We consider the principal
case where �� � as the majority of these methods satisfy the failure property
(i.e.,

� � implies � .� ��� � ).
The following table lists a number of proposals together with an indication

of which � � -worlds and which � -worlds are contained in � � .���  . � � refers to
the smallest sphere intersecting � (i.e., � � 	 � � ). � �� is, of course, the smallest
(innermost) sphere.

� � .� �  . . . within � � �  . . . within � � 

1. AGM (trans. rel.) partial meet [1] � � �  � �
� � ��

2. Severe withdrawal [Section 3] � � �  � �
� � �  � �

�
3. AGM maxichoice [1] single � � -world � ��
4. Saturatable set [18, 14]) single � � -world some � s.th. � �� � � � � � 
5. Partial meet of saturatable sets [14] � � �  � �

� some � s.th. � �� � � � � � 
6. Iron-fisted withdrawal [Section 7] � � �  � �

� � � 
7. Levi – damped type 1 [20] � � �  � �

� � �  � �
	 	 �

8. Cantwell fallback-based [4] � � �  � �
� � �  � �

� for some
� � ��� ������� � � �

9. Systematic withdrawal [26] � � �  � �
� � �  � �

��� �
10. Lindström and Rabinowicz [22] � � �  � �

� some � s.th. � �� � � � � �  � �
�

11. Semi-contraction [6] � � �  � �
� some � s.th. � �� � � � � �  � �

� 	 �
12. Nayak [p.c.] � � �  � �

� � �  � 	 � � � �
��� �
� 
��
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The diagrams on the following pages illustrate typical situations for these
various proposals. Note that Figures 1 and 2 appeared in Section 3.
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ML

[K]

[¬ φ]

Figure 3. Maxichoice — pure minimal
change (wrt � ).

ML

[K]

[¬ φ]

Figure 4. Saturatable set (no recovery).

ML

[K]

[¬ φ]

Figure 5. Partial meet of saturatable sets.

ML

[K]

[¬ φ]

Figure 6. “Iron-fisted” withdrawal — mini-
mal revision equivalent withdrawal

ML

[K]

[¬ φ]

Figure 7. Levi Contraction via damped infor-
mational value of type 1.

ML

[K]

[¬ φ]

Figure 8. Cantwell “fallback-based”.
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ML

[K]

[¬ φ]

Figure 9. Meyer et al. systematic withdrawal.

ML

[K]

[¬ φ]

Figure 10. Lindström and Rabinowicz (Inter-
polation).

ML

[K]

[¬ φ]

[ψ]

Figure 11. Fermé and Rodriguez semi-
contraction.

ML

[K]

[¬ φ]

Figure 12. Nayak (personal communication).
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C. Interrelationship Between Methods

��� � � � � � � � � � � � � � � � � � � � � � � � � �

Nayak (p.c.)

���
�

�
�

�
�

�
� �

PM saturatable

�
Saturatable

�
Iron-fisted

�Lindström-Rabinowicz

�Cantwell

� �

�������������
AGM PMC

�

�
�

�
��

Levi d.i.v.1

�

�
�

�
� �

Meyer et al.

�

� � � � � � � � � � � � �
Severe

�
Maxichoice

�
more general

�

less general

Notes
�

In the AGM literature these two terms have a precise meaning, differentiating important
forms of belief removal, which we shall introduce later. For the time being, however, we defer
to the term contraction when referring to any operation removing beliefs from an agent’s
epistemic state.	

Levi [18] refers to this as coerced contraction (as distinct from uncoerced contraction
which refers to belief removal for purposes described in what follows).


Even more so if one considers the rather trivial nature of AGM expansion.�
This generalisation allows us to retain the spirit of the original while not being tied down

to loaded terms such as ‘information’.
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�

A contraction of � by ����� in the AGM framework is maxichoice if it leads to a
maximal subset of � that does not imply � . It is partial meet if it is the intersection of select
maxichoice contractions.�

A revision function defined from a maxichoice AGM contraction function via the Levi
Identity [8, p. 69] ( ��� �	� Cn 
 � .� 
�� ������ ���� ) always returns a belief state which is
maximally consistent and therefore has an opinion as to the truth or falsity of every sentence
in the object language.�

More formally, ��� � ��� � if and only if (i) ��� � � ; (ii) ������ � 
 �!�  ; and, (iii) for
any � � � such that �!"$# � � � � � , ���!� � 
 � � �  .%

An AGM full meet contraction may be constructed from � as � .���&� � 
 ��� �$ .'
Strictly speaking, Grove’s [12] construction deals solely with syntactic, rather than seman-

tic, objects; maximally consistent sets of sentences take the place of worlds. It can be thought
of as furnishing a semantics in so far as it provides a “picture” for the belief change process.��(

In traditional AGM terminology, � .���)� ��� � where ��� � is the set of maximal
subsets of � failing to imply � . The connection has been established by Grove [12].� �

Recently, Fermé and Rodriguez [7] have also, independently, proposed an axiomatisation
for severe withdrawal using the postulate (

..� 9) — see Section 6.� 	
Technically, this can be viewed as the dual of the Grove ordering. See Gärdenfors [8,

Section 4.8].� 

It is easy to show that a necessary and sufficient condition for (Def

.� from * ) to generate
maxichoice contractions is that the entrenchment relation satisfies either ��+-, or ,.+ 
 ,�/�� , for all sentences � and , in � . See Rott [31, Chapter 8].� �

Or among those for nonmonotonic consequence relations. A nonmonotonic consequence
relation 01 can be defined from a revision operator � and a belief set (or rather, expectation
set) � by putting � 01 , iff ,.� �2� � [10]. The parameter � is here left implicit.�3�

However, via the so-called Harper Identity — � .����� �54 �6�7� � — Recovery can
be linked with success for revision operations and reflexivity for nonmonotonic consequence
relations.���

Cut: If � 01 , and �98&, 01�: , then � 01�: .
Cumulative Monotony: If � 01 , and � 01;: , then �<8=, 01�: .
Or: If � 01;: and , 01;: , then �<>?, 01�: .
Rational Monotony: If � 0 �1@� , and � 01;: , then �<8?, 01�: .
For a detailed discussion, we refer the reader to Makinson’s [24] survey.� �

Rott [31] considers a slightly different set of postulates in an attempt to remove refer-
ence to the underlying logic. We shall remain closer in spirit to the AGM as this additional
generality does not affect our aims in this paper.��%

We are grateful to Sven Ove Hansson for highlighting this property.��'
In fact, Makinson’s [23] result regarding the maximality of AGM contraction functions

bears this out also.	A(
That is, B is in C iff it is a fixed point in the operation taking every model set D to

� � � � .�E, ��F D �� � , �G�	 �
For some purposes it is convenient to rephrase this definition in terms of contractions of

conjuncts as follows.

(Def �HC from
.� ) BJI �

� � � � � .� �J8=, ��FK,L�M�N� whenever �O �
� � � otherwise

	 	
In model theoretic terms, the spheres of the Lewis-Grove constructions are P<Q -elementary

but not P -elementary (see [3, p. 141]). If, however, their second construction is applied to
severe withdrawals, the resulting spheres turn out to be P -elementary.	 


Similarly all constructions of systems of spheres from some entrenchment relation *
(which will use “cuts” or “up-sets” with respect to * , see Section 12 below) yield P -elementary
spheres.	 �

Priest et al. [28] have pointed to an error in Grove’s [12, Theorem 1] proof verifying that
the revision postulate analogues of (

.� 7) and (
.� 8) are satisfied by a revision function derived
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from a system of spheres. They demonstrate one way to fix Grove’s proof. Alternatively, they
suggest that every sphere in � � be required to be elementary. In any case, Grove’s statement
of the result is not at fault.	 �

A generalisation of this theorem for relations of epistemic entrenchment with incompa-
rabilities (and ones that need not satisfy Minimality and Maximality) is given in Rott [30,
Theorem 2].	A�

Under the same assumptions it also reduces to what might be called the standard defini-
tion in the literature (cf. Gärdenfors [8, pp. 95–96]):

(Def � � * from C ) � * , iff ��� 
�� �$ ����� 
�� ,N��
	 �

We change the notation of Kaluzhny and Lehmann in order to avoid confusion with the
notation used in this paper.
 (�� 	 refers to the second smallest sphere, that is, that sphere B such that � � � #�B and
B �-D for all D �� � � � .
 ( � I
	 � refers to the sphere immediately smaller than

� I , that is, that sphere B such that
B # � I and D �-B for all D # � I .
 (

This is for reasonable semi-contraction functions (see [6, Section 5]). Otherwise we have,
within � ��� , some B s.th. � � � �-B ��� � .
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7. E. Fermé and R. O. Rodriguez. A brief note about the Rott contraction. Unpublished
manuscript, Universidad de Buenos Aires, 1997.

8. P. Gärdenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic States. Bradford
Books, MIT Press, Cambridge Massachusetts, 1988.

9. P. Gärdenfors and D. Makinson. Revisions of knowledge systems using epistemic
entrenchment. In Proceedings of the Second Conference on Theoretical Aspect of Rea-
soning About Knowledge, pages 83–96, 1988.

10. P. Gärdenfors and D. Makinson. Nonmonotonic inference based on expectations. Artifi-
cial Intelligence, 65:197-245, 1994.

11. P. Gärdenfors and H. Rott. Belief revision. In D. M. Gabbay, C. J. Hogger, and J. A.
Robinson, editors, Handbook of Logic in Artificial Intelligence and Logic Programming
Volume IV: Epistemic and Temporal Reasoning, pages 35–132. Oxford University Press,
1995.

12. A. Grove. Two modellings for theory change. Journal of Philosophical Logic, 17:157–
170, 1988.

13. S. O. Hansson. Belief contraction without recovery. Studia Logica, 50:251-260, 1991.
14. S. O. Hansson and E. Olsson. Levi contractions and AGM contractions: A comparison.

Notre Dame Journal of Formal Logic, 36(1), 1995. Also appears as Uppsala Prints and
Preprints in Philosophy number 1993-6, Uppsala University, 1993.

15. S. O. Hansson. A Textbook of Belief Dynamics: Theory Change and Database Updating.
Kluwer (to appear), 1997.

16. G. H. Harman. Change in View: Principles of Reasoning. MIT Press, 1986.



60

17. Y. Kaluzhny and D. Lehmann. Deductive nonmonotonic inference operations: Antitonic
representations. Journal of Logic and Computation, 5(1):111–122, 1995.

18. I. Levi. The Fixation of Belief and its Undoing: Changing Beliefs Through Enquiry.
Cambridge University Press, 1991.

19. I. Levi. For the Sake of the Argument: Ramsey Test Conditionals, Inductive Inference,
and Nonmonotonic Reasoning. Cambridge University Press, 1996.

20. I. Levi. Contraction and information value. Unpublished manuscript, Columbia Univer-
sity, March 1997.

21. D. Lewis. Counterfactuals. Basil Blackwell, Oxford, 1986.
22. S. Lindström and W. Rabinowicz. Epistemic entrenchment with incomparabilities and

relational belief revision. In A. Fuhrmann and M. Morreau (eds)., The logic of theory
change. Springer-Verlag, LNAI 465, Berlin, pp. 93-126, 1991.

23. D. Makinson. On the status of the postulate of recovery in the logic of theory change.
Journal of Philosophical Logic, 16:383–394, 1987.

24. D. Makinson. General patterns in nonmonotonic reasoning. In D. M. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial Intelligence and
Logic Programming Volume III: Nonmonotonic Reasoning and Uncertain Reasoning,
pages 35–110. Oxford University Press, 1994.

25. D. Makinson. On the force of some apparent counterexamples to recovery. In
E. G. Valdés, W. Krawietz, G. H. von Wright and R. Zimmerling., editors, Festschrift
for Carlos E. Alchourrón and Eugenio Bulygin, Duncker and Humblot, Berlin, 1997.

26. T. A. Meyer, W. A. Labuschagne and J. Heidema. A semantic weakening of the recovery
postulate. Unpublished manuscript, University of South Africa, 1997.

27. M. Pagnucco. The Role of Abductive Reasoning Within the Process of Belief Revision.
PhD thesis, Department of Computer Science, University of Sydney, February 1996.

28. G. Priest, T. J. Surendonk and K. Tanaka. An error in Grove’s Proof. Technical Report
TR-ARP-07-96. Automated Reasoning Project, Australian National University, 1996.

29. H. Rott. Two methods of constructing contractions and revisions of knowledge systems.
Journal of Philosophical Logic, 20:149–173, 1991.

30. H. Rott. Preferential belief change using generalized epistemic entrenchment. Journal
of Logic Language and Information, 1:45–78, 1992.

31. H. Rott. Making Up One’s Mind: Foundations, Coherence, Nonmonotonicity. Habili-
tationsschrift, Philosophische Fakultät, Universität Konstanz, October 1996. Also to be
published by Oxford University Press, 1998.


