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Abstract

Coping with ambiguity has recently received a lot of attention in
natural language processing. Most work focuses on the semantic rep-
resentation of ambiguous expressions. In this paper we complement
this work in two ways. First, we provide an entailment relation for
a language with ambiguous expressions. Second, we give a sound and
complete tableaux calculus for reasoning with statements involving am-
biguous quantification. The calculus interleaves partial disambiguation
steps with steps in a traditional deductive process, so as to minimize
and postpone branching in the proof process, and thereby increases its
efficiency.

1 Introduction

Natural language expressions can be highly ambiguous, and this ambiguity
may have various faces. Well-known phenomena include lexical and syn-
tactic ambiguities. In this paper we focus on representing and reasoning
with a different source of ambiguity, namely quantificational ambiguity, as
exemplified in (1).

(1) a. Every man loves a woman.

b. Every boy doesn’t see a movie.

The different readings of (1.a) correspond to the two logical representations
in

(2) a. Vz(man(z) — Jy (woman(y) A love(z,y))).
b. 3y (woman(y) AVz (man(z) — love(z,y))).



We refer the reader to [KM93, DP96] for extensive discussions of these and
other examples of quantificational ambiguity. All we want to observe here
is this. Examples like (1.a) have a preferred reading namely the wide-scope
reading represented by (2.a)). Additional linguistic or non-linguistic infor-
mation, or the context, may overrule this preference. For instance, if (1.a)
is followed by (3), then the second reading (2.b) is preferred. But if (1.a)
occurs in isolation, then the first reading (2.a) is preferred.

(3) But she is already married.

Clearly, if we want to process a discourse from left to right and take the
context of an expression into account, our semantic representation for (1.a)
must initially allow for both possibilities. And, similarly, any reasoning
system for ambiguous expressions needs to be able to integrate information
that helps the disambiguation process within the deductive process.

Although the problem of ambiguity and underspecification has recently
enjoyed a considerable increase in attention from computational linguists,
computer scientists and logicians (see, for instance, [DP96]), the focus has
mostly been on semantic aspects, and deductive reasoning with ambiguous
sentences is still in its infancy.

The aim of this paper is to present a tableaux calculus for reasoning with
expressions involving ambiguous quantification. An important feature of our
calculus is that it integrates two processes: disambiguation and deductive
reasoning. The calculus operates on semantic representations of natural
language expressions. These representations contain both ambiguous and
unambiguous subparts, and an important feature of our representations is
that they represent all possible disambiguations of an ambiguous statement
in such a way that unambiguous subparts are shared as much as possible.
As we will explain below, compact representations of this kind will allow us
to keep ambiguities ‘localized’ — a feature which has important advantages
from the point of view of efficiency.

In setting up a deductive system for ambiguous quantification we have
had two principal desiderata. First, although this is not the topic of the
present paper, we aim to implement the calculus as part of a computational
semantics work bench; this essentially limits our options to resolution and
tableaux based calculi. Second, to incorporate information arising from the
disambiguation process within a proof system, the proofs themselves need
to be incremental in the sense that at any stage we have a ‘partial’ proof
that can easily be extended to cope with novel information. We believe that
a tableaux style calculus has clear advantages over resolution based systems
in this respect.

The paper is organized as follows. A considerable amount of work goes
into setting up semantic representations and a mechanism for for record-
ing ambiguities and disambiguations in such a way that it interfaces rather



smoothly with traditional deductive proof steps. This work takes up Sec-
tions 2 and 3. Then, in Section 4 we present two tableaux calculi, one which
deals with fully disambiguated representations of ambiguous natural lan-
guage expressions, and a more interesting one in which traditional tableaux
style deduction is interleaved with partial disambiguation. Section 5 con-
tains a detailed example, and Section 6 provides conclusions and suggestions
for further work.

2 Representing Ambiguity

Lexical ambiguities can be represented pretty straightforwardly by putting
the different readings into a disjunction. (Cf. [Dee96, KR96] for further
elaboration.) It is also possible to express quantificational ambiguities by a
disjunction, but quite often this involves much more structure than in the
case of lexical ambiguities, because quantificational ambiguities are not tied
to a particular atomic expression. For instance, the only way to represent
the ambiguity of (1.a) in a disjunctive manner is (4).

(4) Vz(man(z) — Jy (woman(y) A love(z,y)))
V Jy (woman(y) A Vz (man(z) — love(z,y)))

Obviously, there seems to be some redundancy, because some subparts ap-
pear twice. If we put indices at the corresponding subparts, as in (5) below,
we see that these subparts are not proper expressions of first-order logic,
except subpart k.

(5) Vz(man(z) -,y (woman(y)/\j love(z,y),))

V Jy (woman(y)/\j Vz (man(z) -, love(z,y),))

The difference between the readings lies not in the material used, both
readings are built from the parts ¢, j and k, but in the order these are
put together.

A reasonable way to represent improper expressions like ¢ and k is to
abstract over those parts that are missing in order to yield a proper expres-
sion of first-order logic. [Bos95] calls these missing parts holes. Roughly
speaking, they are variables over occurrences of first-order formulas. To
distinguish the occurrence of an expression from its logical content, it is
necessary to supplement first-order formulas with labels. Holes may be sub-
ject to constraints; for instance, the semantic representations of verbs have
to be in the scope of its arguments, because otherwise it may happen that
the resulting disambiguations contain free variables. So we do not want
to permit disambiguations like Vz (man(z) — love(z,y) A Jy (woman(y))).
These constraints are expressed by a partial order on the labels.



Definition 2.1 (Underspecified Representation) For : € IN, let h; a
new atomic symbol, called a hole. A formula ¢ is an h-formula, or a formula
possibly containing holes, if it is built up from holes and atomic formulas
from first-order logic using the familiar boolean connectives and quantifiers.

Next, we specify the format of an underspecified representation UR of a
natural language expression. An underspecified representation is a quadru-
ple (LHF, L, H, C) consisting of

1. A set of labeled h-formulas LHF.
2. The set of labels L occurring in LHF.
3. The set of holes H occurring in LHF.

4. A set of order-constraints C of the form k& < k', meaning that k has
to be a subexpression of k', where k, k' € LU H and C is closed under
reflexivity, antisymmetry and transitivity.

An obvious question at this point is, how does one associate a UR with a
given natural language expression? We will not address this issue here, but
we will assume that there exists some mechanism for arriving at UR’s, see for
example [K6n94]. For notational convenience we write UR(S) for the under-
specified representation, associated with a sentence S. By way of example,
we reconsider (4) and obtain the following underspecified representation:

(6) ({lo: ho,l1 : Vz (man(z) — hi1),la : Jy (woman(y) A ha),ls : love(z,y)},
{l0al17l27l3}7
{h'09 h17 h27 h3}a
ClOSU'I‘C({ll S ho,lg S ho,lg S h1,l3 < hz}))

There are two possible sets of instantiations, ¢; and ¢9, of the holes hg, h1, ho,
hs in (6) which obey the constraints in (6): ¢; = {ho :=l1, hy := I3, hy := I3}
and Ly = {ho = lg,hg = ll,hl = l3}.

It is also possible to view UR’s as upper semi-lattices, as it is done in [Rey93]:

l03h0

/’/\

Iy : Vz(man(z) — hy) Iy : Jy(woman(y)A hs)

I3 : love(z,y)

For each instantiation of the holes there is a corresponding substitution o(¢)
which is like ¢ but h := ¢ € o(¢) iff there is a I, such that [ : ¢ € LHF and
h:=1l¢€..

The next step is to define an extension of the language of first-order
logic, £, in which both standard (unambiguous) expressions occur side by



side with the above underspecified representations. The resulting language
of the language of underspecified logic, or £* for short, is the language in
which we will perform deduction.

Definition 2.2 (Underspecified Logic) A formula ¢ is a formula of our
underspecified logic L", or a u-formula, that is, a formula possibly containing
underspecified representations, if it is built up from underspecified represen-
tations and the usual atomic formulas from standard first-order logic using
the familiar boolean connectives and quantifiers.

Example 2.3 As an example of a more complex u-formula consider the
semantic representation of if every boy didn’t sleep and John is a boy, then
John didn’t sleep.

lo : ho
(| i:=hy ly : Vz (boy(z) = ha) | A boy(j) ) — —sleep(j)
I3 : sleep(z)

Definition 2.4 (Total Disambiguations) To define the total disambi-
guation 6(p) of a u-formula ¢, we need the following notion of a join.

Given an underspecified representation (LHF, L, H, C) and k,k' k" €
LUH and k" < k,k' € C then k" is the join of k and k', k UKk’ = k", only
if there isno k" € LUH and ¥ < k,k' € C and k" > k" € C.

Then, by d(¢) we denote the set of total disambiguations of the u-formula
o, where for all d € d(p), d € L. For complex u-formulas § is defined
recursively:

1. 6((LHF,L,H, C)) = the set of LHF (1) such that
(1) ¢ is an instantiation and o(¢) is the corresponding substitution
(i) He=1L

(iii) for all {,I' € L, if LU is defined, then | < I' € closure(Ct) or
' <1 € closure(Ct)

2. 6(-p) ={~d|deilp)}
3. d(poyp) ={dod |ded(p), d ed(t)}, where o € {A,V,—}
4. §(Qzyp) = { Qzd | d € §(p) }, where and Q € {V,3}.

Ifl<l'¢Candl' <1 ¢&C, then it does not have to be case that there is
a scope ambiguity between quantifiers belonging to [ and I’. For instance,
if I and I’ belong to different conjuncts, they are not ordered to each other.
The restriction that [ LI’ has to be defined excludes this.



Example 2.5 To illustrate the purpose of this restriction see the under-
specified representation for every man who doesn’t have a car rides a bike

lo: ho
Iy : Vz((man(z) Ahy) = ha)  lo: Jy(car(y) Ahs) I3 :3z(bike(z) A hyg)
ly : —hs
l5 : have(z,y) lg : ride(z, 2)

Although I3 and l4 are not related to each other, it cannot happen that
l3 is in the scope of l4, because the negation must be a subformula of the
antecedent of 1, whereas [3 might have scope over [; as a whole or might be
in the scope of the succedent of [;. More generally, this is due to the fact
that I3 and 4 do not have to share a subformula, i.e., I3 LI l4 is not defined.

3 Semantics of Underspecified Formulas

In the previous section we introduced a formalism that allows for a compact
semantic representation of ambiguous expressions. Now we want to see what
the validity conditions of these underspecified representations are, and how
they interact with the classical logical connectives.

If an ambiguous sentence S with 6(UR(S)) = {d1,d2} is uttered, and we
want to check, whether S is valid, we simply have to see whether all of its
disambiguations are valid. That is, it must be the case that = d; and = ds.
If, on the other hand, an ambiguous sentence S with §( UR(S)) = {d1,d>}
is claimed to be false, things are different. Here it is not sufficient that
either [~ d; or }~ dg; one has to be sure that all disambiguations are false,
i.e., £ di and [~ da. To model this distribution of falsity, van Eijck and
Jaspars [EJ96] use the notions of a countermodel and a falsification rela-
tion =. Roughly, if only unambiguous expressions appear as premises or
consequences =| corresponds to [, but if at least one underspecified expres-
sion appears as premise or consequence, we have to define the (counter-)
consequence relation appropriately.

Definition 3.1 We define the underspecified consequence relation =, and
underspecified falsification relation =, for L* and an arbitrary model M.

1. M =y ¢ iff M = ¢, if ¢ is an unambiguous expression.
M o, o iff M [~ o, if ¢ is an unambiguous expression.

2. M =,URiff M = d, for all d € 6(UR).
M =, UR iff M - d, for all d € 6(UR).



3. ME,~piff MH,¢p
M=, ~piff M=, @

4 ME,pAYif M, pand M =y ¢
M=, oA T M5, por M=, ¢

5. My oV it ME,por M E, ¢
M-, oV if M =, pand M o, ¢

6. M=y o= iff M=, por M=y,
M-, o> it M, pand M =, ¢

7. M =, Vo iff M =, @la], for all a € D(M).
M 4, Vzo iff M 5, ¢[a], for some a € D(M).

8. M =y zyp iff M =, ¢lal], for some a € D(M).
M =, 3zy iff M =, ¢[a], for all a € D(M).

Example 3.2 We now give an example demonstrating the convenience of
having the falsification relation.

In our setting of ambiguous expressions, some familiar classical tautolo-
gies are no longer valid. For instance, if A is ambiguous and B unambigu-
ous we do not want (A A B) — A because the two occurrences of A may
be disambiguated in different ways. For instance, if 6(4) = {d1,d2}, then
|=u (A/\B) — Aiff |=u (d1 /\B) — d, |=u (d1 /\B) — da, ':u (d2 /\B) —d
and | (d2 A B) — dg. If we were to model falsity by -, applying the
definitions would yield:

FE.(AAB)—- A iff FE,AABor F, A
iff fEyAor EBor A
iff Fdior Edyor £EBor (Edand Edy).

The latter is classically valid, and it would therefore make the classical
tautology valid. On the other hand, if we model falsity by =, we manage
to avoid this, as =, distributes over disambiguations of A, whereas [~ does
not:

F.(AANB)—» A iff H,AABor , A
if d,Aor §Bor F, A
iff (fdiand [Edp) or 5§ Bor (Edp and = dy).



Definition 3.3 Let ¢1,..., 0,1 be L"-formulas, possibly containing un-
derspecified representations. We define relation of underspecified conse-
quence =, as follows:

Py s Pn Fu P iff
for all dy € 6(¢1),.-.,dn € (pn)
and for all d’ € §(¢) it holds that
di,... dy k= d.

The underlying intuition is that if someone utters a statement of the form
if S then S', where S and S’ are ambiguous sentences with §(UR(S)) =
{d1,d2}, 6(UR(S")) = {d},d,}, then we do not know exactly what the
speaker had in mind by uttering this. So to be sure that this was a valid
utterance, one has to check whether it is valid for every possible combination
of disambiguations, i.e., whether each of d; = d}, di = db, d2 = d}, and
dy = d), is a valid classical consequence.

Unfortunately, this definition of entailment is not a conservative exten-
sion of classical logic. Even the reflexivity principle A | A fails. For
instance, if we take 6(UR(S)) = {d1,d2}, then UR(S) =, UR(S) iff d; |=
dy,d; |= da, ds l: di, and dy I= da, i.e. iff '= di < dy. As we will show be-
low, this has some clear consequences for our calculus, especially the closure
conditions. We refer the reader to [Dee96, Jas97] for alternative definitions
of the ambiguous entailment relation.

4 An Underspecified Tableaux Calculus

The differentiation between consequence and falsification can be nicely mod-
eled in a labeled tableaux calculus, where the nodes in the tableaux tree are
of the form T : ¢ or F : ¢, meaning that we want to construct a model or
countermodel for ¢, respectively. Tableaux calculi are especially well suited,
because the notion of a countermodel is implicit in the notion of an open
tableaux tree, where one constructs a countermodel for a formula.

But what does it mean, if we not only allow first-order formulas to ap-
pear in a tableaux proof but as also u-formulas? According to the semantic
definitions in Section 3, a proof for a u-formula is simply a proof for each of
its disambiguations (in a classical tableaux calculus 7C). In the following
two subsections we first introduce a calculus 7C,, which integrates the mech-
anism of disambiguation in its deduction rules, and thereby allows one to
postpone the disambiguation until it is really needed. 7C, nicely shows how
ambiguity and branching of tableaux trees correspond to each other. But
TC,, still makes no use of the compact representation of underspecified rep-
resentations, introduced in Section 2. Therefore, we give a modified version
of TCy, called TC,yp, which also allows us to reason within an underspecified
representation.



Our tableaux calculi are based on the labeled free-variable tableaux cal-
culus, see for instance [Fit96] for a general introduction to tableaux calculi.

4.1 Reasoning with Total Disambiguations

The definitions of the logical connectives in section 3 allow us to treat logical
connectives occurring in u-formulas in the same way as in a tableaux calculus
for classical logic 7C, as long as they do not occur inside of a UR. Here it
is necessary to disambiguate the UR first, and then apply the rules in the
normal way.

Example 4.1 If we try to deduce (AAB) — A, with 6(A) = {d1,d2} and B
unambiguous, we have to prove each of - (diAB) — di, Fre (diAB) — do,
Fr (d2AB) — dy and b7 (d2AB) — ds. This leads to the following classical
labeled tableaux proof trees.
(a) (b) (c) (d)
F:(dAB)—>d F:(dAB)—>dy F:(dyAB)>dy F:(dyAB)— dy

T:di\NB T:diANB T:d;\NB T:dANB
F:Idl F:l do F:| d; F:|d2
T:|d1 T:|d1 T:|d2 T:|d2
T:lB T:|B T:|B T:lB

At least structurally, the above proof trees are the same. It does not matter
whether they contain underspecified representations. This suggests a natural
strategy: to postpone disambiguation and merge those parts of the trees that
are similar.

(1) F:(AANB) - A
|

2)T:AAB
(&}:A
(Q}:A
(&}:B
(6) Fm - dy

/\ /\

This is a much more compact representation. Again, since A is ambiguous,
(3) and (4) do not allow one to close the branch, because reflexivity is not
a valid principle in our ambiguous setting.



Table 1: Deduction rules of the underspecified tableaux calculus 7C,

M(Tu:/\) F,: oAy )
Ty:op 7 (Fu:A)
T, Fu:o | Fu:v
. Fu:pV
M_ (Tu:V) Fu(p:godj (Fu3v)
TuchlTu:d) Fy
. Fy:p—
_TLiiv2v (Ty :—) Tfmpz/) (Fu:)
Fuip | Tu:9 F
T.: -y ) F,:—-p )
Forp 007 Ty &7
T. :Vzop Fy :Vzop
— (T, .V U
Toow/x] LeiY) Fo o ole/f (X1, X)) FeiV)
T, : Jzp F, : 3zp
7.3t _Fuidee g g
T, ol %, %] (T+53) Forgerx] Y
Tu:di | ... | T, d, T :UR) Fy:di | ... | F,-d, (Fe:UR)

1'Where Xi,...,Xn are the free variables in .
{Where di, ..., dn € 6(UR).

The deduction rules for our underspecified tableaux calculus for totally
disambiguated expressions 7C, are given in Table 1. Besides the last two
rules (T, :UR) and (F, :UR), all rules are stated in a standard way and
need no further explanation. The purpose of the last two rules is to disam-
biguate UR’s and to start a new branch for each of its disambiguations. This
implements the idea of postponing disambiguation, because disambiguation
applies now only to UR’s and not to any u-formula.

Theorem 4.2 Let ¢ € L*. Then by, ¢ iff b d, for all d € §(p).

Corollary 4.3 Let o € L*. Then by, ¢ iff Fu ¢.

4.2 Reasoning with Partial Disambiguations

From a computational point of view (T, : UR) and (F, : UR) are not op-
timal, since they cause a lot of branchings of the tableaux tree. Also, total
disambiguation is not the appropriate means for underspecified reasoning,
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because the advantage of the compact representation, namely avoiding re-
dundancy, gets lost. So 7C, is appropriate for dealing with formulas con-
taining UR’s but not for reasoning inside the UR’s themselves.

Sometimes it is not necessary to compute all disambiguations, because
there exists a strongest (weakest) partial disambiguation. If such a strongest
(weakest) disambiguation does exist, it suffices to verify (falsify) this one,
because it entails (is entailed by) all other disambiguations. But what are
the circumstances under which a strongest (weakest) disambiguation exists?

Before we can determine a strongest (weakest) reading, we have to resolve
the relative position of negative contexts and quantifiers. To this end we
define positive and negative contexts (see also [TS96]).

Definition 4.4 A u-formula ¢ is a positive context for a subformula ¢ of ¢,
notation: con™ (¢, &), iff

eu=E[VAXE I XEIAY [V x| x[E] V¥ — x[€] | Vax[€] | Fzx(€]

where £ occurs in x and con™ (x, &) holds, or ¢ ::= —x[{] | x[€] = %, where
¢ occurs in x and con™(x, £) holds.

A u-formula ¢ is a negative context for a subformula & of ¢, con™(yp, €),
iff

@ =P AXE] [ XIE]AY |V xE] | xE]V Y| & — x[] | Vox[€] | Fzx[€],

where ¢ occurs in x and con™ (), &) holds, or ¢ ::= —x[¢] | x[¢] — %, where
¢ occurs in x and con™(x, &) holds.

To apply the tableaux rules to a formula %) it is necessary to know whether
1) occurs positively in a superformula ¢ — then we have to apply a T-rule
—, or negatively — then we have to apply an F-rule. In an underspecified
representation it may happen that a formula occurs positively in one disam-
biguation and negatively in another. We call formulas of this kind indefinite,
and in this case we cannot apply a tableaux rule.

Definition 4.5 Given an underspecified representation (LHF, C, L, H), a
labeled h-formula [ : @[h] € LHF is definite if for every l' : ¢[h'] € LHF,
such that con™ (¢, ') holds and h U k' defined, then it holds that [ < A’ € C
or '’ < he C. It is called indefinite otherwise.

Why do we consider definite formulas? Intuitively, we need to know
which quantifier we are actually dealing with when we are trying to find a
strongest (weakest) reading. Formulas can be made more definite by using
the rules for partial negation resolution given in Table 2. Roughly, we ob-
tain more definite h-formulas within a given underspecified representation
by adding further constraints which let indefinite h-formulas become defi-
nite by using one of the rules of partial negation resolution as specified in

11



Table 2, which are generalizations of the method of partial disambiguation
in [KR96]. These rules reduce the number of indefinite h-formulas occurring
in an underspecified representation by creating partial disambiguations in
which the indefinite h-formula has scope over (or is in the scope of one of)
the h-formulas inducing the indefiniteness; in Table 2 this is 1, : @m[hn),
where con™ (¢, hy) holds and hg U hy, is defined. Solid lines between two
labels or holes, k, k', indicate immediate scope relation, dashed lines are the
transitive closure of solid lines. For instance, let ¢; = Vz(p) and @, = —hy,
we do not know, whether Vz binds z universally or existentially, because it
can appear above or under the negation. Applying (7, : ) yields the two
possible cases, namely Vz(y) occurring above (left branch) or under (right
branch) the negation.

To put it differently, suppose that l,,, : ¢@m[hs] is the only h-formula,
which causes indefiniteness of [; : ¢; in an application of (T, : ), then the
rule for left partial disambiguation labels [; : ¢; with T},, because now it has
scope over the negative context, and the rule for right partial disambiguation
labels [; : ¢; with Fy, because it is in the scope of the negative context.

Table 2: Tableaux rules for partial negation resolution

T, :h;
L pilhe] - izt i
1 ] (Tu:m)
Tu :h; Tu :h;
Lpilhe] - iti e
Tt o]
L pjlha]
Fy :h;
ZHZ110% IS Lo
b ] (Fu: 7)
F, :hi
G:psilhe] - il: @1
Lo prulha)
Ui pjlhi]
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Our complete set of deduction rules for underspecified representations
is given by combining Tables 2, 3, and 4. This set defines our tableaux
calculus, TCyp.

Observe that there are three sets of rules in Tables 3 and 4. The first set
deals with ordinary logical connectives only. The second group are so-called
interface rules; roughly speaking, they control the flow of information be-
tween traditional tableaux reasoning and disambiguation. Reasoning within
an underspecified representation starts at its top-hole and compares all its
daughters, i.e., those formulas that appear immediately in its scope. A sim-
ilar interface is needed for h-formulas. The logical connectives in complex
h-formulas are also treated with the T/F-rules, but for treating holes we
need to know what material goes into them. For holes having only one
daughter, it is possible to apply the normal tableaux rules to this daughter,
see (T, : 1) and (F : 1).

As to the rules in the third group, these are designed to partially con-
struct the weakest or strongest readings of u-formulas, respectively. Both
(T, : V) and (F, : 3) presuppose that [; : Jzg[h] or I; : Vzp[h] occurs defi-
nite, otherwise we would not be able to tell what the quantificational force
of lj : 3z or lj : Vzyp is. So, before applying the rules it may be necessary to
apply partial negation resolution as presented in Table 2 first so as to make
l; : Vzplh] definite. There is an important restriction on the applicability
of the rules (Ty : V) and (F), : 3): to guarantee soundness of the rules, the
formulas Vz ¢[h] and 3z ¢[h] in [; should be special. Here Vz o[h] is special
if it is of the form Vz (x1 — h) or Vz (x1 A h — x2), while 3z p[h] is special
if it is of the form 3z (x1 A h).

To conclude this section, we briefly turn to soundness and completeness.
First, now that our tableaux may have different kinds of labelings (there
are T'/F-nodes and T, /F,-nodes), we need to specify what it means for a
tableaux to close. We say that a branch b closes if there are two nodes
T : ¢ and F : 9 belonging to b, such that ¢ and v are atomic formulas
of £ and ¢ and 7 are unifiable. In particular, it is not possible to close a
tableau with two nodes T' : ¢ and F' : 1 containing holes or underspecified
representations.

Next, what do soundness and completeness mean in our ambiguous set-
ting? Sound and complete with respect to which semantics or system? We
have opted to state soundness and completeness with respect to tableaux
provability of all total disambiguations.

Theorem 4.6 (Soundness and Completeness) Let ¢ be a formula in
L. Then F1c,, ¢ if, and only if, for alld € 6(p) F7c d

Proof. (Sketch) The soundness part (‘only if’) boils down to a proof that
the T,/ F, rules do not introduce any information that would not have been
available by totally disambiguating first. The restrictions on the rules (7}, :
V) and (Fy : 3) that were discussed above allow us to establish this.
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Table 3: Set of deduction and interface rules of 7C,, (1)

T:oNY

—= (T:0) Fior® (p.a

;;i F:p | F:z/;( )

. F:pVy
M—L(T:V) Fo (F:V)
T:o I T:9Y Fo

. F:

Ti¢2% g, T"’:;”/’ (F: =)
F:o | T:¢ Foo
T:-p ' F:-p )
7y (710 T (Fi0)
T :Vzop F :Vzyp
—_— (T:V i
Togle/x] 0 Fole/f(%, - %] F V)
T:3zp F:3zp )
T oo/ F (X1, Xn)] (73 Fiom/x] ©9
IT‘:ZOR (T : UR) lf :.ZOR (F: UR)
/\ /\
lit s In: n li: @i In: on
11:: (T : h) 5: (F: h)
/\
li: s In: on li: ps In: pn
Ty :h; F, :h;
l l/
it it
T(p (TuT) F(p (F“T)

TWhere Xi,...,X, are the free variables in ¢.




Table 4: Set of deduction and interface rules of TCy, (2)

T, :h;
li:Vzolhi] L Quy R
Ty :hi (T : V)I
lj: Vao[hi] R A
li: Quyp
Fy :h;
lj: Jzp[hi] I Quy R A S
Fy :h; (P : 3)1
l;: Jzp[hi] U A7
lx: Quy

iWhere Q € {V,3}, I; is definite, and Yz p[h] and Jzp[h] are special (see below).

Proving completeness (‘if’) is in some way easier: any open branch in
a (completely developed) tableau for 7C,, corresponds to a (completely
developed) open branch in a tableau proof for 7C,. See [MR98] for the
details. -

5 An Example

Consider the sentence every boy doesn’t see a movie appearing as a premise
in a tableau. Because displaying derivations in our calculus is very space-
consuming, we can only give the beginning of one of its branches, which
is given in Figure 1. Each box corresponds to a node in a tableau tree.
Because in (1) I : Vz (boy(z) — hy) occurs indefinite, it is necessary to
apply partial negation resolution first. The total disambiguation of the left
branching would be

{Vz (boy(x) — Ty (movie(y) A —see(z,y))),
Vz (boy(z) — -3y (movie(y) A see(z,y))),
Jy (movie(y) AVz (boy(z) — —see(z,y)))},

That is, formulas in which the universal quantifier has scope over the nega-
tion, disregarding the existential quantifier. Now (T, : V) is applicable
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Figure 1: Part of a proof in 7Cy,

Iy :3y(movie(y)A hs )

(1) T, tho
Iy Vz(boy(z) = h1 ) Iz :3y(movie(y)A hs2 ) l3:= hs )
l4 :see(z,y)
-
2) T tho ®3) Tu :ho
I Va(boy(z) = k1) Iz :3y(movie(y)A ha ) Is = hs )
I3~ hs) 1 Vz(boy(z) — h1)
ly :see(z,y) ls :see(z,y)
|
(4) Ty :ho
l; Vz(boy(z) = h1 )
Iy :3y(movie(y)A ha ) Iz hs)
ly :see(z,y)
—
(5) T : Vz(boy(z) — h1 )
Iy :Jy(movie(y)A ha ) lz3:— hs)
ly :see(x,y)
T

(6)

I :3y(movie(y)A ha )

T : boy(X) — h1
l3:= hg)

ly :see(X,y)

-

(7) F : boy(X)

8)

I :3y(movie(y)A ha )

Ty : b1
l3 Ml ha)

ly :see(X,y)

16



and the universal quantifier is given wide scope in (4), corresponding to
the readings Vz (boy(z) — Jy(movie(y) A —see(z,y))) and Vz (boy(z) —
—Jy (movie(y) A see(z,y))). Because hy has only one daughter, the normal
tableaux rules for logical connectives can be applied to it. So we instantiate
z with a free variable X and apply (T : —), which causes a branching of
the proof tree, where (7) is a non-ambiguous literal with which we can try
to close a tableaux branch. In (8) h; is the top-node to which the under-
specified tableaux rules can be applied.

6 Conclusion

In this paper we have presented a tableaux calculus for reasoning with am-
biguous quantification. We have set up a representation formalism that
allows for a smooth interleaving of traditional deduction steps with disam-
biguation steps.

Our ongoing work focuses on two aspects. First, we are adding rules for
coping with additional forms of ambiguity to the calculus, such as ambiguity
of binary connectives. Second, we are in the process of implementing the
calculus TCyp; as part of this work new and interesting theoretical issues
arise, such as ‘proof optimization’: for reasons of efficiency it pays to post-
pone disambiguations as long as possible, but to be able to apply some of
the rules expressions need to be definite and for this reason early disam-
biguation may be required. What is the best way of reconciling these two
demands?

Acknowledgment. The research in this paper was supported by the Spi-
noza project ‘Logic in Action’ at the University of Amsterdam.
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