CHRISTOF MONZ, MAARTEN DE RIJKE

A Resolution Calculus for Dynamic Semantics

LP-1998-11, received: September 1998

ILLC Scientific Publications
Series editor: Dick de Jongh

Logic, Philosophy and Linguistics (LP) Series, ISSN: 0928-3307

Institute for Logic, Language and Computation (ILLC)
University of Amsterdam

Plantage Muidergracht 24

NL-1018 TV Amsterdam

The Netherlands

e-mail: illc@wins.uva.nl

To appear in: Proceedings of the Sixth Furopean Workshop on
Logics in AI (Jelia’98), LNAI, Springer, Berlin, 1998.

A Resolution Calculus for Dynamic Semantics

Christof Monz and Maarten de Rijke

Institute for Logic, Language and Computation
University of Amsterdam, Plantage Muidergracht 24
1018 TV Amsterdam, The Netherlands
E-mail: {christof, mdr}@wins.uva.nl

July 1998

Abstract

This paper applies resolution theorem proving to natural language
semantics. The aim is to circumvent the computational complexity
triggered by natural language ambiguities like pronoun binding, by in-
terleaving pronoun binding with resolution deduction. To this end,
disambiguation is only applied to expressions that actually occur dur-
ing derivations. Given a set of premises and a conclusion, our resolution
method only delivers pronoun bindings that are needed to derive the
conclusion.

1 Introduction

Natural language processing (NLP), has a long tradition in Artificial Intel-
ligence, but it still remains to be one of the hardest problems in the area.
Research areas such as semantic representation and theorem proving with
natural language have to deal with a problem that is characteristic of natural
languages, namely ambiguity. There are several kinds of ambiguity, see for
instance [RN95] for an overview. In the present paper, we focus on pronoun
binding,! a certain instance of ambiguity, as exemplified by (1) below.

(1) A man sees a boy. He whistles.

Often, there are lots of possibilities to bind a pronoun and it is not clear
which one to choose. The pronoun he in the short discourse in (1) can be
bound in two ways as given in (2), where co-indexation indicates referential
identity.

!Throughout this paper we use the term binding to express the referential identification
of a pronoun and another referential expression occurring in the discourse. Common terms
are also co-indezation or pronoun resolution. We especially did not use pronoun resolution
to avoid confusion with resolution as a deduction principle.

(2) a. A man; sees a boy. He; whistles.
b. A man sees a boy;. He; whistles.

For some cases heuristics are applicable which prefer certain bindings to
others, but at present there is no approach making use of heuristics which
is general enough to cover all problems.

Dynamic semantics [Kam81, GS91] allows to give a perspicuous solu-
tion to some problems involving pronoun binding. Since we are interested
in binding occurrences of pronouns to expressions mentioned earlier in a
discourse, we take a slight modification of Dynamic Predicate Logic (DPL)
[GS91], where it is not presupposed that pronouns are already co-indexed.
Actually, pronoun binding falls into the realm of constructing semantic rep-
resentations of natural language discourses, and one of the main purposes of
constructing these representations is to reason with them. Now, the ques-
tion arises which form the input of the theorem prover should have. Should
a theorem prover work only on totally disambiguated expressions? Total
disambiguation results in an explosion of readings, because of the multi-
plicative behavior of ambiguity. On the other hand, to prove a conclusion
@ from a set of premises I" it may be enough to use only premises from a
small subset A of I', and it may be sufficient, and much more efficient, to
disambiguate only A instead of the whole set of premises I'. In general, we
do not know in advance which subset of premises might be enough to derive
a certain conclusion, but during a derivation often certain (safe) strategies
may be applied that prevent some premises from being used since they can-
not lead to the conclusion, anyway. Common strategies to constrain the
search space in resolution deduction are e.g., the set-of-support strategy and
ordered resolution. Our goal is to constrain the set of premises that have to
be disambiguated by interleaving deduction and disambiguation. Roughly
speaking, premises are only disambiguated if they are used by a deduction
rule.

The rest of the paper is structured as follows. Section 2 provides some
rudimentary background in dynamic semantics and explains what kind of
structural information is necessary to restrict pronoun binding. In addition,
the basics of resolution deduction are introduced. Section 3 discusses some
of the problems of the (standard) resolution method when applied to natural
language. The method of labeled unification and resolution is presented to
overcome these problems. Section 4 briefly relates our work to some other
approaches to pronoun binding. Section 5 provides some conclusions and
prospects for further work.

2 Background

Before we turn to our method of labeled resolution deduction and its ap-
plications to discourse semantics, we briefly present the idea of dynamic

semantics. The second subsection shortly explains the classic resolution
method for (static) first-order logic.

2.1 Dynamic Reasoning

Dynamic reasoning differs from classical reasoning to the extent that se-
quences of formulas are considered instead of sets of formulas. To model
discourse relations like pronoun binding it is important to take the order of
sentences into account because two sequences which have the same members,
but differ in order, may have a different meaning. (Compare ‘A man walks
in the park. He whistles.” and ‘He whistles. A man walks in the park.’)

DPL is a semantic framework which works on sequences of formulas
and it allows to represent pronoun binding, where the antecedent of the
pronoun and the pronoun itself may occur in different formulas. This is
accomplished by assigning the existential quantifier flexible binding. In (3.b)
a DPL representation of the short discourse in (3.a) is given.

(3) a. A man; sees a boy. He; whistles.
b. 3z (man(z) A Jy (boy(y) A see(z,y))) A whistle(z)

The pronoun he is represented by the variable x which is the same as the
one bound by the existential quantifier, but it occurs outside of its scope. To
bind z in whistle(z) it is necessary to give the existential quantifier flexible
scope.

One of the advantages of dynamic approaches like DPL is that they
allow for a formal definition of possible antecedents for a pronoun. Without
giving too many details, we just note that negations function as barriers for
flexible binding. Therefore, an existential quantifier occurring in the scope
of a negation cannot bind a pronoun that occurs outside of the negation, as
shown by (4).

(4) *John doesn’t own a car;. It; is in front of his house.

The three properties (a) existential quantifiers can bind variables oc-
curring to the right-hand side of their traditional scope, (b) conjunctions
preserve the flexible scope, and (c) negations are barriers for dynamic bind-
ing, allow us to define the properties of the other logical connectives V, —
and V. [-] is a function that assigns to each formula its semantic value.

(5) [v 4] [=(=¢ A)]
[e =4] = [~eAr-9)]
[Vzo] = [-3z-¢]

Given these definitions, we see that disjunction is a barrier both internally
and externally, implication is a barrier externally but internally it allows
for flexible binding, and universal quantification does not allow for external
binding.

We differ in two respects from DPL. First, we do not allow two or more
occurrences of 3z within a single text. The problem is that the second
occurrence of 3z resets the value of z, and thereby previous restrictions on
x are lost. We assume for simplicity that all bound variables are disjoint.
This is not a severe restriction and an algorithm for constructing semantic
representations for natural language sentences can easily accomplish this.
The second difference with DPL is that we do not assume co-indexation of
quantifiers and the pronouns which they bind. In (3) the variable for he
is already assumed to be z and in DPL the question of pronoun binding
is pushed to some kind of preprocessing. But finding the right binding is
far from being an easy task and it is very complex from a computational
point of view. The pronoun in (3) could also be represented by y, indicating
that that he refers to a boy. E.g., a discourse containing twenty indefinites
followed by a sentence with two pronouns, has 20-20 = 400 possible bindings,
disregarding any linguistic constraints which rule out some of the bindings.

To this end, we postpone pronoun binding and represent pronouns in
the semantic representation by free variables. Variables for pronouns are
displayed in boldface and are of a different kind than regular variables.
Pronoun variables are bound by the 7-operator. It differs from 3 and V,
because it only binds its argument, but does not quantify over it. Actually,
it is not necessary to have a special operator for pronouns, and we only
introduced it here for the sake of convenience to identify the position where
the pronoun is introduced. Our representation of (1), repeated as (6.a)
below, is given in (6.b). As mentioned before, co-indexation of pronouns
and antecedents is not carried out.

(6) a. A man sees a boy. He whistles.
b. 3z (man(z) A 3y (boy(y) A see(z,y))) A Tu whistle(u)

The task whether u has to be substituted by x or by y is postponed to the
deduction component, as motivated in Section 1.

Unlike the existential quantifier, the ?-operator does not have the prop-
erty of flexible binding. We get the following equivalence:

[=7up] = [Tu-y]

To define accessibility we can now say that a variable z is accessible
from a pronoun u if no barrier occurs between the quantifier introducing z
and ?u. A formal definition of accessibility is given in the next section. The
equations in (5) show that V, — and V introduce barriers because of the way
they are defined in terms of negation. This is exemplified by (7) below.

(7) *Every farmer owns a donkey;. It; is grey.

Dispensing with the presupposition that pronouns and antecedents are
already co-indexed re-introduces the concept of ambiguity to our framework.

This makes it necessary to give a definition of the semantics of ambiguous
formulas. It is common to define their semantics in terms of their possible
disambiguations, see [Rey93], and here we follow the same approach. A
total disambiguation is a mapping § from ambiguous dynamic formulas to
classical first-order formulas. Disambiguation encompasses two steps. First,
we have to find a proper antecedent for a pronoun. To define proper an-
tecedents, we use the notion of accessibility. Second, we have to map unam-
biguous dynamic formulas to classical formulas. This means that we have
to turn flexible quantification into static quantification, and this involves
re-bracketing and quantifier movement. [GS91] give an algorithm that com-
putes for each DPL-formula ¢ a formula ¢’ which is in normal binding form,
i.e., all pronouns are quantified over in the classical sense, and which is valid
in first-order logic iff ¢ is valid in DPL. For instance, the normal binding
form of (8.b) is (9).

(8) a. Ifa farmer; owns a donkey;, then he; beats it;.
b. 3z (f(z) Ay (d(y) Ao(z,y))) — blz,y)

(9) VzVy(f(z) Ad(y) Ao(z,y) = b(z,y))

To define the validity of ambiguous formulas, we say that an ambiguous
formula ¢ is valid, i.e., for all models M it holds that M |=, ¢, if there is
a disambiguation J, such that M |= §(p), for all models M. In words: ¢ is
valid iff there exists a disambiguation which is valid in first-order logic.

Unfortunately we do not have enough space to give a more detailed
account of dynamic semantics, but we refer the reader to [Kam81, GS91].

2.2 The Resolution Method

The resolution method [Rob65] has become quite popular in automated the-
orem proving, because it is very efficient and it is easily augmentable by lots
of strategies which restrict the search space, see e.g., [Lov78]. On the other
hand, the resolution method has the disadvantage of presupposing that its
input has to be in clause form, which is a set of clauses, interpreted as a con-
junction. A clause is a set of literals, interpreted as a disjunction. Probably
the most attractive feature of resolution is that it has only one inference
rule, the resolution rule:

CU{_‘Pl,-n,ﬁPn} DU{Ql,me}
(CUDm)o

(res)

where o Qi,...,Q,, are atomic
e 7 is a substitution such that C' U {-Py,...,-P,} and
Drnu{Qqm,...,Qmpm} are variable disjoint
e o is the most general unifier of {Py,...,P,,Qi7,...,Qn7}

To prove that I" = ¢ holds we transform (/A I') A - in clause form and try
to derive a contradiction (the empty clause) from it by using the resolution
rule.

For a comprehensive introduction to resolution see for instance [Lov78].

3 Dynamic Resolution

Applying the classical resolution method to a dynamic semantics causes
problems. Below we will first discuss some of them and then see how we
have to design our dynamic resolution method to overcome these problems.

3.1 Adapting the Resolution Method

There are two problems that we have to find a solution for. First, trans-
forming formulas to clause form causes a loss of structural information.
Therefore, it is sometimes impossible to distinguish between variables that
can serve as antecedents for a pronoun and variables than can not. The
second problem concerns the duplication of literals which may occur during
clause from transformation and the assumption of the resolution method
that clauses are variable disjoint. Although the same pronoun may have
two occurrences in different clauses, we do not want them to be bound by
different antecedents.

Turning to the first problem, in (10) the pronoun u cannot be bound by
the existential quantifier, whereas the pronoun z can be bound by it.

(10) a. Every farmer who owns a donkey beats it. It suffers.
b. Vz(f(z) A3y (d(y) Ao(z,y)) =?zb(z,2)))ATus(u)

(11) { {-ﬂf(x),—'d(y),-wo(a;,y),b(:c,z)}, {s(u)} }

How can we tell which identifications are allowed by looking at the corre-
sponding clause form in (11)7 How do we know whether a term is accessible?

We use labels to carry the information about accessible variables. Each
pronoun variable is annotated with a label that indicates the set of accessible
variables. Besides the set of first-order or proper variables (VAR), first-order
formulas (FORM), and pronoun variables (PVAR), we are going to intro-
duce the sets of labeled pronoun variables (LPVAR) and labeled formulas
(LFORM). Labeled pronoun variables are of the form V :u, where V C VAR
and u is a pronoun variable. LFORM is the set of first-order formulas plus
formulas containing labeled pronoun variables. To be able to recognize the
antecedents later on, each variable is annotated with its name, (z*,Y,...),
and during skolemization only the variable is changed, but the label remains
unchanged.

To see which variables inside of a formula ¢ can serve as antecedents
for pronouns, [GS91] introduce the function AQV which returns the set of
actively quantifying variables when applied to .

Definition 3.1 (Actively Quantifying Variables) Let FORM be the set
of classical first-order formulas and VAR the set of first-order variables. The
function AQV : FORM — POW (VAR) is defined recursively:

AQV(R(z1...zn)) = 0

AQV(—p) = 0
AQV(p A9) = AQV(p) UAQV(Y)
AQV(p =) = 0
AQV(pVvy) = 0
AQV(Vzp) = 0
AQV(3zp) = AQV(p)U {z}

AQV(Tuyp) = AQV(y)
Using the above definition we define the notion of accessible variables.

Definition 3.2 (Annotation with Accessible Variables) To annotate
u in ?ut, we drop the binding operator 7u and substitute all occurrences
of the pronoun variable in ¥ by its annotated counterpart. The annotation
function annot : VAR x FORM — LFORM is defined recursively, where
V C VAR:

annot(V, R(z1 ...zp)
annot(
annot(V, o A ¢

) = R(:Itl:lrn)

—p)

)
annot(V, o — v)

)

)

)

—annot(V, @)

annot(V, ¢) A annot(V U AQV(p),)
annot(V, ¢) — annot(V U AQV(p), ¥)
annot(V, ¢) V annot(V, 1)
annot(V,Vzy) = Vz annot(V U {z},¢)

annot(V,3zp) = 3z annot(V U {z},¢)

annot(V,7up) = annot(V,¢[u/V :u))

annot(V,p V¢

The actual annotation takes place in the last case, where the pronoun is sub-
stituted. The other cases thread the actively quantifying variables through
the formula. To annotate a whole discourse 1 A --- A @y, the variable pa-
rameter of annot is initialized with @, annot(d, 1 A -+ A ¢,). A term t®
is accessible from a pronoun u iff z is element of the set of the accessible
variables of u.

Reconsider the last example, every farmer who owns a donkey beats it.
It suffers. Applying annotation yields:?

annot(0,Vz (f (z) A 3y (d(y) A oz, y)) —7z b(sc z))/\”us(u))
=Vz (f(z) A3y (d(y) Ao(z,y)) = bz, {z,y}:2 0:u)

%For simplicity, we neglect the fact that pronouns and their antecedents have to agree
in gender, number, etc.

Applying clause form transformation to the annotated formulas yields:

(12) { {_'f(x)a _'d(y), —'O(iL', y)a b(.’I), {"Bv y} :z)}, {s(@:u)} }
We can also see that (10.a) is not well-formed because there are no accessible
pronouns for the second pronoun it, i.e., the label of u is the empty set.
Now we turn to the second problem: how do we make sure that the same
pronoun, occurring in different clauses, is bound to the same antecedent?
As we said earlier, we do not want to assume pronouns to be bound in a set
of premises when we apply resolution. The reason is that pronoun binding
is highly ambiguous and often it is not necessary to bind all pronouns in a
set of premises to derive a certain conclusion from it. Another issue, which
we briefly hinted at in Section 2, is that pronouns should be treated as
free variables of a special kind, not to be dealt with in the same manner
as universally quantified variables (which also happen to be represented by
free variables). This is illustrated by the following example, which shows an
invalid entailment.

(13) a. 323y ((A(®) V AW)) A (224(z) — (BAC))) e BV C
b. { {A(fz),A(gy)}, {_'A(Z),B}’ {"\A(Z),C}, {—'B}v {u'C} }

The transformation in (13) causes a duplication of the literal ~A(z), and we
have to make sure that the pronoun is instantiated the same way in both
cases.

(14) {A(f"),A(¢")} {-A(z),B} {-A(2),C} {-B} {-C}
\/
{A(¢¥), B}
{B,C}

{C}

O

In (14) z is instantiated with f7 in the first resolution step and then with g¥
in the second. The resolution rule as it was stated in the preceding section
assumes that clauses to be resolved are variable disjoint. We have to modify
the resolution rule such that the same pronoun variable is allowed to occur
in both clauses. Additionally, the instantiation of a pronoun variable for
constructing the most general unifier in a resolution step is applied globally,
i.e., to all clauses.

(15) {A(f7),Alg")} {-A(#),B} {-A(2),C} {-B} {-C}

{A(g"), B} {A(f7),C

{Alg)r A7)

Global instantiation correctly prevents us from deriving a contradiction in
(15).

3.2 Labeled Resolution

Unification is a fundamental technique in the resolution method. Since we
are also dealing with labeled variables, we have to think how the unification
mechanism has to be adapted. In the course of this subsection, it will turn
out that pronoun binding can be reduced to unification.

3.2.1 Labeled Unification

We use the unification algorithm of Martelli and Montanari [MM82] as a
basis and adapt it in such a way that it can deal with labeled pronoun
variables.

What does it mean to unify a set of equations E = {s1 = t1,...,8p, = tn},
where s; or t; can also be a labeled pronoun variable? We have to distinguish
three possible cases: (i) neither s; nor ¢; is a labeled pronoun variable, then
labeled unification and normal unification are the same thing, (ii) one of
them is a pronoun and the other is not, and (iii) both are pronouns. Case
(ii) is the normal pronoun binding, where one tries to identify a pronoun
with a proper variable. Case (iii) is not an instance of pronoun binding, but
an identification of two pronouns, i.e., whatever is the antecedent of the first
pronoun, it is also the antecedent of the other one.

Definition 3.3 (Labeled Unifier) We call a substitution o a labeled uni-
fier or unifier* of a set of equations E = {s; = t1,...,8, = tp} iff

1. sy0 =ti0,...,50,0 =t,0
2. if (V:u)o =t*, thenz e V
3. if (Viu)o=V':vthen V' CV

We use =~ to express equality in our object language, whereas = denotes
equality in the meta language.

Condition 1 is the normal condition of unifiability, namely that the terms
of an equation have to be identical after substitution. The second condition
says that unifiers have to obey accessibility, for instance o := [{z,y}:u/g?]
is not a unifier of {{z,y}:u = g*}, because g* is not accessible from u, as
z & {z,y}. To ensure that identification of pronouns always restricts the set
of accessible antecedents, we need condition 3.

Definition 3.4 (Most General Labeled Unifier) A labeled unifier o of
a set of equations E = {s1 = t1,...,8, = tp} is the most general labeled
unifier or mgu* of E if

1. if @ is a unifier* of E then there is substitution 7 such that 8 = o7

2. if (Viu)o =Vi:v, (V:iu)d=Va:v, V1,V CV,and V1, Vo # 0
then Vo C W

Again, the first condition is standard in regular unification. Condition 2 says
that the most general unifier* has to restrict the set of accessible antecedents
as little as possible when identifying pronouns. To unify V3 :u and Vo:v
it suffices to take any non-empty subset of the intersection of V; and V4,
but this fact may prohibit some antecedents from being accessible, although
they are in fact accessible for both pronouns.

Definition 3.5 (The Labeled Unification Algorithm) First, the uni-
fication function unify* is applied to a pair of atoms, and then it tries to
unify the set of corresponding argument pairs. The algorithm terminates
successfully if it did not terminate with failure and no further equations are
applicable.

1. unify*(R(81.--8n), R(t1..tn))
= unify*({s1 = t1...sp = tn})

2. unify*({f(s1...8n) = f(t1...tn)} U E)
= unify*({s1 = t1...sp ® tp,} UE)

3. unify*({f(s1...8n) = g(t1...tm)} UE), f#gorn#m
= terminate with failure

4. unify*({z =z} UE
= unify*(E)

5 unify"({t =z} UE), t ¢ VAR
= unify*({z = t} UE)

6. unify*({z =t} UE), z #t,t ¢ LPVAR, zint
= terminate with failure

7. unify*({z =t} UE), x #t,t ¢ LPVAR, z not int, z in E
= unify*({z = t} U E[z/t])

8. unify*{Viuxt*}UE),z€V,V:iuin E
= unify*({V:u = t*} U E[V :u/t"])

9. unify*({(Vi:ur Va:vIUE), VinVa #0, VinVa C Vs
=unify*({(Vi:ux Vi NVa:v,Vo:va Vi NVaiv}
UE[V1:u/ViNVa:v, Vo:v/ViNVa:v])

10

The first six equations of the algorithm are the same as in [MM82], except
for additional side conditions which make sure that ¢ is not a labeled vari-
able. The interesting cases are 8 and 9. In 8 a pronoun is bound to an
antecedent and in 9 two pronouns are identified, i.e., they have the same
possible antecedents, namely those which are accessible for both of them.
This is accomplished by identifying the pronoun variables and substituting
the set of possible antecedents by the intersection of the possible antecedents
of each pronoun.

Identification of pronouns underlies different constraints than binding a
pronoun to a proper antecedent. To identify two pronouns u and v, it is
not required that u is accessible from v, or the other way around. But they
can only be identified if they have at least one proper accessible antecedent
in common.

(16) Buk is a poet. For every man there is a woman who hates him.
= There is a woman who hates him.

(17) p(b) AVz(w(z) = Jy(w(y)ATu h(y, u)))
o 3z(w(2)A?v h(z,V)

For instance, in (16) the conclusion is only valid if the first and the second
occurrence of him are identified. In Section 2 it was said that universal
quantification is a barrier for flexible binding, and therefore the second oc-
currence of him cannot be bound to the first one. On the other hand, both
of them have a proper antecedent in common, namely the constant b rep-
resenting the proper name Buk. In addition, the first occurrence of him
has the variable z as an accessible antecedent, introduced by the universal
quantification every man. If one wants to identify them, one has to take
the intersection of both sets of accessible antecedents and hence drop z as
a possible antecedent. Observe that identification of pronouns still leaves
some space for underspecification, because the intersection of two pronouns
does not have to be a singleton. Of course, identifying two pronouns, where
more than one antecedent is accessible for both, forces them to be bound to
the same element of the intersection. Both can be bound to any element of
the intersection, but it has to be the same one for both pronouns.

If the unification algorithm terminates successfully for a pair of literals
P,Q, the solved set determines a substitution o that is the mgu* of P,Q:

o:={s/t|s=~teunify*(P,Q)}.
A set of equations {s; = t1,..., S, = t,} is called solved if
1. s; € VARU LPVAR and the s; are pairwise disjoint

2. no s; occurs in a term t; (1 < 4,5 < n).

11

Lemma 3.6 (Correctness of Unification*) Let E be a set of equations
and unify*(E) = E', then

(i) E is unifiable* iff E' is unifiable*
(11) o is the mgu* of E iff o is the mgu* of E'

Proof. (i) We have to show that actions 2, 4, 5, 7, 8, and 9 preserve
unifiability*, when unify* is applied to a unifiable* set E. For 2, 4, and
5, this is obvious. To show it for 7, note that 7 := [z/t] is a unifier* of z
and ¢. If o is a unifier* of {z ~ ¢t} U E then o is of the form 7p. Because
TT = T, it holds that ¢ = 7p = 77p = 70. Therefore ¢ unifies* {z ~t} UE
iff o unifies* {z =~ t} U E[z/t]. 8 is analogous to 7, plus the additional side
condition that z € V. The last case is 9. If {V;:u = V,:v}UF is unifiable*,
then it is with a unifier* o of the form 7p with

7:=[WVi:u/ViNnVa:v, Voru/ViNVy:v).
Again, 0 = 7p = 77p = 70 and then o also unifies*
Viru=VinVe:v,Vo:v e ViNVa:vIUE[VI :u/ViNVa:iv, Vo:v/ViNVa:v].

(ii) The actions 2, 4, 5, 7, and 8 turn a set of equations into an equivalent
one. For o to be the mgu* of {V;:u = V,:v} U E means according to our
definition that ¢ has to be of the form 7p, where

7:=[Vi:u/VinVa:v,Voru/ViNVa:v).
But then o is also the mgu* of

VMiu=VinVa:v,Vo:va ViNVa:iviU
EVi:u/VinVa:v,Va:v/ViNVe:v]), KR

Lemma 3.7 (Termination of Unification*) The unification* algorithm
terminates for each finite set of equations.

Proof. If rules 3 and 6 are applied, we are done. Otherwise, rule 7 can be
applied only once, because after application the side condition is no longer
fulfilled. In 9 it is presupposed that V3 N V5 is a proper subset of V5; this
ensures that an application of 9 really reduces the set of possible antecedents.
Because 9 can be applied only a finite number of times, it can reintroduce a
term V :u only finitely often, therefore rule 8 can also be applied only finitely
many times. Rules 1, 5, and 6 are only applied once, and the number of
possible applications of rule 2 is finite as well, because terms contain only
finitely many symbols. Therefore all rules can be applied only finitely many
times, and termination follows. X

12

Proposition 3.8 (Total Correctness of Unification*) The unification®
algorithm computes for each finite set of equations E a solved set, that has
the same mgu* as E in finitely many steps iff E is unifiable*.

Proof. The fact that the unification* algorithm preserves unifiability* and
that it terminates has been proven in Lemma 1 and 2, respectively. It
remains to be shown that the set of equations computed by the algorithm is
a solved set. In 7, 8, and 9, the left side of the equation is always substituted
in E by the right side of the equation. If the left side is identical to the right
side, the equation is erased by rule 4. Therefore, no left side of an equation
occurs somewhere else. X

3.2.2 The Resolution Method

Having defined labeled unification, it is straightforward to adapt the res-
olution principle. The only thing we have to change is to make sure that
variable disjointness applies only to proper variables (elements of VAR). The
function VAR returns the set of proper variables, when applied to a set of
clauses A : VAR(A) = {z € VAR | z occurs in A}. The resolution rule
accomplishing pronoun binding (res,) is defined as follows:

CU{-Py,...,mP,} DU{Q,...,Qn} (
(CUDm)o

resp)

where e Qq,...,Q,, are atomic
e 7 is a substitution such that
VAR(C U{=Py,...,~Pp,}) N(VAR(DU{Q1,...,Qn}))mr =0
e o is the mgu* of {Py,...,Pp, Qum,...,Qm7}

Definition 3.9 [The Proof Algorithm] Our proof algorithm prf consists of
three steps:

1. annotate the conjunction of the premises and the negation of the con-
clusion;

2. apply clause form transformation; and
3. apply the resolution rule until a contradiction can be derived, or no
new resolvents can be generated.
3.2.3 An Example

We will only give a very short, and therefore very simple example of a labeled
resolution derivation. We hope that it illustrates some of the aspects of
labeled resolution mentioned before.

Consider example (16) again, here repeated as (18), where (19) is the
corresponding semantic representation.

13

(18) Buk is a poet. For every man there is a woman who hates him.
=, There is a woman who hates him.

(19) p(b) AVz(w(z) = Jy(w(y)ATu h(y, u)))
Eo J2(w(2)ATv h(z,V))
Annotating (19):
annot(0, p(b) AVz(w(z) = Jy(w(y)ATuh(y,u))) A =3z(w(2)A?v h(z,Vv))) =
p(b) AVz(w(z) = Jy(w(y) A h(y,{b,z}:u))) A -IJz(w(z) A h(z,{b}:V)))

Clause form transformation:
{{p®")}, {m(h")}, {-m(z ’”) (fy)}
{-m(z%), h(f¥% {b,z}:u)}, {-w(z* z%{b}:v)} },

where the additional clause {m(h")} stems from the assumption that the
domain of men is nonempty.
Resolution:

{=m(z®),h(f% {b,z}:w)} {-w(z*),~h(z% {b}:v)}
{p®"} {m®BM} {-m(a®)w(f¥)}

{-m(z”), ~w(f*)}

Actually, the only remarkable step in the derivation is resolving

{-m(z),h(f,{b,z}:u)} and {-w(z),-h(z,{b}:v)}

with {-m(z),-w(f)} as the resolvent. Here, the two labeled pronoun
variables can be identified, because the intersection of their accessible an-
tecedents is nonempty. The corresponding mgu* of

{-m(z"), h(f¥,{b,2}:u), ~h(z%, {b}:v)}

is 0 := [2% /2%, 2%/ f¥,{b,z}:u/{b}:V].

Note also, that although p(b) introduced the antecedent b, it is not used
in the derivation because all information that is necessary to derive the
contradiction is captured by the labels. This is the advantage of using labels;
it allows us to express non-local dependency relations in our framework,
which is essential for dealing with pronoun binding in dynamic semantics
where a pronoun and its antecedent can occur in different formulas.

14

3.2.4 Evaluation from a Linguistic Point of View

In general, it is not enough if one gives just the information that there is a
binding that allows to derive a conclusion, but one also wants to know which
binding. It is easy to augment our method in a way such that it accomplishes
this simply by memorizing the substitutions of pronoun variables that occur
during a derivation.

From a linguistic point of view, one is also interested in comparing dif-
ferent bindings. If we force the proof procedure to backtrack every time it
has found a binding which allows to derive a contradiction, we can generate
all possible bindings. Probably some of the bindings are preferable to others
by taking linguistic heuristics for pronoun resolution into account, see for
instance [GJW95], but this is beyond the scope of the present paper.

3.3 Results

Before we prove completeness and soundness of our method, we have to
explain what these notions mean in our setting.

To show that the resolution principle is correct we have to find the right
loop invariant. We will show that if the parent clauses of a resolution step
are strongly satisfiable, then so is the resolvent.

Definition 3.10 (Strong Satisfiability) A clause C is strongly satisfiable
if there is a model M and for all substitutions 6 from PVAR to VAR), then
there is a literal L € C#, such that M = L.

Lemma 3.11 Let CU{-Py,...,-P,} and DU{Qq,...,Qm} be variable dis-
joint and strongly satisfiable. If o is the mgu* of {P1,...,Pn,Q1,...,Qm},
then Co\{—P10} U Do\{P10} is strongly satisfiable.

Proof. The set of possible disambiguations of the resolvent is a subset of the
possible disambiguations of the parent clauses, because possible antecedents
are unified, and in case of pronoun unification only the intersection of pos-
sible antecedents has to be considered. Now, two cases have to be distin-
guished.

(i) M }~ P;o. Because P;o is an instance of P; and DU {Qq,...,Qn} is
strongly satisfiable, it holds that M = Do\{P10}. But Do\{Py0} is
a subset of the resolvent and therefore M = Co\{—-P10}UDo\{P,0}.

(i) M |= Pso. Again, P;o is an instance of P; and C U {-Py,...,-P,}
is strongly satisfiable. Hence, it holds that M |= Co\{-Pio} and
thereby M |= Co\{-P1o} U Do\{Pi0}. K

Recall that prf was defined in Definition 3.9.

15

Corollary 3.12 (Soundness) If prf produces the empty clause on input
—p, then ¢ is valid.

Proof. If we can derive O from a set of clauses C, where C is the clause form
of -, then we can show by induction that C is not strongly satisfiable, i.e.,
there is no model M such that M = C0 for all possible substitutions. Hence,
for all models M, there is a disambiguation d, such that M [~ §(—¢p), which
is equivalent to M |=, ¢, the definition of ¢ being valid. X

Lemma 3.13 Let 6 be a total disambiguation of ¢, and assume that o0 is
unsatisfiable. Then there is a (classical) resolution deduction of O from 6.

Lemma 3.14 Let 0 be a total disambiguation of p. If there is a resolution
deduction of O from 8, then prf generates the empty clause on input .

Proof. The idea of the proof is to turn the classical resolution proof of O
from () into a labeled resolution proof of O from the original formula ¢ by
repeating the resolution steps and inserting the required substitutions (i.e.,
partial disambiguations) just before any steps where they were used in the
original proof.

Although the idea of this proof is simple, the details are too numerous
to be included here. X

Corollary 3.15 (Completeness) If ¢ is valid, then the procedure prf gen-
erates the empty clause on input —y.

4 Related Work

Most work in the area of ambiguity and discourse semantics focuses on rep-
resentational issues, but see [VEJ96, MdR98] for calculi for quantificational
ambiguities. Approaches that deal with pronoun binding are mostly trying
to bind pronouns by applying some heuristics. The work that is closest to
ours is the approach of Kohlhase and Konrad [KK98] who deal with pronoun
binding in the setting of natural language corrections by using higher-order
unification, and a higher-order tableaux method [Koh95] to reason about
possible bindings. Van Eijck [vE98] presents a sequent calculus for DPL
which deals with some of the complications we avoided in this paper; for
instance multiple quantification of the same variable. Some of the ways in
which dynamic updating can restrict possible pronoun bindings are consid-
ered in [Mon98].

5 Conclusion

In this paper we have presented a resolution calculus for reasoning with
ambiguities triggered by pronouns and the different ways to bind them.

16

Deduction steps and pronoun bindings are interleaved with the effect that
only pronouns that are used during a derivation are bound to a possible an-
tecedent. Labels allow us to capture relevant structural information of the
original formula on a very local level, namely by annotating variables. There-
fore structural manipulation, a prerequisite of any efficient proof method,
does no harm.

Our ongoing work focuses on two aspects. First, we have to see how our
resolution method behaves when other strategies restricting the search space
are added; e.g., set-of-support strategy, ordered unification, or subsumption
checking. Second, we are in the process of implementing the annotation and
unification* algorithms and are trying to integrate them into a resolution
theorem prover.

Acknowledgment. The research in this paper was supported by the Spi-
noza project ‘Logic in Action’ at ILLC, University of Amsterdam.

References

[GJW95] B. Grosz, A. Joshi, and S. Weinstein. Centering: A framework for
modelling the local coherence of discourse. Computational Lin-
guistics, 21(2), 1995.

[GS91] J. Groenendijk and M. Stokhof. Dynamic Predicate Logic. Lin-
guistics and Philosophy, 14:39-100, 1991.

[Kam81] H. Kamp. A theory of truth and semantic representation. In
J. Groenendijk et al., editor, Formal Methods in the Study of Lan-
guage. Mathematical Centre, Amsterdam, 1981.

[KK98] M. Kohlhase and K. Konrad. Higher-order automated theorem
proving for natural language semantics. SEKI-Report SR-98-04,
Universitat des Saarlandes, 1998.

[Koh95] M. Kohlhase. Higher-order tableaux. In P. Baumgartner et al., ed-
itor, Theorem Proving with Analytic Tableauz and Related Meth-
0ds,TABLEAUX"95, LNAI, pages 294-309. Springer, 1995.

[Lov78] D. W. Loveland. Automnated Theorem Proving: A Logical Bases.
North-Holland, Amsterdam, 1978.

[MdR98] C. Monz and M. de Rijke. A tableaux calculus for ambiguous
quantification. In H. de Swart, editor, Automated Reasoning with
Analytic Tableauxz and Related Methods, TABLEAUX’98, LNAI
1397, pages 232-246. Springer, 1998.

17

[MM82]

[Mon98]

[Rey93]

[RN95)

[Rob65)

[VE98]

[vEJ96]

A. Martelli and U. Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Sys-
tems, 4:258-282, 1982.

C. Monz. Dynamic semantics and underspecification. In H. Prade,
editor, Proceedings of the 18" European Conference on Artificial
Intelligence (ECAI’98), pages 201-202. John Wiley & Sons, 1998.

U. Reyle. Dealing with ambiguities by underspecification: Con-
struction, representation, and deduction. Journal of Semantics,
10(2):123-179, 1993.

S.J. Russell and P. Norvig. Artificial Intelligence: A Modern Ap-
proach. Prentice Hall, 1995.

J. A. Robinson. A machine oriented logic based on the resolution
principle. Journal of the ACM, 12(1):23-41, 1965.

J. van Eijck. A calculus for dynamic predicate logic. Unpublished
manuscript, 1998.

J. van Eijck and J. Jaspars. Ambiguity and reasoning. Techni-
cal Report CS-R9616, Centrum voor Wiskunde en Informatica,
Amsterdam, 1996.

18

institute sor logic, language and computation

ILLC Scientific Publications

Coding for Reports and Dissertations: Series- Year- Number, with CT = Computation and Complexity Theory; LP =
Logic, Philosophy and Linguistics; ML = Mathematical Logic and Foundations; X = Technical Notes; MoL = Master of
Logic Thesis; DS = Dissertations.

All previous ILLC-publications are available from the ILLC bureau. For prepublications before 1994, contact the bureau.

CT-1996-01 Peter van Emde Boas The Convenience of Tilings

CT-1996-02 A.S. Troelstra From Constructivism to Computer Science

CT-1997-01 Carl H. Smith, Risins Freivalds Catagory, Measure, Inductive Inference: A Triality Theorem and its Applications
CT-1997-02 Peter van Emde Boas Resistance is Futile; Formal Linguistic Observations on Design Patterns

CT-1997-03 Harry Buhrman, Dieter van Melkebeek Complete Sets under Non-Adaptive Reductions are Scarce

CT-1997-04 Andrei Muchnik, Andrei Romashchenko, Alexander Shen, Nikolai Vereshagin Upper Semi-Lattice of Binary
Strings with the Relation “x is simple conditional to y”

CT-1998-01 Hans de Nivelle Resolution Decides the Guarded Fragment
CT-1998-02 Renata Wassermann On Structured Belief Bases - Preliminary Report
CT-1998-03 Johan van Benthem Temporal Patterns and Modal Structure

CT-1998-04 Ghica van Emde Boas-Lubsen, Peter van Emde Boas Compiling Horn-Clause Rules in IBM’s Business System
12 - an Early Ezperiment in Declarativeness

CT-1998-05 Carlos Areces, Maarten de Rijke Fzpressiveness Revisited

LP-1996-01 Renate Bartsch Understanding Understanding

LP-1996-02 David Beaver Presupposition

LP-1996-03 Theo M.V. Janssen Compositionality

LP-1996-04 Reinhard Muskens, Johan van Benthem, Albert Visser Dynamics

LP-1996-05 Dick de Jongh, Makoto Kanazawa Angluin’s Theorem for Indezed Families of R.E. Sets and Applications
LP-1996-06 Francgois Lepage, Serge Lapierre The Functional Completeness of 4-value Monotonic Protothetics
LP-1996-07 Frans Voorbraak Probabilistic Belief Exzpansion and Conditioning

LP-1996-08 John Case The Power of Vacillation in Language Learning

LP-1996-09 Jaap van der Does, Willem Groeneveld, Frank Veltman An Update on Might

LP-1996-10 Jelle Gerbrandy, Willem Groeneveld Reasoning about Information Change

LP-1996-11 Renate Bartsch Propositional Attitudes in Dynamic Conceptual Semantics

LP-1996-12 Paul Dekker Reference and Representation

LP-1996-13 Rens Bod, Remko Scha Data-Oriented Language Processing: An Overview

LP-1996-14 Michiel van Lambalgen, Jaap van der Does A Logic of Vision: Preliminaries (preliminary to LP-1997-07: updated
version on author’s homepage)

LP-1997-01 Johan van Benthem Dynamic Bits and Pieces

LP-1997-02 Paul Dekker On Denoting Descriptions

LP-1997-03 Paul Dekker On First Order Information Ezchange

LP-1997-04 Jelle Gerbrandy Dynamic Epistemic Logic

LP-1997-05 Jelle Gerbrandy Bisimulation and Bounded Bisimulation

LP-1997-06 Jan van Eijck Typed Logic With States

LP-1997-07 Michiel van Lambalgen, Jaap van der Does A Logic of Vision (expansion of LP-1996-14)
LP-1997-08 Johan van Benthem Wider Still and Wider... Resetting the Bounds of Logic
LP-1997-09 Frans Voorbraak A Nonmonotonic Observation Logic

LP-1997-10 Jan van Eijck Dynamic Reasoning Without Variables

LP-1998-01 Hans Rott, Maurice Pagnucco Severe Withdrawal (and Recovery)

LP-1998-02 Jaap van der Does, Helen de Hoop Type-shifting and Scrambled Definites

LP-1998-03 Renate Bartsch The Role of Consciousness and Intentionality in Perception, Semantics, Representations and
Rules

LP-1998-04 Renata Wassermann Resource Bounded Belief Revision
LP-1998-05 Johan van Benthem Linguistic Grammar as Dynamic Logic

LP-1998-06 Renate Bartsch The Formal Relationship between Dynamic Conceptual Semantics and Connectionist Neural
Network Modelling

LP-1998-07 Jan van Eijck Aziomatising Dynamic Logics for Anaphora

LP-1998-08 Jan van Eijck Incremental Dynamics

LP-1998-09 Carlos Areces, Verdénica Becher Iterable AGM Functions

LP-1998-10 Christof Monz, Maarten de Rijke A Tableauz Calculus for Ambiguous Quantification
LP-1998-11 Christof Monz, Maarten de Rijke A Resolution Calculus for Dynamic Semantics
ML-1996-01 Domenico Zambella Algebraic Methods and Bounded Formulas

ML-1996-02 Domenico Zambella On Forcing in Bounded Arithmetic (superseded by ML-1996-11)

ML-1996-03 Hajnal Andréka, Johan van Benthem, Istvan Németi Modal Languages and Bounded Fragments of Predicate
Logic

ML-1996-04 Kees Doets Proper Classes

ML-1996-05 Sgren Riis Count(q) versus the Pigeon-Hole Principle

ML-1996-06 Angelo Montanari, Alberto Policriti A Decidable Theory of Finitely-Layered Metric Temporal Structures
ML-1996-07 Angelo Montanari, Adriano Peron, Alberto Policriti Decidable Theories of w-Layered Metric Temporal Structures

ML-1996-08 Johan van Benthem, Angelo Montanari, Giovanna D’Agostino, Alberto Policriti Modal Deduction in Second-
Order Logic and Set Theory - II

ML-1996-09 Angelo Montanari, Maarten de Rijke Decidability in Metric Temporal Logic

ML-1996-10 Vladimir Kanovei On a Dichotomy related to Colourings éf Definable Graphs in Generic Models
ML-1996-11 Domenico Zambella Forcing in Finite Structures (revised version of ML-1996-02)

ML-1996-12 Jon Barwise, Johan van Benthem Interpolation, Preservation, and Pebble Games

ML-1996-13 Lex Hendriks Intuitionistic Propositional Logic with only Equivalence has no Interpolation
ML-1997-01 Dick de Jongh, Giorgi Japaridze The Logic of Provability

ML-1997-02 Maarten Marx Complezity of Modal Logics of Relations

ML-1997-03 Giovanna D’Agostino The Los-Tarski and Lyndon Theorem for the p-logic

ML-1997-04 Ian Hodkinson, Szabolcs Mikulds Non-finitely aziomatizable, union-free reducts of algebras of relations
ML-1997-05 Johan van Benthem The Range of Modal Logic: an Essay in Memory of George Gargov
ML-1997-06 Johan van Benthem Modality, Bisimulation and Interpolation in Infinitary Logic

ML-1997-07 Sebastiaan A. Terwijn, Domenico Zambella Algorithmic Randomness and Lowness

ML-1997-08 Antonin Kugera, Sebastiaan A. Terwijn Lowness for the Class of Random Sets

ML-1998-01 A.S. Troelstra Marginalia on Sequent Calculi

ML-1998-02 A.S. Troelstra Concepts and Azioms

ML-1998-03 Hans de Nivelle Decoding the Et-Class by an A Posteriori, Liftable Order

ML-1998-04 Yde Venema Points, Lines and Diamonds: a Two-Sorted Modal Logic for Projective Planes

ML-1998-05 Steven Givant and Yde Venema The Preservation of Sahlquist Equations in Completions of Boolean Algebras
with Operators

ML-1998-06 Victor N. Krivtsov A Negationless Interpretation of Intuitionistic Aziomatic Theories: Arithmetic and Analysis
ML-1998-07 Victor N. Krivtsov A Negationless Interpretation of Intuitionistic Aziomatic Theories: Higher-Order Arithmetic
ML-1998-08 Johan van Benthem Dynamic Odds & Ends

ML-1998-09 Rosalie Iemhoff A Modal Analysis of Some Principles of the Provability Logic of Heyting Arithmetic
ML-1998-10 Carlos Areces, Verdénica Becher, Sebastidn Ferro Characterization Results for d-Horn Formulas

X-1996-01 Ingmar Visser Mind Rules: a Philosophical Essay on Psychological Rules and the Rules of Psychology

X-1996-02 Arthur Bakker, Renatus Ziegler Finsler-Mengenlehre

X-1997-01 Paul Dekker, David Beaver Report on ECDS: An Interactive Course on the Internet

X-1997-02 Dimiter Ivanov Vakarelov Applied Modal Logic: Modal Logics in Information Science
X-1998-01 Ghica van Emde Boas-Lubsen Feature Analysis of Business System 12

MoL-1997-01 Dimitris Dimitriadis Identity and Identification

MoL-1997-02 Brian Semmes The Raisonnier-Shelah Construction of a Non-Measurable Set

MoL-1997-03 Marc Pauly Transforming Predicates or Updating States? Total Correctness in Dynamic Logic and Structured
Programming

DS-1996-01
DS-1996-02
DS-1996-03
DS-1996-04
DS-1997-01
DS-1997-02
DS-1997-03
DS-1997-04
DS-1997-05

Lex Hendriks Computations in Propositional Logic

Angelo Montanari Metric and Layered Temporal Logic for Time Granularity

Martin H. van den Berg Some Aspects of the Internal Structure of Discourse: the Dynamics of Nominal Anaphora
Jeroen Bruggeman Formalizing Organizational Ecology

Ronald Cramer Modular Design of Secure yet Practical Cryptographic Protocols

Natasa Rakié Common Sense Time and Special Relativity

Arthur Nieuwendijk On Logic. Inquiries into the Justification of Deduction

Atocha Aliseda-LLera Seeking Ezplanations: Abduction in Logic, Philosophy of Science and Artificial Intelligence
Harry Stein The Fiber and the Fabric: An Inquiry into Wittgenstein’s Views on Rule-Following and Linguistic

Normativity

DS-1997-06
DS-1998-01
DS-1998-02
DS-1998-03

Leonie Bosveld - de Smet On Mass and Plural Quantification. The Case of French ‘des’/‘du’-NP’s.
Sebastiaan A. Terwijn Computability and Measure
Sjoerd D. Zwart Approach to the Truth: Verisimilitude and Truthlikeness

Peter Grunwald not yet available

