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Abstract

Minimal predicate$ satisfying agiven first-order descriptiong(P) occurwidely in

mathematical logic and computsrience We give an explicit first-order syntaxfor

specialfirst-order'PIA conditions'¢(P) which guaranteesiniqueexistenceof such
minimal predicatesOur main technicalresultis a preservationtheoremshowing
PIA-conditions to be expressively complete for all those first-order forntiddare
preservedunder a natural model-theoreticoperation of ‘predicate intersection'.
Next, we show how iterated predicateminimization on PlA-conditionsyields a
languageMIN(FO) equalin expressivgpowerto LFP(FO), first-orderlogic closed
undersmallestfixed-pointsfor monotoneoperations.As a concreteillustration of

thesenotions,we showhow our sort of predicateminimization extendsthe usual
frame correspondence theory of modal logic, leadingpmperhierarchyof modal
axioms: first-order-definable, first-order fixed-point definable, and beyond.

1 First-order logic with predicate minimization

One often defines predicateuniquelyin amodelM asthe smallestP satisfyinga
certainfirst-orderdescriptiong(P, Q), whereQ is sometuple of given predicates.

Our aim is to define a formalism allowing this device in a natural and useful fashion.

Before we get to general definitions, let us consider some motivating examples.

Example 1 A straightforward case of minimization.
Theminimal predicatd® satisfying the first-order formula

¢(P, Q) = ¥x (Qx— PX)
exists in any modeéM, and it is of course the predic&atself. »

In this case, the minimal predicdes explicitly first-order definablén termsof the
given predicate®. Such facts are widely used, eig.modalframe correspondence
theory (van Benthem1983, Blackburn,de Rijke & Venema2001), whose high-
lights include first-order definability for suitable monadic second-order sentences.



Example 2 Computing a first-order modal frame correspondence.

A basic correspondence connects the midadxiom[]p — [][]Jp with transitivity
vxvy (Rxy =¥z (Ryz— Rxz))of the accessibilityrelationR. The standardproof
heretakesa minimal predicateP satisfyingthe antecedenf]p — i.e., thefirst-order
formula vy (Rxy— Py) —at any given point. The minimalP satisfying the formula

#(P, Q) = ¥u (Rxu— Pu)

is the first-order predicatePv := Rxv In the correspondenceproof, the latter
predicate is thesubstitutedfor all occurrence®f P in the consequenf][]p —i.e.,
vy (Rxy— vz (Ryz— Pz)) —to get transitivity ak: vy (Rxy—vz (Ryz— Rxz)).&

Example 2 is noto be confusedwith the fixed-point formula gpe[]p in the modal
p—calculus(Stirling 1999), whose meaning much more complex,witnessSection
3 below. We will analyze the modfsthme correspondencprocedurein more detail
in Section4. But not all naturalresultsof predicateminimization are first-order.
A more general use is found in logic programs, where pregicatesare introduced
through recursive rules referring to 'minimal Herbrand models' (Doets 1994).

Example 3 Computing recursive Horn-clause definitions.
Consider a recursive description like

#(P,R) = Psa ¥kvy ((Pxa Rxy)— Py)

The minimal predicatehereis a transitive closure,describingall points reachable
from s in somefinite number(0 or more) of R-steps.This propertyis not first-
order,but it can be definedin the well-known formalism LFP(FO) of first-order
logic extended with fixed-point operators (cf. Ebbinghaus & Flum 1995). &

A minimal Herbrand moddibr a logic programis the term modelfor the language
where all predicates defined by progratauseshavetheir minimal extensionsThe

purely universalHorn-clausesyntax guaranteeshe existenceof such modelsfor

setsof clauses- but this is not necessaryor the existenceof minimal predicates.

More general minimal predicatesoccur with 'predicate circumscription'in Al
(McCarthy 1980). Predicate-circumscriptiveonsequenceas opposedto standard
logical consequenceynly requirestruth of the conclusionin all predicate-minimal
models of premises. This is a widely used formalism in so-called 'default reasoning'.



Example 4 Predicate circumscription.

Let (R) say thaR is a discrete linear order with an initi@int but with no final or
limit points. Considerthe following descriptionof a new predicateP, where the
crucial second conjunct is not universal Horn, as its antecedent is not atomic:

oP,R) = a(R) A¥X (VY (Ryx— Py) = PX).

#(P, R) hasP-minimal modelsover any domain,wherethe denotationof P is the
initial segmentof the R-order consistingof the standardnatural numbers.This
expressive power beyond first-order logic explains the high complexity of
circumscription, which can define standard models categorically. »

This examplemakesP the so-called'well-foundedpart’ of the given binary order,
which is also computableby a standardnductive definition (Aczel 1977).We will
return to this particular connection in Sections 3, 4 below.

These four examples suggest a general semantic scheme for new predicates:

MIN P ¢(P, Q) the minimal predicate P such thgP, Q),
with ¢(P, Q) a first-order formula in a language with predic&e®.

Oneway of statingits meaningmore preciselyfollows predicatecircumscription.
The notation is well-defined in all models for the following second-order condition:

P+ (¢(P, Q) A VP' (9(P", Q) — ¥ (Px— P'X)).

But sometimes, such minimal conditions of userathe mostinformative notion.
Inspectingthe aboveexampleswe actually see a more concretemodel-theoretic
criterion that explains the unique existencéhafminimal predicatesThe following
formulation of this criterion involves some harmless abuse of notation.

Definition 1 Intersection Property.

A first-order formulag(P, Q) hasthe intersectionpropertyfor P (IP* for short)ff,
in any modeM, wheneveM, P, |= ¢(P, Q) for all predicatesn a family {P, |il},
¢ also holds for their intersection: thathé, ~P, |= ¢(P, Q). »

Applied to the extremecaseof an empty family {P, |iel}, this saysthat ¢(P, Q)
holdsfor the intersectionof the empty set,being the whole domain of the model.
That is,@(T, Q) is universally valid for formulas withP.



All examplesso far had defining clausessatisfyingIP — as is easyto checkby a
direct set-theoretic argument. Also, their intended minpnadlicates are evidently
the intersectionsof all predicatessatisfying ¢(P, Q) in the given model. Thus, IP
justifies the phrasing 'minimal predicate satisfying the given descridtios'evena
little bit stronger,asit alsoquantifiesover smallerfamilies of predicatessatisfying
#(P, Q). We will retain this slight over-kill henceforth for technical convenience.

But our examplesalso suggesta concretesyntacticformat behind this behaviour.
The following definition introducesa sort of generalizedHorn clauses,allowing
non-atomicantecedentin the format 'P-positive antecedentmplies P-atom': The
clausevx (vy (Rxy— Py) — Px)in Example 4 is a typical illustration:

Definition 2 A first-order formula with identity is a PIA conditionif it hasthe
syntacticform v¥x (y(P, Q, x) — Px), with P occurring only positively in the
antecedentormula y(P, Q, x). HereQ is againa tuple of predicatelettersin the
base vocabulary, anda tuple of individual variables. »

Conjunctions oPIA conditions can be rewritten to single ofstaking disjunctive
antecedents. Here is the major semantic property of these special formulas.

Proposition 1All PIA conditionsg(P, Q) have the Intersection Property.

Proof Suppose- with someharmlessabuseof notation— that ¢(P,, Q) holdsin
some model for allel. Now let the antecedem(P, Q, x) of ¢(P, Q) hold for some
tuple of objectsd with P asthe intersectionP,. By the positive occurrenceof P,
that anteceden#(P, Q, X) thenalsoholdsfor eachseparatd®. But thenP, d holds
because of the truth g{P,, Q) — and henceP, holds ford. &

It follows that the single-stegormat MIN Pe ¢(P, Q) of our four examplesso far,
with @¢(P, Q) a first-order PIA condition, definesunique predicateminimizations.
Thereis also an obvious dual MAX of MIN for maximal predicatessatisfying a
given first-order descriptiorut we will stick with minimizationhere.Iln Section3,
we will generalizethis minimizationformatto an extensionMIN(FO) of first-order
logic closedundernestedapplicationsof predicateminimization. But for now, we
continue with the model-theoretic analysis of first-ofélg conditions.

2 A preservation theorem for intersectivity
The main technicalresult of this paperis a model-theoretigoreservationtheorem
statingthe extentto which the syntacticPIA-format is expressivelycomplete.But
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before proving this result, we state a simglsposition,whoseproof is a warm-up
version for the more complex argument to follow. First, we restrid@lifsdormat.

Definition 3 A universalHorn formulaw.r.t. P is afirst-order implication of the
form ¥x (#(P, Q, X) — Px) whoseantecedents constructedfrom arbitrary Q-
atoms and their negations, positR@toms, conjunction and disjunction only. &

This restricted first-order format suffices for masgmputationapurposessuchas

logic programming,or specifying abstractdata-types.The following preservation
theoremand its proof come from van Benthem 1985. But the result is already
implicit in the discussiornof reducedproductsand submodelsn Chang& Keisler

1973, which refers to general results by Weinstein 1965 and Malcev 1971.

Moreover, a related semantake on universalHorn clausesn computersciencels

found in Mahr & Makowsky1983. For convenienceye considerunary predicates
P only in the arguments to follow, merely to save on tuple notation.

Theorem 1 The following are equivalent for all first-order formuladP, Q):
(@ (P, Q) is definable by a universal Horn formula w.Pt.
(b)  @(P,Q) has the Intersection Property w.r.t. prediégte

and it is also preserved under the formation of submodels.

Proof The implication from (ajo (b) is straightforwardIP follows from the PIA-
form of ¢(P, Q) — or alternatively,this propertycaneasily be showndirectly. And
preservation under submodels followsgyy universal syntactic form.

Conversely,assumethat condition (b) holds. We must find a universal Horn
definition for ¢(P, Q). Consider the set of all universal Horn consequences of

UH-Consg) = {y universal Horn w.r.t® | ¢ |= w}
Here is the main observation needed to derive condition (a) above:
Lemma 1 (Consequence Lemma)JH-Consg) |= ¢

Oncethis is proved,by the Compactnes3heorem,¢ is implied by some finite
conjunction of its own universalHorn consequencesv.r.t. P, and henceit is
equivalent to thigonjunction.Clause(a) of the Theoremthenfollows becauseany
such conjunction is equivalent to a single universal Horn condition.



Proof of the Consequenceeemma We needtwo major steps: one of model
construction, an@ne of truth transferusingthe given preservatiorpropertiesof ¢.
For a start, leM be any model foH-Consg). First, wedisposeof a specialcase.
Let the predicateP hold for everyobjectin M. Then ¢ holds automaticallyin M,
by the earlier-noted fact thefT, Q) is universallyvalid if ¢(P, Q) hasIP. Next, let
some objectd in M lackP. For all suchd, we create the following situation:

Lemma 2 (Set-Up Lemma)There exists a mod#\, for ¢, togethemith a mapf,
from M to N, which is aQ-isomorphic embedding andPahomomorphism.

Proof Extend the given first-order langudg®, Q) with new constant namesfor
each objeceeM. Then for each objedeM which lacks the property:

(#) The following set of formulas is finitely satisfiable:
X ={¢} v {-Pd} v the P*, Q-atomic diagram ofM, M),
where the latter set consists of@htoms and their negations
that are true i, plus all positivéP-atoms that are true M.

Proof of (#) Supposeotherwise.Thenthereis somefinite conjunction(d, d) of
formulasfrom the P*, Q-atomicdiagramof (M, M), with the tuple of namesd, d
referring to objectsd, din M, such that¢ A (d, d) impliesPd. Sincethe individual
namesd, d do not occurin the formula ¢, this meansthat ¢ implies the universal
Horn condition ¥x ¥X (x(X, X) — PX). But the latter's evident falsity in M
contradicts the assumption tidj= UH-Cons(@). »

Now, applyingthe Compactnes3heoremto (#), the whole set X is satisfiable.So,
there is a mode\, for all of {¢} v/ {-Pd} </ theP", Q-atomic diagram ofM, M).

Now, consider the mafy from M into N, sendingthe objecte to the interpretation
of its nameg™®. This is a Q-isomorphicembeddingaswell asa P-homomorphism.
E.g., it is a Q-isomorphismas N verifies all M-true Q-literals, including negated
identity atoms.Thus, M is Q-isomorphicto the submodelN,(M) of N, whose
domain consists of the interpretationd\ipof all name. &

It remainsto usethe preservatiorassumptionsn clause(b) of the Theoremto get
the desired conclusion for the Consequence Lemma.
Lemma 3 (Transfer Lemma)M|=¢.

Proof First apply the given preservationgfinder submodels to traovefact that
N, |= @. In the submodelN (M) correspondindo M, it follows that N (M) |= ¢.



Then we can usigto copy the interpretation &in N (M) backinto M to obtaina
modelM, which coincides wittM onQ-predicates, while verifying

@@, (b) all trueP-atoms fromM, and (c) -Pd.

Now is the timeto apply the IntersectionPropertyof ¢ to the family of all models
M,. The resultis that ¢ mustalso hold on the model (M, Q, P) with P* the
intersection of alpredicated?, in the separatanodelsM ,. But the latteris just the
original predicateP on M itself! This final zeroingin on P" via an intersectionof
¢-modelsis the main point of the whole elaborateconstructionof the family of
modelsN, in this proof. In other word¢M, Q, P) = M —and henceM|=¢. &

Now we come to the main result of this section. This apgedys new— but again,
thereis some history. Chang & Keisler 1993, Chapter6, mentionsa syntactic
formatlike PIA, but with wholly positive antecedent&n all predicateletters. Also,
Papalaskar& Weinstein1990 characterizethe intersectionproperty of Section2
syntactically in the setting of propositional logic.

Theorem 2 The following are equivalent for all first-order formulagP, Q):
@  #(P,Q) has the Intersection Property w.r.t. predi¢ate
(b)  #(P,Q) is definable by means offdA formula w.r.t.P.

Proof The argument has the same three major steps as thepidworeml, but
there are some complications due to the absence of the shortcut via submodels.

From (b) to(a), theresultis just Propositionl. Next, assumecondition (a). Again,
we consider just a unary predic&&o avoid cumbersome tuple notatifam objects.
For a start, define the following set of syntactic consequenges of

PIA-Consf) = {wPIAw.rt. P |¢ =y}

Lemma 4 (Consequence LemmaBIA-Consf) |= ¢

If we canshowthis, thenwe are done,sincethe syntacticdefinability condition (b)
will follow by the CompactnessTheorem, plus the earlier observation that
conjunctions oPIA-formulas are equivalent to single ones.

Proof of the Consequenceéemma Let M be any modelfor the language. (P, Q)
satisfyingPIA-Consf). As before, ifM |= ¥x Px theng(P, Q) alreadyholdsin M,
by IP for ¢. For the remainderof this proof, we will assumethat M |= - ¥Xx Px
To fix notation,let L(Q) be our first-order languagewith basepredicatesQ only.



Using a seriesof auxiliary results on model and map extensionswe will now
construct a final situation as described in the following statement:

Lemma 5 (Set-Up Lemma)lhere exists an elementary extengibnof M plus,
for eachdeM’ lackingP, a modeN, and a may, fromM" to N, such that
(@  ¢istrue inN,
(b)  P(fy(d)) is false inN,
(c) f,is anL(Q)-isomorphism and B-homomorphism fronM" ontoN,

Proof of the Set-UpLemmaWe stateat the outsetthat all modelsin the following
argument areountable and so is the totality of all models used in the construction.

As before(M, M) is the modeM expandedo a modelfor the first-orderlanguage
L(P, Q)(M), which is the original(P, Q) enrichedwith new individual namese for
each objece in M (whethere satisfies the predicaieor not).First, we find a setof
models witnessing al-failures inM. Thisis muchlike the argumentor claim (#)
in the proof of Theorem 1. Fix amyin M with -P"d. We have that

(##) The following set of formulas is finitely satisfiable:
(i) ¢, (i) =Pd, plus (iii) Th(P", Q)(M): the complete first-order
theory of(M, M) in L(P*, Q)(M): i.e.,L(P, Q)(M) with only
those formulas having all occurrence$giositive.

Proof of (##) If finite satisfiability fails,then ¢ implies someformula (P, Q, d, €
— Pdwith P occurringonly positively in @, and new object constantse (one or
more) andl. But thenthe universalclosure ¥x ¥y (a(P, Q, Yy, X) — PX)is a PIA-
consequence gf, which would therefore have to holdMt quod non »

Now, by the CompactnessTheorem,take any model N, for the whole set of
formulas in (#).It makesgtrue, aswell as-Pd. Moreover,the function f, from M
into N, sendingobjectse in M to objectse" preservesall M-true first-order
formulasof L(P*, Q)(M). (In particular,sincef, preservesll true non-identitiesjt
is1-1) We can do this for any objecthh lacking the propertf?, and the result ia
countable family of model, with mapd, from M into them. In a picture:

_________________________________

T"N=models

total, into, L(F%,.Q)

‘‘‘‘‘
o
.....

------
..............



This is the startfor a procedureconstructingelementarychainsof modelson the
'‘M-side' and the 'N-side'. There will always be one current model elementarily
extendingM, while the family of models N, is both modified by elementary
extensionsof existing onesand addition of new ones. The inductive step of this
construction actually needs a bit less than the above, as thé, megd not be total:

Inductive steplk — k+1) Let M* be the currentmodel elementarilyextendingM,
while thereis a family of modelsN¥, — onefor eachd in M* lacking P — together
with partial maps*, that preserve all first-order formulasof the languagé(P*, Q)
w.r.t. all object tuples all of whose objects occur in the domairfpf

@) if M= a[é], thenN¥, |= & [f“(e)]

So, the currentmapsmay be partial, and non-surjective We now give a three-step
procedurefor extendingthesemodelsand mapsto largerdomains,while restoring
the properties that we start with here — in particular, the crucial invégjant

Step A We find an elementary extension for each métigland
we simultaneously extend the giv&nfrom M into it to a new map
that is total orM¥, while still preserving all true(P*, Q)-formulas.

By way of preparationye add new individual constants denotingobjectse in M*
that are in the domain &f and interprethesein N¥, via their f -images.Thus, both
models get expanded. B), everyL(P*, Q)-sentence true iNl*is alsotrue in N,.
Next, we add new individual constantdor all objectsin M¥, and expandthe latter
modeloncemore. Our first-order languagenow containsall new constants.Then,
finding the extended model and mapping uses the following fact:

(A#) The following setXis finitely satisfiable:
(a) allP-positiveP, Q—sentences: true in the twice-expandeédX,
plus (b) the complete first-order theory of the expanded nilel

Proof In fact,X is finitely satisfiable in the expanded moti¥|. Consider anyinite
subsets,. It may havesome(b)-type formulasthat aretrue in the expanded\¥, as
they stand. As for the formulas of the (a)-type, we canaakdinite conjunctionof
thesein the extendedlanguageand existentially quantify over the new constants
naming objects different from thosdreadyin the domainof f,. Using the fact that
(a) P-positive formulas are closed under conjunctions and existential quangfelrs,



10

(b) the old mad, preserved_(P*, Q)-formulas,we seethat this existentialformula
was already true in the expandéf]. This provides the required model f§; &

Next, by Compactnessye find a modelfor the whole formula setZ, which yields
the required elementary extensias,well asthe extendedmapasin earlier proofs.
In particular,the new map extendsthe old. Let the objecte in the domainof f; be
namedby the constante. Let f be the old constantnaming e as an elementof the
domainof f,. Thenthe atome=f is true in the expansionof M¥, and henceit was
preserved into the new model.

To summarize the result of Stdpwe note that:

Mk+l, A - Mk
N “*A is an elementary extension bf¥,
flebA o fY, istotal onM*™A but not necessarily surjective

StepB  We find an elementary extensibt** 2of M“*4, as well as an
extension of each mdp*"*, to a surjection onto the mod&l ****,
that still preserves all(P*, Q)-formulas true with parametersh<* .

First, given M*" * andany modelN*** # we canextendM*** # and the existing
mapf * A, so thatthe extendedmap still preservesall P-positive P, Q-formulas,
while having all ofN****, inside its image. The argument is similar to that in $tep
We add new individual constants as before for all objedts‘ih”,, and show

(B#) The following setrin the extended language is finitely satisfiable:
(a) the complete first-order theory Mf** #, plus
(b) the set of all negationsx of P-positiveP, Q—formulas
a that are true in the expanded mogéi™ A, Nt 4 ).

Proof The set is finitely satisfiable M~ If not, thenM**** would satisfy some
formula ¥x(e,v...v &) with all & P-positive — with the universal quantifier ¥x
running over all new objectnamesusedfrom (N*** A,/ N> #). By closureunder
disjunctions and universal quantifiers, this formiglatill in our classof P—positive
L(P*, Q)-formulas — and so, b), it would have been true M,: quod non &

It follows that the whole set of formuldsis satisfiable, and any model fomill be
the required P, Q-elementaryextensionof M*** # while also yielding the right
extensionf “** B for the mapf “** #, in an obviousway. But this is not enough!
We must achieve this fall modelsN “**, that existed at the end of Stap
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For thatpurposewe now arrangeall thesemodelsin somecountableenumeration,
and repeatthe precedingconstructionthrough all finite ordinals.In particular, in

eachof thesesteps,the currentdescendandf the initial model M*** # changesto

somelL (P, Q)-elementary extension. But this does not affeetcrucial preservation
property($) for our partial maps,as truth valuesfor all relevantformulasdo not

changebetweenan elementaryextensionand the original model M*** A, Finally,

taking the union of the resulting elementarychain of M-modelsis the required
modelM*** 8, while the mapg “** 8, constructediuring the stagesare the required
surjectionsstill satisfying ($). Note that these maps are also injective, as the

invariance conditiof$) implies preservation of negated identity atoms.

To summarize the result of StBpwe write:

M*L B is an elementary extension b A

k+1, B — k+1, A
N d~— N d

flet8 o fLA s surjective orN ***'8, but not necessarily total

Step C In taking the uniomM***® of an elementarychainin StepB, the domainof
this model may have acquired many new objéttat lackP, though they areot in
the domain of any map onto a matching mddeFinally,

Create a family of such models, plus embedding maps satig$)ing
exactly as in the argument setting up our first stage. This does not change
M B or any of the other models and maps existing by the end oBStep

The result of Step&, B, Cexecuted successively is

()  amodeM** which is an elementary extension\d,

(i) a family of models$\**, elementarily extending the
modelsN¥, existing at the end of Stage

(i)  afamily of partial map&**, from M*! ontoN*"*, satisfying
the preservation conditig®) for L(P*, Q)-formulas, whose
domain includes/*and whose range includi, — and

(iv)  new models\, witnessing all objects ik** that lack the
propertyP, with maps as in (iii) — not necessarily surjective.

In particular, the initial situation has been restored.

Iteration to an Elementary Chaito concludethe proof of the Set-UpLemma,we
iteratethe inductive stepdescribedherethroughall finite ordinals.The resultis an
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elementarychain of modelsM?*, M?, ... whoseunion is the required model M".
Moreover, the iterative procedugeiaranteeshat eachof its elementdacking P has
startedan elementarychain of modelsN¥,, N**,, ... from somestagek onward,
whose unions the requiredmodel N, of the Set-UpLemma.Finally, the union of
all partial mapg", betweerM" andN", constructed at stagasf this processs the
requiredL(Q)-isomorphism an&-homomorphisnf, from M™ to N,. In particular,
the map has becomea bijection becauseof the back-and-forthdomain extension
stepsin Step A and Step B, while the preservationcondition ($) for L(P*, Q)-
formulas with finitely many parameters still holds becauseM™ is elementarily
equivalent to the mod&i* where all objectd first appeared together. »

Now we are ready to clinch our argument.

Lemma 6 (Transfer Lemma) M|= ¢.

Proof  Considerthe situationin the Set-UpLemma.Eachmodel N, satisfies,
andmoreover,t is P, Q-isomorphicto the model (M", P,)) which is like M, but
with the interpretationof the predicateletter P replacedby one copiedfrom that of
N, via the magd,. This maked, into a completd®, Q-isomorphism, and hence

(M, Py |=¢
Also, theP-homomorphism condition ensures that

the copied predicate, contains®*”

Finally, note that

the objecd in M" does not satisff,

Now we use the given Intersection Property of ¢. The model M* with the
intersection of all predicaté interpreting the predicate let@mustalso satisfy ¢.
But by the preceding observations, tmérsectionis just P, andso M* is in fact
justthe modelM". It follows that M™ |= ¢. But thenalsoM |= ¢, sinceM” is an
elementary extension of the original molfefor PIA-Consf). »

There are severalvariations on Theorem?2; some much simpler to prove. The
universal Horn clauses of Theorem 1 were one exarAplather specialcaselets P
occurin consequenpositiononly. Van Benthem1996 showsthis is equivalentto
strengtheninghe IntersectionPropertyto an equivalence- or more perspicuously,
to adding a separate semantic requiremelit tbatg(P, Q) bemonotonew.r.t. P.
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3 Predicate-minimizing and fixed-point logics
Predicateminimization can also be addedas a generaldeviceto first-order logic.
The result is the following formalism.

Definition 4 The languageof first-order logic with predicate minimization
(MIN(FO)) has all therecursiveformationrules of standardirst-orderlogic plus a
new formation rule for formulas

MIN Pe ¢(P, Q) whereg(P, Q) is anextendedPlA-condition

The latter still have theyntacticshapeof Definition 2, but MIN(FO) syntaxallows
any P-positive antecedentg/(P, Q, x) from MIN(FO). Here, positive occurrences
of atoms inR, Q) not involvingR are also positive iMIN Re (R, Q). )

MIN(FO) is closely related to the more standard langudg®(FO) extendingfirst-
order logic with a recursive formation rule for fixed-point operators.

Definition 5 LFP(FO) extendsthe usualinductive formationrules for first-order
syntax with an operator defining smallest fixed-points

HP, xs (P, Q, X)

whereP may occur only positively ig(P, Q, X), andx is a tuple of variablesof the
right arity for P. The relevantfixed-pointsarethoseof the following monotoneset
operation on predicates in any given mddel

FM, = AP« {din M| M, P),d |= ¢(P, Q)}

By the Tarski-Knaster Theorem, the denotatiop®fxe ¢(P, Q, X) may be defined
correctly as thentersectionof all predicated® on M with FM¢ (P) € P —which is
also the smallest subs&tof M such thaFM¢ X)=X. »

In this definition, the syntactic condition of positive occurrencéfor ¢ guarantees
the monotonicity of the map FM¢.. This conditionis backedup by a well-known
model-theoreticresult. A simple variant of Lyndon's preservationtheorem for
homomorphismstatesthat a first-order formula ¢(P, Q) definesa monotoneset
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operatiorFM¢ iff ¢(P, Q) is definableby a formula with only positive occurrences
of the predicat®. We can look at our Theorem 2 as doing the samiifd(FO).

A modal variant of. FP(FO) is the modali—calculus where all predicates atmary,
and theg(P, Q) are modal formulas. These modal and first-order languzayesso
define greatest fixed-points by dualization, just as we can look at predicate
maximizationinstead of minimization — but we do not pursue this angle here.

Despite thephrasingof 'minimality’, the smallestfixed-point for ¢(P, Q) is usually
not a predicat® for which ¢(P, Q) holds.For instancejn Example2 of Sectionl,
the minimal predicateP satisfyinga modal formula []p (i.e., ¥y (Rxy — Py)) at
somepoint x wasjust {s|Rxs}. But the smallestfixed-pointfor ¥y (Rxy — Py)) —
written gpe [Jp in the g—calculus— is muchmore complicatedit definesthe well-
foundedpart of the given relation R, which occurredin Example4 of Sectionl.
Nevertheless, there is an intimate connection between the two formalisms.

Proposition 2 MIN(FO) andLFP(FO) have equal expressive power.

Proof (a) FromLFP(FO)to MIN(FO). The smallest fixed-point for theperationF
asdescribedaboveis alsoa smallestpre-fixed point’, which canbe representecs
follows, writing x for the tuple of the relevant free variables:

UP, xs ¢(P, Q, X) = MIN P+ ¥x (¢(P, Q, X) — PXx)

Herewe can assumenductively that the LFP(FO)-antecedenty(P, Q, x) already
hasa MIN(FO)-equivalent.(b) From MIN(FO) to LFP(FO). Minimization just
occurs ovePIA-conditions ¥X (¢(P, Q, X) — Px), with P occurringonly positively
in ¢(P, Q, X). But the same predicate can be describedRyxe ¢(P, Q, X). )

A choicebetweenthe languaged. FP(FO) and MIN(FO) seemdargely a matterof
practicalconvenience.More theoretically,our preservatiorresultsin Section2 are
the counterpartof the above'Lyndon justification’ for imposingthe constraintof
positive occurrencen LFP(FO). We havetried to find somemore direct reduction
of our preservation results in Section 2 to a Lyndon-style one, but without success.

Remark: an open preservation problémthis connection, therns a naturalmodel-
theoretic question that seems open for both formalisms. E.g., is it stithttiaefull
languagd.FP(FO) that the formulag(P) defining monotoneetoperationsarejust
thosedefinableby formulas having only positive occurrencef P? No Lyndon-
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type theorem is knowfor LFP(FO), becausehe usualcompactness-basedodel-
theoretictechniquedor first-order logic fail — including thoseof Section2. And
their substitutes for infinitary languages likg, (cf. Barwise & varBenthem1999)
fail, too — ad_FP(FO) defineswell-foundednessf binary orders,which is beyond
these. Exactly the same question is ofsgrour semantidntersectionPropertyand
the extende®IA-format used in the definition &IN(FO) : »

Another aspectof the comparisonconcernsfine-structure Smallest fixed-point
denotationdfor LFP(FO) can be computedin ordinal stages,following a well-
known bottom-upapproximationprocedurestarting from the empty predicate.In
particular,somefixed-pointsare uniformly computablein any model by stage®:
e.g.,predicatedenotationsn minimal Herbrandmodelsfor logic programs.Other
fixed-points require growing stages up to the cardinality ofiibdel, with the well-
founded part of a given binary orderingaakey example.One can predictsomeof
this behaviour from the shape of the formylds x* ¢(P, Q, X). E.g., van Benthem
1996 analyzes stabilization by stag@é terms offinite continuityin the predicateP:
'$(P, Q) holds iff ¢(P,, Q) holds forsomefinite subpredicatd>, of P". Its syntactic
counterparturnsout to be someform of positive-existentiabccurrenceof P in ¢,
without the universal quantification that makes the well-founded part case so
complex. It may be of interest to find similar fine-structure insithé(FO).

4 Minimization and fixed-points in modal correspondence theory

In this final section,we exploresomenew usesof predicateminimizationand PIA
syntax. Minimal predicates are used extensively in modal logic, wh@putingso-
called'frame correspondentsbr modalformulas.Here arethe basicnotions— for
more details concerningmodal logic we refer to the standardliterature (e.g., van
Benthem 1983, Blackburn, de Rijke & Venema 2001). A modal forg{pla..., p,)
is calledtrue in a frame- = (W, R) if, for eachvaluationfor its propositionletters
Py,---» P ¢ holdsin everyworld of that frame. This notion treatsmodal formulas
¢ asmonadicsecond-ordeclosuresof their standardfirst-order translationST )
on relational models, viz. as monadiit—formulas

vP, ... B, ST§)
But in many casesbetterequivalentpropertiesexist, indeedfirst-order ones,which

can be computed from the form of the modal axioms. The case of transitivityeand
modal axiom[]p — [][]Jp in Section 1 was a key example. How far does this go?
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4.1  Computing first-order frame correspondents

First-order frame correspondences are often proven ad-hoc. In Seatiealieady
mentionedthat the K4-axiom [[p — [][]Jp correspondgo first-order transitivity.
¥Xy (Rxy— ¥z (Ryz— Rxz)). Another well-known case is the following

Example 5 The.2-axiom<a>[b]p — [b]<a>p corresponds toonfluence
Xy (Rxy = ¥z (Rxz— 3u (Rzua Ryu)) &

Suchresultscan be computedmore uniformly using a well-known substitution
algorithm (van Benthem 1983, Blackburn, de Rijke & Venema2001). It turns
modalaxiomsof suitablesyntacticshapeq'Sahlqvistforms’) into equivalentfirst-
order conditions on accessibility relations on frames.

Theoren3  Modal formulasx — f of the following form have first-order frame
correspondents. Antecedentsmust beconstructed from atoms q, ...
possibly prefixed by universal modalities, conjunctions, disjunction, and
existential modalities, while consequefitean be any modal formula
positive in all its proposition letters. Also, the first-order correspondents
can be computed uniformly and effectively from the given modal axioms.

Proof sketch The proof of this resultis widely availablein the modal literature.
Here is the effective procedure.The substitution algorithm computing the frame
equivalents works as follows for modal axioms> B of the given syntactic form:

(@) Translate the modal axiom into its canonical first-order form,
prefixed with monadic set quantifiers for proposition letters:
¥X: ¥P: translation@ — B)(P, x),
(b)  Pull existential modalities in the antecedent forward
to become bounded universal quantifiers in the prefix,
(c)  Compute first-ordeminimal valuesfor the proposition
letters making the remaining portion of the antecedent true,
(d)  Substitute these definable values for the proposition letters
occurring in the body of the consequent — and if convenient,
(e) Perform some simplifications modulo logical equivalence.

Example 6 For the modal transitivity formuldp — [][]p ,

(@) yields¥x: vP: vy (Rxy— Py) — vz (Rxz— vu (Rzu— Pu)),
(b) is vacuous — as there are no existential modaliti§p inwhile
(c) yields the minimal valuBs := Rxs— and then
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(d) substitution gives’x: vy (Rxy— Rxy) = vz (Rxz— ¥vu (Rzu— Rxu)).
(e) the latter simplifies to the usual forfx: ¥z (Rxz— ¥u (Rzu— Rxu)). »

Example 7 For the modal confluence formwua>[b]p — [bl<a>p,

(a) yieldsvx: vP: Fy (Rxya vz (Ryz — Pz)
— VU (Rxu — 3 (Ruv A Pv)),
(b) yieldswx: ¥P: vy (Rxy —
(vz (Ryz — Pz) > vu (Rxu — 3v (Ruv A Pv))),
(c) yields the minimal valuBs := Rys
(d) substitution givesx: ¥y (Rxy —
(vz (Ryz — Ryz) - vu (Rxu — 3 (RuvA Ryv))),
(e) the latter simplifies to the usual form

X ¥y (Rxy = vu (Rxu — F(Ruv A Ryv)). &

For the correctnes®f the substitutionalgorithm, we refer to the cited literature —
since it is not our main concern here. The magais this. Clearly, the formulasof
step (a) imply their specialubstitutioninstancein step(d). Vice versa,assumehat
the latter is true in a modal frarke If anantecedentt in Sahlgvistform is truein
F at a poini, for any valuatiotV(p) for its propositionlettersp, thenit will alsobe
true for the minimal valuescomputedin step (c), which are containedin the sets
V(p). Therefore, the substitution instance in (d) says that the consgbjuelds at x
for those minimalalues.But thenit alsoholdsfor the original V(p)values,by the
semanticmonotonicityinducedby its positive syntacticform. This showsthat the
second-order formula in (a) expressing frame trutlr of fis true axinF. &

In our perspectiveyhat happendereis this. In dealingwith Sahlqvistantecedents
o, step(c) of the abovealgorithm usespredicateminimizationsMIN Pe ¢(P, Q),
where all conditions ¢ are PIA. This follows from the syntactic form of the
translatedz, after existential modalitidlsavebecomeuniversalprefix quantifiers,so
that only iterationsof the form []...[Jp remain.The correspondingPlA conditions
areevenvery special,as the predicateP to be minimized doesnot occurin their
antecedents, which only referrelationalsuccessochains.This is the specialcase
mentionedat the end of Section 3, which explains the first-order definability.
Nevertheless, minimization would also work with other typenodal antecedent
and this suggests a surprising extension of the above theorem in Section 4.2.
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Remark Not all first-order frame-definablemodal formulas have equivalents
by first-order substitution(van Benthem1983). A counter-examplés the conjunc-
tion of theK4 transitivity axiom and th#&icKinsey Axiom [|[<>p— <>[]p. &

4.2  Generalized frame correspondentsin fixed-point logic
The precedingsubstitutionalgorithm typically runs into difficulties with modal
implicationsa — B whose antecedents are of more complex forms.

Example 8 Lob's Axiom []J([lJp —p) — [lp definesthe conjunctionof the
following two frame conditions:(a) transitivity of R (b) upward well-foundedness
of R. This property of binary relations is evidently not first-order definable. &

The failure of the earlier substitutionalgorithm herecanbe understoodasfollows.
We do not geta minimal valuefor an antecedenf]([Jo — p) which is first-order
definable in terms dR, =only. But still, we may observe that

the Lob antecedent has tABA-form vy ((Rxya ¥z (Ryz> Pz)) — Py)

Therefore this antecedensupportsa minimal value: not in the first-orderlanguage
of Rand=, but inMIN(FO), or equivalently, the fixed-point languaeP(FO).

Example 8, continuedComputing the minimal valuation for L6b's Axiom.
Analyzing []([lJp —p) a bit more closely, the minimal predicate satisfying the
antecedent of L6b's Axiom at a woKrdlescribes the following set of worlds:

{y | vz (Ryz— Rxz)& no infinite sequence dR-successors starts froyh

Then,if we plug this descriptioninto the Lob consequenf]p, preciselythe usual,
earlier-mentioned conjunctive frame condition will result automatically. &

Here is the general upshot of these observations:

Proposition 3Modal implicational axioms with positive consequents and
antecedents that alR*A modulo extracting existential outer quantifiers
have effectively computable frame correspondenit$P(FO).

We could also definetheseframe correspondentsn MIN(FO). Either way, many
modal axiomsbeyond Sahlgvistforms have correspondents fixed-point logics.
By itself, this observationis not new. LFP(FO) has also beenusedexplicitly in

Nonnengart & Salas 1999, part of their 'SCAN-algorithm'for analyzingsecond-
order frame properties and turning them into more manageable logical forms.



19

Here is one more illustration of the fine-structure of useful fixed-point equivalents.

Example 9 'Cyclic Return'.

The modalaxiom (<>p A [l(p — [Jp)) — p expresseshe frame property that
"every pointx with an R-successoy canbe reachedrom y by a finite sequencef
successivdR-steps”(van Benthem1983, Benton 2002). The antecedenbf Cyclic
Return becomeBIA after first pulling out a prefixed universal quantifigy (Rxy—
for the existential modality>p. The resulting minimapredicateis 'beingreachable
from y in finitely many R-steps'After substitutionin the consequentthe eventual
LFP(FO)-equivalent is exactly the mentioned frame condition. »

Cyclic Returninvolvesonly transitiveclosureof R and hencea simple fixed-point
suffices, reachedat the first infinite approximationstage @. The reasonfor this
simplicity is a syntacticone, relatedto our observationsn Sectionsl, 2. The PIA
antecedent computed from the anteceder(p A [J(p — [Jp)) is a universalHorn
clause. By contrast, in the minimal value computed fonthe HornPIA antecedent
[l(lp — p) of L6b's Axiom, the fixed-point may take any infinite ordinal stage
before it is reached, as it computes the well-founded part of a binary relation.

4.3 A hierarchy up to non fixed-point definability
There are limits to minimization. Consider the earlier McKinsey Axiom

[<>p — <>[lp,

another well-known modal principle without a first-order equivalent.f@ad-point
analysisdoesnot apply here,asthe modalantecedenf]<>p hasa typically non-
PIA first-order quantifier pattern ¥x (Rxy — 3y (Ryz ... Thereareotherhigher-
order correspondence algorithms which can deal witrcdge(Gabbay& Ohlbach
1992, Nonnengart & Salas 1999), but these do not deliveFR(+O)-condition.

Indeed, we have a hierarchy here. Perhaps the simplest exaraplerefixed-point
definableframe condition comesfrom basic temporallogic with modalitiesF for
future andP for past. Consider the well-knovidedekind Axiom

(Fp A FG=p) - F(G-p A H(p v Fp))

On strict linear order§T, <), this expresse®edekindCompletenesseverysubset
of T with a lower boundhasa greatestower bound. Again, the antecedents not
PIA. And indeed, this monadid@,—property is not definable in the above style.
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Proposition 4Dedekind Completeness is not definablek (FO).

Proof Dedekindcontinuity holdsin the realsR, andfails in the rationalsQ. But
there exists a well-knowpotential isomorphisrbetween thestrames.As potential
isomorphisms preserve all formulasLéiP (FO), non-definability follows. &

Thus, we find a new hierarchy among frame correspondents in temporal logic:

first-order, fixed-point definable, essentially higher-order.

A similar hierarchy exists in modal logic:
Theorem 4 There are modal formulas which are not definableHR(FO).

Proof Le Bars2002presentsa modalformulawhosetruth on finite framesdoes
not satisfythe Zero-OneLaw for the probability of truth with increasingdomain
size. But all formulas definable in LFP(FO) do satisfy this Zero-One Law
(Ebbinghaus& Flum 1995). More precisely, Le Bars looks at finite frames
satisfyinga simplefirst-order condition sayingthat a frame hasrelationalwidth 2,
which is known to hold with probability 1 in the limit on finite models.Then he
considers a further modal formula which may be written as follows:

@all<>p) =P v<><>(p va) A <>(p vQ)

This formula does not obey a Zero-One Law onfitite framesof width 2. Hence
it is not everLFP(FO)-definable inthat specialcase.Again, our methodwould fall,
because the antecedem [J[<>p is typically nonPIA. »

We conjecture that already the McKinsey Axiom is not definablé-P(FO).

Remark Several points similar to those made in Sectm@s5.3 arefound in
Goranko& Vakarelov2003, which we learnt about after writing this paper.In
particular, their 'regular formulas' can be shown to be equivalentto Sahlqvist
implicationswith PlA-antecedentggestrictedto a modal languagewith only unary
basepredicated?. The authorspoint out that suchformulashaveframe conditions
definablein LFP(FO). Moreover, they announcefurther work on correspondence
and completeness in modal fixed-point formalisms extending the above language.

4.4  Some possible extensions

Multiple minimization The substitutionalgorithm of Section4.1 works smoothly
on formulas & with severalpropositionlettersp,, p,, .... Here, antecedent#n the
PlA-baseddefinitionsof minimal valuesdo not involve any predicatesP,, P,, ...

But more generally,one can simultaneouslyminimize a bunch of predicateswith
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respect to a conjunctiaghof PIA-conditions, in the syntactic formstiN P, P,, ... ®
¢(P,, P,, ..., Q). The proviso is thain the antecedenbf the implicational condition
for P, all other predicates being minimized occur only positively. We omit details.

Richer modal languages. Minimal substitutionanalysisapplies far beyond the
basic modal languageof [], <>. Suitable antecedentsnclude temporal Until
modalitiesU(p, q) of quantifierform 7% — and consequentare acceptablan any
language (first-order, higher-order) as long as they are monatothie proposition
letters.In particular,to get expressiveharmonybetweenthe languageof the modal
axiomsandthat of their naturalframe correspondentst would make senseto do
frame correspondence theory on modal fixed-point languages like-taéulus.

Higher-order modeltheory Modal correspondenctheoryis a pilot study for the
model theory of simple fragmentsof higher-orderlogic (van Benthem1983). In
particular,it would be of interestto extendits basic definability results.E.g., are
modalformulasLFP(FO){frame-definableff, like all sentences the latter fixed-
point languagethey are invariantfor potentialisomorphismsbetweenframes?Or,
can we generalizethe Goldblatt-ThomasorTheorem characterizingthe modally
definableelementaryframe classesio frame classesthat are LFP(FO)-definable?
To do our model-theoreticanalysis of syntactic formats then would require
preservationtheoremsfor fixed-point languages.But, as already observedin
connection with monotonicity in Section 3, positive resaftghis sort are scarceas
the typical first-order routines used in the above proofs are no longer available.

5 Conclusion and further directions

We have analysedpredicate minimization as a logical device, determining the
circumstances when it is appropriate in both semantic and syrieatis. Our main
result is a syntacticharacterizatiorof all first-orderformulassatisfyinga semantic
property of predicate intersection underlyimgny usesof minimization.Whenthe
latter deviceis addedin full generalityto first-order logic, the resulting formalism
MIN(FO) provides an alternative foxed-pointlanguagedike LFP(FO). Moreover,
it shedsnew light on old issuesof frame definability in modal logic, leadingto a
new hierarchy oframe conditionswith a naturallevel of fixed-point definability in

between first-order and genetagher-order Eventually,this connectionsuggestsa
more thorough-goinguseof fixed-points,matchingup strongermodal fixed-point
languages like the—calculus with first-order fixed-point frame conditions.
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