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Lifschitz' realizability
by
Jaap van Oosten
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Introduction.

In Lifschitz 1979 a realizability interpretation for HA is given which
differs from Kleene's realizability only in the clause for the existential
quantifier.

A somewhat more complex coding of finite sets of natural numbers by
numbers is given: let V., the finite set coded by e, be defined by

Ve ={x<je [ {je}(x)T).

Here j,,j, are the first and second projections of the inverse of a bijective
primitive recursive pairing-function j:INxN—N, {.} denotes partial
recursive application.

Lifschitz put er3xAx=V #J &Vge V. (j,grAjg). His aim was to show that
the schema CT, is really stronger than CT,!, where

CT, Vx3yAxy—3zVx({z} (x) & Ax{z}(x))

CT,! Vx3lyAxy—3zVx({z) (x){&Ax{z} (x)).

The basic idea for the proof of this is that there can't be an effective
procedure which produces, given that V.2, an element of V; on the other
hand, there is such a procedure working on all e for which V. is a
singleton.

For, if there were a code g such that V =@ ={g}(e)l &{g}(e)eV,, and W,
and W, are two disjoint, recursively inseparable r.e. sets, find a recursive
function F such that

VxI{F(x)}(0) ={f}(x) & {F(x)}(D={h}(x)].

Then always Vi, 1)= D, s0 {gh(j(F(x),1))eV ¢, 1y @nd g serves to
construct a recursive separation between Wyand W,

(If V. is a singleton then one simply waits until {j,e}(x) has been computed
for all x<j,e save one; the remaining one must be the element of V)
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In this paper we will be concerned with the following questions: Can
Lifschitz' realizability be formalized? Can we give an adequate
axiomatization? Can we extend it to higher-order systems like HAS? Is
there an analogon to Kleene's realizability for functions? Can it be put into
the framework of tripos theory?

These questions can be answered affirmatively; however, to formalize the
proof of soundness we seem to need to extend these systems somewhat.
Lifschitz’ proof that HA is sound for his realizability hinges on some
lemmas that can't be formalized in HA. For this we seem to need two extra
principles. One is Markov's Principle for primitive recursive predicates:

Mpr ——3nAn—3nAn, for A primitive recursive.
The other one is:
P(e) Vn=[1th(n)=j e+ 1&Vi<j,e T(j,e,i,(n)))] = Ji<j e Vn =T (j,e,in),

which can be read as: if there is no witness for V=0, then V., must contain
an element. An equivalent formulation would be:

——3Ji<yVnA(i,z,n) >3i<yVnA(i,z,n) for primitive recursive A.

(Let us show this. One has to see:

Vn—(1th(n)=j,e+1 & Vi<j,eT (j;e,i,(n);)) «> ——Ji<j,eVn—T(j,e,i,n),

and use a standard Kleene normal form for I1%-predicates.

Now « is trivial because (1th(n)=j,e+1 & Vi<j,eT(j,e,i,(n);)) of course implies
—Ji<j,eVn—T(j e,i,n).

For —: suppose —di<j,eVn—T(j;e,i,n), then Vi<j,e—~Vn—T(j,e,i,n), so

Vi<j,e——3nT (j,e,i,n). And this implies ——Vi<j,ednT(j,e,i,n) because of

- Vi<y——3nT (z,i,n)— ——Vi<y3nT (z,i,n) (induction ony).

Now ——Vi<j,e3dnT (jie,in) gives at once ——InVi<j,eT(j;e.i,(n);), 0O
—Vn—Vi<j,eT(j;e.i,(n)), contradiction. Conclusion ——3i<j,eVn—T (j,e,i,n).)

It is easy to show that, w.r.t. EL, VeW¥(e) is equivalent to some form of
Kénig's Lemma(see §3).

In the following, V=@ will be an abbreviation for 3x(x<j,e&Vn—T(je,x,n)).
We define formulas xrA, for Lifschitz'r, in the obvious way.

The formalization of Lifschitz' soundness proof is completely
straightforward.

80. Formalization of Lifschitz’ realizability
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Lemma 0.1. There is a total recursive function b such that
HAVaVy(ye Vyq)ey=a).

Lemma 0.2. There is a partial recursive function ¢ such that
HA FVe(IxVy(ye V oy=x)->0(e)l&d(e)e V,).

The proofs are easy.

Lemma 0.3. There is a partial recursive function ® such that
HA+Mpp+Ve(e) - Ve flVge V EH g —d(e, )l &
&Vh(he V(o pye3ge Vo (h={t} (g))].

Proof. 3ge V (h=(f}(g)) = 3g<j e(Vn—T(j,e,gn)&3Im(T(f,g;m)&Um=h)), which is,
given that Vg<j,e(Vn—T(j,e,gn)—3ImT(f,g,m)), equivalent to
Jg<j,evnl-T(je,gn)&(T(f,gn)—Un=h)], or 3g<j,eVn—T(x(e,h,f),g.n) for a
suitable primitive recursive y; by VeW(e), 3g<j,eVn—T (x(e,h,f),g,n) is
equivalent to Vn—(1th(n)=j e+ 1 &Vi<j, eT (x(e,h,f),i,(n);)), or to Vn—T(x'(e,f),h,n)
for suitable y'(e,f); et @ be j(x'(e,f),x) with
k=max{Unln=min_(T(j,el,2)vT(f]1,2)),I<j,e}. Note that this is defined, by Mpp.

Lemma 0.4. There is a total recursive function ysuch that
HA+Mpp+VeW¥(e) - VeVh(he Vye) €38€ Ve(he Vg)).

Proof. 3geV (heV,) is 3g<j,e(Vn—T(j e,g,n) & hsj,g & Vn—T(] ,&h,n)) or
Jg<j,eVn—T(n(eh),gn) for suitable m; which by Ve'¥(e) is equivalent to
Vn—(1th(n)=j,e+ 1 &Vi<j,eT (n(e,h),i,(n);)) or Vn—T(x'(e),h,n) for suitable ='; so
if we take y(e):=j(n'(e), max{j,glg<j,e}), then y satisfies the lemma.

Lemma 0.5. For every formula A in the language of HA there is a p-term
Ax.x,(x) (which may contain variables occurring free in A) such that
HA+Mpg+VeW(e) - Ve(V #0& Vie Ve (frA)—x () J«&XA(e)LA).

Lemma 0.6. For every theorem A of HA there is a number n such that
HA+Mpp+VeW¥(e) - nrA.
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Lemmas 0.5 and 0.6 are immediate formalizations of Lifschitz' lemmas 5
and 6.

§1. Characterization of Lifschitz' realizability.

The following lemma gives a more manageable form to Lifschitz’
realizability.

Lemma 1.1. Define a realizability r' by the following clauses:

1) xr' t=s = V23 & VyeV, t=s (y not in t=s!)

2)xr' A&B = V. #D&VyeV, jyr'A& jyrB

3)xr' AsB = V2D & VyeV, Vw(wr'A-={y}w)l& {y}w)r's)
4) xr' VzAz = V2D & VyeV, Vn({y}n)l & {y}(n)r'A(n))
5)xr'3zAz = V23 & VyeV,  joyr'A(j,y)

Then for every formula A in the language of HA there are recursive
functions ¢, and y, (they may contain variables occurring free in A) such
that

HA+Mpg+Ve¥(e) + Vc(e[A—)(i)A(e)J/& dpledr'A)

HA+Mpp+VeW(e) F Vel(er'A—y,(e)l & y,(e)ra),

where L denotes Lifschitz' realizability. (Note the form of the clauses:
apart from a prefix V #J & VyeV,, it is just the Kleene clauses.)

Proof.Definition of ¢, and y, and proof of the lemma simultaneously by
induction on A. The notation is from the lemmas in §0. Following Lifschitz
we write g* for Af.®(f,g), where @ is as in lemma 0.3.

i) o_e) = ble)
ye) = 0.
1) 0pep(e) = b(j(0,0]e),05(ioe)))
Waes(®) = J(xa(Cya.d %)), xg((yp.j o) *(e)).
1110, ,5(e) =  b(Ah.gglely,(h)))).
Vass(e) = xanp (g%(e)), where g=afhayg(f(0,(a))).

V) Oygax(e) = Do, [/, 1({e}(n))).
Wyxax(® = Xyxax (3%(e)), where g=Af.(kn.y, [/, 1({f}(n))).
V) daeaxle) = g*(e) with g=Af.j(j,£,0,054£/,1(j,0)
Waxax(e) = g*(e) with g=Afj(j £yl ,£/,1(j ). We trust that the reader
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will be able to carry out the proof by himseif.

Definition.Let I" be the class of formulas inductively generated by the
clauses:

1) 20, -formulas are in T;

2) Formulas of form 3x<y Ax, with AeIl%;, are in T;

3) T'is closed under V, — and A.

As T" will play a role similar to that of the "almost negative” formulas in
§3.2 of Troelstra 1973,which could be termed Zol-negative, let us call
I-formulas "x%-negative”.

Lemma 1.2.(cf.1.c.,3.2.11) For every %,-negative formula A(a)(with free
variables &) there is a partial recursive function y, satisfying

i) HA+Mpo+VeW(e) FJu(ur'd)—A

1) HA+Mpp+VeW(e) FA(a)-oy,(a)l & y,(a)ra.

Proof. We prove i) and ii) simultaneously by induction on A.

1) Suppose A is 20;: A=3yBy, B prime; then ur'A is V #J & VeV, V, 0 &
Vhe V;B(j1f) which clearly implies A; for ii) take \uAsb(j(xB,b(O))fwhere
Xg=Mx.Bx. For then, A implies xg! and b(0)r'B(xg), S0 y,r'3xBx.

2) Suppose A=3x<t Bx,x not int, B is HOI; say B=VyCxy, then ur'aA is
equivalent to

(%) V,#J & VheV ijh;e@ &Vke ijh‘v’n[{k}(n)i & {k}(n)r'(j,h<t & Cj,hn)] which
implies V #0 & VheV, V,n#*0 &Vn Cj,hn which implies A. For ii) let e be such
that A=V =0, and let u such that V ={j(jh,b(An.b(0)))| he V,}; then V =&
implies (x) for u.

3) We will only do the case A=B—C; the other cases are left to the reader.
ur'A is V =@ & Vhe V Vx(xr'B—{h}(x){ & {h}(x)r'C). Now if B then ygr'B so
Vhe V, {h}(yp)d & {h}(yp)r'C; so if x is such that V, ,)={{h}(yp)lheV,} then
®(x(u))r'c, so C; But if B—C then b(Auy)r'B—C, for suppose ur'B, then B, so
C, so y.r'C.

Remark. So the Zoz—negative formulas are the "self-realizing” formulas for
this realizability. As a quick glance reveals that formulas of form xr'A are
x0,-negative, this realizability is idempotent.



6

Furthermore, since Ve¥(e) is also 202—negative, as well as Mpp,we see that
the soundness theorem for HA for this realizability can be extended to
HA+Mpp+Ve'¥(e).

We now introduce a principle analogous to ECT,. Consider
ECT, Vx(Ax—3yBxy) — FzVx(Ax—{z}(x){ &V (2)(02D &Vhe V (,3(,\Bxh),
for A x0,-negative.

Lemma 1.3.(cf. Troelstra 1973,3.2.15) ECT is r'-realizable.

Proof. Suppose ur' Vx(Ax—3yBxy). This is:

Vu#-'@& Vfe Vu‘v’n({f}(n)l& V(ﬂ(m#@ &Vhe V(f}(n)VW(Wr'An—){h}(W)J«& v(h}(w)¢®
&Vke V{h}(w)(jzkr'an 1K))).

Let us simplify a bit. Let u' be such that Vn({u}(n)d & V(ymy=U(V (gy(myl f€ VL)),
then Vhe V{u-}(n)VW(Wr'An—){h}(W)i& v{h}(w)¢® &Vke V{h}(w)(jzkr'an 1k)). Put
BE{h}(WA(n)), u" such that V{un}(n)sz(VBl he V{u-}(n)), then

Vw(wr' An—{u"}(n)d & V(2D &Vke V()i kM 'Bnj k). It is clear that u"
can be obtained recursively in u.

Now choose z with Vx V3= [Vl ¥ such that Vyy={kl jim,k)e Vi),
Y" such that V. )={Ay.¢(y(m))}. Then we have V. y#@, and if gr'me V)
then meV ), (since this is £0)-negative ), $0 V. (,)#D & Vke V. (ykr'Bxm,
so o(y(m))r'Bxm. Let y=b(y), then

V,Y;ﬁ@ & Ve Vy‘v’m({l}(m)l« & v{l}(m);t@ &VPE V{l}(m)‘v’g(gr"(me V{Z}(x))‘—){p}(g)i &
{pg)r'Bxm)), which is

Y'Vh(he V ,y(y—Bxh). The rest is easy.

¥ (m

Theorem 1.4(cf. 1.c. 3.2.18; characterization of r'-realizability).
i) HA+Mpp+VeW(e)+ECT F A « Ix(xr'A);
11)HA+Mpp+VeP(e)F Ix(xr'A) < HA+Mpp+VeW(e)+ECT A,

Proof. i) is proved by induction on A. As usual, the only non-trivial steps
are A=B—C and (similar) A=VyBy.

Now (B—C) « Vx(xr'B—=3y(yr'c)) < Jzvx(xr'B—{z}(x){ &V (x)*D

&VyeV (,30(yrc)) & FzVx(xr'B—{z}(x)! &{z}(x)r'C) < Ix(xr'B—C). We leave
the other case to the reader.



7

The proof of ii) (using i)) is completely analogous to 3.2.18 of Troelstra
1973.

Remarks on ECT,. i) ECT! is equivalent to a schema which resembles ECT !
except for the condition that A can be taken X0,-negative. We see that this
schema is consistent relative to HA, whereas ECT, w.r.t. Eoz—negative
formulas is not: if W, and W, are disjoint, recursively inseparable r.e. sets,
let F be such that Vx {F(x)}(0)={e}(x), {F(x)}(1)={f}(x), then V«(, 1y#D for
all x, 50 Tet Ax=V e 1y#@ ( Z0-negative ), Bxy=ye Vg, 1)y ANy z 8s in
the conclusion of the schema will give a recursive separation between W,
and Wy

ii) The example given in 3.2.20 of Troelstra 1973 (A =3yTxxy v —3yTxxy,
B=(z=0—3yTxxy & z=1——Txxy)) shows that the restriction to Zoz—negativé
formulas cannot be dropped.

iii) We can define a q'-realizability corresponding to r'-realizability by
the clauses:

1) xq" t=s V. 2D & Vye V, t=s

2)xq" A&B = V20 & VyeV, jyq'A & j,yq'B

3)xq' A—-B= V. 20 & Vye V, VYw(wq' A—{y}(w)! & {y}(w)q'B) & A—B
4) xq' VzAz = V. #D & Vye V. Vn({y}(n)! & {y}(n)q'A(n))
5)xq 3zAz =V 2D & VyeV, jLyq'A(jy)

Proposition 1.5. HA+Mpp+Ve¥(e)F A = HA+Mp+Ve¥(e)-nq'A for some n;
HA+Mpp+Ve¥(e) Fyq'A—A;If A is 20)-negative, HA+Mpp+VeW(e) - A—y,q'A for
Y, 8s in lemma 1.2.

Proof. The first statement is proved by a routine induction on lengths of
deductions in HA; the reader may wish to consult Theorem 3.2.4 of
Troelstra 1973. The other two statements are proved by induction on A.

Corollary 1.6. HA+Mpp+VeW(e) obeys the following rule:
FVx(Ax—3yBxy) = 3z b Vx(Ax—{z} (x)L &V (2D &Vhe V (,3(,yBxh), for A

30,-negative.

§2. Extension of Lifschitz' realizability to HAS.



The extension of Kleene's realizability to HAS, described in Troelstra
1973, is given by the simple clauses:
xr (tg,....t, )€ X = (tg,..0t, X)X *
xr VXA(X) =VX* xrA(X)
xr IXA(X) = IX* xrA(X),
where X—X* is an operation that assigns to each n-ary set variable X a
n+1-ary set variable X* from a fresh stock of variables.
As a consequence, this extension satisfies the Uniformity Principle:
UP VX3nA(X,n)—3InVXA(X,n).
Now this cannot work for Lifschitz’ realizability, because in that case we
would have all realizability clauses equal for both interpretations except
for the clause for the numerical existential quantifier; but this quantifier
can be eliminated in HAS, because of the equivalence

AyA(y) & VX(Vy(Ay—X)—X),
that holds in systems based on second-order logic with full
comprehension. So then these two interpretations would be the same, quod
non. However, combined with lemma 1.1, this idea suggests the following
extension:
6) xr' (ty,...,t, e X
7) xr' VXA(X)
8) xr' IXA(X)

V2D & VyeV, (ty,..t, ,y)e X*
V2D & VyeV, VX* yr'A(X)
V. 2D & VyeV, 3X* yr'A(X).

Theorem 2.1.r" is a sound realizability for HAS+Ve¥(e)+Mpp.

Proof. The verification of the rules for second-order predicate logic does
not pose any problem. For instance, if y(y)r' A(y)-B, y not in B, and xr'3yAy,
where A and B are arbitrary formulas in the language of HAS, then V_#J &
VyeV, Joyr'Ajy), so V.20 & Vye V Vhe Vw(j,y) {h}(j,y)d & {h}(j,Ly)r'B. Let y be
such that Vv, ={{h}(j,y)lhe vw(j,y)' ye V,}, then o(x(x))r'B, so b(Ax.o(x(x))) r'
dyAy—B, where b and ¢ are as defined in lemmas 0.1 and 0.4.

For the comprehension schema:

CA AXVy(ye XAy),

first note that the following holds:

(%) V2D & Vie V,Fk'(le V. & k'T'A)—kr'A (Trivial from the definition of r'-
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realizability ). Now x r' 3XVy(ye X<>Ay) means
V.22 & Vie V. IX*vyl {f}(y)l & Vk
(0) (V2@ & VeV, (y.De X*»{j (BN { (B yNKray &
kr'Ay—t={j (D (YN & V2@ & VieV, (yDeX*)].
Now let V ={f}, with f such that {j,({f}(y)})={j,({f}(y)}(k)=k; and if
X*={(y,DIFk(kr'Ay & le V,)}, then (o) is easily verified for f, x, and X*, using
(%).
The verification of extensionality
EXT Ay & y=x—Ax,
is completely trivial, which concludes the proof.

83. ALifschitz analogon to realizability for functions.

Description of EL. The language of EL contains, in addition to the
language of HA, variables for functions, an application operator Ap, a
recursor R and abstraction operators Ax. for every number variable x, such
that the following hold:

1) function variables are functors (i.e. terms for functions);

2) function constants are functors (for example, the constants for
all primitive recursive functions);

3) If ¢ is a functor and ta term then Ap(¢,t), always written ¢o(v), is
a term;

4) R is a functor;

5) Ift,t are terms and ¢ is a functor then R(t,0,t') is a term;

6) If tis a term and x @ number variable then Ax.t is a functor.

The non-logical axioms and rules of EL are:

A-CON: (Ax.t)(t)=t'/,], and
R-ax: R(t,0,0)=t and R(t,0,St)=0(R(t,0,t),t').
QF-ACy: VxJyAxy—IavxA(x,ax), for A quantifier-free.

EL is discussed extensively in Troelstra 1973, as well as Kleene's

function-realizability for EL, based on partial continuous application. Let
us fix some notation.

T0=¢< >; ti(k+1) =0kx=<a(k)> where < > denotes the empty sequence, and x
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concatenation of finite sequences.

<o>Im! = 6. (1th()=m & Vi<m 6;=n).

B(a)d means 3x (B(Tx)=0), and B(a) =P(T(uz.B(Tz)>0))=1;
Blol means Vx B(<x>=a)d, and B lo= Ax.p(<x>=a);

[n] will stand for Ax.n.

O will stand for the partial ordering on finite sequences;
o>t means that ¢ is an initial segment of 7.

oe o says Vi<lth(o) (o;=ali));

B<o is Vi(B(i)<ali));

jio=Axjj(alx)), fori=1,2.

The obvious analogon in the language of functions of the coding V., is to put
V=Bl ;B T)={B<j ,elvnB(F 0n)=0).
If we read the principle Ve¥(e) from §0 as: ((there is no witness n for
V=0) - V#), then the analogous principle in the language of EL is:
Vn Vo [(1th(c)=n &Vi<n 6<j0i)) = It 6 j,a(1)>0] — IP<j o Vn j,aBn)=0,
which amounts to a version of Kénig's Lemma.
In fact, if we put P(c)=Vi<lth(c)3Im<Ith(c)T(j e,(c);,m), then ¥(e) is in EL
equivalent to VnIol1th(c)=n+1&Vi<n(c);<j,e &—P(c)] — IB<[j elVn—P(B(n+1)).
(For in EL one has: 3i<j,eVn—T(jie.in) ¢ P<[j,e]Vn—PBn+1)),
and in HA: Vn—(1th(m)=j,e+1 & Vi<j,eT (j;e,i,(n);) € Vn—=Vi<j,eIm<nT (j,€,i,m) <>
Vn3i<j,eVmsn—T (je,i,m) <> VnIo[1th(c)=n+1 & Vi<n(0);<j,e & —P(0)]. From this
the equivalence easily follows.)
To prove the appropriate closure properties of the sets V , we will work in
the theory EL+MP+KLqe, Where MPo denotes Markov's Principle w.r.t.
quantifier-free formulas and KLqge will be:
KLqr Vn 3o (1th(c)=n &Vi<n(c;<oli)) &Ro)—

3B Vn (B(n)<o(n) & R(Bn)), for R quantifier-free.
We see, using the equivalent formulation of VeW¥(e) given in §0 and the
well-known fact that every finitely branching tree can be encoded as a
subtree of e.g. the binary tree, that VeW¥(e) is actually equivalent (in EL) to
KLqr-
Observe that KL e+MPorFFANqe, where FANg is the schema:
FANqr VB<o InRPn — 3z VA< In<zRPn, R quantifier-free.
Also note that KLg*QF-AC,, is sufficient to prove KL for £°,-formulas R.
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(Suppose VnIo[1th(c)=n & Vi<n(c);<0(i) & ImR(c,m)], S0 VnIm3c[1th(c)=n &
Vi<n(o);<oli) & R(o,m)], s0 (QF-AC,) 3o, Vn [1th(ay(n))=n & Vi<n(oty(n));So(i) &
R(a;(n),0(n))], $0 o, VnIo [1th(c)=n & Vi<n(c);<ai) & R(0,05(n))] which gives
with KLgr. 30,3BVn[B(n)<oun) & R(B(n),0p(n))], $0 IBVn[B(m)<o(n) & ImR (n),m)].)

In the following, we will denote MPq KLy and FANge simply by MP, KL and
FAN, respectively.

We will make use of the expressions "p-term” and "p-functor” as in Kleene
1969.

Definition. We define for every formula A a formula or A with agFV(A)
and FV(ar A) c{a}UFV(A) as follows:

1) or A =A for A atomic;

2) ar A&B  =j,ar A &j,0rB;

3)oar A—B =VB(Br A —alpl &oalprB);

4) ar VxAx =Vn (al[n]! & alln]lr An);

S5)oar IxAx =V #20 & VyeV (joy £ A(j,¥(0)));
6) ar VBA(R) =VBR(alBl & alf £ A(B));

7)ar IBAB) =V 2D &VyeV (joy £ AG ).

The proof that EL is sound for this realizability, goes completely paraliel
to the proof of §0.

Lemma 3.1. There is a p-functor §,, such that
EL+KL+MPFVa(V, is a singleton— B lal & B,lae V).

Proof. Write B = {Bl B<j,o}.
If V,={B} then for every n and m such that m<j,o(n) and m=B(n), a finite
computation suffices to show that j,a(y)l, for every y such that ve Pnx <m>
and yeB,,. For, {yeB, | yeBnx<m>} is a finitely branching tree. (Here, of
course, we are using FAN.)

Now Vye B ( yePnx<m> = j,a(y)l) holds for every m<j,o(n) save one; a
finite computation shows this and the remaining msjzoc(n) must be equal to

B(n).

Lemma 3.2. There is a p-functor §,, such that
EL+KL+MPVa (Bylod &V ={ad).
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Proof. Let ybe such that Vo ((yla)(c)=0< aeo); take B, such that
Vo (Bolo= j(ylo,a)).

The following sublemmas, trivial as it may be, greatly simplifies the
proofs of the lemmas thereafter, and will be applied frequently.

Sublemma 3.1. Let A(B) and C(B,y) be formulas such that:

1) there is a p-functor y such that A(B)FyIBd & YY(C(B,v)— y<vIB);
2) A(B)FC(B,y) < Vn D(B,y,n) , where D is a prime formula.

Then there is a p-functor @ such that:

EL+KL+MPFA(B) — ®IBL & Vy(ve V> CBM).

Proof. If D is the prime formula from 2), there is a prime formula D'(B,0)
such that D(B,y,n) is equivalent to D'(B,yn). Now let x be defined as follows:
x(c) = 0 if D'(B,0); x(o) = 1 else.

Now put @:=AB.j(x,v), where y is the functor from condition 1).

Lemma 3.3. There is a p-functor B, such that

EL+KL+MPFVa (Bslad & Vala® YrevaVy)-

Proof. We apply sublemma 3.1.

€€ Uney, V —e<max {j,yly< j,0} is easy to see. Furthermore, the formula

Be U Ye Vg v is equivalent to 3y< j,o Vn (j;o(n)=0 & B(n)< j,¥(n) & ]ly(Bn) 0)
wh1ch is, modu]o KL and MP, equivalent to

Vn3ol1th(c)=n & j ;0(0)=0 & Vk<n(c,<j0(k) & (Bn)y<j,o(o,) & (Bk<n — j 1(op)=0)]
which is a formula of the form required in condition 2) of the sublemma.

Lemma 3.4. There is a p-functor @ such that
EL+KL+MPFVo,BlValae vB—>¢la¢)—>d>l(¢,B)¢ &
Ya(oe V¢|(¢’B)(—)3’Y('Y€ VB & OC=¢|’Y)]
In other words: VB;dom(q)) —>¢I[VB]=V¢|(¢,B).
In the following, for p-functors ¢, we will abbreviate ¢* for the p-functor
AB.®(0,B).
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Proof. Again, we check the conditions of sublemma 3.1.
1) Suppose Vo(ae VB—><|>|oc¢). So:

Vx Vo, B (Vn(j B(En)=0)—(¢ o) (x)1),
which is equivalent to

Vx Yo<j,B ——3n(j {B(@n)#0 v ¢(<x>%Tn)#0)
which by MP is equivalent to

Vx Vo< ,B 3n (jB(80)#0 v 6(<x>»Tin)=0 )
which in turn, by FAN, is equivalent to

Vx 3n Vo<j B 3z<n (j 1 B(Fz) 20 v ¢(<x>%Tz)=0 ).
Note that the part following Vx 3n is actually quantifier-free, so define y
by

W= Ax.pn.[Vosj,B 3z<n (§ B(&z) #0 v ¢(<x>%Tz)#0) |.
Let @(x,z) be (¢ lo)(x), if ¢(<x>=0iz)=0 (and otherwise, for example,
undefined). Now put
n(x) =max{®(x,z)| z<y(x) & z witnesses (¢ l)(x)1};

=0 if this set is empty;

then xy =Axn(x) is the required upper bound.
2) Now ye ¢l[Vg] is, modulo Vgodom(6), equivalent to a I1°,-formula:
for, 38e VB(y=¢|8) is equivalent to
33Vn(3(n)<jP(n) & j,B(En)=0 & Fz(Vk<z ¢p(<n>x3k)=0 & (<> = 0z)=y(n)+ 1)),
which, modulo Va(aevB—»q)Ioci), is equivalent to
33Vnl8(n)<j,Bn) & jB(Bn)=0 & Vz((Vk<z ¢(<n>%3k)=0 & ¢(<n>x5z)>0)—
o(<n>%0z)=y(n)+ 1)],
and this is, in view of the boundedness of 3, in EL+KL+MP equivalent to a
II°,-formula, by the kind of derivation we have seen before.

Lemma 3.5. For every formula A in the language of EL there is a p—functor
Xa, Which may contain free variables occurring in A, such that
EL+KL+MPHVB [Vg# @ & Yae Vg (L A) = x,IB & x4l LAL

Proof. x, is defined by induction on the logical complexity of A:
1) xp= [1]1if A, x,=I[0]if —A, for A atomic.

Remember that [0]laT for every o.
2) xa=  ABJOli1*B, xcli *B) if A=B&C.
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For suppose Vg, Vae Vg (ar B&C), then
j1”VB]=VJ‘1*B (lemma 4)=Q and Yae V;,#p(0LB), SO xglj;*B! and
xglj1*B L B; analogously for C.

3) xp= AB.(AY. (xcl(w,*IB))), where w, is such that Vo. yla=aly, ifA=B—C.
For suppose VB;e D, VaeVB(ar_ B—C), and yr B, then
WYI[VB]=V%*|§(:)@ and*VSeV%*m drcC, §o Xc|(\|fy*|l3)¢ and r C.

4) yu= AB.(AY. (X o [/ (JICy *IB))), where y, is such that
Vo la=ally(0)], if A =VxA(x).

For suppose VB;e@ Vaev (ar VxA(x)), yarbitrary, then
yl[Vpl=V ypip* D, VoeV *|B oL AGMO/.], 50 x5 MO/ Iy * B
and r A(Y(O))

5) xu= the functor B; from lemma 3, if A =3xB(x) or JaB(a).
6) x4= AB.(AY. (p(opl¥ odICwy*1B))), where y, is such that Vo ya=aly, if
A=VoBa.

For if Vg=@, V8e Vg (8L VaBo), yarbitrary, then
-YI[VB] Vv *”3?&@ Voe V ?*Iﬁ SFB(X[Y/ ]SO

el ]l(WY*IB) rBal?/,],

etc.

Lemma 3.6. For every formula A in the language of EL such that
ELFA there is a p-functor y, such that EL+KL+MPFy,l & y,rA; v, may
contain variables occurring free in A.

Proof. This goes by induction on proofs in EL+KL+MP. Since our
realizability differs only in the existential clauses from Kleene's, we only
have to check the lemma for those rules and axioms of two-sorted
predicate calculus that concern existential formulas, as well as for
QF-ACyo.
It is clear that

Ao B,lj(lt],a) £ A(t)—=3xA(x),

Ao B,lj(0,0) £ A(gp)—>TaA(a), for B, from Temma 3.2.
Now suppose oL A(y)—C, ypossibly in o, not in C.
Then Ay. xcl(y*ly) £ 3xA(x)—C, where x. from lemma 3.5 and y such that
yIB=alsPO/y]lj .
For suppose yr 3xA(x), s0 V.# & VBe V. (j,B L A(jB(0)). Then for BeV, we
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have that yIBr C, so Ve yllVgl=V ,xg (3L C), s0 xcl(y*Iy) £ C.
Completely analogous for (A(¢p)—C)—HaA(a)—>C).

The following sublemma will be useful for the proof that QF-AC,, is
realised.

Sublemma 3.2. There is a functor y such that

EL+KL+MP Ve [Vn (ellnld & V2 D) —

X'&L & Vxlg;ﬁ@ & Vvye VXIEVn (Yl[n]l & yl[n]e Vel[n])]'
Proof. To apply sublemma 3.1, we construct a bounded primitive recursive
condition for sequences o which says that ¢ is “for the time being” an
initial segment of a y such that Vn (yllnll & vinle V).
Let olln] denote the maximal © such that yllnlet for all ywith yilnld and yeo.
(This is clearly primitive recursive in n and o).
We formulate our condition A(e,c) in 4 stages:

1) Vi<lth(o) (o;h);

2) Vn<o Vi<lth(olln]) (i<1th(&(1th(c))l[n]) — (olln]);<j,((E(1th(c))ln]))))
(so if yeo then for the time being yllnl<j,(elln]);

3) Vn<o Vi<lth(&1th(o)ln]) ((E(1th(o)lln]);<1th(c) — i<lth(oln]))
(This will ensure that VmA(e,ym)— y[nll);

4) Vn<o V1> olln] (1< 1th(E(1th(e)lln])—j,((E(1th(c))I[n]),=0)

(So Ye Vsl[n] if VmA(a,Y’m)).
Now let (sublemma 3.1) 3 be such that Vy(yeVg< VnA(e,7n); and put
x = Aed.Now if Vn (ellnll & V2D ), then there are arbitrarily long
sequences ¢ with A(g,0); with KL we conclude V. = @.

QF-ACy,. Let F =Vx3dy Axy — Ja VxA(x,0x) be an instance of QF-AC,, and
suppose d realizes the premiss. Then:
Vn 8llnN & V= @ & Ve Vgiay (27 L An,j1¥(0))).
Let ysuch that wly= j([j¥(0)],j,v). Then for all n: Vyxcsta)) = WIVsim)l =@
(Temma 3.4), and VeV x|(s|m]) J2YLA(n,j¥(n)). Apply sublemma 3.2 to find a
% such that

V’YG VX|5 Vn (yl[n]i & YI[n]e VW*I(SI[H]))’
then this x realizes the conclusion of F.
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We now dget some lemmas that are analogous to lemmas 1.1 and following.

Lemma 3.7. Define a realizability r' by the clauses:
1 ara =V# QD &VpgeV, A for A atomic;
2) ar'A&B =V 290 & VpeV, JiBr A &jprB;
3arA-B =V =0 & VgeVy vy(yr' A —-Bhl &Blyr' B);
4) ar'viAx =V =0 & VpgeV, Vn (Blln]d & Blln] r' An);
S)oar' dxAx =V=0 &VgeV, (joB r A(jB(0)));
6) ar'vpA(R) =V =2 & Vge V, vy(Blyl & Bly r' A(y));
7)ar3ipaP)=v =0 & VgeV,, (jBr A(j,B).
Then for all formulas in the language of EL there are p-functors ¢, and y,
such that:
EL+KL+MPFVo(orA—o,lol&o,lar'A)
EL+KL+MPFVolor'A—-y,lal&y,lara).

Proof. For those who are not yet asleep, we give the definitions.

i) 0 = Aof,la

Viss = Ao.[0]
1) Opep = APylj(duli 1005l ,00

Vass = Ajxal(Qya.j)*lod),xgl((yg.jo) *la))
111)0a8 = AoPol(Ay.ogllalCy, )

Vass = Aoxa_gl(C*la), where (=ABAY.ygI(Bl(0,1V))
V) Oyxax = AoPol(An.o, [P/, ]ICaln]))

Wyxax = A0Xyeax (C*la), where {=AB.(An.y,["/,1(BIIn]))
V) O30ax = Acl*lowith L=AB.5 (5 B,0A15 {BO)/ I ,B)

Vaax = AcC¥la with EAB( B,oaLi {BO)/ NI B0
Vi) O3yay = Aoul*la with C=RB.J (G B,040) 1B/ JI(32B))

O3yay = houl¥lo with G=AB.j(j1B,040] 1B/ I(3 BN
ViDdyyay = AaBol(A8.0,1%/,11(ald))

Vyyay = AlXyyay(C¥lo), where Z;EXB.(K&WAIS/Y](BIS)).

We hope that it is clear by now how to transpose the rest of §1 to the case
of EL; therefore we state the following lemmas without proof.

Definition. The class I of £l,-negative formulas is the smallest
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satisfying:

i) Formulas of form 3oA(a) are in T, with A quantifier-free;

ii) Formulas of form 3o<BVvnA(o,n) are in T, with A quantifier-free;
i11)I" is closed under —,&,Vx,Va.

Lemma 3.8. For every Zl,-negative formula A(a) with free variables &
there is a p-functor §, such that

EL+KL+MPF3a(ar'A)—A

EL+KL+MPF A(a)—E,lal&E, larAa).

Corollary 3.9. EL+KL+MP is sound forr".

Definition. Let GC, be the following schema:
GC, Va(Aa—IBap)—FWolAo—ylal& Voio# D&V e Vo Bak),
with the restriction that A must be Xl,-negative.

Lemma 3.10. GC_ is r'-realizable.

Theorem 3.11. i) EL+KL+MP+GC F A <3a(ar'A)
ii) EL+KL+MPF3o(ar'A) < EL+KL+MP+GC, - A

As a minor application of r'-realizability we have that GC!, so a fortiori
not GCI, is not sufficient to prove GC, the principle of Generalized
Continuity:

GC Va(Aa—IPBap)—IyWalAo—yal&Bayla),

which is considered in Troelstra 1973 and is proven there to axiomatize
Kleene's realizability based on partial continuous application.

We can do better, for the weakest well-known continuity principle without
uniqueness-condition in the premiss, the schema WC-N:

WC-N Vo3nA(a,n)—VodnImVBe TnA(B,m),

(weak continuity for numbers), is already incompatible with KL:

Proposition 3.12. WC-N and KL are incompatible w.r.t. EL.

Proof. Define a functor I as follows:
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(<) =0

I'(<o>%n) = 0 if 1th(c) > 1th(n)
= 1 if 1th(c) <1th(n) & Vi<ith(n) (nz0 & n=1)
= 1 if 1th(o) <1th(n) & Fi<lth(n) (n;=0 & Vj<i nj;tl) & Vi<lth(oc) c;=0
= 2 1f 1th(o) <1th(n) & Ji<ith(n) (n;=0 & Vj<in1) & Ji<ith(c) 60
= 1 if 1th(o) <1th(n) & Ji<ith(n) (n;=1 & Vj<in;#0) & Vi<ith(o) o;=1
= 2 if 1th(c) <1th(n) & Ji<Ith(n) (n;=1 & Vij<in;#0) & Ji<Ith(c) o=l

Then

(M) (o) = Tko>xa(lth(c)))-1,

is always defined.
Let ybe such that
Vayla = j(Tla,[1]).
Then we have:
Vo Vn 3o (Vi<lIth(o) 6;<1 & (Tla)(0)=0 & 1th(c)=n & V1 > o (Ta)(1)=0 &
& Vijsith(o) o;=0;),
so with KL we conclude:
Voo 3B (Vn Bn<1 & Vn,m Pn=Pm & Vn (o) (Bn)=0),
in other words:
Vo 3n (n<1 & [n]e vvi(x)'
Furthermore Vo [Vnon>1— Vp (Vn Bn<l — Be Vvla) &
In (on=0 & Vm<n oam#1) — VyioF{[o]} &
In (on=1 & Vm<n am=0) — Vylcx:{[ 11}] holds.
Now we cannot have:
(*) Vo3nImV e Gm(n<1&[nle VYIB)'
For suppose so; let n and m satisfy (*) for a=[2].
Then if n= 0 and B=<2>[m]*[1] we would have [O]eVY‘B; if n=1, B= <2>[m]*[0]
then [1]e S
which is a contradiction in both cases.

84. A topos for Lifschitz’' realizability.

A further generalization of Lifschitz' realizability for HA can be obtained
with the machinery of tripos theory, developed in Hyland, Johnstone &
Pitts 1980, to be abbreviated HJP 1980 hereafter. They desribe some ways
of defining triposes, and how to associate a topos with each tripos. In
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Hyland 1982 the topos associated with the tripos constructed out of the
partial combinatory structure <IN,{.}(.)>, the "effective topos”, is described
and it is shown that for the natural number object in this topos, exactly
those sentences hold that are realized in Kleene's sense by some natural
number. We will show that a similar tripos can be defined for Lifschitz’
realizability, leading to the "Lifschitz topos” giving an extension of
Lifschitz' realizability to all finite types.

First of all let 3 be {eeN| V.#3}. We define an application | on 3 by putting
elfl iff Vhe V {(h}(f)!, and then elf to be a code for {{h}(f)| he V,} (Note that
such a code can be obtained recursively ine and f). Let X consist of those
HcS that satisfy i) eeH, V=V = ¢'eH, and ii) efeH, V=V U Vy = geH.

We define an implication —»: Zx XX by

F—G = {e|l VfeF elfl & elfe G). One checks immediately that this is
well-defined. Now we define for each set X a preorder (@X,,) by pX=2*,
ok gy iff N(p(x)>y(x)l xe X) is nonempty; for functions f: [—=J let pf: pJd—opl
be composition with f, and Vf: pl—pJ defined by

VI(y) =A.~(Lf(H)=j1-y@)] ie 1), where [f(i)=j1 = S if f(i)=j, and & otherwise.
So VT(y)(j) = {el Vie IVhe 3(f(i)=j = elhl & elhey(i))}.

As generic element ¢ we take idye pX. Now the verification (with the help
of Theorem 1.4 of HJP 1980) that this defines a tripos does not give any
problem; the only difference with a tripos constructed out of the partial
combinatory structure <3,[> is that we do not take the full powerset of S.

Proposition 4.1. Conjunction and disjunction in g can be defined as
follows:

i) oA'y =Ai{ee Sl Vhe V (jhe d(i) & johey(i))).

i1)¢v'y = Ai{ee S| Vhe V (jh=0=j,he (i) & j,h#0=>j hey(i))}.

Moreover, for any function f:l—J, existential quantification along f can be
defined by:

111)3f¢ = Aj.{ee 3| Vhe V Jie I(f(i)=j & he ¢(i))}.

Proof. Apply the definitions given in Theorem 1.4 of HJP 1980. According
to these,

i) oAy = Ai{el VGe ZVi(fe 6(1)—=(y(i)—G) = elfl & elfe G)). Suppose ecoay(i), 1et G
be oA'w(i). Let b be a total recursive function such that b(a) codes {a}. Put



20

f=(As.At.b(j(s,t))), then fedp(i)=>(y(i)—G) , so elfd & elfe G = pa"y(i), so

Ae.elfe oay(D)—0Ay(i) for all i. Conversely, if eedpa'y(i), fe 9(i)—>(y(i)—G), then
Vhe V. (flj {WIj,hl & (flj ;h)lj,he G so if y is such that y(e) codes

u(v(ﬂj 1h)lj2h|h€ Vo), then yeda'y(i)—oay(i) for all i

i1) dvy = Ai{el VGe ZVi(fe ¢(i)—G A y(i)—G) = elfl & elfe G)}. Now if ec pvy(i), let
G be ¢v'y(i); h =b(As.j(0,s)), h,=b(ks.j(1,s)); then h e d(i)—G, h,ey(i)—>G, so
f=b(j(h,h,)) €9(i)—>G A y(i)—G, so elfd & elfe G = ov'y(i).

In the other direction, if ee ¢ov'y(i), fe p(i1) =G A y(i)—>G, let @ be such that
®(h,g) = {jh}(j,g) if j,g=0, {j,h}(j,g) if j,g=0; then Vhe V vge V @(h,g)! and
Vhe V¢ {@(h,g)| ge V }eG, so {®(h,g)l geV,, heV(}eG, and this can be coded
recursively in e and f.

iii) It is enough to show that 3f is left adjoint to pf. Suppose 3ot vy, so
let ee (IO -y(ljed), fed(i); then b(feIfe(f()), so elb(f) & elb(Hey(f()).
So AMfelb(fle N(0G)—y(f(i))liel), so o, pfy.

In the other direction, suppose ¢k, @y, eeN(¢() >y (f(i)lie 1), fe3fo(j). Then
Vhe V¢die 1(f(i)=j & he ¢(i)), so Vhe V¢ elhd & elhey(j). But then, because y(jeZ,
we must have (a code for)U{Vgjyl he Veley(j); so

M.V [hlhe Ve (30 —y(jlie ), 1.e. IOk .

Proposition 4.2. The coproduct in the topos of g-sets may be defined as
follows: (X,=)LI(Y,=y) is (XLY,=y, ) With
Cw=y, 2] = {el Vhe V(jh=0 & j,ohe[w=4zI)} if w,zeX

{el Vhe V(jh20 & j,helw=yzD)} if w,zeV

@ else.

Proof. Straightforward verification.
Proposition 4.3. The object (IN,=) with = defined by:
[n=ml = {el Ve={n}n{m}}

is a natural number object in g-sets.

It is now a matter of calculation to show the equivalence of Lifschitz’
realizability with the internal logic of N in gp-sets.
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