Institute for Language, Logic and Information

THE ARITHMETICAL FRAGMENT
OF MARTIN-LOF'S TYPE THEORIES
WITH WEAK X-ELIMINATION

Marco Swaen

ITLI Prepublication Series
for Mathematical Logic and Foundations ML-88-02

X
]
X

University of Amsterdam



Institute for Language, Logic and Information
Instituut voor Taal, Logica en Informatie

THE ARITHMETICAL FRAGMENT
OF MARTIN-LOF'S TYPE THEORIES
WITH WEAK 2-ELIMINATION

Marco Swaen
Department of Mathematics and Computer Science
University of Amsterdam

Abstract. In this paper we study the logical and the arithmetical fragments of Martin-Lof's type theories
with a weak version of the ¥ -elimination rule, corresponding to the JE-rule of Natural Deduction. The
principal result of this paper is that the weak, intensional version of ML is conservative over Intuitionistic
Finite Type Arithmetic HA®,

Acknowledgement. I want to thank Prof. A.S. Troelstra for drawing my attention to the subject matter, for
encouraging discussions and for numerous remarks on the presentation of my results.

Key words and phrases. Martin-Lof's Type Theories, Restricted Sigma-elimination

AMS Subject classification. 03B35/03F55/69F41

Received March 1988

Correspondence to:

Faculteit der Wiskunde en Informatica Faculteit der Wijsbhegeerte
(Department of Mathematics and Computer Science) or (Department of Philosophy)
Roetersstraat 15 Grimburgwal 10

1018wWB Amsterdam 1012GA Amsterdam



1 DEFINITION OF IQC AND IQC®
Let L, be the language of first order predicate logic with equality. For each
nelN L, has countably many n-ary predicate symbols R, R,",... and
countably many function symbols F ", F,",... with n argument places. There
are countably many individual constants and variables. We will use x,y,...
as metavariables for variables; ¢, c',c”,... as metavariables for constants;
tt',t",s,... as metavariables for terms.

Let IQC stand for Intuitionistic Predicate Logic with equality, based
on the language L,

The class of w-types ( notation: TYP® ) is defined inductively as follows:
UeTYPY ; TeTYPY;
6,TETYP® = O6XT,6T,0+TeTYP®,
The type U will be used as the basic domain of individuals, the type I is to
be a singleton.

The language L® of so-called w-sorted predicate logic extends L, with
variables in all w-types, and various term-operators. As metavariables for
variables of type ¢ we will use: xS,yS,.... The class of w-terms, with their
types (notation: TER® ) is defined inductively as follows:

c;eU

eel
ceTYP® = X%, %%, X%, ...€0
tieU fori=1,..n = F"j(t,,...,tn) €U
seo, teT = (s,t)eoxT
teoxt = poleo, ptet
tet, 6e TYPW = MCteo-T
teg-T, s€6 = tset
tes, TeTYPY = k,(t) €6+1
teg, Te TYP® = k(t) et+o

tes+T, s,(x%eg, s(yYep
= D,(t, 54,8, )€

The variables x®and y* in D,(t, s,, s, ) are considered bound by D,,.
Expressions of the form " tes " ,with t a term of type ¢, are called typing
statements. A term-equation is an expression of the form "s=te¢", with s
and t terms of type 6. The class of prime formulas PRIM® contains all
equations, typing statements and expressions of the form R (t,... .t ) with
t,....t, € U. The class of formulas FORY is the smallest class containing



all prime formulas and closed under the logical operators 1, -, A, V, V-
and 3-quantitication over typed variables. It convenient we wiil use
Vxeo(.) and Ixeo(.) as alternative notations for Vx9(.) and 3x%(.)
respectively. .

The system IQC% of so called w-sorted Intuitionistic Predicate Logic
is founded on the following axioms and rules:

tel = t=eecl

Sec, teT = (AxSt)(s)=t[x?/s]et
Se€0, , S{€0, = psq.5)=s;€06; fori=0,1
teoxt = (pyt.pt)=teoxt
k.tes+T, s,(xSep, sly%ep = D, (Kt,5y,8,)=5,[x%/t]eg
kites+T, sy(x%)ep, sy )ep = D, (kt,s,,8,) =s[y%/tleg

and the rules of natural deduction (with equality) in all w-types, plus an
extra replacement rule:

S¢=S, €0 tet
t[x%/84]=t[x%/s ] € T
In VE and 3I typing statements are added to the premisses:
VxS (@ teo @[xS/t] teo
p[x°/t] _ xS @

2 THEOREM
- IQC« is a conservative extension of IQC.

Proof:(Scetch) Let X be a Kripke model with underlying partial ordering
(K,<). Suppose ¢ and T have been interpreted in all nodes keK, then define:

[o-td = {f: U LoD U ITh. | VK'>k Va,a'elol,. (f(a)eLT],
A VK'>k' (k"IFa=a'es =k"IFf(a)=f(a')e 1))}

Lo xtl = Lo], x[t],

Eo+1], = {0} x Lol u{1}x[T],

The various operators for application, abstraction, pairing and projection
can be defined to match with this definition. In this way a model X* for
IQCY is constructed, that agrees with K on all L,~formulas. O



()

3 DEFINITION ( of ML and ML™)
Let ML be Martin-Léf's Intuitionistic Type Theory without universes as
presented in [Troelstra 87]. Formulating the rules we will use t, t', t*, s,
S; ... as metavariables for terms; A, A, B, By ,.... as metavariables for
types; @, ¢’ as metavariables for the succedents of judgements. The
letters I, stand for sequences of variable declarations of the form:
XEA, X,EA,,.. X EA
Such a sequence is called a context, if for all i <n type A; does not contain
any free variables except for x,,... X, and if i=j implies x;zx;. One easily
proves by induction that all sequences of variable declarations occurring
in derivable judgements are contexts. Let T stand for a type or a term; by
Tlx/t] we refer to the result of substituting t for all free occurrences of x
in T. If convenient the free occurrence of variable x in T is indicated as
TIx], in which case T{t] stands for the result of substituting t for x in T.
The rules of ML are the following:

GENERAL RULES
Fr=ATyp

ASS Xx¢FV(r)
[,XxeA=XeA

r=ATyp rr=e
THIN xg FV(I,M)
FxeAlM'=@

TYPE FORMATION RULES

NTYP N Typ
Fr=AT rxeA=B Typ
TTYP e 4
r=TxAB Typ
Fr=ATyp [,xeA=BTyp
ZTYP 4 f
F=3xAB Typ
Fr=A,T Fr=A, Typ
+TYP 0 ¥ Rk
F=> Ag+A, Typ
M= teA T= t'eA
ITYP

F= I(AL,t) Typ



TERM FORMATION RULES

F=telN

NI OeN —_—
F=39teN

F=teN T[xeN=ATyp '=t'eAlx/0] I xeNyeA=1t"eAlx/Sx]

NE
F:ny(t,t',t")eA[x/t]

MxeA=teB
Tl

F=axAteTixAB
- F=teTxAB I=t'cA

Fr=tt'eBlx/t']
- F=teA T=t'eB[x/t] [ xeA=B Typ
pA
F=(t,t)e3xAB

e F=teIxAB F=teZxAB

F=p,teA ['=>p,teBlx/p,t]
I Fr=teA, T[=ATyp - T=teA r=A, Typ
i

M=k teA +A, FokteA A,
" F=teAtA, TzeAjtA= CTyp [ xeA=teClz/kt]l (i=09
+
F=D,(t,t,t)eClz/t]

= t=t'eA
Il

r=ecl(At,t")

F=t"el(Att)
IE

= t=t'cA



EQUALITY RULES
Fr=teA F=t=teA Fr=ATyp
REFLi,y ———  ————— -
T IF=t=teA F=teA Fr=A=A
F=t=t'cA [=A=A"
sYM,, ~ ————— —
g F=t'=teA Fr=A=A

Fr=t=t'eA Fr=t'=t"¢cA F=A=A [=A=A"

TRANS, ,
’ F=>t=1"¢A r=A=A"

FXeAT'=0Q F=teA

SuB
rrix/tl=elx/t]

FXeAl"=BTyp [I=t=t'cA
REPL,

r I ix/t1=Blx/t]1=B[x/t']

FXeAl'=s5eB [=t=t'eA

REPL,

r,rx/t1=slx/t]=s[x/t']eBlx/t]

Fr=tecA I=A=A
REPL,

F=teA’

F=xxAteTixAB F=t'eA

TICONV
M= (At =t[x/tTeBlx/t']

F=teA F=t'eBlx/t] FxeA=B Typ

SCONV,
= pylt,t)=teA

F=teA F=>t'eBlx/t] rxeA=B Typ

SCONY,
F=p(tt)=t'eBlx/t]
F=teSxAB

SCONV,

F=(p,t, p,t)=teZxAB



F=teA; [2eA+A=SCTyp  TyeAj=teClz/ky;l (=04

+CONV
F=Dy,y, (kit.tot)=tly/tleClz/k t]
t*el(AL,t)

ICONV

t"=ecl(At,t")
NCONV FxeN=ATyp F=t'eAlx/0] [,xeNyecA=t"eAlx/Sx]
R F=R,(0,t't")=t'eAlx/0]

Fr=teN M xeN=ATyp T=t'€Alx/0] I xeNyeA=t"eAlx/5x]
NCONV,

=R, (3t,t,t")= t"[X,y/t,ny(t,t‘,t")]e Alx/5t]

In the sequel we will use AxeA.t, TIxeAB and ZxeA.B as alternative
notations for AxAt, TIxAB and xAB respectively.
The rules of ZE and ZCONV can equivalently be formulated as follows:

= teIxAB [ xeAyeB=> seClz/(xy)] I,ze3xAB =C Typ
M = slx,y/p,t.ptleClz/t]

F=(t,t,)exAB I xeAyeB =seClz/(xy)]  [,ze3xAB =C Typ
M= s[X,y/Plte,t,) By te,t )] =8I x,y/t, tJeClz/t]

In this form ZE resembles the 3E-rule of Natural Deduction. In the
so-called weak version of ZE variable z is not allowed to occur inC, in
close correspondence to the variable condition in the 3E-rule of Natural
Beduction. In ML this condition can be implemented by changing the third
premiss into:

Fr=CTyp,
since in general if M= (@ is derivable in ML, all free variables of @ are
declared in ", so x,ye FV(C) would imply that x and y are declared in ", but
then I" ,xeA,yeB in the second premis cannot be a context. The weak
versions of 2E and SCONV are denoted by SE¥ and SCONV™ respectively.
In 3 similar way the weak versions of +E and +CONV are defined as

F=1teA+B rxeA=3s,eC [yeB=>s,eC Fr=CTyp

+EY
F=D,,(t,s,5,)€C



F=kteA+A, [z,eA;=s,eC TIz2eA=seC =CTyp
F=D,(kt,s,s)=sz/t]eC

+CONV™

By ML~ we denote the result of weakening the Z- and +-rules in ML in the
indicated sense.

4 DEFINITION ( of MLP and MLP™)

We define a predicate logic version of Martin-L&f's type theory, called
MLP. This system is to comprise all the rules for 2-, Tl-, +- and I- types,
the general rules for equality and conversion plus the following extra
rules:

I,TYP I, Typ
- F=tel, T=ATyp
° F=1alt)eA
uTYP UTyp
Fr=tel ... '=tel
Ul c;eU
F= FAMt,... .t )eU
Fr=tel .. =t el
RMTYP
Fr=RMt,...t) Typ
F=teRMt, . t)
R{"CONV

Fr=t=eeRNt, .. t)

Let MLP™ denote the result of weakening the X and + rules as indicated
above for the case of ML.

S DEFINITION (of the embedding * )
Via the principle of "Formulas-as-Types" (see e.g. [Howard 80]), IQC in a
canonical way is embedded in MLP”. L,-terms are all available in MLP” in
the sense that for any term t with free variables x,,... X, , we have

MLP FxeU,... x el =tel,



whereas any L,-formula ¢ is represented by a type ®* in MLP~ such that if
A contains only x,,...x, free then

MLPYFx,eU,... x, €U =0* Typ.
The type @* is defined inductively as follows:

(RA(t,.. t)*  =RMt,..t)
(t=t")* =I(U,t,t")
(1)* =1,
(pAy)* =3x et gt with xgFV(@)UFV(y)
(p-y)* =TIx e+ gt with xg FV(p)UFVY(y)
(pvy)* :=LP++4'+
(Ixp)* =3xY.@*
(Vxp)* =TxY.p*
The embedding * is easily extended to IQC¥
for w-types:
(6xT)* =3xSttt
(6-1)* =TIxS*t*
(o+1)* =gt+r?
(n?* :=1(U,C4,Cq)
for w-terms:

t* is the result of replacing all variables x° in t by x6*
and for LY-formulas: as for L -formulas plus

(RML,..,4)"  =HILT,. 1)
(Ix%e)* =3xSt "
(VxSg)* =TIXS* g

That * indeed yields an embedding of IQC® is expressed in the following
theorem.

6 THEOREM (Soundness)

(i)  Lettec in IQC® with FV(t)={ x€0,,... X €6, }, then
MLPYFxe6,*,.., x €6, = t*es™.

(ii) Let, @,...@  be L®-formulas with free variables
X,€6,,... X,€6,, such that in IQC {@,,...@_}+
then there is a term t such that
MLP Fxe6”, ., X €6,%, y,e@r,. ..,y €0," = tep*

Proof:(i) First we note that for all e TYP®:
MLPYFo Typ.



O

Now we prove (i) by induction on the formation of t in IQC®. For instance
suppose t=p,t'e T where t'eox T, then by induction hypothesis we have
MLP 'k xeq,*,.., x €0, =t eoxT
Furthermore:
MLPYF =T Typ
so by THIN:
MLP ' x€6,",..., x,€6," =T Typ
and by ASS:
MLP I xe€0,%,..., x €6, % X€0, YET = yeT
Now apply ZE:
MLPYF x€6,%,..., x, €0,  =ylxy/pt ptlet
Since ylx,y/pot'.pt'l=pt'=ttet:
MLP'F x€6,",.., €6, =t et

(ii) By induction on the length of the derivation in IQC®. For instance the
case of (—1):
Suppose y— is derived from @,,..., @ by an application of (—1), then by
induction assumption we have a term t such that:
MLPYF x€6,*,..., x €67, yeqt, .,y €0, *,zey* = tep*
Now apply (TT1) yielding:
MLP '} x€6,",.. X €6,", y,€@*, .., yoe,t = hzey™ teTlzey™ . @*
By definition (g —»@)* =Tlizey* @* so we have
MLPYF xeo”,..., x €6,%, y,€@*, . Y €0," = Azey t e (y-o0)*
The case of (VE):
Suppose @[s] derived from t,,...¢o by an application of (VE), then
by induction hypothesis there is a term t such that
MLPYF xe€6,*,.., x €6,%, y,€@*, .., Yy €@t = teTIxS* %,
and if x€0,,... X;€6;, Z,€T,,...,.Z, €T, are the free variables of s then
MLP'F xe0,*,.. x€6,%, z€et”, .. 267" = sTec?
now by a series of THIN applications the contexts can be made compatible:
MLPYFxe6,”,..., X€6,%, Z,€T,,...,.2, €T, V,€@,*,.. Y€ Pm"
=teTIxS*.@*,
MLPYFx€6,% ..., X.€0,%, Z€T,,... .2, €T,, V,€@.* ... Y€ P’
= s'es”,
then TIE yields:
MLP Fx.€6,",..., X,€6,%,Z€T,,... .2, €Ty, Y,€@,%,... . YmEPm"
=ts*e@lx/s]*. O



Conversely MLP™ is conservative over IQC¥ (and over 1QC, by
Theorem 2 ), as we will demonstrate by a translation of MLP-judgements
into L¥-formulas, based on a distinction between two aspects of
MLP-judgements. Let M= teA be a judgement; from one viewpoint the
judgement tells us that termt has a certain form specified by its type,
for instance that t is a pair if A is a 2-type. This aspect will be expressed
by a collapse || of MLP-types and -terms into w-types and w-terms
(definition 8). On the other hand the judgement "'=teA declares A
inhabited, i.e. a provable proposition; this propositional aspect of
MLP-types is expressed by a translation * into L®-formulas (definition
11).

7 LEMMA
In IQCY all types are inhabited.

Proof: Define: t =C,
t; =8
tor  =(tgty)
tooe =Ax0t,
toer =Kol
Then by induction one easily proves that IQC¥t4e6. O

8 DEFINITION (of the collapse |])

The transiation of MLP™-types'and -terms into w-types and -terms,
regarding the form of the term in the judgement is defined inductively.
Strictly spoken types and terms are translated together with the context
they have been formed on: in order to translate the free variables we need
to know of what type they have been declared.

[ul = U
Rgt,,... t)l =]
[1I(A,s,t)] =1
1l =1

IZxABl := Al x[Bl
[MxAB| := |Al- B
|A+Bl := |A|+|BI
Note that |Al does not depend on subterms occurring in A.



lc|

Frt,,.. Lt
lel

I(tg,t, )1

Ip;tl

AL

[tsl

lk{tl
ID,,(t,54,5)!
If (L)l

x|

9 LEMMA

(1)

(ii)

(iii)

Proof: (i) by induction on the length of the derivation. (ii): Trivial since
subterms do not affect the translation of the type they occur in.

(ii1) Only two MLP”-rules can serve to introduce a type equation, namely
REFL; and REPL, (definition 3). The type equation, once it has been
introduced, can only pass SUB, SYM,, TRANS, or THIN. Suppose & is a
derivation tree of F=>A=B, and let subtree &° consist of all type
equations directly connected to the final conclusion of %, then &° starts
with applications of either REFL; or REPL, succeeded by applications of
SUB, 5YM,, TRANS, and THIN. Now (iii) is easily proved by induction on the

ifTMLP"FT = A Typ
then |Al € TYP®

= C

= Fnlt),. D)

= e

= (Ityl, 1t,))

=p;ltl fori=0,1
= axiAl

= [tlls|

= kit

= D, (Ithisgl s )

=t
xelAl if xeA in the context

if MLPYFT xe A= B Typ and MLPHI = seA
then | Blx/s] | = IBI [xAl/ls]]

if MLPYFr= A=B
then |Al=IB|

maximal length of the branches in %°.

10 LEMMA
if MLPYE T, xeA, ™ = teB
and MLP I = seA

then |t [x/s]l= It [ xAllsl ]

(1)

(ii)

if MLPYFT = teB

then IQCYFVx A . Wx Al ( ItlelBl )



Proof (i) We define a class ET of terms that certainly comprises all
MLP-terms, and for which the demonstrandum can easily be established
C, e XxekET
g, t,€ET = FM(t,..t)eET
LULEET = AxAL, Y, (4L,),p,t, Byt Ko(t), K(t), D,y (t,1,1"), fAteET
for any A MLP-type

(i1) By induction on the length of the derivation of F=t€B; in case of a
term equation "=>s=teA we demand '=>se€A and M'=>teA to satisfy the
induction hypothesis. As an example we will treat the case of SUB with @
= 5eB (Definition 3).
Let [ stand for xeA,.. x,€A and I for yeB,,. .. .V €Bn
By induction hypothesis:
(1) VxJA L x A dA Yy By 1Bl (IslelBl)  and
(2)  VxA v A (tlelal)
Now suppose x€lAl, ..., x.€lAl, then VE applied on (2) yields Itle|Al and
on (1)

(Vy,elB] ... Vyn€lBl (IslelBl )) [xAl/1t1],
now apply Lemma 9 (ii)

Vy,elBx/tll ... VyqelB [x/t] ( Isl [xAl/1tI] e 1Bl [xA/1t] )
and by Lemma 10 (i) _

Vy,elBx/tll ... Yy elB [x/t]l ( Is[x/t]l € B[x¥I/t]).
Now quantify over xelAl, ..., x €lA | so:

Vx,€elA] ... Vx elA | VyelBx/t]l .. Yy elB [x/t]l ( Is[x/tlle 1BIx/t])
The case of +E™:
By induction hypothesis we have:
($)  VXEIAl ... VX EIA | It € IBy+B, 1);
(4)  VxelAl ... VxelA | VyelB I (It;l € ICl) fori=0,1
S0 1 %,€lA, I,... %, €lA, | then itlelB, I+IB, I, It; [y BAleIC] for i=0,1
therefore  IQC@HID, . (t,t,,t =D, _(It], It, LIt, DelCl,
then by the VI-rule:

1aceRvx AL iAo (gt e ieh. O

YoY1 YoY1

11 DEFINITION ( of the transiation *)
The translation of MLP™-types into L®-formulas, concerning the fact that
the type involved is inhabited, is defined inductively as follows

u* i= Cy=Cy€U

Rni(t‘ ,...,tn )* = Hﬂ‘(lt‘ I,...,Itn I )



I{A,s,1)* = A*A [sl=ltlelAl
I* =1

(A+B)* = A%y B*
(SxAB(x))* = 3xlAl (A% AB(x)*)
(TIxAB(x))* = VxIA (A% S B(x)*)

Note that in the 1ast two cases x cannot occur free in A*

12 LEMMA
(i) if MLPYFT=A Typ,
then A* is an LY-formula and FV(A*)CSFV(A);
(ii) if MLPYFI,xeA"=B Typ and MLP =3 s€A,
then Blx/s]* = B*[xIAl/|s|].

Proof: Similar to the proof of the previous lemmas. O

13 PROPOSITION
(i) if MLPYFM= teA

then 1QCYFVx A (A% . Vx Al (A * = [t € lalAA%)..)
(1) if MLPYFM= s=teA

then 1ACOFVx A (AX— . Vx Al (A * S (lsl=(tic|Al) AA*)...)
(iii) if MLPYFT=> A=B

then 1QCFVx AL (A*— . Vx Al (A% = (A*B*))...)

Proof: (i), (ii) and (iii) are proved simultaneously by induction on the
length of the derivation in MLP. We will only spell out the more
interesting cases.
(I,E) By induction hypothesis:
VxA(A*— | WxAI(A* Sitle A L),
Assume x€elAl, A¥,... x €lAland A *, then after a series of VE and —E
Itlel A L,
so by LE of I1QC® we can conclude:
A%
By Lemma 7: If(t)l:=t 5 €lAl, so after a series of VI and —1:
VA (AxS VAL (A% SITLIElAl A A%)
The part of the context in the application of a rule that remains
unaltered, can be treated as has been done just now, therefore in the
sequel we will omit I".




14

(TII) Translation of antecedent and succedent are almost the same
except for the appearance of the statement \xA.tle[TixABl, the derivability
of which has been established in Lemma 10 (ii).

(TIE) By induction hypothesis: It| € ITIxABI A (TIxAB)* i.e.

(1) It € JAI>1Bl A VXAl A% 5B%)
and (2) IslelAl A A*

Thus: (1) (2)
(1) (2) VXA (A*B*)  [slelAl (2)
Itlelal-1B] IslelAl A*—B*[x/[sl] A*
ititls)elBl B*[x/lsl]
It(s)elBlx/s]l Blx/sl*

It(s)lelBlx/s]l A Blx/s]*

where the broken underlinings in the second but last line indicate a
reformulation according to the fact that [Bl does not depend on the
subterms of B and to lemma 8 (ii).
(ZE™) By induction hypothesis:

(1) Itlelal xIBl A3xIAl(A* AB*);

(2) VxAl(A* 5 yBl(B* - |s[e|CIAC*));

(3) x,y¢FVv(C).
we have to show:

(4): Islx,y/p,t.ptllelCl A C*.
It suffices to derive C* from (1) and (2) in IQC* since Is[x,y/p,t.p,tll € ICI
already has been proved in Lemma 10 (ii).

(i) (i) (2)

A* AB* X€lAl Vx'A’(A*—oVy'B'(B*AIsleICIAC*%)E
1Bl
lemma 7 A* A* - VyBi(B* - |sle|CIAC*) e
() tjgelBl VyBI(B* - [s|e[CIAC*) vE
A* AB* (B*—lslelCl AC*)y/t]

B* B*— (lslelCl) [y/tigl A C*—>E

(IsleiCl) [Y/t|3|] A C* (1)

C* IxAA* AB*)
(# 3E
c*

The hypotheses marked with (i) are discharged in the last 3E-application.



15

Note that in the 1ast rule application (3) is essentially needed. O

14 LEMMA
Let @ be an LY-formula then IQCF @** e @

Proof: One easily checks the following:

(1) t=it* for te TERY;
(2) Is*l=6 for 6e TYP®;
(3) 1QC¥o** for oe TYP®,

Therefore we have:

(s=tes)** =1(c*,s* t*)* = [s*|=|t*]els*| A 6** & s=te6;
50:

IQCY} (s=teo)**e s=tego;
and:

RO, .t * = Rt s RO YL T = R, ).
Now the lemma is proved by induction on the complexity of . As an
example we will treat the case of @—-w.
By definition:

(p-y)** = (Tixe@*.p™*)* = Vxelp*| (@t *oy™*)
Variable x does not occur in @** nor in y**; according to Lemma 7
tio+i€le’l, so by VE

10CeH(@-y)** - (T *y**),
and conversely by VI

1AC9H(p - ) * « (pHreoy*x), O

1S THEOREM .
Let @,,...,@, and @ be L¥-formulas with free variables x%,... x5 , then
1) {g,..e,lFe inIOCY
iff
(2) for some t: MLP”Fxe0,*,... x €6, ,y,€0”, )y €@ T=tep*

Proof:"=" Theorem 6.

“&=" Suppose (2), and assume @,,..., %, ,which, according to Lemma 14 is

quite the same as assuming @**,...@**, then by Proposition 13 from:

Vx(s, *— . o Vyelp llo*— . Vy el *llp **>ltlely*] A p**)...)
Since IQCF6.** this implies »

VxS .. Vx5 (Vyelp (e *— . Vy el (@ *—ltlely*l A w**)..);



assuming x, €9,,...,X,€G,
(Vyele (e * > Vyele,* (o * - ltlelp*l A w**).).

Assume @**, .. ** and apply VE on t),+€l@;"| (by Lemma ?)
alternating with —E on @,**

Itlelp ™l A p**
Thus y can be derived from @,,...,@, in IQC® . O

16 COROLLARY
MLP" is conservative over IQC.

Proof: Combining Theorem 15 with Theorem 2. O

17 REMARK
The translation used in our proof reflects a model theoretical
construction. Let X be an L“-Kripke model; let [61', and [t[3]D', stand for
K's interpretation of type 6 and term te TER® under assignment a in node k
respectively, then for MLP-type A and MLP-term t on context
X€A,,... X €A, define:

[A[3]T, = { xe[lAIT, : kIFA*[a]};

[t[3]3, = [t [3] T,
where a=(a,,...,a,) with a;e[A[a,,...,a, ], for i <n. In this way a type A is
interpreted very crudely; [AT is either |Al or empty depending on whether
A* is a true or not.

A corresponding result for ML with regard to HA® can be proved along the
same lines. In Definition 5 add

o* =0

(st)?* = §(t*)

Mttty = Ry (t* 4% 4%
For || and * add:

IN| =N

1] =0

o ‘= g

IRy, (L, L)l = e ItLItLIt)

N* ;= 0=0€elN



18 THEOREM
ML™ is conservative over HAY, O

In his 1980 publication Diller gives a version of Intuitionistic Type
Theory (in the sequel referred to as DL) that in many respects has nicer
properties than ML. Diller also defines a restricted system (which we
here will call DLP ), that he states, "is essentially a natural deduction
version of N-HA® (N-HA® is equivalent to our HA®). We will use our
method to prove:

19 THEOREM

Let @,,....,, and ¢ be HA®-formulas with free variables x,%,...,x %n,

then the following are equivalent:

(i) {@,...0 @ in HA®

(i)  for some t with FV(t)={x.ec,*,... x €6, % ye@*, ... .y €0} :
DLR Ftegp*.

In Diller's original version DL the so called condition on variables
replaces the use of contexts. It is not clear however that the effect of the
condition on variables completely covers the use of contexts in ML. If
contexts are used in the formulation of Diller's rules, giving rise to a
version say DL, the restricted system DL R easily is embedded in ML", so
that Theorem 18 yields Theorem 13 for DL.R. If the condition on variables
is used in stead of contexts, we have to do a little more work in adapting
the proof of Theorem 18 to the peculiarities of DLR.

20 DEFINITION (of DLg and DLZR )

In DL there are no rules for +-types, the formation rules for the other
types are identical to those in ML; the term-formation for I-types
however is essentially different:

M= teA
M= rtel(At,t)
M= teBx/s] F= t'el(A;s,s') T[xeA= B Typ
M= i(t,t',s,s')eBlx/s']

I

IE

In DL a distinction is made between conversion (denoted as M=t >t'eA



for terms, and as F'=>A> A’ for types) and equality (ie. T=sel(At,t')). In
the rules for I-types we see that equality does not automatically lead to
convertibility as it does in the IE rule of ML. Conversion in DL is
generated by the same reduction rules as in ML, except for the IRED-rule
and is reflexive (REFL), transitive (TRANS) and obeys replacement, i.e:

= teBlx/s] M= s=seA I ,xeA=BTyp

IRED
M= i(t,rs,s,s)>teBlx/s]
REPL Fr=>t>teA T XeA=seB Fr=t>t'eA IxeA=B Typ
2 r=sx/t]1>six/t'leBlx/t] F=B[x/t]>Blx/t']

Term-equations (i.e. statements of the form '=>t>t'eA ) only appear as
premiss in TRANS or REPL, in the 1atter case resuiting in another
term-equation or a type-equation. In their turn type-equations can only
occur as premiss in TRANS and in the £rsetzungsregein:

ERS = teA = A>B Fr=teA I'= AKB
12 = teB = teB

Note that in DL convertibility t>t'eA implies equality i.e. seI(A,t,t') for
some term s: if t>t'eA thenrtel(A,t,t') via ERS and REPL, whereas there
is no way to derive t > t'eA from seI(A,t,t"), since term equations can only
be introduced by application of reduction rules.

Define FIN the class of Finite Types as the smallest class such that :
NeFIN;
6,TeFIN = 6 xT ,657 € FIN,
and let PRT stand for the collection of DL -terms all of whose subterms
are of finite type.

In the restricted system DLR extra conditions prohibit the formation
and use of types that are not interpretable as HA®-formulas; in 2TYP and
TITYP the variable to be bound should either be of finite type or absent,
resulting in either a genuine 3/V-quantification or a A/—-formation. In
case of TIE and 21 for genuine quantification only PRT-terms are permitted
as argument and as witness respectively. For the same reason the term
teN in NE should be PRT: ‘



19

M= teN = t€Al0] I xeNyeAlx] = t.eAlx/Sx]
NE tePRT
M= Ry(t,to,t e Alx/t]

The rule of 3E is weakened just as in ML"™. Finally IE is restricted to
equations:

Fr=tel(B,t,t)x/s] T=t'€l(As,s) T ,xeA = I(B,t,t,) Typ
F=i(t,t',s,s') € I(B,ty,t,) [x/s']

IE'

The latter restriction however is inessential, as Diller states, since the
general IE rule can easily be derived by induction from the restricted
version. As in the case of MLY we have Soundness:

21 THEOREM (Soundness )
Let @, @,,....@¢,, be HA®-formulas with free variables xe€g,,...,X
such that in HA® : {@,,...,¢ @, then
for some t:
DLAFX,€6,%,... X,€6,%,y,€4,%,... V€0, =>tep™.

€0

n n

Proof: By induction on the derivation in HA®. O

22 DEFINITION ( of the embedding ®)

The only operators of DLP not available in ML™ are the quaternary i
operator introduced in IE and the r operator introduced in II. Let T be a
term or a type in DLCR, we define T° as the resuit of systematically
replacing all occurrences of the form i(t,t',s,s') inTbyte, andofrtinT
by e. Let M=x€A,,... X, €A, be a DL context, then by ' we will refer to
the sequence: x,€AP,... X, €A Let ¢ be a judgement, we define:

if o= ATyp then @°= A® Typ

if p=teA then @°= t°eA°

if p=t>t'eA then %= t°=t"9eA°
if p= A2 A’ then @%°= A°=A"

23 PROPOSITION
If DLAFM =@ then MLYFT°= @O

Proof: By induction on the length of the derivation in DLGR, for instance the



20

case of IE:
By induction hypothesis we have in ML":
(1) re=>t°eBx/s]°
(2) ro=t"9el(A,s,8')°
(3) I°,xeA°=B° Typ
Then the demonstrandum is derived as follows:

(2)
re=tocl(A,s,s')°

Mr=tvel(A?s°s")

IE (3) (1)

REPL Me=5g%=g""¢A® [°xeA°= B° Typ re=yt%eBlx/s]®
! re=yB°[x/s°]=B°[x/s'°] Mre=teeB°[x/s°]
REPL,

Mo=»t°eBo[x/s'°]

re=e(tt's,s')?eBlx/s']°

Most other cases are completely trivial. O

24 COROLLARY
DL.P is a conservative extension of HAY.

Proof: One easily checks:
@*o=p™* for all @ HA®-formulas
c*o=¢* for all 6eFIN
Now let @, @,,...,@, be HAY-formulas with free variables x,€c,,... X €6,
and suppose DLPrx.e6,,... x €6 y,€@,. . y €0, =tep® for somet,
then by Proposition 23:
MLYFX€0,,... X €6, Y, €@,%,. .y €0,  =>toeq?
and by Theoram 18:
HA®: {g,,...,0 }F ¢ O

25 DEFINITION (of DL and DLR)

The only difference between DL and DL and between DLP and DL is the
use of contexts. In DL no contexts are used, instead all variables bear
their type as a superscript. Variables that occur in the type of another
variable should not be bound, this is expressed in the so-called condition



on variables:
x,”ﬁ,...,xn‘\n satisfy the variable condition withregard tot iff
x; does not occur in the type of any free variable of t other than
Xip1,.- Xy (notation: cov(xAy,... x A t))
The condition on variables occurs in those rules where ML demands certain
variables to stand at the end of the context, as is the case in TITYP and
STYP with cov(x?;B), TNl with cov(x®;t) and cov(x?;B), =I with cov(xA;B),
SEY with cov(xA,yB;t) and NE with cov(xN,yA;t*).

Both || and * are defined as in the case of HA¥ (Theorem 18 ). The collapse
| is defined as before, and along the same lines one proves:

26 LEMMA
If DLRFteA
then HA@H[t]elAl O

27 THEOREM (Soundness)
Let @, @,,..., ¢, be HA»-formulas with free variables X,€6,,...,X, €6,
such that in HA® : {g,,...,@}F @, then
for some t with FV(t)c{x.es,*,... x,€6,% . y,eq,*,. . .y e@,"}:
DLR-teg@”.

PROOF OF THEOCREM 19
It suffices to show that:

If DLRFteA and FV(t)Sixy, ..., x.An}

then in HA®: (A%, . A *}A¥*
which is established by induction on the length of the derivation in DLR,
under the following hypotheses:
if DLP FteA and FV({xAy, ..., x An}

then HA®FA*A . AA *—A¥*

ifDLR Ft>t'eA then HA®R|tl=]|t'|elAl
if DLR FA>B then HA®FA* B*
For instance the case of ZE”:
t e 3xAB t'eC
SE” cov(xAyB t'), xA yBeFV(C)

t'Ixy/pt.ptleC



22

The only interesting situation arises when xA yBeFV(t') and xA,yBgFV(t),
in which case FV(t'[xAyB/p,t,p,t]) =FV(t')\{xAyBlUFV(1), say
FVtTxA,yB/pot,p,t]) ={x, ..., x,An}, then by induction hypothesis:
(1) (Ax,.A*FIAlA*ABX)*),
(2)  {A¥,.A*A*AB(X)*I-C¥;
because of cov(xAyB t) the variable XAl does not occur free in A, A *,
nor does xAl occur free in C*, so by 3E from (1) and (2):

(A¥,..A¥}FC*. 0

references

J. Diller:" Modiried realization and the rformulae-as-Lypes notion”
in "To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism" Edited by J.P.Seldin and J.R. Hindley Academic
Press 1980 pg. 481-501

W.AHoward: * formulse-as-types”
in "To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism" Edited by J.P.Seldin and J.R. Hindley Academic
Press 1980 pg. 479-490

P. Martin-Lof: nturtionistic type theory” ectures given in Padova 1980,
G.5ambin (1880)

A.S. Troelstra: “On the syntax of Martin-Lors lype theories”
Theoretical Computer Science 51 (1887) pg. 1-26.



