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0. Introduction.

In this paper the system IL of modal logic for relative inter-
pretability described in Visser (1988) is studied. In IL formulae
AD>B (read: A interprets B) are added to the provability logic L
with as their intended interpretation in (arithmetical) theories T:
T +B is relatively interpretable in T+ A. The system has been
shown to be sound with respect to such arithmetical inter-
pretations( Svejdar 1983, Montagna 1984, Visser 1986, 1988P).

With respect to priority of parentheses we treat > as —. As
axioms for IL we take the usual axioms OA-OOA and
O(OA—->A)—>OA (Léb's Axiom) for the provability logic L and its
rules, modus ponens and necessitation, plus the axioms:

(1) O(A->B)—>(AD>B)

(2) (ADB)A(BD>C) -» (AD>C)
(3) (ADC)A(BD>C)>(AVBDC)
(4) (ADB)-> (OA—-OB)

(5) CADA

Furthermore, we will consider the following extensions of IL:

ILM =1IL+M, where M is the following axiom
(A>B)—=(AAOC > BAOC)

ILP =IL+P, where P is the following axiom
(AD>B)-0O(A > B)

We will write k. for derivability in IL, similarly for the other
systems, but sometimes we may leave the subscript off.

The object of the whole study, undertaken together with Smorynhski
and Visser is to obtain for the standard formal systems an analogon
of Solovay's theorem: which are the interpretability logics corre-
sponding to PA, GB etc? The provability logics of all these
systems are the same as Solovay's Theorem shows, but the
interpretability logics are not. The logic ILP has been proved by
Smorynski and Visser to be complete in this sense with respect to
GB and other finitely axiomatizable systems. Conjectures are that
ILM is the logic of PA and other essentially reflexive systems. A
third system



2

ILW =IL+ W, where W is the following axiom
(ADB)—=(AD>BAOTA)

is weaker than both other logics, and is conjectured to embody the
principles common to all "reasonable” arithmetics. For more details
one should consult Visser's paper in this volume.

In this paper we restrict ourselves to purely modal properties
of the systems in question. In section 1 the semantics for the
different logics is described. In section 2 the fixed point theorem
of L is extended to IL (this result was reached in cooperation with
Visser). In the remaining sections modal completeness theorems
are proved for the systems IL, ILP and ILM. The logics also turn
out to have the finite model property, so decidability is a conse-
quence. We are still working on a completeness proof for ILW.

1. Semantics!,

It is a well-known fact that the modal logic L is complete with
respect to the L-frames <W,R>, which consist of a set of worlds W
together with a transitive conversely well-founded relation R.

1.1 Definition. If <W,R> is a partially ordered set and weW, then
Wiwl={w'ewWIwRw'}.

1.2 Definition. An IL-frame is a L-frame <W,R> with an addi-
tional relation Sy, for each we W, which has the following proper-
ties:

(1) Sw is a relation on WIwl,

(ii) Sy is reflexive and transitive,

(iii)  if w',w"ewW[w]and w'Rw", then w'S,,w",

We will often write S for {SylweWw}

1 The original question to provide the system ILM with a semantics was due to Albert
Visser. Also afterwards he was a continuous source of inspiration and he heeded us from

several mistakes.



1.3 Definition. An IL-model is given by a IL-frame <W,R,3>

combined with a forcing relation with the clauses:
ulFO0A< VV(uRv = vIFA)
ulFADB & VYVv(uRv and viFA = 3w(vS,w and wiFB)).

1.4 Definition.

(a) We write FEA iff F=<W,R,3>, and for every IF on F, wiFA
for each wew;

(b) If X is a class of frames, we write KFA iff FEA for each
FeX.

(c) Xy is the class of frames satisfying
(iv) for any w, the converse of Ro Sy, is wellfounded

(d) Xy is the class of frames satisfying
(iv') if uSywvRz, thenuRz

(e) Xp is the class of frames satisfying
(iv") if uSyv, then uSyv for any w' such that wRw', w'Ru.

1.5 Lemma (Soundness ).
(a) For each A, if k1A, then FEA.
(b) For =W, M, P, respectively,
FEILS & FeXgs (ILS characterizes Kg).
(c) For S=W, M, P, respectively, if Fi sA, then KskA.
Proof. Straightforward.

X

In Sections 3 and following completeness will be proved for the
three systems IL, ILP and ILM. Actually, ILP will be proved com-
plete with respect to the more restricted class of frames frames in
which Sy and Sy are identical on the intersection of their domains.
We will keep writing ILS if we want leave open which system we

are aiming at.
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1.6 Example. For each of the systems above,
X((p> p)A(TpDp)).
Proof. The following is a countermodel:
W

o

O et

v

In the above picture only the "extra"” arrows for 3, are indicated.
Note that in an arithmetical interpretation such a formula would be
what is called an Orey-sentence (see e.g. Visser 1986). Note also
that one could make this model into one in which 3, is antisym-
metric; however, the procedure would make the model infinite. X

In the case of provability logic validity on trees is equivalent to
validity on L-frames. In the case of interpretability logic this is
not generally the case.

1.7 Proposition. The formula

O(p—> gadg)A(p>q)—-(p>gAOl) is valid on all ILM-models
on trees, but X mE O(p—>gaO0g)A(p>q)-=(p>qgaOl) and
hence ¥ mO(p—> 7gaOg)A(pD q)->(pD>gAaO L),

Proof. Left to the reader. X

Of course the usual procedure for "stretching out" a partially or-
dered model into a tree works in this case. The point is that prop-
erty (iv') will get lost: it will nolonger generally hold that, if
w'Sw W"Ru, then w'Ru; the only thing one can say of u then is that it
will have a forcing relation identical to that of some successor of
w', and hence the resulting model will no longer be an ILM-model in
our sense. For IL, ILW and ILP, on the other hand, one can restrict
oneself to tree models.



2. Fixed points.

From the fact that IL is an extension of L it is obvious that to
prove the existence of explicit fixed points in IL it is actually
sufficient to find a fixed point for A(p)>B(p), i.e. to find a formula
C such that F; . Ce— A(C)D> B(C). For, after that we can proceed as in
the standard proof for L (see Smoryfiski 1985). One might conjec-
ture that C=A(T)D> B(T) would do the trick, and in fact that formula
does work for ILM (as the reader may check). However, for IL a
more complicated formula is necessary: C = A(T)D> B(OA(T)). (The
even more complicated, but more symmetric formula
A(OA(T))>B(OTA(T)) is equivalent to C and therefore works
too.) We will give a semantic proof (see Visser 1988 for a syntactic
proof 2). Of course, the present proof does need the completeness of
IL proved in section 3. To establish the fixed point property we
have to show:

2.1 Lemma.
wiFA(T)>B(OA(T)) &
wiFA(A(T)>B(OTA(T)))>B(A(T)ID>B(OTA(T))).
Proof. We first establish some simple general facts, for arbitrary
w. If we give them without comment their proof is trivial. We write
UlFmaxA iff ulFA and Vv(uRv=v}¢A), and we write wRBu for wRu or
w=u.
(1) WIFDDE & VYu(wRUAUulFmaxD=>3v(uSyVAVIFE));
(2) if wiFOD and wRu, then ul-0D;
(3) if WiFmaxD, then wiFOD;
(4) if wi-O™D, then, if wRu, then ulFDD>E;
(5) if WlFmaxD, then, if wRu, then ul-DD>E;
(6) if WiFmaxD, then Wik nax A(T) & WikFnmax A(DD>E); by (S5),
as wl- can only be depend on ul- for u with wRu, since e.g.
wRVRV'Syu implies wRu by Def.1.2.(i);
(7) if WiFmaxA(T), then wiFmax A(A(T)DE), by (6);

2 The fixed point theorem was established first semantically for ILM by the authors. Then
Visser obtained the theorem syntactically, also for the more complicated case of IL.
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(8) if WiFmaxA(A(T)DE), then wiFA(T);
for assume Wl max A(A(T)D>E), then, by (7),
wRu = ulk"7A(T), hence, for all u with wRu, ulFA(T)D>E. As in
(6), wIFA(T) follows from wiFA(A(T)D>E);
(9) if wiFDDE, then, for all u with wRBu, if ulFO7E, then ulFO7D;
(10) if wlFmaxE, then, for all u with wRBu, u-O7D &< ul-DDE;
(11) if WiFmaxE, then, for all u with wRu,
ul-B(OD) « ul-B(DD>E);
(12) if wiFmaxE, then, for all u with wRu,
UlF maxB(O D) & ulFmaxB(DDE);
(13) if WlFnaxB(OD), then wikFmaxB(DD>B(OTD));
(14) if wlFnaxB(DD>B(OTD)), then wikFmaB(OTD);
for assume wlFmaxB(DD>B(O D)), then, by (13),
wIFOB(O7D). So, by (4), for all u with wRu,
ulFDD>B(OD) & ulkFO7D; so Wik maxB(OTID).
Now we establish the main claim:
=: Let wiFA(T)D>B(OA(T)). Assume wRu and
UlF max A(A(T)D>B(OTA(T))). By (8) ulFA(T). So, for some v with
uSywv, vIFB(OA(T)). We may just as well assume
VIFmax B(OTA(T)), as uSyVRV' implies uSy v' by def. 1.2(iii). By
(13) this implies vIFB(A(T)D> B(OA(T))).
«: Let wiFA(A(T)>B(OA(T)))>B(A(T)>B(OA(T))). Assume
wRU, ulFnmaxA(T). By (7) ulFA(A(T)D>B(OTA(T))). So, for some v
with uSyv, vIFB(A(T)>B(OTA(T))). Again we may assume that
VIFmax B(A(T) D> B(OA(T))), and (14) gives us vIFB(OTA(T)). X

For completeness sake we formulate the explicit fixed point theo-
rem.

2.2 Theorem. For each IL-formula A(p,q4,...,qn) in which p occurs
only modalized (i.e. all occurrences of p are under some O or D)
there is a provably unique IL-formula B(qy, ..., qs) such that

Fi A(B(qq,...,Qn),q1,...,an) & B(ay, ..., an).
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3. Modal completeness: preliminaries.

The usual method in modal logic for obtaining completeness proofs
is to construct directly or indirectly the necessary countermodels
by taking maximal consistent sets of the logic under consideration
as the worlds of the model (without necessarily one consistent set
standing for only one world) and providing this set of worlds with
an appropriate relation R. This method cannot be applied here, since
the logic is not compact: one does not generally get conversely
well-founded models on an infinite set of worlds. The solution is to
restrict the maximal consistent sets to subsets of some finite set
of formulae. Such a so-called adequate set has to be rich enough to
handle the truth definition, and hence has to be closed under the
forming of subformulae and single negations. Furthermore, for each
particular logic, additional requirements on the adequate set will
be needed to be able to apply the axioms.

3.1 Definition. An adequate set of formulae is a set & which

fulfills the following conditions:

(i) @ is closed under the taking of subformulae,

(ii) if Be®, and B is no negation, then T1Bed®

(iii) LD> Le®.

(iv) if B> C € @, then also OB, OC € &

(iv) if B as well as C is an antecedent or a consequent of some > -
formula in &, then BD>C e &.

Obviously, each finite set ' of formulae is contained in a finite
adequate set 3.

3.2 Definition. Let ' and A be two maximal ILS-consistent sub-
sets of some finite adequate @. Then

r<A & for each OA€ell, OA,A€A, and for some OA¢lr, OAcA
Whenever F< A, we say that A is a successor of . ‘

3.3 Lemma. Let I"'p be @ maximal ILS-consistent subsets of some
finite adequate . Let Wr,be the smallest set such that
(i) ToeW;
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(ii) if AeW and A' is a maximal ILS-consistent subset of & such

that A<A', then A'eW.
Then
(i) < is transitive and irreflexive on Wrg.
(i1) For each e Wr,, OAel" & AeA for every A such that '< A.
Proof. As in the case of L. (i) is trivial, and so is = of (ii). For &
of (ii) one needs Lob's axiom. X

One might think that this means that, in essence, the completeness

problem for ILS reduces to defining relations <A on Wro such that

(i) < has all the properties of the relation S in Kgs

(ii) For each T in Wr,, BD>Cel iff for every A such that T< A and
BeA there is some A' with ArA'and CeA".

The situation is not as simple as that. Before we continue with the

the completeness proofs, we will give an example to make this

clear.

3.4 Example. It will be obvious that ¥y s(p>qvr)—=(p>qg)v(pb>r).
Now, take I'p to be a maximal ILS-consistent set in @ that contains
p>qvr, T (p>q), and T (pD>r), as well as the formulae OOL,
O(pvqvr), O7(pAqg), O (gAr), and O (pAr). It is then clear that
the resulting wro will 1ook as follows:

Vop

u X
r

w g

It will also be clear that no S, can be defined on this model in such
a way thatulFp>qvr, 7(p>q), 7 (p>r). By doubling W [u] however
an appropriate model can be obtained (the arrows give the addi-
tional Sy-relations not given by R):



To overcome this problem, our strategy in the next section will be
to multiply the maximal ILS-consistent sets by indexing them with
finite sequences of formulae. We write tct' iff the finite sequence
T is a (not necessarily proper) initial segment of the finite se-
quence T'; we write * for concatenation, and, if w=<I",T>, we write
(w)o for " and (w)4 for T.

Using these pairs we set aside, for each world w and each
appropriate formula C, a specific set of the successors of w in-
dexed by C (the so-called critical C-successors of w) to provide the
counterexamples to the formulae B> C that must be falsified in w.
We will restrict the relation Sy so that it does not "leave" this set
of C-critical successors. Speaking intuitively, the C-critical suc-
cessors of w will be the ones that contain no formula B that "asks
for" C (where B is an antecedent and C the consequent of a D> -
formula in w). The next two lemmas show that this whole idea is
feasible. The first one says that indeed a counterexample can be
found, when needed: for each T (BD>C) in w a C-critical successor
with B in it can be found. The second one says that we will be al-
lowed to restrict the Sy, to the C-critical successors: if ABD is a
member of w, and A is a member of a C-critical successor of w,
then another C-critical successor of w with D in it can be found.

3.5 Definition. Let ' and A be maximal ILS-consistent subsets of
some given adequate . Then A is a C-critical successor of " iff

(i) T<A;

(ii) A, 077 A€ A for each A such that ADCerl.
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Note that successors of C-critical successors of I' are C-critical
successors of I,

3.6 Lemma. Suppose I' is maximal ILS-consistent in & and
1(BD>C)el; then there exists a C-critical successor A of I, maxi-
mal ILS-consistent in @, such that BeA.
Proof. Take Ato be a maximal ILS-consistent extension of
{D,OD|ODel}U{TA,O7A|lAD Cel}u{B, OB}
Note first that the adequacy of & insures that all the formulae of A
are indeed available. Secondly, note that if such a A exists, it is
indeed a C-critical successor of [': the fact that
{D,OD|ODer}u{dB} S A
makes it a successor of I', and the fact that
{7A,O07AIADCel}c A

makes it C-critical.
Now, if no such A exists, then there are A4, ...,Aq and Dq, ..., D¢ with
A1D>C, ..., AnD>Cell, 0Dy, ...,0ODkel such that

D1,...,Dk, 0Dy, ...,0Dk, A1, ..., AR, O7A,, ..., O0A,,B, OB L.
Or, equivalently:

D4,...,D¢, 0Dy, ...,0OD, T(A1V...VAL), O (A1V...VAL),B, OB F1L
This would mean that:

D1,...,D¢, 0Dy, ...,0ODB, OB FA1V ...VARVO(ALV ...V Ap).
In other words:

D4,...,D¢, 0Dy, ..., 0DkFBAOB—- A1V ..VARV(ATV ...V Ap).
dince IL contains L:

ODq, ..., OD0FO(BAOTB—- A1V ...VARVO(AV ...V Ap))
By axiom (1):

OD4,...,0DkF BAOTBD> A1V ...V ALVO(ALY ...V Ap)
In view of particularly the axioms (S) and (3) we have that

FAV .. VALVO(AIV ..VARID AV ...V Ap.
So, by axiom (2):

OD4,...,0ODkF BAOTBD> A1V ...V An
Given that A4D>C, .., AnD>Cel, we also have 'FA1V ...V AnDC
(apply axiom (3)), and so by axiom (2):

r'-BAOB>C
Now, it is not difficult to see that
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FBD>BAOTB
(To that purpose, note first that
F(BAOTB)VO(BAOTB)D>BAO™MB. Secondly, since
ILS contains L, FO(B—=(BAOB)VO(BAO™B)). So by axiom (1),
FBD>(BAOTB)VO(BAOTB). Combining these two facts we find
FBI>BAOTB.)
Finally, by applying axiom (2) once more, it follows from
r'-BAOTBB>C and FBB>BALOTB that

r-BB>C
This contradicts the consistency of I'. =

3.7 Lemma. Suppose BD>Cel™ and let A be an E-critical successor
of I with BeA. Then there is an E-critical successor A' of ' with
CeA".
Proof. Suppose there is not such a A'. Then there would be
OD4,...,0DyeA, and F4D>E,...,FcD>EeA such that

D1,...,Dn, 0Dy, ...,0Dn, T1Fq, ..., F,O7F, ..., O0F¢,CHL
and, therefore,

D1,...,Dn,0OD4,...,ODFC—-F1V...VF( VO (F1 V... VFy)
which as before implies:

OD4, ..., 0D FCB>Fq V... VFk.
By axiom (2), B>Cel" implies that TFBD>F4V...VFg and, by axiom
(3), TEFBB>E. Given the adequacy conditions, this can be strength-
ened to BD>Eel. Since A is an E-critical successor of ', this im-
plies TBeA, and we have arrived at a contradiction, since it is
assumed that BeA. X

4.The Modal completeness of IL.

In this section we just have to carefully adjoin sequences to the
maximal IL-consistent sets and see that the intuitive ideas of the
previous section can be set to work properly.
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4.1 Theorem (Completeness and decidability of IL) If ¥y A, then
there is a finite IL-model K such that KEA.
Proof. Take some finite adequate set & containing TA. Let I" be a
maximally consistent subset of @ containing T7A.
Now, set W to be the smallest set of pairs <A,tT>, where T is a
finite sequence of formulae from &, that fulfills the following
requirements:
(i) <I,<>>€ Wr
(ii) If<A,T>e Wr,then<A',t>e Wr for every successor A' of A;
(ii1) If <A,T>€ Wr, then <A',t*<C>>€ Wr for every C-critical
successor A' of A.
Wr is finite. (For every A, the number of successors of A is finite.
Moreover, if A<A', the number of successors of A' is smaller than
the number of successors of A.)
Observation: 1f <A,t>e Wr and E occurs in T, then TEeA.
Proof: Show with induction on the construction of W that if
<A,t>e Wrand E occurs in T then TE,O0EeA.
Define R on Wr as follows:
wRw' iff (w)o=< (w')o and (w)1S(w')q .
It is easy to check that R has all the properties required.
Finally, let uSyv apply if (1) and (11) hold:
(1) u,veWrlwl];
(11)  (u)1=(v)1=(w)q , or (u)1=(w)1%<C>*T and (v)1=(w)1%*<C>=c for
some C, ¢ and <. '
We leave it to the reader to check that under this definition Sy will
have the required properties:
We are now ready to define
wikp iff pelw)o,
and prove that
for each Ae®, wiFA iff Ae(w)o.
The only interesting case to look at in the inductive proof is the one
that A is B> C, i.e. we have to show that
B> Ce(w)o & VYu(wRuABe(u)o= Iv(uSyVv A Ce(v)o)):
& : Suppose BB>Cé¢&(w)o. Then 71 (BD>C)e(w)o. We must show that
Ju(wRu A Be(u)o AVV(uSyv = T1Ce(Vv)g)). Let A be as in lemma 3.6
with (w)o as I', and take u to be <A,(w),*<C>>. Consider any v such
that uSwv. Then C occurs in (v)4. By the observation above, T1Ce(v)o.
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= : Suppose B> Ce(w)o. Consider any u such that wRu and Be(u)o.
Let us first assume that (u); =(w){*<E>=*T. In that case we can
apply lemma 3.7 for "'=(w)o and A=(u)o to obtain an E-critical
successor A' of I' with CeA'. It suffices now to take
v=< A", (w)1%<E>>. It is clear that v fulfills all requirements to
make udy V.

If (u)q =(w)4, then all we know is that (w)o=<(u)o. Note, however, that
every successor of ' is a L-critical successor of I". (By axiom (4),
FFD1-> 7F; hence if F> lell, then TFel’', and therefore
TIF,07FeA for every A such that T<A. So we can apply lemma 3.7
for T=(w)g, A=(u)g, and E=1, in order to obtain a (L-critical) suc-
cessor A' of " with CeA'. Take v=< A", (w)q>. X

9. The modal completeness of ILP.

9.1 Definition. A set & of formulae is ILP-adequate iff

(i) @ is adequate in the sense of definition 3.1

(ii) if B> Ce€ @, then also O(BD>C)ed.

Obviously, each finite set I' of formulae is contained in a finite
ILP-adequate set &.

5.2 Theorem (Completeness and decidability of ILP). If ¥y pA,
then there is a finite ILP-model K such that KEA.
Proof. Take some finite adequate set & containing 77A. Let I' be a
maximally consistent subset of & containing TA.
In constructing the model, we multiply the maximal ILP-consistent
sets similarly as with IL while at the same time transforming the
model into a tree in the standard manner. The purpose of making the
model into a tree is insuring that a unique immediate predecessor
exists for each world. We can then, in determining Sy "from" a
successor u of w use the immediate predecessor w' of u instead of
w itself. The latter is reasonable, since formulas B>C are persis-
tent along <-chains in this logic. A world in the model will be a
sequence of pairs

KT, To>,...,<Tn=1,Tn=12,<Th, Th 2>
More precisely, Wr is built up according to the following clauses:
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(1) <K, >>e Wr

(ii) If<<To,To>,...,<Tn, Tp>>eWr , and A is a successor of [ then
als0 <<To,To >, ...,<Th, Tn>, <A, Th>>€ Wr;

(ii1) If <<Tg,To >,...,<Tnh, Tr>>€eWr and A is a C-critical successor
of M, then also <<Tg, To >, ...,<n, Th>, <A, Tn*<C>>>€ Wr

If w=<<Tg,To>,....,<Th, Tn>>eWr, we write Ay=pand Ty="Tp.

We next define R on W as follows: wRw' iff w is a proper initial

segment of w'. Thus, R is transitive and irreflexive. More impor-

tantly, every world different from <<TI',<>>> has precisely one im-

mediate R-predecessor.

Note that that the model will treat O properly.

We are now ready to define uS,,v as applying if (1) and (11) hold:

(1) wRu, and for every w', if w'Ru then w'Rv

(11)  Tysty

It is easy to check that under this definition Sy will have the re-

quired properties.

Next we define

wikp iff peAy,
and prove that

for each Ae®, wiFA iff AeAy .

Again, the only interesting case to look at in the inductive proof is
the one that A is BB>C, i.e. we have to show that

B>CeAy & VYu(wWRUABeAy = Iv(uSyVv ACeAy)):

& : Suppose B>C¢Ay. Then T(BD>C)eAyw. We must show that
Ju(wRu ABe AyAVV(USy Vv = TICeAy)).

Assume w=<<Ig,To >,...,<{Tn, Tn>>. Let A be as in lemma 3.6 with "y,
as M. Take u to be <<Tg,To >,...,<Th, Tn>,<A", Tp*<C>> with the A'
given by that Temma.

Consider any v such that uSyv. Then C occurs in Ty. As in the
previous case, it is easy to see that this means that T1ICeA,.

= : Suppose B> CeAy and wRu with BeAy. Let w' the(l) immediate
predecessor of u. Note that axiom P and the ILP-adequacy of & in-
sure that B> CeAy:.

Let us first assume that ty=Ttw'*<E>. In that case we can
apply lemma 3.7 with F=Ay -and A=A, to obtain an E- critical
successor A' of " with CeA'. It suffices now to take v=w'x<A', Ty,
It is clear that v fulfills all requirements to make uSyv.
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If, on the other hand, Ty=Ttw', then all we know is that
Ay <Ay Recall however that every successor is a l-critical
successor. 5o, here too, we can apply lemma 3.7 for T=Ay, A=Ay,
and E=1, in order to obtain a (L-critical) successor A' of [ with
CeA". Take v=w'*s< A", TD. X

5.3 Corollary (to the proof of theorem 5.2). ILP is complete with
respect to the frames in which, if wRw’, then Sy = Sy IWIw'lL

Proof. It is clear from the proof that, in the model constructed
uSyvVv iff uSy v for the immediate predecessor w' of w. X

The corollary means that we can take the S-relation in ILP to be a
rigid relation, essentially independent of w.

6. The modal completeness of ILM.

The completeness proof for ILM is rather more complicated then
the ones for the completeness of IL and ILP. The first problem
arises from the fact that to be able to apply the characteristic ax-
iom (AD>B)->(AAOCD>BADOC) we are forced to add the consequent
of this formula to the adequate set, whenever we have the an-
tecedent.

6.1 Definition. An ILM-adequate set of formulae is a set & which

fulfills the conditions:

(i) @ is closed under the taking of subformulae,

(ii) if B and Ce®, then for each Boolean combination D of B and C
there is a formula ILM-equivalent to D in &,

(iii) LD le®d,

(iv) if B> C € @, then also formulae ILM-equivalent to OB, OC € &,

(v) if both B and C are antecedent or consequent of some > -
formula in @ , then BB>C € ®,

(vi) if B> C,De @, then there is a formula ILM-equivalent to
BAODD>CAOD in &.

With this definition it is, of course, not at all obvious that each
finite set is contained in a finite adequate one. The problem in
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keeping things finite is that with BAODD>CADOD also &(BAOD)
and O(CAOD) will have to be an element of @ and will do its work
via clause (vi) generating new formulae in the adequate set, e.g.
BAODAO(BAOD)>CAODAO(BADOD). We have to show that
this does not lead to an infinite regress: after a while the process
starts delivering formulae equivalent to ones which have occurred
previously. A little thought will convince the reader that the next
lemma shows just that.

6.2 Lemma. Starting with a finite set of formulae ©Bjy, ..., OBy, and
and closing of f under the operation of taking &G(BiAOTB;) (adding
each new O-formula to the stock) leads to a finite set of L-equiv-
alence classes of formulae.

Proof.By induction on n. In the case that there is only one formula
OB the process stops immediately, because O(BAO™B) is L-
equivalent to OB.

Assume the validity of the lemma for n starting formulae and apply
the closing off procedure to OBy, ..., OBp+1. The formulae obtained
will be of the forms O(BiAOTD1A...AODK) (1 <i<n+1). For each
of these classes we have to show that they contain only a finite
number of equivalence classes. We restrict ourselves to the case
that i=1.

By the induction hypothesis there can be only finitely many
formulae O(B1AOTDA...AOTDy) in which the formula B4 has not
been used in the construction of D¢, ...,Dx. Now consider a formula
O(B1AODyA... AODy) in which By has been used. This formula is
L-equivalent to O(B1AOB1AOTD1A...AOTDy). We now use the
fact that

F.O7B1—-0(Bjel)and F O7B—0...0(B1e 1)

From this it easily follows from the presence of O™B; in
O(B1AOB1AOTD A ...AODy), that in each of the Dy, ..., D¢ oc-
curring in that formula B¢ can L-equivalently be replaced by L. Now,
each of the D; is built up in such a manner that B4 occurs only in the
context O(B1A...). This means that after replacing By by 1 we get
a tautology, which can be left out altogether. We end up with a
formula O(B1AOTE(A...AOTER) in which each of the Ej has been
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constructed according to procedure from Bj,...,Bp+1. We already
concluded that there can be only finitely many of such formulae. K

6.3 Theorem (Completeness and decidability of ILM) If ¥ MA,

then there is a finite ILM-model K such that KkEA.

Proof. Take some finite ILM-adequate set @ containing 7A. Let I

be a maximal ILM-consistent subset of @ containing T7A. Unfortu-

nately, we need more worlds than present in the Wr used in the

proofs for IL and ILP.

This time we set Wi to be the collection of all pairs <A, T >, with

(i) T<Aorr=A

(ii) T is a finite sequence of formulae from &, the length of which
does not exceed the the depthS of ' minus the depth of A. (So, "
is only paired off with the empty sequence).

Clearly, Wr is finite. Note that the sequence T in a pair <A,t>

provides no longer sufficient information on the "C-critical” status
of A.

Define R on W as follows:
wRw' iff (w)o< (w')o and (w)&(w') .
It is easy to check that R has all the properties required.
We say that u is a C-critical R-successor of w if (u)o is a C-critical
successor of (w)o and (u);=(w) %< C>*T
Let uSyv apply if (1)-(1v) hold:
(1) u,veWrlwl;
(11) (u)1€(v)
(111) for each A such that OAe(u)o also OA€(v)o.

(1v) if uis a C-critical R-successor of w, then vis a C-critical R-
successor of w.

Let us check right away that under this definition Sy will have the

required properties:

(i) that u,veW[w] if uSyv, is instantaneous;

(i1) reflexivity and transitivity of Sy are easy to check;

(iii) if u,ve W [w] and uRv, then (1),(11) and (111) are immediate. As for
(1v) it suffices to recall that successors of C-critical
successors are C-critical.

ST has dgpthn if if the maximal length of a complete chain F=Ag<..<Am isn+1.
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(iv) Suppose w'Sy w"Ru. We must show that w'Ru. That (w'), S (u)4 is
immediate. That (w')g<(u)o follows from (w")o<(u)o combined
with (111) for w', w".

We are now ready to define wiFp iff pe(w)o and prove that in that
case wWIFA iff Ae(w)o, holds for each Ae®. Again, we restrict our-
selves to the case that Ais BD>C, i.e. we have to show that
BD>Ce(w)o & VYu(wRuABe(u)o=> 3v(uSywVv A Ce(v))):
& Suppose B> C¢(w)o. Then T (BD>C)e(w)o. We must show that
Ju(wRu A Be(u)o AVV(USwV = T1Ce(V)o)).
Let A be as in lemma 3.5 with (w)o as ', and take u to be
<A,(w)1*<C>> Consider any v such that uSyv. Since u is a C-
critical R-successor of w, v will be so, too. Therefore, T1Ce(v)o.
=>: Suppose B> Ce(w)o and let u be such that wRu and Be(u)g. Let
{OD4, ...,0OD,}={0O0DI0ODe(u)o}. Note that axiom M and the adequacy
of @ insure that (w)o contains a formula equivalent to
BAODA..AODR D> CAOD A...AODy.
Let us first assume that (u); =(w)*<E>=T. In that case we can ap-
ply lemma 3.7 with F=(w)o, A=(u)o taking a formula equivalent to
BAOD1A..AODB>CAOD A...AODy, rather than BB C itself as input.
In so doing, we obtain an E-critical successor A' of " with (i) Ce A’
and (ii) ODe A" for each D such that ODeA". It suffices now to take
v=< A", (u),>. It is clear that v fulfills all requirements to make
uSwVv.
If (u)y=(w)q, then all we know is that (w)o=<(u)o. Recall, however,
that every successor of A is an l-critical successor of A. So we
can apply lemma 3.7 for M'=(w)o, A=(u)o, E=1, and the formula
BAOD1A..AODKD>CAOD A...AODy, in order to obtain a (L-critical)
successor A' of ' with CeA' and ODeA' for each D such that
ODeA. Take v=<A",(w)1>. K
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