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1 Introduction

The basic theorems of Provability Logic are three in number. First is the Arithmetical Completeness
Theorem. The second place is shared by the theorems affirming the Uniqueness of Fixed Points and
the Explicit Definability of Fixed Points. In this paper we consider the problem of Uniqueness and
Explicit Definability of Fixed Points for Interpretability Logic. It turns out that Uniqueness is an
immediate corollary of a theorem of Smoryriski, so most of the paper is devoted to proving Explicit
Definability. More sketchy proofs of this Explicit Definability Theorem were given in Visser[88P]
and, model-theoretically, in De Jongh & Veltman[88].

Interpretability Logic results from Provability Logic by adding a Binary Modal Operator . If Tis a
given theory containing enough Arithmetic, we can interpret the modal language into the language of
T in the usual way. We interpret A>B as: (the formalization of) T+B is relatively interpretable in
T+A. Interpretations of a modal language of this kind were first considered in Héjek[81] and
Svejdar[83]. For a more extensive introduction to the various systems of Interpretability Logic see
Visser[88].

The system IL, the basic system of Interpretability Logic considered in this paper, is a system of
arithmetically valid principles. IL is definitely arithmetically incomplete, but very natural from the
modal point of view. The language of IL is the usual language of Modal Propositional Logic with an
extra binary connective . The theory IL is given as Propositional Logic plus:

L1 HFA = +0OA

L2 + O(A—-B) —» (OA—-OB)

L3 + 0OA - O0OA

14 — O(OA—A) - OA

J1 + O(A—-B) - A>B

J2 +(A>B)ABE>C) - AC

J3 HA>OABE>C) - AvB>C
J4 +AD>B - (CA—-OB)

J5 H OAA

In the conventions for leaving out parentheses > binds stronger than —, but less strong than the
other connectives. The principle J5 is the Interpretation Existence Lemma: it is a syntactic form of the
Model Existence Lemma.

L3 is doubly superfluous: as is well-known it can be derived from L4, but in IL it can also be derived
from J4 and J5. (Interestingly, on the arithmetical side the alternative proof leads in some cases to
better estimates on the length of proofs of provability.)



IL is valid for arithmetical interpretations in adequate theories T, i.e. theories into which 1A(+Q2, is
translatable and whose axiom sets can be represented by a Aﬁ-formula (see Buss[85] for a definition
of the bounded hierarchy). It is surely arithmetically incomplete: the principle W introduced immedi-
ately below and some other principles discussed in section 4 are not provable in IL, but valid in every
adequate theory.

Kripke models for IL were invented by Frank Veltman and a Kripke model completeness theorem
was proved by De Jongh & Veltman (see De Jongh & Veltman[88]).

Other important interpretability logics which have been studied are the extensions ILW, ILP and ILM
of IL obtained by adding to IL respectively the principles W, P, M:

A\ AD>B - A>BAO-A
P +A>B — O(A>B)
M AB>B - AAOCESBAOC

Kripke model completeness theorems for IL, ILP and ILM were proved by De Jongh & Veltman
([88]), arithmetic completeness was proved for ILP by Visser ([88]) with respect to all sequential
finitely axiomatizable theories extending IAg+SUPEREXP, and for ILM arithmetic completeness
with respect to PA and other essentially reflexive theories has been established indepedently by
Berarducci and Shavrukov. ILW, which is contained in both ILP and ILM, is still arithmetically valid

in any adequate theory T. It is conjectured that ILW contains precisely the principles valid in every
reasonable theory T, i.e.:

ILWKA & for all adequate T, for all interpretations * in T, T+ (A)*.

The restriction to IL is for our purpose in this paper no limitation: theories that are arithmetically
complete are evidently extensions of IL and every extension of IL inherits Uniqueness and Explicit
Definability of Fixed Points from IL. In one respect restriction to IL does make a difference however:
in a stronger theory the explicit fixed points could take a simpler form. We show that this indeed
happens for ILW.

Although the Explicit Definability of Fixed Points is a beautiful property for a system to have, the
other side of the coin is that fixed points of formulas expressible in a system satisfying it can never
give anything new. Thus, one cannot expect in pure interpretability logic interesting fixed points like
the Rosser fixed points featuring in provability logic extended with witness comparison symbols.



2 Unique & Explicit Fixed Points in general

For our purposes we need the careful discussion of bi-modal self-reference in Smorynski[85]
(p.172-176) in a slightly adapted form. Let SR, be the following system in the the language of modal
propositional logic extended with a binary operator #:

L1 HFA = +0A

L2 + OA—B) - (OA—OB)
L3 +OA - OOA

14 + O(OA—-A) - OA

E + O(A<B) — (A#CoB#C)

+ O(AeB) —» (C#ACHB)

Here E stands for Extensionality.

Define O*A := (AADJA). We write Ap for a formula A in which p possibly occurs, in which case,
e.g., AB stands for the result of the substitution of B for p in Ap and AAB for the result of substi-
tuting AB for p in Ap. We say that p occurs modalized in Ap, if p occurs in Ap only in the scope of

O and #. Two immediate consequences of our theory are the Substitution Principles S;, S,, S3 and
Lob's Rule LR:

S, FB<C = HAB&AC
S, + O*(BC) - (AB-AC)
S3 Suppose p is modalized in Ap, then:
+ OBeC) - (AB&AC)
LR Let B be a conjunction of formulas of the form OC or O*C, then:

+B— (OA—A) = —B->A

2.1 Uniqueness Theorem
Suppose p occurs modalized in A, then: SRy (O (pe>Ap)AOY (ge>AQq)) = (peq).

Proof: By S3: - (O* (pe>Ap)AO*(ge>Aq)) — (O(pe>q)—(p<>q)). So LR gives us the desired
conclusion. o

The Uniqueness Theorem was in its original form due to Bernardi, De Jongh and Sambin. In its pre-
sent form it is due to Smorynski. Assuming the modal completeness theorem an alternative model-
theoretic proof along the lines of the implicit definability theorem (see theorem 3.1, p.109,
Smoryniski[85]) is easily given.



Let SR, be SR, plus the following axiom:
L3 + A#B — O(A#B).

An immediate consequence of SR; is LR™:
LR* Let B be a conjunction of formulas of the form O0C or O*C or C#D, then:
B - (OA—>A) = B->A

In this general setting the Explicit Definability Theorem is split up into two parts, from which the
theorem itself can then be deduced as a Corollary.

2.2 Explicit Definability Theorem, part 1
Let Ap be either of the form OBp or Bp#Cp, then there is a formula D such that: SRy D < AD.

Proof: Suppose Ap is O0Bp or Bp#Cp. Take D := AT. We have fromL3": - AT - O (AToT),
and hence by S;: - AT —AAT. On the other hand by S3: FAAT— (OAT—AT). So LR* gives
us: FAATDAT. (]

To state the second part of the Explicit Definability Theorem we introduce a simple notion. Fix for
the moment a propositional variable p. We write:

Ap<Bp :& whenever Ap can be written as A*(p,E,q,....E,q), where q does not occur
in A*(p,ry,...,Ty) and p does not occur in the E;q, then Bp can be written as
B*(p,Eq....,.Epq), where q does not occur in B*(p,ry,...,r;). (Not all 1
need actually occur in B*(p,r,...,r,), and neither need p.)

The intuitive content of Ap<Bp is that propositional letters q different from p occur in Bp in no other
context than they occur in Ap. Clearly < is transitive. We allow that the sequence E,q....,E,q is
empty; this means that Ap<Bp implies that if q occurs in Bp, then q occurs in Ap. We have:

23 Lemma

1) Suppose Ap<Bp and Ap<Cp, then Ap<BCp.

ii) Suppose Ap<B(p,p), Ap<Cp and Ap<Dp, then Ap<B(Cp,Dp).

iii) Suppose that Ap is of the form BCp, that p really occurs in Cp and that p does not occur
in Cq, then Ap<Bp and Ap=<Cp.

iv) If at most the propositional variable p occurs in Bp, then Ap<BAp

v) Suppose A(p,q)<B(p,q), then A(p,p)<B(p.p).

vi) If Ap=Bp#Cp and p really occurs in Ap, then Ap<Bp.

Proofs: The proofs of (i) and (ii) are trivial. For (iii), it is sufficient to note that A*(p,E,q,....E;q)
must be of the form B*(C*(p,E,q,....E4q),E19,....Eq). (The occurrence of p in Cp must be real, to



make sure that Cp cannot be a subformula of one of the E;q.) (iv) is easy. Ad (v): suppose A(p,p) is
of the form A*(p,p,E;r,....E,r). This means that A(p,q) is of the form A*(p,q.Er,....Eyr). So
B(p,q) must be of the form B*(p,q,E r,...,Eyr). Clearly q does not occur in the Egr, so the form for
B(p,p) we are looking for is B*(p,p,Er,...,E,r). For (vi), note that A*(p,Eq,...,E;q) must be of
the form B*(p,E,q,....E,Q)#C*(p.Eq.,....ExqQ). O

2.4 Explicit Definability Theorem, part 2

Let U be any extension of SR, satisfying:

FIX Every formula Ap of the form OOBp or Bp#Cp has a fixed point D such that Ap<D.

For every formula Ap with p modalized, there is a formula D such that: p does not occur in D, Ap<D
and U-DAD.

Proof: Let p be modalized in Ap. Let Ap=B(C;p.....Cyp), where the Cyp are either of the form OEp
or of the form Ep#Fp and where p does not occur in B(q;,...,qp)-

Our proof is by induction on n. First suppose n=1. Suppose Ap is of the form BCp, where p does
not occur in Bq and Cp is either of the form ODp or Dp#Ep. We may assume that p really occurs in
Cp. Let D be the fixed point of CBp guaranteed by FIX. We show that - BD<>ABD. We have
+D&CBD. So by S;: -BD ¢ BCBD, and clearly BCBD = ABD. Trivially p does not occur in

BD. We have: Ap<Bp, Ap<Cp, hence Ap<CBp. Because CBp<D, it follows that Ap <D and thus
Ap<BD.

For the induction step we have to show how to reduce the number of 'components’ in Ap. Suppose
q does not occur in Ap. Define A*(p,q) by B(C;p.,...,Cp-1P.Cnq). A*(p,q) has n-1 components in
which p occurs, so we may apply the induction hypothesis to get Dq with A*(p,q)<Dq and
FDq<>A*(Dq,q). Clearly Dq can be written as FC,q, where q does not occur in Fr. Applying the
basis step of our induction to FC,p we find an E with: - E&DE, and thus FE&A*(DE,E). By S; it
follows that HE<-> A*(E,E). Clearly A*(E,E)=AE. Evidently p does not occur in E. Finally:
Ap=A*(p,p)<Dp<E. a

2.5 Corollary

(@) For every formula Ap with p modalized, there is a formula D such that p does not occur in D and
SR;+-D<AD.

(b) For every formula Ap in the language of interpretbility logic with p modalized, there is a formula
D such that p does not occur in D and ILP—DAD.

Proof: (a) The fixed points D for formulas Ap of the form OBp or Bp#Cp which SR, has by the
Explicit Definability Theorem, part 1, are OB T and BT#CT respectively. Since, by lemma 2.3(i)
and (iv), OBp<OBT and Bp#Cp<BT#CT, SR satisfies FIX.

(b) Follows immediately from (a). 0



Corollary 2.5(a) is Smoryniski's version of the Explicit Definability Theorem with a proof along the
lines of his "slightly easier proof” (see Smoryiiski[85], p.81). The original theorem was due to De
Jongh and Sambin. Our proof differs only in two minor details from Smorynski's. First, for our
purpose of proving the theorem for IL, it is essential that 2.4 is not proven in SRy, as SRy is valid
for ILP, but not for IL, or even for ILM. Secondly, the artifice of using < was added, because the
generality of theorem 2.4 forced us to be more explicit than usual about the property of the fixed
points needed to get the proof to work. Surely our choice of the property 'Ap<D' is not the most
parsimonious one, but we submit that it is fairly natural.

3 Explicit fixed points for IL

As is easily seen IL satisfies the principle E of the system SRy. So, the Uniqueness Theorem, 2.1,
holds for IL. On the other hand, using IL-models, one can show that IL does not satisfy L3'. So, the
proof of the Explicit Definability Theorem, part 1, is not available for IL. Thus we have to provide a
different proof for Explicit Definability, part 1 for IL. This is the main aim of this section. Before
giving the proof we list some theorems of IL.

Define: A =B :© (A>B)A(Br>A).
K1  A=(Av<OA) J1,J5,J3

Let 0A := (AvOA), YA = (AAO—A), then by L1-L3:

K2 F0A & 0OA
oA © dyA
VYA & yyA
F YA © yoA

Immediate consequences of the above are:
K3 H A > AAO7A
K4 A= AAODA

Note that: K4 is an alternative for axiom J5.
K5 FAD>1—-0O7A J4

Feferman's Principle is the following:
F FOA - (A>0A)



F is not derivable in IL. However, the following weakening of F is derivable:
K6 F CA>(A>COA)

Proof: By the above it is sufficient to show: ILF- (CAAOOA) = (A <CA). We have:
F (CAAOOCAAAD CA))— (CAAOO-AAADCOA))
- (CAAADL)
- (CAAOA)
- 1 m]

Start of the proof of Explicit Definability, part 1.

El Suppose: + O-AT — C, then - ATAO"AT & ACAO—-AC.

Proof: The "—" side is immediate, because O—AT — OYCoT).
"«" Suppose = O-AT — C. Reason inside the "H": Suppose AC and O0—~AC. We have:
O(O—AT — O%(Ce T)). Combining this with O—AC we get: O(O—AT ——AT). Hence by

Lob's Principle: O—AT. It follows that O0*(C¢> T). Combining this with AC we find AT. O
E2 Suppose: + O—AT —>C, then - AT =AC. E1,K4
E3 AT =AAT >BO—AT)
Proof: We have -O—"AT - AT > BO—AT. Apply E2. O
E4 — O7BOAT —» (AT &> BOAT & O7AT)
Proof: + O-BO-AT - (AT > BOTAT & AODAT > 1)
< OAT) O
E5 +— O-BO-AT - OYAT > BO-AT & O-AT)
E6 — BO-ATAO-BO—AT < B(AT > BO-AT)AO-B(AT > BO-AT)

Proof: "—" : immediate by E5 and S,. For the "«"-side it is clearly sufficient to show:
—O-B(AT > BOAT) - O-BOAT

This follows by:
+ O-BATE>BO"AT)—->O(O-BO-AT —»—BOAT) (ES.S,)
— O-BOAT O
E7 —BO-AT=B(AT > BOAT) E6,K4
E8 AT >BOAT & A(AT >BOTAT) > B(AT &> BOAT) E3,E7

End of the proof of Explicit Definability, part 1.



It is easy to see that p does not occur in AT &> BO-AT. We have: (Apt>Bp)<(AT >BO—AT).
For assume that p really occurs in Apt> Bp. By 2.3: (Apt>Bp)<Ap<AT<O-AT. Also
(Apt>Bp)<T. Combining by 2.3(ii) we find: (Apt>Bp)<(AT =>BO—AT). So, we can apply 2.4
and conclude Explicit Definability for IL:
for every formula Ap with p modalized, there is a formula D such that:
p does not occur in D, and IL-D<AD.

4 The system ILW

The principle W is very powerful. It can be viewed (in our limited context) as a generalization both of
Godel's Second Incompleteness Theorem and of Godel's Completeness Theorem (in the guise of the
Interpretation Existence Lemma). To illustrate this we show that ILW can be axiomatized as follows:

L1 A = -DOA

L2 + O(A—-B) - (OA—OB)

J1 + O(A—-B) - Ax>B

12 + (A>B)ABE>C) - A>C

J3 FA>COABE>C) - AVvB>C
J4 +AB>B - (CA—-OB)

A\ AD>B - Ax>BAOTA

First prove Feferman's principle F by substituting G A for B in W (this uses L1, L2, J1, J2). L6b's
Principle (I.4) then follows from F:
— OA—>A) - O(A->OA)
- TA>OTA
- 07A
— OA

Using L4 one derives L3 by a well-known trick. Next we derive K2. Using K2 and - A= AAO—A
which is immediate by W, we get: - A = AvOA and hence, by J1, J5.

W is not derivable in IL. To show this we need some model theory: we use Frank Veltman's IL-
models. An IL-model M is of the form: <K,R,S, - >, where: K is non-empty; R is a binary relation
on K, which is transitive, upwards well-founded; S is a ternary relation on K, which we treat as a K-
indexed set of binary relations Sy on K; the Sy are reflexive, transitive; we have: kRmSyn = kRn
and kRmRn = mSyn; I is a forcing relation on M, where R is the accessibility relation for O and:

ki-A>B :& for all m with kRm and m#-A there is an n with mSgn and ni-B.



It is easy to show that IL is valid in IL-models, and IL is complete w.r.t. (finite) IL-models (De
Jongh & Veltman[88]).

Consider the IL-model on {o,B,y} generated by aRBRY, YS4B, Y#+p. Clearly ar-pt><p, but
o.l# O—p. Hence Feferman's Principle doesn't hold at o and so a fortiori W fails.

We show that the Fixed Point of Ap>-Bp found in Section 3 simplifies in ILW to AT>BT:
HFATC>BT < AT-BOAT.

Proof FATS>BT& AT > BTAO-AT
& AT >BO-ATAO-AT
&< AT > BOAT O

Finally we show that the simplified fixed point doesn't work in IL. Consider q =>—p. The ILW-style
fixed point in p for this formula is: q&>—T, i.e. modulo IL provable equivalence: 00—q. If this were
a fixed point in IL, we would have: IL- O—q <& qB><q. We have already seen that this is not the
case.
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