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ABSTRACT. We consider the equational theory Aw of A-calculus extended
with constants &, mg, 7y and axioms for surjective pairing: ny(nXY) =X,
1 (nXY) =Y, n(ngX)(m1X) = X. The reduction system that one obtains by
reading the equations as reductions (from left to right) is not Church-Rosser.
Despite of this failure, we obtain a syntactic consistency proof of Asw.
Moreover, it is shown that Az is a conservative extension of the pure A-
calculus.

§1. Introduction

1.1. Let Az be the extension of the pure A-calculus, A, with
the constants ®x, ny and 7; and with the following axioms,
which express that ©, with the projections ny and nty, is a sur-
jective pairing:

To(nXY) =X
7, (nXY) =Y
SP: T(wX)(M X) = X

The set of An-terms will be denoted by Am, the set of pure A-
terms by A.

The extension of A-calculus with surjective pairing was first
studied by Mann [1973] and Barendregt [1974]. Barendregt
showed that surjective pairing is not definable within the pure A-
calculus. Mann’s principle concern was the connection between
category theory and proof theory. This connection is also the
subject of the recent monograph, Lambek & Scott [1986]; their
C-monoids do correspond to the type free A-calculus with sur-
jective pairing. We should also mention the work in Curien
[1986] and Hardin [1987] on a system called “Strong Categori-
cal Combinatory Logic”, which is designed for the implementa-
tion of functional programming languages. The system contains
A-calculus with surjective pairing.

A reduction system that corresponds to Az results if one adds
to usual B-reduction the contraction rules:

To: no(nXY) - X,
Ty T (nXY) — 7Y, and
nec: n(meX)(mX) = X.

* This paper is a revision and abridgment of chapter 1 of the author’s disser-
tation. I would like to thank H.P. Barendregt, L.S. van Benthem Jutting,
D.H.J. de Jongh and W. Peremans for stimulating support and for useful
advise during the writing of the dissertation.

We call this system A®C, for “classical” Az, as the rules my, T;
and n¢ seem to have been widely accepted as the natural deriva-
tives of the axioms for surjective pairing. It was shown by Klop
[1980] that the Church-Rosser theorem for A€ does not hold.
See also Barendregt [1981] (chapter 15) and Hardin [1986].

The original Church-Rosser theorem was the first method to
establish the consistency of the type-free A-calculus. Because of
the failure of Church-Rosser for A%, this road seems now to
be blocked for the case of Az. Nevertheless, the consistency of
Az can be shown by the construction of models; see e.g. Scott
[1975] or Barendregt [1981] (exercise 18.5.12).

The question remains then, whether the consistency of A%
cannot also be established by purely syntactic means. This paper
aims at such a syntactic consistency proof for Ax. We will sup-
ply Az with a reduction relation that is somewhat different from
that of Ax®; and show the resulting system to satisfy a weak
form of the Church-Rosser property, which is, however, still
strong enough to yield consistency. Moreover, it will follow that
AT is a conservative extension of A.

1.2. Ax® modified

In this section we define, in an ad hoc manner, the modified
system Agstlf and formulate a claim from which our results can
be shown to follow. An intuitive motivation for the system Aswlf
will be given in $2.

1.2.1. DEFINITION. The reduction relation > of Aslfis the least
compatible, reflexive and transitive relation on A, satisfying:

B: (Ax.M)N 2= (x:=N)M;,

To: (X oX;) 2 Xo;

Tyt T (nXeX,) 2 Xy

1: n(reX)Y 2 X, provided that m;X = Y;
r: nY(®,X) 2 X, provided that tgX =Y .

1 and r stand for “left” and “right”. The conditions on the rules
1 and r are given in terms of = of Ax and are therefore indepen-
dent of 2. As a matter of fact, the equivalence relation generated
by = coincides with the convertibility relation = of Az. So there
is no need to distinguish conversion in A®!f (or A%C) from



conversion in As. Note that the rules I and r both imply the rule
e n(nX)(mX) 2 X .

Now in order to state our main result on A%, we need the
equivalence relation =. For the background of = see section 3.5.

1.2.2. DEFINITION. By = we denote the least compatible equiv-
alence relation on AT, satisfying the clause

X0= Y07X1 = Y] = 7th()X1z RYOYI'

In effect, = disregards replacement of occurrences of sub-
terms under the influence of a & by convertible ones. Since there
are no 7’s there, on A the relation = is just syntactic identity (=).

Now the Church-Rosser property for Az’ will be estab-
lished modulo =, that is, in the form of claim 1.2.3.

1.2.3. CLAIM (CR/=). If AR - M = N, then there exist ~-

equivalent Oy and Q, such that M 2 Qg and N 2 Q. (See the
diagram.)

M = N
> >
9y — ® 0
FIGURE 1

From this central claim our main results, the conservativity
and hence the consistency of Aw, follow at once. For assume
that Az - M = N for M,Ne A. Find Qg and Q, as in the dia-
gram. Then, as >-reduction cannot introduce constants which
were not already present, all terms on the reduction sequences M
2Q0pand N = Q; must be in A, in particular Qy, Q; € A. Hence
Qo= 0, and the reductions M 2 Q, and N = Q, can only use B.
So M and N are convertible in A as well.

Thus we established as a corollary to 1.2.3:

1.2.4. MAIN RESULTS. (i) Aw is a conservative extension of A,
ie. if MNeA,thenA\gk- M =N = A+ M=N.
(ii) Am is consistent.

In Klop & de Vrijer [1989] it is shown that 1.2.3 can be used
to settle yet another issue: uniqueness of normal forms (UN) for
ARC. UN is the property of two normal forms being convertible
only if they are syntactically identical. (In the presence of the
Church-Rosser property a triviality.) In Klop [1980] several
systems that are not Church-Rosser, for example the system A
which is to be discussed below, are proved yet to satisfy UN.
For Aw®, however, UN remained open. It can now be proved
with the help of 1.2.3.

The proof of claim 1.2.3 is complicated; it is not the straight-
forward type of Church-Rosser proof, such as e.g. one which
proceeds by defining and then glueing together elementary dia-

grams. The traditional techniques do play an indirect role
though, in the analysis of some auxiliary reduction systems.

1.3. Plan of the paper

It is the principal aim of this paper, to survey the proof of 1.2.3.
The accent will be on its global structure and on the new tech-
niques used. Because of space limitations, we have to be some-
what sketchy and we will skip over many technical details. A
full proof can be found in chapter 1 of de Vrijer [1987].

§2 is meant as a motivational spring-board; we try to give
some intuitive motivation for the system A#lf and sketch a ten-
tative proof idea. In §3 we combine more heuristics with the
basic definitions. On that basis a further outline of the rather
technical §§4 and S is given in section 3.7.

For an assessment of the results presented here and for some
related open problems consult Klop & de Vrijer [1989].

§2. Introduction to the main proof
2.1. Digression

One of the complications that arises in an attempted proof of
Church-Rosser for Az stems from the fact that the metavariable
X occurs twice in the nc-redex n(nyX)(n,X), thus causing the
redex to be unstable under reduction in one of the X’s; the
reduction rule 7€ is not left linear. In order to isolate this phe-
nomenon, Hindley proposed in 1973 to study the system A3
which results by extending A with a single constant 8 and the
following simplified form of the nc-rule:

S 8XX — X.

This system was proved by Klop to be not Church-Rosser. As a
matter of fact, his counterexample for Church-Rosser in A%C is
a direct translation of that for A3.

All the same, A can very well serve as a toy system for il-
lustrating some of the ideas which lie behind our main proof.
Observe that the contraction rule 8: XX — X may be con-
ceived of as a restricted form of the more liberal rule:

at: X=YF 3XY—>X,

which, in contrast to 8, is stable under reduction (i.e., a des-
cendant of a dl-redex is still a 8l-redex). It is easy to prove that
8!, in combination with B is Church-Rosser. Now, somewhat
surprisingly, — can, without the Church-Rosser property being
spoiled, be extended further by the rule

or: X=Y &Y Y.

For under this further extension of — the convertibility relation
generated remains the same. Hence the Church-Rosser result for
A8l carries over immediately to ASY: a common reduct of ASIr-
convertible terms can be found already by using only B- and &!-
reduction.

There is a general principle at stake here: the Church-Rosser
problem for a more extended reduction relation can be reduced



to a more restricted one, as long as the restricted reduction is
strong enough to generate the original convertibility relation.

2.2. Back to Az

Cannot the same method be applied to Az? Indeed the rules 1
and r of Aslf are extensions of the trouble causing contraction
rule n¢: n(npX)(n,X) 2 X, by which left linearity is restored.
Establishing Church-Rosser for Azlf minus r remains now
problematic, however, owing to a case of overlap. For assume
7, X =Y and consider the following diagram.

T, (n(me YY) 2 X

v
\%

FIGURE 2

Indeed m,(n(neX)Y) = m, X by 1 and =, (n(meX)Y) 2 Y by my;
but now it is in general not at all clear how to find a common
reduct of 7, X and Y.

In the next few sections we describe how we cope with this
problem; as a matter of fact, the type of overlap depicted in Fig.
2, together with our designation to stick to the proof strategy of
§2, determines for a good deal the general shape of our proof.

2.2.1. INTERMEZZO. There are still other cases of overlap—between the
contraction rules I and r on the one hand and ¢ and 73 on the other—that
must be taken into account in the proof.

(i) Under the provision that 71X = Y; the term ny(m(rpX)Y) reduces to
X in two different ways: by applying rule I to n(npX)Y, or by applying
rule 7 to the whole term. In the theory of CRS’s, systems in which there
is only this harmless kind of overlap (two different rules, but with the same
end result) are called weakly non-ambiguous. See further section 4.1.

(ii) Under the provision that Y = Z; the term n(my(nXY))Z reduces to nXZ
by applying rule g to ®g(nXY), and to nXY by applying rule I to the
whole term. Here the situation is more serious. A mechanism for dealing
with it wil be introduced in section 3.4.

2.3. Tentative heuristics

Recall that the rules 1 and r are both liberalized variants of ¢
and that therefore both would do to generate the intended con-
vertibility relation = of Az (with B and the projection rules of
course). The only reason why it would not make sense to re-
place the reduction rule =€ altogether by say I, is the possibility
of clashes with 1 of the kind described in Fig. 2. But can we
not both have the cake and eat it, by as a rule liberalizing n€ to I,
but in all cases that a wj-clash threatens reinterpreting it as r?
This rough proposal leads to a first approximation of our
proof of the Church-Rosser property for > of Amlf. Assume
that M and N are convertible. Then there exists a conversion of
M and N with, apart from B, 7o and 71, only applications of

the surjectivity rule n€. (That is, a conversion in A%C.) Now,
for the purpose of finding a common reduct of M and N, inter-
pret applications of the surjectivity rule to redexes of which the
residuals can be predicted to come under the influence of an oc-
currence of 7] as instances of r, other ones as instances of 1.

Matters are more complicated, though. For, on the basis of
which information to choose between the rules 1 and r? And
why would the requisite choice be uniform in the different resi-
duals of one and the same redex? It is even clear that in general
this is not the case; redexes and their residuals can be dispersed
under reduction, some ending under the influence of a my, some
under a 7;, some remaining “free” forever. To cope with this
possibility of lack of information, we will introduce in an exten-
sion of Am a new device (viz. that of bookkeeping pair), that
will allow us to handle occurrences of redexes and their resid-
uals simultaneously under different assumptions on the order in
which projections will eventually act on them.

§3. The systems with bookkeeping pairs

Before extending the set of terms with bookkeeping pairs we
first introduce labels. They serve as a formal tool for managing
information of the character: which projection constants has an
occurrence of a subterm to ‘expect’ and in which order? Then,
formally defining the terms of the system Asmp* will still take
several steps (sections 3.2/5). For reduction in Azmp* see 3.6.

3.1. Labels

Each subterm occurrence Z (and hence all redexes) in a given
term M will be supplied with a label—denoted as £(Z), see
definition 3.3.4—consisting of a sequence of zeros and ones
and depending only on the context of occurrence of X and on the
label of M.

3.1.1. DEFINITION. (i) The set L of labels consists of all finite
sequences of the symbols 0 and 1 (including the empty se-

quence, denoted by <>), and the infinite sequences that become
eventually constant 0. The symbol oo is used for the infinite
constant sequence 000... .

(ii) On L a partial order is defined by:

o<P & F1.PB=ay
(if o < B we say that P extends o).

The (partial) information which is coded in a label should be
interpreted as follows: if the n’th digit of £(X) is i, then the n’th
element of a sequence of projections, of length at least n, acting
on (any descendant of) X, will always be mj. (NB. In
Clro(no(n1N))] three projections—or a sequence of projections
of length three—are said to act on N, of which the first one is
and the second and third ones are 7g.)

The labels will make it possible to stipulate restrictions on the
rules 1 and r with the effect that problematic situations of the
kind of Fig. 2 are avoided (cf. section 2.3).



3.2. Bookkeeping pairs

Three kinds of contexts can be distinguished according to the
above, namely those admitting of rule 1 (label of the form Oct),
those admitting of rule r (label 1a), and those which do not
(yet) carry enough information to settle the issue. Now in order
to ensure that reduction has not to be obstructed in the latter
case, the systems Asmp and Asp* will be defined, incorporating
as a formal device pairs of the form rMo, M 1-], with the stipula-
tion that M and M, are treated as if their context provided them
respectively with label O and with label 1. Formally: 2(Mg) =0
and 2(M)) = 1. In this manner e.g. a contraction of the n-redex
n(1eX)(m;X) can be simultaneously dealt with as an instance of
I and of r in the respective left and right components of the
“bookkeeping pair” [m(meX)(1;X), T(meX)(7,X) ] And when
in the process of reduction descendants of this pair end up in a
context which is more determined, the bookkeeping pair can be
canceled: only that component is kept, of which the label is con-
sistent with the extended information carried by the new context.

For technical reasons, the concept of bookkeeping pair will
be made a little more general still: an indexed bookkeeping pair
[ MyM 1-|a is admitted in an a-context (label o); it artificially
extends the information already carried by the context with one
digit: £(My) = a0 and L (M) = al.

The resulting system Asmp will roughly be obtained by ex-
tending A with bookkeeping pairs, and incorporating the re-
duction rules B, Ty, Ty, I and r, along with a rule p which in
an o-context allows an occurrence M to be replaced by the
bookkeeping pair rM,M1a. In Axwp* a mechanism for the can-
cellation of superfluous bookkeeping pairs is added.

3.3. Labeled terms

In this section we define labeled terms with bookkeeping pairs
and assign labels to occurrences of subterms.

3.3.1. DEFINITION. (i) Consider the extension of A which is
obtained by adding to its rules of term formation, A-abstraction
and application, the extra rule to construct from M, and M, for
each finite label a (here called the index), the bookkeeping pair
(Mg, M1

(ii) Define the function @, which maps terms with bookkeeping
pairs back to Ax by deleting all second coordinates, by induc-
tion:

M) = M, if M is a variable or a constant
o(Ax.M) = Ax.oM)

O(MN) = o(M)oV)

oMo, M, 1y) = o(My)

Then:

(iii) the bookkeeping pair forming rule is restricted to the
condition that Ax - @Mj) = ¢(M,);

(iv) the set Anq of labeled terms consists of the pairs <o, M>,
where a.e L is a label and M a well-formed term, according
to clause (iii). Notation: a.M.

Note that ¢ is idempotent and that Ar is the set of its fixed
points. ¢ can also be extended to the set of labeled terms Anq by
simply putting ¢(c..M) = @(M). Conversely, the function y: Ax
— Anq that is defined by y(M) = <>.M, is a natural embedding
of Ar into Anq.

We adopt the general policy to omit labels whenever possible
without danger of confusion. That is, we may write M instead
of o.M, both when the label o is already known and when it is
not relevant for the discussion. If C[ ] is a subcontext of M, then
as a subcontext of a.M it would officially be denoted by a.C[ ],
but without danger of being misunderstood we can speak of the
subcontext C[ ] of a.M.

3.3.2. DEFINITION. (i) The convertibility relation of A% is ex-
tended to terms with bookkeeping pairs by adding the rule:

rMO, M 1-|a = M,y (of course provided that [Mo,M 11a is well-
formed according to definition 3.3.1(iii)).

(ii) Conversion in Asmq just neglects the labels, i.e., we define

Amg + o.M =B.N < M =N according to ().

As said in section 3.1, the label of an occurrence of N in .M
will depend on o and on the context C[ ] of N in M—not on the
actual form of N itself. Therefore we first define a function 2

which assigns to each subcontext C[ ] of o.M a label 2(C[ 1)
and then identify 2 (V) with £(C[ ]). The notation C[ Ip is used
if we want to indicate (implicitly) that 2(C[ ]) = B. Such a con-
text is called a B-context. (So a.C[ ]B is a B- and not an o-
context.)

For some occurrences (and contexts) the label will remain
undefined. Undefined labels are indicated by the symbol T.

3.3.3. DEFINITION. The label of the hole in a.C[ ], notation
L(C[ ]), is defined by induction on (the number of symbols in)
C[ 1. In advance we stipulate that subcontexts of contexts with
undefined label also have their label undefined: if 2D[]) =T,
then 2(D[E[ 1]) = T as well. Other cases are taken care of by the
following clauses:

LD =a
LOMX[I) = <>
LOIIED =
L@m(Ng) =ip, fori=0Oorl
LOMR1Q) =7,  ifB=0y
T, ifB=1ly
<>, iff=<>
LOMmOINR) =7  ifB=1ly
T, ifB=0y

<>, iff=<>



2O 1D <>, in other cases with the hole in
argument position

2(d([1,QTgh = Bo
21 Q,111g) = Bl

3.3.4. DEFINITION. If P occurs in o.M in the context C[ ], then
the label of that occurrence is defined by 2(P) = 2(C[ ]).

If £(P) = B, then B.P can be viewed as a labeled subterm of
o.M and by abuse of language we will speak of the occurrence
B.P. Table 1 may be helpful in computing labels of occurrences
in labeled terms.

TABLE 1
N Ly Py 2©Q)
C[Pl T T
Ax.P B <>
1|:iP ﬁ IB
[| op B T
o 3| 1B T B
| < <> <>
PR B oo
RP (not one of
the cases above) B <>
[P.ol B 10 1l

In o.M the occurrence M itself of course has label (M) = q.
Other occurrences are always the direct suboccurrence of an
intermediate occurrence N of M of smaller depth. In the table
the label of P (and Q) can be looked up, given the form and the
label of N. For some occurrences the label remains undefined;
in the table this is denoted by T. (It is assumed that p = T).

3.3.5. CONVENTION. All relations —, on labeled (pre-)terms
that will be met in the sequel respect labels. That is, they satisfy
the implication

oaM =, BN = a=8
So in accordance with our policy to suppress labels as much as
possible, we will further write .M —, N instead of .M —,
«.N.

The usual notion of compatibility has to be adapted to the
presence of labels.

3.3.6. DEFINITION. Let A be a subset of Anq. The relation —,
on A is called compatible (with respect to A), if

oM —,N & a<B & C[M]Be A = CiMlg —)aC[N]B

3.4. The equivalences ~ and =

We are not yet done with the definitions of Axp- and Anp*-
terms. Two more steps are needed, in this and in the following

section. Here equivalence classes of terms will be formed by
disregarding occurrences with an undefined label. We now first
give the motivation for this manceuvre, which forms also the
background of the mysterious role played by the relation = in
section 1.2.

Recall the second case of overlap that was pointed out in
Intermezzo 2.2.1. It is illustrated in the following diagram.

n(ny(nXY))Z _ S, nXZ
!
XY ?
FIGURE 3

It must be assumed here that m;(nXY) = Z, thatis, Y = Z and,
by the intended context restrictions on 1, that we are in a Oa-
context. Now the question is: how to find a common reduct of
the respective one step reducts XY and nXZ under the single
assumption that Y and Z are convertible?

Our solution is drastic: we declare aXY and nXZ to be equiv-
alent (under the given assumptions) and thereby just stop
worrying. The equivalence relation ~ will be defined, which
disregards up to convertibility the component X; of the pair
XX, in contexts with label jo, j#i; that is, disregards just
those subterm occurrences with label T. Then in Amp and
Amp* terms will be considered modulo ~.

Just as in the case of 1 and r, the context restrictions will give
protection against the possibility of interference of a wrong pro-
jection rule. (Matters would not work out all right if we declared
7, (nXY) ~ 7, (nXZ) if Y = Z, for reasons similar to those de-
scribed in section 2.2 with respect to 1 and r.)

3.4.1. DEFINITION. (i) ~ is the compatible equivalence relation
on Anq which is generated by the clauses:

Y=Y = 0.nXY ~ niXY',
Y=Y = larxX ~nrX.

(ii) Arq~=Amng/~.

We will from now on consider the elements of Anq as repre-
sentatives for their respective equivalence classes, and thereby
pretend to work in Anq~. That is, we operate with ~-equivalence
in the same way as it is normally done with a-equivalence. Of
course it then has to be checked that all relevant predicates and
operations on terms respect this ec uivalence relation. In this
short version of the paper we ignore this complication.

Note that ~ is a context dependent refinement of the equiv-
alence relation = on Am defined in 1.2.2. In section 1.2 we
showed that the Church-Rosser result for A%lf modulo ~ was
sufficient for our purpose.



3.5. Canceling

In the informal account given in section 3.2, it is assumed that
an a-bookkeeping pair rMO,M l-lu occurs in an o-context. That
is, it would be natural to consider only those terms that are can-
onical according to the following definition.

3.5.1. DEFINITION. The set ATtp* of canonical terms is defined
as the subset of Anq~ consisting of all terms which meet the re-
quirement that o-bookkeeping pairs occur only in o-contexts:

L=MuMly = 2@ =0

Unfortunately, however, the set Amp* is not closed under the
reduction rules which are intended for the system Amp*. For
example, we have <>.(7»y.yx)|— y,yle Amp* but <[y, y-[xe
Amp*, the latter term being a B-reduct of the former one.

It will turn out that the worst thing that can happen is that an
o-bookkeeping pair shows up in a B-context with § > a. That
is, the result of a reduction step from a canonical term will al-
ways remain within the set Anwp defined below.

3.5.2. DEFINITION. ATp is the set of terms meeting the require-
ment that for every occurrence Z,

=MyM], = a<L(E).

Remind that from the point of view of section 3.2, the infor-
mal meaning of an a-bookkeeping pair rMO,M 11(1 is something
like “M; if the context would have a label of the form aio'”.
Now it does not make much sense to leave the two options i =0
or 1 open in a context with a label that actually already extends
o. The auxiliary reduction relation — on Anp can be used to
cancel such superfluous bookkeeping pairs.

By repeated canceling, terms from Azp can be projected back

to Amp*; this is accomplished by the operation ( )*.

3.5.3. DEFINITION. (i) The one step reduction relation —, called
canceling, is defined as the compatible closure, in Anp, of the
contraction rule:

can: ailMg, M1y > M;, fori=0or 1.

(ii) The canonical form of a term o.M € Azp, notation
(o.M)*, is the (unique) —-normal form of a.M.

(iii) The relation on Anp which transforms M into M* in one
step is denoted by —*; so we have M —* M*,

3.5.4. DEFINITION. For a relation —, on Antp we introduce the
notations —,* and —, 2 for first —, and then some canceling:
@i —,*denotes the restriction to Anp* of —, +—*;

(i) —,"% denotes —,+<».

(iii) —»,* denotes the transitive reflexive closure of —,.

In other words, if —, is a reduction relation that may lead out-
side Antp* (i.e. disturb canonicalness), then an — *-step is:
start with a canonica’ term, perform an —,-step and project the
result back to Awp* using the operation ( )*. An —, ¥2-step does

not necessarily cancel all superfluous bookkeeping pairs in the
reduct, but possibly some.

The following algebraic notions are useful in studying —,*
via —,.

3.5.5. DEFINITION. Let —; be a relation on Anp. Then —, is
called
(1) =*-projectable if M —a N = M* =2 3* N¥;
(i) *-compatible if o.M —-,N & a<p =
» CIM]g* = o* CINI*;

(iii) Y2-projectable if M -, N & M — My =

@ENo)Mp = a No & N > No);
(iv) Y2-compatible if o.M —,N & a<p =

GO)CIMIg =+ & CIN] = Q).

All relations —, € Anp* x Anp* are trivially *-projectable.

As to the connection between the different kinds of compat-
ibility, observe that 2-compatibility is a weaker property than
plain compatibility. Furthermore it is obvious that for *-project-
able relations compatibility implies *-compatibility. The follow-
ing lemma provides an instrument for proving *-projectability
and *-compatibility.

3.5.6. LEMMA. (i) Let —, be /2-projectable. Then both —, and
—», are *-projectable.

(ii) If —, is V2-projectable and V2-compatible, then —, and —»,
are *-compatible.

3.6. The systems Axp and Amp*

Finally we are in the position to define reduction in the systems
Amp and Amp*. Note the context restrictions on the rules 1 and
r; they comply with the intuitive plan initiated in section 2.3.

3.6.1. DEFINITION. (i) The one step reduction relation — is the
compatible closure, in A7p, of the contraction rules:

B: o.Ax.MN — (x:=N)M;

mo: o.o(tX X 1) - Xg;

T1: 0. (TX X, ) = Xy

1 Oa.n(neX)Y — X, provided that ;X =Y ;
r: lo.n¥(m1X) — X, provided that mgX =Y .

(ii) The one step reduction relation —p is the least relation on
Amp that satisfies the “contraction” rule:
p: ClXle = CIX,X]), provided that X is not
already a bookkeeping pair itself and o is finite.
(iii) Then —, the one step reduction relation of Asmp, is defined
as the union:

- =5V

3.6.2. DEFINITION. The system Asmp* is the reduction system
<Amp*, —*>; with the one step reduction relation —* defined
as the composition — + —*:

M —>*N & @PYM—>P & P—*N).



Moreover, —»* denotes the reflexive transitive closure of —*,

We mention two basic technical properties of reduction in
Amp and Amp*. Lemma 3.6.3(i) ensures the stability of
redexes under reduction. With (ii) it is possible to establish
properties of =* via —.

3.6.3. LEMMA. (i) If M - N or M < N and X' is a descendant
in N of an occurrence X in M, then 2(Z) > £(2).
(i) — and —» are *-compatible

The usefulness of Asmp* for our original problem concerning
Az rests on the fact that A% can be seen as a subsystem of
Amp*. First, via the embedding y of section 3.3, the set Ax is
included in Amp*: terms without bookkeeping pairs are always
canonical. Second, conversion in A% can be carried out, via the
detour of —*, in Amp* as well. This in spite of the weakening
of the reduction relation by the context restrictions on the rules.
We prove this now. The equivalence relation generated by —*
is denoted by =*.

3.6.4. THEOREM. Let M,N € An. Then
AT M=N = <>M=*N.

PROOF. Induction on deductions in Aw. The only interesting
deduction step is an application of the surjectivity axiom
n(wpX)(n1X) = X; the other axioms are already included in
Amp* as the rules g, 1 and B, independent of context. So it
suffices to prove <>.C[n(npX)(n1X)]q =* C[X] for any C[ ]
and X (in Ar). Now if o # <>, this can be concluded simply by
an application of 1 (if a=0a') or r (if a=1a'). In case of o =
<>, the =*-equivalence can be established via the introduction of
a bookkeeping pair:

Clr(ngX)(m,X)] —p* Cll m(meX) (1) X), m(mpX)(m,X) le>]
Sr* ClIX,m(meX)(1,X) es]
% ClIX.X\es]
«*p CIX].

The rules used were respectively p, I, r, and again p. O

3.7. Recapitulation and outline

In the above heuristic explanations the system Asmp* was ar-
rived at in an attempt to design a variant of Amlf such that

(i) the modified reduction relation would be a restriction of
that of Aslr;

(ii) the conversion relation of Aslf would be retained;

(iif) we would be able to prove the (modified) Church-Rosser
theorem for the restricted reduction relation.

This in order to be able to use the principle formulated in the last
paragraph of 2.1 for deriving the CR/= theorem for Anlf. Now,
since we had to introduce labels and bookkeeping pairs in
Amp*, matters have become much more complicated than they
were in the case of AS!F and ASL. Yet it will turn out that the

pattern of reasoning that was illustrated in section 2.1 can be
used for Amlf and Amp* as well.

What it all amounts to, is establishing claim 3.7.1, consisting
of three propositions, that match respectively with the require-
ments (i), (ii) and (iii) above. Then CR/= for A&lr (i.e. claim
1.2.3) follows at once (as corollary 3.7.2). The proof outline of
claim 3.7.1 is in fact an outline of the rest of the paper.

3.7.1. CLAM. (i) If M e Am, then Amp* - y(M) —»*N =
AN eAn)(Axlr- M 2N' & N'=oN));

(i) Am-M=N = Anp* y(M) =* y(V);

(iii) Amp* is Church-Rosser.
PROOF OUTLINE. (i) In order to translate reduction sequences of
Amp* into Az, what has to be done roughly, is eliminating
the bookkeeping pairs from the —*-reduction sequence. This
involves a postponement argument in the spirit of stan-
dardization: we use the fact that reduction steps which consist in
the contraction of a redex that occurs within a bookkeeping pair,
can be moved to the end of a reduction sequence. See §5.
(ii) This was already established as theorem 3.6.4.
(iii) The proof of the Church-Rosser theorem for Asp* is still
rather nasty; it will be sketched in §4. 0O

3.7.2. COROLLARY (CR/=).
At M=N = 3K, K")YK'=K"&M2K' &N =2K").

PROOF. Suppose that A% - M = N. Then by 3.7.1(ii) also
Amp* - y(M) =* y(N) and it follows by 3.7.1(iii) that y(M)
and y(N) must have a common —*-reduct K. We can then
apply 3.7.1(i) (twice) to find K',K" € Ax, such that M 2K', N
>K"and K' = K" = ¢(K). O

§4. The Church-Rosser theorem for Amp*

About all well known proofs of the Church-Rosser theorem
have the same global structure. An auxiliary one-step reduction
relation — is defined, which, instead of just contracting a
single redex, consists in an immediate jump to the complete
development with respect to an arbitrary set of redexes. One
then proves that — satisfies the diamond property. From that,
the Church-Rosser property for — can be deduced at once; it
suffices to verify the obvious inclusions - € —jand —; ©
—». The differences between the various proofs lie mainly in
the way — is arrived at—by a Tait-Martin Lof type direct defi-
nition for example, or via the finite developments theorem—
and, correspondingly, in the proof of the diamond property for
1.

It is essential in this kind of set up, that residuals of redexes
are redexes again, of the same type as the ancestor. Under —¥,
however, this is not always the case; it is possible that the con-
stants involved in an existing n-redex become separated by the
bookkeeping pair which is introduced in a —p*-step. (Example:
<>.mo(nXoX;) —p* nornXOX,,nXOXJO.)

We deal with this problem by segregating —p*-reduction from



the other, substantial, reduction rules. Thus we exploit two
complementary concepts of fast one step reduction. In the first
place there is —1*, derived from —z* in a more or less stan-
dard way. In addition, in section 4.2 a notion — of “simpli-
fying” p*-reduction will be defined. It is the restriction of —»p*
obtained by requiring that in the end term no redexes are dis-
turbed by occurrences of bookkeeping pairs. Then the role of
the “one step” reduction relations in the traditional Church-Ros-
ser proofs is played here by the relation —,, defined as the
composition —1* + —;. Accordingly we shall prove the dia-
mond property for —,. The structure of the proof is best de-
scribed by way of the following diagram.

—* s
* * *
_)l _.)l * —-)l —-)1
—»* > -,
—s P s
*
—)1 —s
FIGURE 4

The task of establishing this diagram can be divided into three
parts, corresponding to the different rectangles in the diagram.
The first, left upper rectangle asks for a more or less standard
treatment, using the notion of marked reduction and the finite
developments theorem. Some complications are caused by the
ambiguity of the contraction rules (cf. section 4.1). The treat-
ment of p-reduction that settles the fourth, right downmost rec-
tangle is straightforward. The identical second and third rec-
tangles ask for some more ingenuity (cf. section 4.2).

In section 4.3 Church-Rosser for —* can then be concluded.
For, though we do not have —* < —,, it will turn out that the
convertibility relation =, which is generated by —., coincides
with =*. As —; ¢ —»* does hold all right the “conversion”
version of the Church-Rosser theorem follows.

4.1. Marked — g-reduction

In this section we prove —g*-Church-Rosser by the method
which uses the finite developments theorem to arrive at —;, and
marked reduction in order to encode developments with respect
to sets of redexes (compare Barendregt [1981], Ch.11, §2). Due
to the ambiguity of the rules some adjustments have to be made,
however.

As a matter of fact, by considering terms in Arxp modulo ~-
equivalence, we tailored Asp minus p-reduction as a weakly
regular CRS with (stable) conditions. Church-Rosser for regular
Term Rewriting Systems with conditions of a kind bearing some
resemblance to the ones here encountered is proved in Bergstra
& Klop [1986]. The authors express the belief that their results
will carry over to weakly regular TRS’s as well. Quite in
general, the opinion seems to prevail that the Church-Rosser
theorem and related results for regular CRS’s generalize easily

to the weakly regular case. Accordingly, it may be worthwhile
to call attention to the complications described below in defining
a coherent notion of residual.

4.1.1. Recall the cases of overlap between the contraction rules
7o and 1 (and m; and r) that were signalized in Intermezzo
2.2.1. Observe that the 7p’s in the respective reducts X in
2.2.1(i) descend from a different ancestor in the original term.
The same is true of the ©’s in ©XY and nXZ in 2.2.1(ii). This
awkward subtlety gives rise to a serious problem in tracing a
possible third redex in which one of these constants is involved.

We sketch the situation in the following diagram. (Only g
and 1 are covered, but the case of m; and r is completely
analogous.)

Clm (i3 (XD
23) 1 a ZL»‘O
. Clrg X))
Clrd(n*X1))

(34)_)’[0

Clx]
FIGURE 5

It must be assumed of course that Y = Z.

‘We have attached numerals to the constants involved in the
reductions and for this occasion indicate a redex by the combi-
nation of numerals attached to the constants that constitute the
redex in question. (That is, e.g. the redex mp3(n4XY) is indi-
cated as 34.) So in the original term of the diagram we can dis-
tinguish redexes 12, 23 and 34.

Now it is clear that in the result C[mp3(n4XY)] of reduction
step (12) the redex 34 is residual of the redex 34 in the original
term, whereas in the result C[ngl(n4XY)] of (23) no such res-
idual exists. In the usual notation: 34/(12) = 34 and 34/(23) =
@. Hence it appears that the reduction sequences (23) and (12) +
(34) are both complete developments with respect to the set of
redexes {12,23, 34}. But the end terms C[ng(nXY)] and C[X]
are not the same. In order to obtain yet an unique complete de-
velopment we declare mol(r4XY) to be a virtual residual of the
redexes 12 and 34 under (23).

4.1.2. TERMINOLOGY. Call the occurrences of constants that are
required to constitute a redex the critical constants of that redex.
(E.g. in mop(nwym;) the critical constants are 7y and 7; in general
the critical constants are the ones tha. are displayed in (left hand
sides of) the contraction rules, cf. 3.6.1.) Notice that the re-
dexes X and A in M overlap if they share one critical constant.
Now, given a set R of redex occurrences in M, we define an R-
chain to be a maximal set {Zy,...,Z,} < R, n>0, such that for
each i <n, Z; and Z;; overlap. The R-chains form a partition of
R. Since B-redexes have no overlap, they constitute an R-chain
each on their own. An inner redex of R is one which overlaps



with two other redexes in R; these redexes will then belong to
the same R-chain. As explicated in 4.1.1, contraction of an in-
ner redex of R leaves only a virtual residual of its immediate
neighbour redexes.

We now give a formalization of all this by way of appropriate
concepts of marked term and marked reduction.

4.1.3. DEFINITION. The pair <M, %> is represented by the
marked term which is obtained by attaching primes ('), apos-
trophes (') and inverse apostrophes (‘) to A’s and critical con-
stants occurring in M in the following way.

(i) theinitial A of a redex (Ax.No)N; in R is primed (result:
(A'x.Ng)Ny),

(ii) the leftmost critical constant of each R-chain gets * (result:
LTE ),

(iii) the rightmost critical constant of each R-chain gets an ’
(result: ...mgy’...),

(iv) all other critical constants of Tt-redexes in R are primed
C..®Gy'.).

The marked terms that are thus obtained as representing pairs

<M, R>, constitute the set A'np. If M € A'mp, then IM| is the

term that results by deleting the marks from M. The restriction

of A'Tp to M’s with canonical IM!’s is denoted by A'np*.

COMMENT. An R-chain in M can be recognized in the repre-
senting marked variant of M in A'np because all its critical con-
stants are marked. Such a chain of marked my's is called a -
chain. The apostrophes play the role of begin (‘) and end (*)

markers for nt-chains. This feature is necessary for marking the

kind of difference that exists e.g. between the marked terms
o' (7' (o' (R’ XY))Z) and mo“ (1’ (no* (n°XY))Z), the first one
representing one R-chain of length 3, the second two R-chains,
each of length 1.

4.1.4. DEFINITION. —y is the one step reduction relation on

A'mp which is derived from —y by restricting:

- B-contraction to redexes of which the initial A is primed:
(AM'x.Ng)N1— ¢ (x:=N1)Ny, and

- the rules 7y, 71, 1 and r to redexes of which the critical
constants are marked, in that order, by either  and ', ' and ',
"and ’, or ‘ and ’.

If an outermost critical constant of a n-chain of length at least

four is involved in the contraction, its mark (‘ or ’) is passed on

to the leftmost (or rightmost) critical constant in the residual -

chain. If the origina! nt-chain contained only one or two redexes

(two or three critical constans respectively), no residuals remain.

Hence in the case of three critical constants, the mark of the

single critical constant that is not involved in the contraction (it

must be either ‘ or ’) is canceled in the reduct.

EXAMPLES. 7p‘ (7' (o' (n°XY))Y) — ¢ Tp(n°XY) (in three
ways);

o (1’ (1o (W’ XY))Y) - ¢ mp*(’XY) (in two ways);
o' (' (Mo’ X)(11X)) — ¢ WX (in two ways).

4.1.5. THEOREM (FD!). For each M € A'mp:
(i)  the number of steps in an —y-sequence is finite;
(ii) there exists a unique —y-normal form N such that

M —»p N;
(ili) The same results hold for —g* in A'rnp*.
PROOF. It is not difficult to adapt the standard proofs. The sta-
bility of the context sensitive reduction rules I and r, needed for
the construction of elementary diagrams in (ii), is guaranteed by
lemma 3.6.3(i). For (iii) one can make use of the fact that —p'
etc. are -compatible. O

4.1.6. DEFINITION. (i) For M € A'mp, the height h(M) is the
number of reduction steps in a —p-reduction sequence from M
of maximal length.

(ii) Denote the unique — p'-normal form of M € A'np by
CD(M). Then the one step reduction relation —; on Anp is
defined by

M >N o @M'e A'np)(M''=M & CD(M') = N).

(iii) The height function h*, assigns to each M € A'np* the
length of the longest —p*-sequence from M and the function
CD* assigns to M € A'mp* its unique —x*-normal form.

Of course one has h*(M) < h(M) and CD*(M) = CD(M)*.
4.1.7. LEMMA. (i) — is self commuting.
(i) —1* is self commuting.
PROOF. (i) Standard, using 4.1.5.

(ii) This follows easily from (i), once it is established that — is
*-projectable. O

4.2. Adding p-reduction

Even in canonical terms it is still possible that bookkeeping pairs
stand in the way and obstruct reduction. An example of this is
the term <>.1|:J XX 1, Y]O, with the blocked potential redex
To(rXoX1).

One consequence is that A'np is not closed under the rule of
bookkeeping pair introduction p (cf. 3.6.1(ii)). A new book-
keeping pair might break a nt-chain and thereby disturb a marked
redex. An example would be the p-step

.1y (W XY) —p mo [ ©°XY, m°XY o

Therefore we work on A'mp with a restricted version —p of
—p. It must be kept in mind then, that not just any p-reduction
sequence can be lifted to a p'-sequence.

4.2.1. DEFINITION. For M € A'np we define:
M —-5pyN & M -y N & Ne A'np.
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Now it turns out that an obstructing bookkeeping pair can al-
ways be removed by performing an appropriate —p*-reduction
step. The pertinent cases are covered in the following lemma.

4.2.2. LEMMA. The following are derived rules in Asgp*.

ClnlXo.X; laYloo —p* ClnXoY,nX ¥ lool,

Cln¥ Xo Xy lalia —p* CURYXonYX, i,

Clrn{ Xo.X, lialo —p* Cll mXg,mX lo.
PROOF. Each of the rules follows by just doubling the whole
occurrence displayed and subsequently canceling the descen-
dants of the original bookkeeping pair. O

The effect of these reduction steps is that the bookkeeping
pair is as it were opened to that part of the expression which acts
upon it as a function. That way a redex may be constituted, of
which the ingredients were still separated before the simplifica-
tion was performed. (An example of this would be a simplifying
p*-step

<>.1g XX, Y o —p* [mo(mXoX 1), oY les.)

Normal forms under the derived rules of 4.2.2 are called p-
simple. In p-simple terms no n-redexes are blocked anymore. It
is easy to verify that for each M € Anp* a p-simple form can be
reached by performing a finite number of p*-steps of the above
kind. As a matter of fact this normal form is unique. This does
not interest us here, however. Rather, for the purpose of estab-
lishing Church-Rosser for —*, the following auxiliary one step
reduction relation of non-unique p-simplification will turn out to
be very useful.

4.2.3. DEFINITION. The one step reduction relation — on Amwp*
is defined by:

M —>sN & M —»p*N & N is p-simple.

4.2.4. LEMMA. (i) For all M € Anp* there exists a term N,
such that M —¢N. This N is in general not unique.
() —»p*+-os5=—s

Now the missing rectangles of Fig. 4 are filled in by the fol-
lowing lemmas. The proofs of 4.2.5 are very technical.

4.2.5. LEMMA. (i) —»¢™ and —»p™* commute.
(ii) On A'np* we have —s < —»p*.

4.2.6. LEMMA. (i) —p* is Church-Rosser.

() M—>1*N & M ->sP = FQ)N —p*Q & P —1*Q).
(i) M —»p*N & M —»p*P = EO)N =sQ & P —50).

PROOF. (i) Rather straightforward.

(ii) M —* N means that an M, can be chosen such that 1Myl =
M and Mg — g* N. Lift M —; P to My — Py (with [Pyl = P).
By 4.2.5(ii) then My— p*P, holds too. So 4.2.5(i) can be ap-
plied to find a Q such that the diagram in Fig.6(a) holds. Since
N has no marks (€ Anp*), neither has Q. So Po—> p* Q isa
complete development and hence P —;* Q.

(iii) The proof is depicted in Fig. 6(b). Constructing A is —>p*-
Church-Rosser. Q is found from P by the existence of p-simple
forms. Then B follows (twice) because dpF+os=—5 0O

M, fi1
="
i
@

4.3. Church-Rosser

By now we have gathered all the ingredients of Fig. 4. We pro-
ceed as it was already indicated in the introduction to §4.

4.3.1. DEFINITION. (i) The one step reduction relation —, on
Amp* is defined by

=%+ o

(ii) =, is the equivalence relation which is generated by —..

4.32. LEMMA. (i) 2+ C —»*.

(ii) =4 and =* coincide.

PROOF. (i) is trivial, since —1* € —»7* and -5 —»p*. One
half of (ii), namely =, ¢ =%, is immediate by (i). Since =* is
generated by —p* and —y*, it suffices for the other half to es-
tablish (a) and (b) below.

(a) —p* < =, For suppose M —p* N. By Lemma 4.2.4(i)
there exists an N' such that N - N'. Since —p* + == -,
we have also M —3N'. Moreover —5 € — 4, because —* is
reflexive. Then M =, N follows (via N').

b) op*¥c=,. IfM —g*N, thenalsoM —>1* N,and M =,
N can be established, with the same reasoning as in (a), via an
N' such that N ->gN'. O

4.3.3. THEOREM. The system Awmp* (i.e.(Amp*, —5%)) is
Church-Rosser.

PROOF. By the lemmas 4.1.7 and 4.2.6, dealing with the res-
pective rectangles of Fig. 4, it follows that —, is self commu-
ting and hence certainly Church-Rosser. So if M =, N, then M
and N have a common —,-reduct. But, since =* is the same as
=, (by 4.3.2(ii)) and each —,-sequence can be transformed into
a —*-sequence (by 4.3.2(i)), we have then also Fig. 7. O

FIGURE 7

With theorem 4.3.3 we have established claim 3.7.1(iii).
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§5. Translating reductions from Azp* to Awir

The part of the puzzle that is still missing, claim 3.7.1(i), will be
provided in this concluding §. In order to translate reduction se-
quences of Asp* into A®lr, we first bring them in a special
form, reached by postponement of the reduction steps which
consist in the contraction of a redex occurring within a book-
keeping pair. The resulting notion of efi-reduction sequence
(definition 5.1.3) has some resemblance with the concept of
semi standardization, sometimes used in proofs of the standard-
ization theorem in combinatory logic and pure A-calculus (cf.
Curry, Hindley & Seldin [1972] and Mitschke [1979]). This
method, originating with Rosser [1935], inspired our proceed-
ing in this §.

5.1. Internal and external reduction

5.1.1. DEFINITION. An occurrence is called internal, if it lies
completely inside a bookkeeping pair, otherwise external.

5.1.2. DEFINITION. A reduction step (£): M — N is called
internal if the contracted redex X is internal; notation M —iN.
Other reduction steps are called external (—¢). Formally the
relation —i on Amp can be defined as the compatible closure of
the reduction rule:

i:  [Mo,M]y—iN,

and —¢ by €= 5\,

if [Mo,Mylo, > N,

Derived notations such as =%, —»z¢*, —pi*, etc. are used
in accordance with established usage. Moreover we use the
notation —(®) for —\—ye. (Note that —(®) can be conceived of
either as —p U —3pior as =iu —2.)

A marked term M € A'np is called internal if all its marked
redexes are internal. Obviously, if M is internal and M —g*N,
then M —g* N and also N is internal. We say that M —iN, if
N is the complete development of M with respect to a set of
internal redexes.

EXAMPLES. -(Ax.xy) mo(mxy), x| =€ [ mo(rxy), x ly =il x, xly;
-Oucxy) mo(mxy), x 1 =i* exy) x, x| —e* xy;

-Quray)l mo(mxy) x| 5% mo(mxy)y — xy;

-0.(Ax.x)x —p® Axx) x,x1 =7 x.

Observe that by changing the order of reduction, an internal
step may become an external one (second and third example).

5.1.3. DEFINITION. A reduction sequence in Asp* is called e/i,
if it consists of a number of —r®*-reduction steps, followed by
a number of —(e)*-steps (i.e. —>p=*- and —i*-steps).

The result of section 5.1 will be that any —*-reduction se-
quence can be transformed into one that is e/i. It will become
clear in 5.2 that e/i sequences in Amp* can be easily translated
into Aglr.

5.1.4. LEMMA. M —1* N = @L)(M —»z* L —,i* N).

PROOF. Let Mye A'np* such that IMgl = M and CD*(Mp) = N.
We use induction on h*(My). If My is internal, then M —{* N
and L =M will do. Otherwise suppose Mo —z¢* M;. By the
induction hypothesis there exists an L such that IMl —»pe* L
—i* N. Since of course M — z* IM | holds too, this L
suffices. O

5.1.5. LEMMA.
() M—>1%K 5% N = @L)M —»p* L —>1i* N)
() M —>1*K »* N = @AL)M —»ze* L —1i* N)

PROOF. (i) The external redex in K that is contracted to obtain
N, is the residual of a unique external redex occurrence in M.
Therefore M —1* N. Apply lemma 5.1.4.

(ii) Repeat (i). O

5.1.6. THEOREM. If M —»* N, then there exists an eli-
reduction sequence from M to N.

PROOF. Induction on the number of —*-steps in the reduction
from M to N. If M = N there is not much to prove. So assume
an Mo which satisfies the drawn part of the following diagram.

M @) % M, ¥ N
A
ek B e %k
P n (—e) %
s (-e) *

Then the triangle A can be found by the induction hypothesis. If
(X) is an —x®*-step, that suffices. Otherwise B can be con-
structed using either lemma 5.1.5 (if it is a —pi*-step) or a
similar lemma for —p*. O

5.2. The translation

The content of the next lemma is that a so called “main” p*-re-
duction, that is, a p*-step that doubles the whole term, can al-
ways be moved to the front of a reduction sequence.

5.2.1. LEMMA . Let.M —»*[Ny,N; . Then either

G) M=[My, M1y and aiM; —»*N,, or

(i) o.M —p* [Mo,M1 o with M = 0i.M* and oi. M* —»* N,
PROOF. If M is a bookkeeping pair, case (i) trivially applies. If
not, then of course a.M —p* [M*,M*y by a main p*-step;
and 0i.M* = * (No,N,1g)* =N, follows from o.M —»*
[Ny, N lo by the *-compatibility of —»* and because ai.N; is
canonical, as it occurs in an ai-context within the canonical
[NoNilo. D
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5.2.2. LEMMA. Suppose M € AT and Amp* - o.M —»* N.
Then A = M > K for some K € Ax such that oK ~ N.

PROOF. Taking terms literally again (not modulo ~), we have
a.M —»g* K for some K such that a.K ~ N. Since M € Ar and
—y does not create bookkeeping pairs, there will be nothing to
cancel for —* during this reduction, and we have o.M —» 5z K
and K € Am. It then suffices to remind that each of the rules for
—r (cf. 3.6.1(i)) is covered by one for = (cf. 1.2.1). In par-
ticular both 1 and r are included in As!f without context restric-
tions. O

5.2.3. THEOREM. Suppose M € Ax and Amp* - o.M —»* N.
Then Awl* = M =K for some K € A% such that K ~ ¢(N).

PROOF. The proof is by induction on N. By theorem 5.1.6 there
is an L such that .M —»8* L and a.L —»(-©)* N. Conse-
quently, lemma 5.2.2 can be used to supply us with a Koe Ax
such that .Kg~ L and A% - M > K. Now, if N is already
an element of Ar itself, then the (-e)-part of the e/i sequence is
empty and we have @(N) =N = L. So in this case K can be
taken just Ko, as on An one has of course ~ ¢ =. Otherwise N
contains one or more bookkeeping pairs and can thus be
assumed to be written as

XL Y oy TX2 Yo lage o [ X, Yol s

with each maximal occurrence of a bookkeeping pair displayed
as one of the [X;, Yﬂai’s. Since o.Kg~L, the second part of
the e/i-sequence from M to N may be rendered as well as
o.Ko —»(e* N, Since this reduction proceeds completely with-
out external reduction steps, Ko must have a shape similar to
that of N, that is

KOE...ZI...ZZ ...... Zn...,
coinciding with N on the dots, and such that for each i < n:
2(Z) = o; and 0.Z; —»(* [ X, ¥ ],

A subterm Z; of Koe AT being bookkeeping pairless, lemma
5.2.1 can be applied, yielding for each i with 1 <i < n a reduc-
tion 0;0.Z; —»* X;. On these we can use the induction hypo-
thesis, and thereby obtain reductions Z; > X;' in Ax!, with X;'
= 0(Xj).

It remains to combine the reductions we established so far.
By the compatibility of > it follows that

A Ko 2. .X,..X5...... Xn'....
Define K= ... X;'.. X7 ...... X,'.... Then K = ¢(N) is an im-
mediate consequence of the above by the the definition of @ (cf.
3.3.1(ii)) and the compatibility of =. Moreover, M 2 K via K,
So K satisfies the requirements of the theorem. O

With theorem 5.2.2 we have established claim 3.7.1(@1) and, at
last, the Church-Rosser theorem (modulo =) for = follows as
corollary 3.7.2. One then concludes the conservativity and con-
sistency of Az (corollary 1.2.4) as demonstrated in section 1.2.
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