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1. Introduction. In Guaspari-Solovay (1979) the arithmetical
completeness theorem of Solovay (1976) for the modal system L
(PRL in Smoryhski 1985) was extended to arithmetical complete-
ness for a system R which includes witness comparison symbols <
and X and which thereby to a certain extent takes Rosser sentences
into account. The system R is obtained by first adding Z-com-
pleteness as well as ordering axioms for < and X to L to obtain a
system R™, and subsequently adjoining the rule OE (i.e. OA/A) to
R™.

Syntactically as well as semantically the system R compares
unfavorably to the system R™. The rule OOE makes that the system
lacks the subformula property (possibly the best way to think about
it is that g A iff Fg- O"A for some n, cf. de Jongh 1887), and
modal completeness of R can only be proved with respect to a
rather awkward subset of the natural class of Kripke-models for
R™: Fr A iff A is valid on all A-sound Kripke-models for R~ (an A-
sound Kripke-model is one the root of which forces OOB—B for each
subformula OB of A).

In the first part of this paper we will show that, if one extends
arithmetical interpretations by allowing free variables, it is R~
that gets to be the system that is arithmetically complete. It is a
well-known fact that for such interpretations the system R is not
sound; the rule OE is not valid if the restriction to closed formulae
is dropped. A counterexample is, for example, the fact that
FpaOPrf(x,"1™), whereas not FpaPrf(x,"L") (we write OA
for 3y Prf(y,"A™)).

At first sight one might think it impossible for R~ to be
arithmetically complete, since FpaOT<0Ol and FgOT<0OL, but
X¥gr-OT<0OL (Guaspari-Solovay 1879). But that difficulty can be
overcome by taking a formulation of R~ without such closed for-
mulae, or alternatively, as will be our choice, by interpreting 1 in
PA as 1=0Ax=xand T as 0=0Ax=x. To get the general idea, note,
for example that, where ¥g-0O(pvp)<0Ol, indeed, for each
formula A(x) of PA which actually contains x as a free variable,
¥paO(A(x)V TA(x))<OL (we use the convention of automatically
interpreting variables like x as dotted: X, unless the opposite is



stated explicitly). The latter is the case, since PA can recognize
that proofs of A(n)v T1A(n) do get arbitrary large simply by the size
of n, so that O(A(n)v 1A(n))< 0Ol for each n would in PA imply
that 0.1, which is not provable in PA. In Section 2 this arith-
metical completeness result will be proved. The consequent non-
validity of some rules for PA will be discussed in Section 3. In
Section 4 it is shown that some principles concerning witness
comparisons and free variables cannot be decided, even when one
restricts oneself to "usual” proof predicates.

2. Arithmetical completeness of R .

2.1 Definition. An open arithmetical interpretation of the lan-
guage of R is a mapping * from R-sentences into PA-formulae such
that:

T*=0=0Ax=x, L*=1=0Ax=x, * commutes with A, <, <,

and (OA)*=0TA*, where O'B=3v("B € f(v)) is such that
FpaO"B e OB for each B.

2.2 Theorem. Fgr-A iff, for each open interpretation *, Fpa A¥.
Proof. = : Standard.

&: We will mainly follow the Guaspari-3olovay argument, but
there are some differences.

Let ¥gr-A and let M=<{1,2,...,n},R, IF > be a Kripke-model of R~
for a finite adequate set I' containing A, such that MEA. Add O as a
new root to M, but in this case without defining any forcing on it.
(Trying to define forcing with respect to the node 0 would lead to
insuperable problems with Z-persistency; indeed, we will not need
forcing on it, but we shall need the node in the definition of the
Solovay-function h.)

Define Solovay's function h as usual (writing Q=i for
JuVv>u.h(v)=i):

h(0)=0

i if h(n)Ri and Prf(n, "8=i")
h(n+1) = {h(n) else



Also define, simultaneously, f and an interpretation * (using the
recursion theorem):
() py*= W(=i) Aj=jAx=x,
x ilkp x
(2) T"=0=0AXx=Xx, L =1=0AX=X,
(3) * commutes with v, A, 7, -, <, X,
(4) (OB)*=0O"B*,

where f is defined in stages as explained below. The idea is that as
long as the function h equals O everything proceeds normally. During
that period certain formulae which are translations of O-formulae
in the adequate set I', but with numerals substituted for x, are be-
ing proved. If h moves, then at that point there is a largest n for
which such a formula with the numeral n has been proved. After-
wards we continue treating the relevant formulae with numerals
m < n according to the occurrence of their usual proofs, but we
start handling the formulae with numerals m>n more or less as in
Guaspari-Solovay. The idea is to show

K¥paVx(x>t—-A*(x)) with t describing n, and hence ¥pa VXA*(x).
Let us set p=uz.h(z)=0 and n equal to the maximal number such
that for some subformula OB of A and some p'<p, Prf(p', "B*(n)™).

Stase m for m<p: If, for no C, Prf(m, "C™), let f(m)=¢g; if
Prf(m,"C"), et f(m)={C}.

OTAGE p+2m:

Let kom be the smallest number for which f has not been defined (so,
ko=p). If Prf(p+m,"C™) for no C let kom+1=kom and go to the next
stage. Else, if Prf(p+m,"C™), let f(kom) be {C}, et kom+1=kom +1 and
go to the next stage, unless the following happens: C=B*(n') for
some subformula OB of A and some n'>n. For B with respect to
such a "large" n' do nothing and go to the next stage.

STAGE p+2m+1: Write k for n+m. Define Y={B|h(m)I-OB}. Do nothing,
unless Y= @. If the latter is the case, let Eo, ..., Eq be the equivalence
classes in Y with respect to the relation =p(m) (i.e.
h(im)FOBXOCAOCKOB) of O-subformulae of A forced at h(m),
enumerated according to their ordering by <. (Comment: that the
O-formulae forced already "before” h(m) are in Y contrary to the



way Guaspari and Solovay do it, makes no difference, since, by 2-
persistency, the right order is preserved.) If E;={0B4, ..., OB}, then
writing E;*(m) for

{B1*(Sn),...,B1*(k),B2*(Sn), ..., B2*(k), ...,B*(Sn), ..., Br*(k)},

we define

f(kom)=Eo*(m), ..., f(kam*q)=E¢*(m)

and set

Kom+2=Kom+1+Q+2.

It is immediately clear that
(a) I"pAJl=O—9VV(D(V)HDf(V)),
(b) Fpal=0AYy <t—(O(B*(y))DO"(B*(y))) (with t a term
describing n as above).
To obtain the theorem it is as in Guaspari-Solovay sufficient to
prove the following claims:

CramM 1: For each subformula B of A and i=0:
Fpal=iAilFB->Yu>t.B*(u)
Fpal=iAiKB—-Yu>t.71B*(u)

CrLaiM 2: For each subformula OB of A and i=0:
Fpal=iAilFOB -»Vu>t.0OB*(u)
Fpal=iAiKOB -»Vu>t.10OB*(u)

CLaiM 3: Fpa VV(O(V) O (v))

CLamm 4: PA+ =1 is consistent.

The last claim can be proven as in Solovay (1976). We will prove
claims 1-3.

Proof of CLaiM 1: By induction on the complexity of B. Reason in
PA+Q=1i. Only the O-, <- and <X-case are of interest. We treat O
and % (X is similar to X):

If il-FOC, then according to the definition of the odd stages f out-
puts C*(Sn),C*(SSn),C*(35Sn),.... If i¥OC, then C*(j) for j>n is
not output by f (not at the even stages by the manner of the con-
struction and not at the odd ones, because, for no m, h(m)I-OC,
since h{m)=1i from a certain point onwards).

If iFOC<0OD, then, for j>n, C*(j) is output at some odd stage,
and, if D*(j) is output by f, then this occurs at an odd stage as well



and the ordering agrees with the forcing in i. If i#¥0OC<0D, then, if
i¥0OC, then C*(j) is never output by f, and if ilFOC, then also
il-F0OD and C*(j) is output after D*(j).

Proof of CLaim 2: If il-0OB, then Vj(iRj= jIFB), so, by claim 1,
Vij(iRj=Fpal=j—>Vu>t.B*(u)). Hence

Fpa %Jl=j—9Vu>t.B*(u)), FpaO })Fgﬂ=j—>|:wu>t.5*(u) and
FpalO })gjl=j-eVu>t.l:lB*(u). By Solovay (1976),
Fpal=i-0 })Fgﬂ=j/\ {)F%ﬂl:l)!#j, S0
Fpal=i->Vu>t.0OB*(u).

If i¥0OB, there is a j with iRj such that jl¥B. Hence:
PAFl=j—>VYu>t. T1B*(u),

PAFYu>t(B*(u)- =j),

PAFYu>t(OB*(u)->0O8s=j); but we have PAFQ=i— 100 j;
hence PAFA=i-Yu>t 0B*(u).

Proof of CLaimm 3: Argue in PA: if v does not have the form B*(q) for
some subformula OB of A, the claim is obvious. If =0 the claim
follows from (a). If 40 and v=B*(q) for some subformula OB of A
with g<t, the claim follows from (b). So, assume 2=i=0, v=B%*(q)
for some subformula OB of A, q>t. We have:

ilFOB & OB*(q) by claim 2, and OB « O"B*(q) follows from
claim 1 applied to OIB. X

3. The non-validity of some rules.

An application of the arithmetic completeness theorem proved in
Section 2 is the following Corollary.

3.1 Corollary. For each n> 0 there is a formula A, such that
FpaO" " Ap, but ¥paO"A,.

Proof. As shown in de Jongh (1987), Fgr-O™Y(OT<0O"*" 1), but
¥r-OM(OT<O""1). By arithmetic completeness this implies that,
for some standard proof predicate O%,

FpaO*™ 1 (O*(TAx=x)<O*"""(LAx=x)), but



¥paO*"(O*(TAx=x)<O*"(LAx=x)). Since O* is standard, it
immediately follows that FpaO"* 1 (O*(TAx=x)<O*"* (L AxXx=x))
and ¥paO"(O*(TAx=x)<O*"* 1 (LAXx=x)). <

Albert Visser suggested in reaction to this proof that a direct
example is supplied by: (1) Fpa O™ ("Prf(x,"O"1L7) ), but (2)
¥paO"("Prf(x,"O"1L7) 7). To see that this does indeed check
out, reason in PA:

(1) By cases: if 7WPrf(x,"O"L™), then O"*' (" Prf(x,"O"17) ") by
Ao-completeness. If Prf(x, "O"17), then O"*'1, so again
am ' ("Prf(x,"O" L) 7).

(2) Assume to the contrary that FpaO"("Prf(x, "O"1L7) 7). As-
sume moreover, O"*'1. Then, for some y, Prf(y,"0O0"17), hence
O"("Prf(y, "O"1L™)") which together with the initial assumption
immediately gives O"1. We have proved O"*'L - 0O"1, which by
Lob's theorem is an impossibility.

One might hope to generalize the non-validity of the rule
O"*'A/0O"A to more examples. What comes to mind are those for-
mulae OA(p)<0OB(p), with A(p) and B(p) L-formulae which have
only provable fixed points in R (see de Jongh-Montagna 1988), since
O™ 'p<0O"p is a particular example of such a formula. This idea
indeed does turn out to lead to a generalization.

3.2. Theorem. If A(p) and B(p) are L-formulae with only p free and
OA(p)<0OB(p) has only provable fixed points in R, then the rule
OA(p)/0OB(p) is not valid under arithmetic interpretations.

Proof. Suppose OA(p)<OB(p) has only provable fixed points in R.
Then, by theorem 3.4 of de Jongh-Montagna (1988), Fg- A(T),
Fr-OA(L)eOM1, Fr-OB(1l)e0O"1, m>n. It is sufficient to
show that Fg-OA(OT<O"'1), ¥g-OB(OT<O" ' 1). On any L-
model with a root of depth=n+1 (end points having depth 1),
OT<0O""' 1 may be made false everywhere. This means then that
OB(OT<0O"" 1) is everywhere on that model equivalent to OB(L)
and hence to O"1 and hence false in the root. So,



¥r-0B(OT<O"'1) has been shown. Next, take an arbitrary Kripke-
model M for R™. Now, either the depth of the root > n+2, in which
case OT<O"*'1 is verified everywhere in the model, so
OA(OT<O"*'1) is equivalent to OA(T) everywhere in the model,
and hence, since Fg- A(T), is validated by the model; or else the
root has depth <n+1 in which case OT<O"'1 is, either verified
everywhere in the model and the same reasoning obtains again, or
falsified everywhere in the model in which case OA(OT<O"'1) is
everywhere in the model equivalent to OA(L) and hence to O™l and
therefore, since m>n+1, is validated by the model. X

Note that Theorem 3.2 is not a full generalization of Corollary 3.1,
since the case n=0, OJA/A, is not subsumed under it. A way out may
be here to consider formulae like Op<p having only provable fixed
points (consider a fixed point Cxe 3y < x(Prf(y, "3xCx™) and look at
3IxCx), but we have not pursued the subject.

4. Usual proof predicates, Rosser formulae.

A question that comes to mind in connection with this is, whether,
by restricting oneself to more "usual” proof predicates, there are
not many more principles than embodied in R~ that can be decided.
This may well be the case for some principles, but we will show
now that it is not so for one of the obvious candidate principles:
O(TAx=x)<O(LAXx=x). Of course, the whole concept of "usual"
proof predicate as introduced by Guaspari-Solovay is somewhat
vague. We will accept any proof predicate as wsual if it is based on
a proof system which might be not unreasonably used in practice
(logical, not mathematical) to generate the theorems of PA.

4.1 Proposition. (a) There are usual proof predicates such that
¥paO(TAx=x)<O(LAXx=x).

(b) There are usual proof predicates such that
FpaO(TAx=x)<O(LAXx=X).



There are some requirements on the coding too. We will, for ex-
ample, have to take a coding of formulae as sequences of symbols
and proofs as sequences (or trees) of formulae and basing the se-
quence coding on a monotonic pairing function j, i.e.

a<j(a,b),b<jla,b),a<a'Ab<b'=j(a,b) < j(a',b").

The point is that we have to be sure that, if n is considerably larger
than the godel number "TI" of the given proof T of 1, then all proofs
of TAn=n will have to have a proof with a higher gédel number
than that of <T,LAn=n>. This will certainly be the case if
<T,LAn=n> is coded by j(m, j("TT7,j("A™,j("L7,"n=n")))), where
m codes the application of the ex falso rule, and if the following
conditions are fulfilled: (1) m is smaller than the gédel numbers of
the other rules, (2) L has a smaller gédel number than T.

It is obvious that this whole proof is a purely combinatorial
matter and can easily be executed in PA.

(b) with the above in mind the reader will see that, if we take an
axiomatization of PA with, say, all true Ag-sentences included,
which makes TAn=n an axiom for each n, give T a smaller godel
number than 1, and have the same coding machinery as above, than
PA will be able to prove that TAn=n has shorter proofs than any
lAn=n might have. X

A similar reasoning as in the above proof may be put to use in the
consideration of the following problem. Consider a formula Rx to be
a Rosser formula, if

Fpa Bx & OTRx< ORX

The question is, whether there exist usual proof predicates for
which PA cannot prove all Rosser formulae to be equivalent. We
will answer this question in the affirmative. One may consider this
to be a very weak positive answer to the difficult problem Guaspari
and Solovay stated: do there exist non-equivalent Rosser-sentences
with respect to "the" usual proof predicate.

4.2 Proposition. There exists a usual proof predicate such that
(a) for all Rosser formulas Rx with respect to that proof predicate
PAF 3xVy> x TRy,
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and hence,

(b) for all Rosser formulae Rx and Sx with respect to that proof
predicate, PAF 3xVy > x(Ry e Sy),

and

(c) for all such Rosser formulae Rx and Sx, PA ¥ VxVy(Rxe Sy).
Proof. (a) We again take a usual proof predicate as in (a) of the
above proof. First note that in PA+ 0L, Yy Ry is provable, and
hence also 3xVy > x T1Ry. Secondly, note that, arguing in PA+0O1,
for n large enough, the shortest proofs of R(n) and TR(n) are going
to consist of the shortest proof of L combined with the formula in
question. This means that with the gédel numbering discussed
above OR(n)<XO™R(n) holds for such large n, i.e. 7IR(n). So, in any
case, IxVy=xTRy.

(b) follows immediately from (a), and (c) follows from (b), since
for each Rosser formula R(x), PA¥ TR(n) for any neN, by the usual
Rosser argument. X

The result is somewhat remarkable in that standard proof predi-
cates O can be found for which all Rosser-formulas are provably
equivalent by extending the Guaspari-Solovay (1979) method (de
Jongh A).
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Proof. (a) The idea is the following. If 1 is provable in PA, then, as
we will explain, at least for some proof systems and codings
thereof by natural numbers the shortest proofs of very large (i.e.
non-standard) sentences A which aren't axioms will be <1,A>. (We
restrict our attention to natural deduction systems; for, say,
Hilbert type systems, even though there is no essential difference,
this is of course somewhat more complicated.) If we take LAn=n
for the sentence A, then we see that from a certain n onwards
<l,lAn=n> will in such a case be the shortest proof of LAn=n.
Since in PA it cannot be excluded that 1 is provable, it is now
sufficient to make the proof system and coding such that a proof of
TAn=n cannot be shorter than the given proof of LAn=n. For this
idea to work it has to be so that the only radical increase in length
of formulae in a proof step occurs only in applications of the ex
falso rule. Usually, however, also application of the EV-rule
VxA(x)/A(t) may give a radical increase in formula length. The
problem is then that TAn=n may get short proofs after all, e.g. by
concluding it from Vx(TAx=x). This blocks the argument, since
Vx(TAx=x) might have a shorter proof than 1 (in fact, it certainly
willl). The EV-rule is the only rule besides the ex falso rule with
this property however, so if we exclude it the argument will go
through. wWe just have to be sure that TAn=n is not an axiom and
that any formulae from which it is concluded will have almost the
same length as TAn=n itself.

The above considerations lead to the following solution: choose a
formulation of PA with no function symbols (even for the successor
function), and take a standard natural deduction system for it. This
is slightly awkward for the interpretation of the substitution of
numerals, O(TAx=x) e.g. gets rather unwieldy, as e.g. TA2=2
stands for TA3xXq IxoIxz IXg (SOX1ASX1 X2 AS0X3ASX3XgA X2=X4), but
there is no fundamental problem. The effect is that TAn=n cannot
have short proofs via Vx(TAx=x). An alternative, somewhat
unnatural, way is to have a natural deduction system with regard to
the propositional connectives, together with axioms and not rules
for the quantifiers, in particular e.g., VxA(x)—> A(t).
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