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Introduction.

dolovay's arithmetical completeness theorem states that Lo6b's
logic L (PRL in Smorynski[85]) is the modal logic of provability in
PA and that the closure of L under reflection, OA—A, and modus
ponens is the provability logic of PA in the standard model. For
any sentence @ such that L¥ @, Solovay defines, using the for-
malized recursion theorem, a recursive function from which an
interpretation ( )* is obtained such that PA¥@*. The proofs of
the essential properties of this function, as well as the formal-
ization of the recursion theorem, employ, prima facie, 21-induc-
tion.

In this article! we take another look at Solovay's proof of his
completeness theorem for the modal logic L with respect to
arithmetical interpretations. An at first sight dominant feature in
Solovay's proof is his use of the formalized recursion theorem.
The use of the recursion theorem in this proof and others like it
is not really necessary, but can be replaced by applications of
Godel's diagonalization lemma (mostly in the form including free
variables). Using the recursion theorem makes his procedure
somewhat easier to follow intuitively, but it adds to the mystery
of the proof, and makes it harder to judge exactly which princi-
ples are used. Since one of our purposes is to investigate in how
far one can weaken the arithmetical system and still have Solo-
vay's completeness result, it is important to us to do without it.
The concrete additional benefits of the proof of the arithmetic
completeness of L given in section 2 are:

(1) it mainly uses modal properties of arithmetic as well as self-
reference and is, therefore, closer to the spirit of modal logic;
(2) the modal properties used, i.e. these of Guaspari-Solovay's R
plus diagonalization are valid in weak fragments of PA; they hold,
for instance in any extension of 1A which proves Zi-complete-
ness, so they hold e.g. in IAg+ EXP, but not in IAg +§4 (cf. Ver-

1 Part of this article is a reworked version of the first chapter of the master's thesis of the
second author (Jumelet [88])



brugge [88]). Consequently, the present proof allows us to extend
Solovay's theorem to a large class of fragments of PA. The result
concerning the provability logic of true formulae for these frag-
ments falls under the scope of this proof as well.

The fixed point formulas used in the completeness proof for L are
then, in section 3 of this paper, slightly modified to obtaina Ag-
formula describing the behaviour of Solovay's function. This for-
mula is used to introduce, by means of the diagonalization lemma
again, standard proof predicates provably equivalent to the usual
one, yielding the arithmetical completeness of Guaspari and
Solovay's system R with respect to extensions of IAg + EXP.

1. Preliminaries.

1.1. Definition. The language Lo of propositional modal logic is
defined as follows:
Lo:={1,-,),(,O}UP, where P is some set of propositional let-
ters, L a propositional constant (falsum), — a binary connective
(material implication) and OO a modal operator. The class of well-
formed formulae SEN_ of Lg is the smallest class such that:

PESSEN.,,

1eSEN,

@,peSEN = (@ > y)eSEN,,

and @€ SEN ;= D0@e3EN,.
Boolean connectives V, A, 71, <, as well as & will be used as
abbreviations with their standard meaning.

1.2. Definition. A semantics for modal formulae is developed by
means of so-called Kripke-models. A model M for Lp is a triple
<M,R,IF>, where M is a non-empty set, R a binary relation on M
and I some subset of MxP. F=<M,R> is called the frame of the
model. The forcing relation is uniquely extended to all modal
formulae X in the following manner (writing xl-X for <x,x>€l-
and xJ¢x for <x,x>¢IF):



for all xeM:

for X=@—-y: xlFx iff x}¢@ or xlky,

for x=00: xI-X iff for all yeM such that xRy: yl-@,
and, finally, x¥ 1.

1.3. Definition. The modal system that primarily concerns us
here, is the so-called modal provability logic L. This system is
defined as the smallest set of modal formulae containing:

all tautologies of propositional logic;

all expressions of the forms

Oe-00¢, O(p->yw)>(Oe—-0y), or O(Op->@)->0Op,

which is closed under the following two rules of inference:

F@ = FOg (necessitation);

Fe—-yand Fp = Fy.

The axiom O@—-00¢ is put on the list rather to stress its im-
portance than its indispensability, since it can actually be derived
from the other axioms and rules. The next result is of essential
interest to us here.

1.4. Theorem. ¢ is not a theorem of L if and only if a model
M:=<M,R, IF> exists such that:
(i) M is finite, say M={1,...,n};
(ii) B is a transitive and conversely well-founded relation on M,
(i.e.: Vx,y,zeM(xRyAyRz—xRz) and no infinite ascending
chain xgR x1Rx2... of elements of M exists);
(iii) for all jeM, if 1< j <n, then 1Rj;
(iv) 1IF .

This theorem is known as the modal completeness theorem for L
with respect to the finite, transitive and conversely well-founded
frames. For its proof one may consult e.g. Smorynski[85].

1.5. Interpretations. Let from now on T be a 2¢-sound arith-
metical theory proving the three L6b conditions (and hence L6b's
theorem) and satisfying formalized Z1-completeness, i.e.:

Tr3pprooft(p,"A—B")—(3pproof1(p,"A")—>3Igprooft(g,"B™));
THA—-3pprooft(p,"A™), for all AeZ, ;



An interpretation of a set of modal formulae is a function ( )*
that assigns a sentence @* in the language of T to each modal
expression @ and obeys the following criteria:

(L)*= 0=1;
(@oy)* = @*—>y*;
(O@)* = Approof(p,"@*").

It is obvious that, once ( )* has been defined for each proposi-
tional variable in the modal language used, the translation of the
entire set of formulae is completely determined.

1.6. Solovay's first Completeness Theorem (Solovay[76]).
This theorem is formulated as follows:

Let @ be any modal expression. Then: k@ if and only if TH@*
for every interpretation ( )* of the modal 1anguage used
which satisfies the clauses of the preceding paragraph.

The implication from the left to the right is of no concern to us
here. The proof is simple, due to the fact that T is closed under
the axioms and rules of L whenever the provability predicate is
substituted for the modal operator O. The arithmetical versions
of the rules and axioms of L are exactly the three L6b conditions
and Lob's theorem which are fulfilled in T. The conditions imposed
upon the interpretation function will do the rest. The implication
in the other direction will be treated in section 2.

2. A modification of Solovay's completeness proof.

The original proof of the completeness theorem is based on the
idea that a certain class of Kripke-models can be embedded in
arithmetic. We have already seen that any modal expression @
which is not derivable from the axioms of L gives rise to some
finite counter model falsifying @. The embedding of such a model
into arithmetic was carried out by Solovay by defining, with the
aid of the recursion theorem, a recursive function h which paces
through the model in a very particular way. Intuitively speaking,
one can describe the Solovay function as follows. As its values it



takes only numbers denoting the nodes of the Kripke-model in
question. The next value can only be the same as the previous one
or one which is accessible from it by way of the relation R of the
model. Thus it is clear that this function eventually reaches a
Timit. This Timit is used to specify the next value, each time, in
the following manner: for each argument the function takes the
same value m as the previous one, unless the argument codes a
proof in T of the fact that, for a certain number n, R-accessible
from m, the limit of the function is not equal to n. In the latter
case the function takes this value n.

To be able to be more precise we now first give some notation.

2.1. Definition. Let F=<M,R > be a finite, transitive and con-
versely well-founded frame. M={1,...,n} and for all j, if 1<j <n,
then 1R j. A new root O is added to M, i.e., for all jeM, ORj.
We will use the following abbreviations:

iBj for i=jViRj;

ioj for T1iRjA TjRi.
The function h is represented by a formula Hxy. We write 2=ifor
IxVy> xHyi, i.e." the 1limit of h is i".

More formally, the function h, given by the formula Hxy, is defined
as follows, using the formalized recursion theorem:

h(0)=0
h(n+1)=h(n) unless

h(n)Rm and proof(n," 7 =m") in which case
h(n+1)=m.

If the theory T is strong enough to allow definition by primitive
recursion, the use of the recursion theorem can immediately be
circumvented as follows. Let nonlim(u,v) be the function that, for
each u and u, if u is the code of a formula Hxy, gives the code of
13xVy > xHyv. One can then define h'(u,n), dependent on the extra
variable u, simply by primitive recursion:

h'(u,0)=0
h'(u,n+1)=h(u, n) unless

h(u,n)Rm and proof(n, nonlim(u, m)) in which case
h'(u,n+1)=m.



If h'(u, x) is defined by H'uxy, then Hxy with properties as required
can be found with the aid of the diagonalization lemma:

F Hxy e H'("Hxy ", x,y)

However, we do not want to have to depend on our theory to be
strong enough to have primitive recursion available: in essence
this still requires 21-induction and it turns out that with defini-
tions like the one given above there is no necessity for this. For
the definition of h(n+1) we only have to look at numbers <n and
the proofs of negations of limit assertions about h which they
code.

Let us first consider the case of defining h only as a partial
function at those arguments where relevant negations of limit
assertions are actually proved. Then we can see that h(n+1)=m
iff

(1) n+1 proves the negation of the limit assertion with respect to
m,

(2) no such proof concerning a number m' with mRm' (or m=m') is
coded by a number <n [otherwise, h should have “passed” m al-
ready ],

(3) if any such proof is coded by a number n'<n for an m' incom-
parable to m with respect to R, then there has to be an even
smaller number n" <n' that codes such a proof for a number m"BEm
(or m"=m) incomparable to m' [otherwise h should have taken a
direction from which it could no longer reach m; in other words,
any proof that could possibly "side-track™ h from its way to m,
has to have been preceded by a proof that makes it harmless, by
side-tracking it 1.

More formally a partial function can be thus defined as Hp,
slightly changing the definition of 2=y to

Ix(Hp xy AVX' > xT13y' <nHpx'y'):

Hpxy & (x=0Ay=0)V
(Proof(x, "1 =y™")A
A< x3y" <n(yBy"AProof(x"," 1 4=y"")A
Vx'<xVy"<n(y'oy AProof(x"," 1 =y"")—
Ix" < x"Jy" (y"eoy"Ay"R y A Proof(x™," 1 f=y"")

Hxy can then be obtained from Hpxy as follows:



Hxy & 3x' <X (Hp X'y AVX" (X' < x" <x = T13y" <nHpx"y"))

This method of giving these definitions applies quite generally,
and we will use it in section 3, but for the Solovay proof for L it
can be further simplified. The proof involves only the mutual
relations between a finite number of 1imit assertions, and we can
more directly define corresponding sentences, using nothing but
the desired connection between these sentences. More precisely,
we may replace each expression "l=1i" we come across in the
original proof, by a single sentence A, the definition of which is
an exact imitation of the conditions which lead to 2=i. It is im-
portant to notice that these conditions can all be spelled out in
the form of finite conjunctions, claiming the existence or non-
existence and order of succession of certain proofs, namely
proofs of expressions of the form 71 2=j. But within proof predi-
cates only codes of these expressions occur. It turns out to be
possible for that reason to define each A; by means of a fixed
point equation, containing only codes of these Aj's. It will be
demonstrated below, that, in doing so, the alternative sentences
satisfy the same lemmas Solovay proved for the original ones.
This makes them equally suitable to perform as a basis for
arithmetical interpretations of the modal logic.

The n-ary fixed point theorem produces a set of sentences Ag,...,An
in the language of T, which satisfy the following requirements:

TExeOTMA AOTN;
for all i such that 1<i<n:
TENeONA @ﬂmﬂj/\ 70 b)é/_ (O <O ).

io i
] ko)

Here "OA<0OB" is the usual notation for:
"Ip[prooft(p,"A™")A13qg < pproof(q,"B™) 1"
Finally, we define:

No:="1 W Ni.
1<ign



2.2. Lemma. The set of sentences {Ag, ..., An} of T defined as
above has the following properties:
(M TE W ;.
0<i<n

(2) NE 2o

(3) For all i such that 0 <i<n, T+\; is consistent.
(4) TF N> /ig%—ru-mj for all i>0.

(5) TH Ai— _/l)%ju-mj for all i>0.

This lemma represents the heart of Solovay's proof. If we replace
each expression of the form A; by §=1i, we get the original lemma
(cf. Solovay[?76], lemma 4.1).

For reasons of economy, it is useful to prove lemma 2.2 within a
more general framework. This will show us exactly which prop-
erties of our theory are used to prove it. We take for this purpose
a modified version of R™, the modal system of Guaspari and
Solovay (cf. Guaspari and Solovay[7?9]). We first recall that R™ is
an extension of L in which the class of well-formed formulae is
extended by the so-called witness comparison formulae, viz.
those of the forms OA<0OB and OA<OB.

2.3. Axioms of R™. R™ is axiomatized by adding to L the follow-
ing axiom schemata (cf. de Jongh[871):

A—-[OA for all boxed and witness comparison formulae. It is to
be noted, that, since R~ is an extension of L, the same schema
applies to the closure of this class under conjunctions and
disjunctions, the so-called >-formulae; this gives us the so-
called 2-completeness axiom;

the order axioms (for all O-formulae A, B, C):
(01) A, AXBVB=XA;
(02) AXB—-A;
(03) AXBABXC—-AXC;
(04) AXB— AXBA TBXA.



We extend R™ as follows: for any frame F=<M,R>, which is finite,
transitive and conversely well-founded, with M={1,..,n} and 1R
for all i such that 1<i<n, let Rg be defined by the addition of
the following axioms to R~ (we assume the language to contain
propositional constants Lg, ...,Ln, and we write OA for AAOA):

O(Lie07LA ADO7L);

for each i such that 1<i<n;
O( LieO LA @-ruﬂl.j/\ /])Jk :bBV]_ (OL=<O7Ly));
Koj
O( Loe T \X/ L ). J
1<i<n
These axioms will be referred to as the /imit axioms. In addition,

we let R contain
B (OLx07L,;A07L;07L4))

for all i,j such that 0 <i,j<n and i=j, as so-called proof apart-
ness axioms. In the next two paragraphs we will mention some
properties of Rg that will be needed for the proof of lemma 2.2.

In the following discussion the frame F is to be thought of as
fixed.

2.4. Theorem (Soundness of Rg). An interpretation ( )* of sen-
tences in the language of Rp into the language of arithmetic is
called F-sound if and only if ( )* fulfils the criteria cited for ( )*
in 1.5 and, in addition:

for all formulae @, y:

(Oe<x0Oy)*=3p [proof+(p,"@*")A13q< p prooft(g,"w*™)I];
(Oe<0Oy)*=3p [proofr(p,"@*")A13g <p proofr(q,"y*™)];
for all i such that 0 <i<n:

Li*=X\; (as defined above).

For all F-sound interpretations ( )* of sentences in the language
of Rz and any @ in that language, R = TH@*.

The proof is straightforward by induction on the length of proof in
Rg, since T is closed under the same rules and axioms we have at
our disposal in Rg, provided ( )* is F-sound. We will use this the-
orem extensively in the proof of lemma 2.2.
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A Kripke-model for R~ is a finite, tree-ordered Kripke-model
<X,U,IF> for L in which witness-comparison formulae are treated
as if they were atomic formulae and in which the following
requirements are fulfilled:
(1) persistency of < and X:

if sFAXB and sUs', then s'lFAXB,

and likewise for <, viz.:

if sFAXB and sUs’, then s'lFA<B;
(2) each instance of the order axioms is satisfied at each node.

The completeness theorem for R~ is stated as follows: R™F @ iff
( is valid on all finite, tree-ordered Kripke-models for R™.
In the case of Rg this theorem implies:

2.5. Theorem (completeness of Rf).
If RE K@, then a finite, tree-ordered Kripke-model for R™ exists,
in which all 1imit axioms and proof apartness axioms are forced
at each node, and on which @ is falsified.
Proof. This result is a consequence of the completeness theorem
for R™, because we have :

REF@e<= R FE-0,
where 8 is the finite conjunction of limit axioms and proof
apartness axioms listed in the definition of R¢.
The implication from the right to the left is easily proved. The
other direction is shown by induction on the length of the proof in
Re. To obtain the desired result, we should check whether any
proof of a formula @ in Rg can be transformed into a proof of
86— @ in R™. This can cause no difficulty, since any axiom of R¢ is
either an axiom of R~ or a consequence of 8, and, if the last rule
applied in a proof in Rc of some formula g has been the necessi-
tation rule, then we can use 8 =08 which is a theoremof R~. K

A simple proof of the completeness theorem for R~ can be found
in De Jongh [871.

Now we are ready to commence the proof of lemma 2.2.
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Proof of lemma 2.2.
Fix a finite, transitive and conversely well-founded frame
F=<M,R>, with M={1,..n) and 1Ri for all i such that 1<i<n. Let
Ao,..,An and Rg be as defined above. We first show:
(@) REF Lo /AN 0O

1<i<n
As the implication from the right to the left is obvious, we will
concentrate on the opposite direction. Suppose the contrary to be
the case. We will derive a contradiction as follows. By theorem
2.9 we would have a finite, tree-ordered Kripke-model <X, U, IF>
for R~ with the 1imit and proof apartness axioms forced every-
where in the model and with some bottom node kg such that

=1
kol Lo A 13_0@1: L.
We must have:

KoFO7Li,A..AOL, A /A O7L,

for some k such that 1 <k <n.
As any instance of the order axioms and the proof apartness ax-

ioms is forced at ko, we can stipulate, without 1oss of generality,
that at ko the following is forced:

O7L, <0O7L,A.. A0, <0O7L, .

At this point, we can construct a subset {my, ..., m;} of the set of
indices {1,...,k} as follows:

mq =1,

Mh+1 := M if m is the smallest index number in {1,..k} such
impRim and koII-EI'ﬂLimh-< O7L,, . If no such m exists, set 1=h
and Mp+q =My,.

It will be understood that this construction comes to an end, be-
cause the set {1,..,k} is finite. By means of a finite induction
procedure we will now prove the following: for all p such that
1<p<:

kol /A W (O <O7L).

jemp kﬁ?ljlp

The case of p=1 is trivial, since im,=i1 .
Induction step: suppose
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kol A W (OL<O7L)).

Jomp l(kr-vj
Brmp
Now let j be such, that jemp.q . There are two possibilities: either

jemp as well, or not. In the first case we obtain

ko lF E)(]/ (O1L<O7L;))
KBmp+1
by the induction hypothesis, for kBmp implies kBmp+1 . In the lat-
ter case mpRj must hold. But the definition of mp.4 implies:
koll—ElﬂLimp”-ﬂ:I‘le whence kg I 3(]/ (O7Lg<O7L;) follows
by propositional logic. kBmMp+1
This completes the induction procedure. 3ince im, has no R-suc-
cessors in {iq, ..., ik}, we can conclude:
kolFO i, A /A 7074 AN W (O7L<O7Ly) .
Tm R] j°im; kej
Tm; BJ
But this implies kol- L,-m] contradicting kol-Lo . The proof is hereby
completed.

(b) If 1 <i<n, then RekLi— /A 207, . This is immediate from
the definition of R . :

Combining (a) and (b) we get lemma 2.2 (4) by soundness.

(c) Rg contains all tautologies of propositional logic, so we have
ReFLoV Lo from which R H oygn Li readily follows. Employing
soundness, this accounts for of lemma 2.2(1).

As all theorems of T hold in the standard model, we must have
INEX; for some i such that 0 <i<n. But it must be the case that
NEXo , since for any i=#0 we would have TH T1A; in case A; were
true. Combining this with of lemma 2.2(4), we obtain

NE oé\gn—ﬂj_')\j' This settles lemma 2.2(2) and (3).

(d) If 0<i<n, thenRREFLi—»0O7Lo.

By (a) we have Rg-O7Lj— 7Lo. Applying the necessitation rule
we infer: ReFOOL;—»07Lo. As O7L; is a boxed formula,
DO7L;—»007L; is a theorem of R. This completes the proof, as
ReFLij—=0O7L; is a direct consequence of the definition of R,
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(e) If 0<i<nandiRj, then RpFLj—>0O7L; .
If iRj is the case, we have RgFO™Lj— 7L; by the limit axiom
that defines L;. Arguing as in (d) we obtain the desired result.

()If0<i<nand 0<j<nand iej, then RFFLj—»0O7L;.
Fix i and j such that ioj. By the definition of R we have:

ReFLi= /A §é{ (@L< OLy).
J o
More specifically, we obtain:

RFFLi=» A W (O Le=<OLy).
ie]" KkRBi
JBj kej’
As the order axioms and proof apartness axioms imply that the
OLy's in this formula are linearly ordered by < (compare the
proof of (a)), there must be a smallest one; in other words:
RFF A WO Le=<O7L)» W A (O7L<O7Ly).
o] kRi koj JBJ
J'Bj kej' kBi Joi
But the consequent in the last formula is a Z-expression implying
-1L4, so: Rfk ‘AJQ ‘Iyg(u-ukﬂj—wj-)—n:-mj.
, iBj koj’
(g) Putting (d), (e) and (f) together, we obtain:

RFFLi—»O(7LoA /]_g(j\—!LjA JAR(}-le) for all i such that 0<i<n.
Applying soundness, this settles lemma 2.2(5). X

Let M=<M,R,IF> be a finite, transitive and conversely well-
founded model with M={1,...,n} and for all i if 1<i<n, then 1R .
As usual, we expand M by adding an extra node O to it and defining
OlF as equivalent to 11 for all propositional letters. In the man-
ner indicated above we obtain sentences Ao, ..., A\ satisfying lemma
2.2. We define an interpretation ( )* by setting for all peP:

p*:= ”\3'{/p ni. If there is no i such that ilFp, then set:
p*:="0=1"

The following lemma provides the necessary last step towards
the completeness theorem:
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2.7 Lemma: for all modal expressions ¢, if 1 <i<n, then:
iF@=TFA;— @* and
iFe=TFA->T@*

The proof is exactly the same as Solovay's original one, with each
expression of the form f=1 replaced by A;, so we will not give it
here. Some attention however should be paid to the way clause (5)
of Temma 2.2, in the form Aj— 0O \)(/AJ, is used, when ilFg@ =
TEXN;—>(@)* is proved by lncluctlonJ In fact, it is at this point
that full formalized 21-completeness is used. This completes our
explanation concerning the adaptation of the proof of Solovay's
result.

3. Completeness of R.

In this section, we deal with the arithmetical completeness of
Guaspari and Solovay's logic R with respect to arithmetical
interpretations in IAg + EXP or in any given Z1-sound RE-extension
of it. To formulate our result correctly, let us start with the
following definitions (as usual, T denotes an arbitrary Zq-sound
RE-extension of IAg+EXP).

3.1. Definition. A standard proof predicate for T is a Z1-for-
mula Th(v) numerating the set of theorems of T and such that for
any two sentences o, B, TFTh("a’)ATh("ax—»g " )—>Th("B™) and
TFTh("a")>Th("Th("o™)™)

In our proof, we shall make use of a standard proof predicate
which, in addition, is provably equivalent to the usual one.

3.2. Definition. Let Th(v) be a standard proof predicate for T. An
arithmetical interpretation based on Th(v) is a mapping * from R
formulas into arithmetical sentences satisfying the following
conditions: 1*= 0=1, T¥*= 0=0; * commutes with the logical
connectives and witness comparisons, and OA*=Th("A*™).

We are now ready to state the main theorem of this section.
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3.3. Theorem. Let A be any formula of R. The following are
equivalent:
(i) RFA.
(ii) For any standard proof predicate Th(v) and for any interpre-
tation * based on it, TH A¥*,
(ii1) For any standard proof predicate Th(v) provably equivalent
to the usual one and for each interpretation based on it, THAX,

Proof. That (i) implies (ii) is easy, and that (ii) implies (iii) is
trivial. So, 1et us prove that (iii) implies (i). Suppose R¥A. By a
result of Guaspari and Solovay (cf. [79]) there is a model M=
<{1,...,n},R,IF>of R~ with root 1 and a node i of M such that il A;
moreover, the model can be taken to be A-sound, i.e. we can as-
sume that 1IFOB—B for any subformula OB of A. Add a new node
0, stipulate that ORi for i=1,...,n, and give O the same forcing as
1 w.r.t. the subformulas of A. That this is possible is guaranteed
by the fact that the model is A-sound.

Let S denote the set of O-subformulas of A, K denote the cardi-
nality of S plus one. For i=0,...,n and for OC,ODe S define: OC=
;0D iff iFOC<0OD and iFOD<OC;

aoc<;0D iff i-OC<0OD. Furthermore, let Ei1:---'Eih,- be the
equivalence classes w.r.t. =; enumerated according to <; (i.e. if
DCeEij, ODeEj,, and j<h, then OcC<;0D). Notice that, for
i=0,...,n, hj<K.

We add some more notation:

proof(v,"p™) :=proofy(v,"p");

O p” :=3v proof(v,"p);

Oc«x"p” :=3v<x proof(v,"pT);

Oc«x"'p S 0cx"q :=3v<x[proof(v,"p")AVu<v proof(u,"q™) 1];
C«x P =104 "7pT;

F =Tk,

3.4. Definition. A formula A is stable iff
F3Ix(Vy>x Ay Vv Vy > x TAy).
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3.5. Lemma.

(1) Each Boolean combination of stable formulas in the same free
variable x is a stable formula.

(2) Oy "p", Oex ™™, Ocx"p" X 0Ocx"q" are stable.

(3) if L(A4(X), ..., Ap(X)) is a lattice combination of stable formulas
Aq(x), ..., An(x), and if Ly= 3yVx>yAi(x), then:

F 3ny> yL(A{(X),...,Ap(x)) > L(L4, ...,Lp).

Proof. (1) and (2) are trivial, and (3) is proved by induction on the
complexity of L. The step corresponding to A is trivial; the step
corresponding to Vv is proved by means of (1) and the induction
hypothesis.

Next let the free variable formulas H;i(x) for 1 <i<n be defined,
by self-reference, in such a way that:

FHi(X)eOLiA m<><xL] A /X\ \Y/ (Oex k< OcxLy);
where iBj and iej are defined as in 2 1 and L :=3yVx> yH;(x).
Also, let Ho(x) := Q%—IH i().

By lemma 3.2, Hi(x), i=0,...,n, are stable. Therefore, by the same
lemma, clause (3):

F Lo AL
F LieO7LA /)(\-1|:|-1L,A A W (O L=< O7Ly);

o] KkRBi
] k°]

(of course we use: FO'p ' eIxO'p7, FOP VO« 'P,
l‘Drp1§< qu-'(—)aX(Dgxrp-l e Dgxrq -l))
As in lemma 2.2, we can now deduce:

(ME W L.
0<ikgn
(2) NE Lo .
(3) For all i such that 0 <i<n, T+L; is consistent.
(4) F Li— /%%-'D-u.j for all i>0.
(5) F Li» AN\ O7L;for all i>0. =
TiRj
3.6. Lemma.

(1) If i=j, then F H(x, i)— TH(x, j);
(2) FH(x,1)—> ?g H(x+y, j).
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Proof.

(1) Suppose i=j. If iRj, then F H(x, 1)> O 4L; and

F H(x, i) > O<x7L;. The reasoning in the case jRi is symmetric. If
io j, one can formalize the following argument: assume H(x, i) and
H(x, j). Then, for each h incomparable with i, there is a k such that
koh, kBi and O¢x7Lg<XO¢x7Lph. Moreover, a similar condition
holds with j in place of i. Since ioj, H(x,i) implies that there is an
hq such that h1Bi, h1ej and O «xLh<XO<x L. Using H(x, j), we get,
since hqoj, an hoRj, hoohy such that Oc<xLn,<0O<xLn,. Thus,
hy,...,hn+1 @re obtained such that

Oc«xhh,,X0OcxLp, <X ...XO<xLn,. The proof apartness condition
implies that the hi's are mutually distinct. This is impossible as X
has cardinality n.

(2) Induction on y (notice that the formula H(x,i)= W H(x+y,j) is
Ao). Assume H(x+y, j), where iR j. Clearly, if ﬂEl<x+y]+J1‘th for any
h such that jRh, then H(x+y+1, j) and we are done; otherwise, let
h be such that O¢y+y+1 7Ly and jRh. Note that:

(a) proof(x+y+1, L)) AVUu< x+y+17proof(x+y+1,7Ly),

since otherwise we would have TH(x+y,j);

(b) if hRk, then 710 ¢x+y+1 Lk, otherwise, since proof(x+y+1,7Ly),
and, consequently proof(x+y+1,7Ly), we would get O¢y+y L and
TIH(x+Y,j);

(c) if moh, then, either jRm, in which case 710 ¢x+y lm,
T10¢x+y+1 Lm, and, since, by (a), O <x+y+1Lh, We can conclude
Oexry+1 Ln<XDgxsy+1hm,

or jom, in which case there exists 1 such that 1om, 1B j (whence
1Bh) and O ¢x+y TLn< O ¢x+y Lm (whence

Ocxey+1 TL1<XOcx+y+1Lm). In any case, if moh, there exists 1
(possibly 1=h) such that 1Bh, lem, whence

O <x+y+1 L1 Ocx+y+1Lm. Conclusion: H(x+y+1,h). This completes
our proof. X

3.7. Corollary.
FH(x, )Ay > x— iVB(]/ H(y, j).

wWe now introduce a standard proof predicate O'"p '=3x
proof'(x,"p™), such that TKA*, where * is the interpretation
based on 0O' given by:
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*=(i=i)a W L,
pi=i=ia b

Roughly speaking, O' proves p at stage Kx (K the cardinality of S
plus one) iff proof(x,p) and, for all OBeS, p=B*, and proves p at
stage Kx+y (0 <y <K) iff 3i<n[H(x,1) Ay <h;n 30BeE;, (p=B*)].
So, if H(x,i) and EiyE{DB1, ..., OBg}, then O' proves Bq¥,...,B¥ at
stage Kx+y. Of course, the definition of O' depends on the inter-
pretation * which in fact is based on it. This circularity is
avoided as usual by means of the diagonalization lemma. We will
now present the formal definition of proof":

3.8. Definition.
Let, by self-reference, the formula proof'(x, p) be such that:

F proof'(x,p) & 3y <x(Ky=xA proof(y,p) A VOBeS(T1x=B%))v
Ji<ndy<xIz(0<z<K A x=Ky+z AH(y,i) A
z<hiA30OBeE; (p=B*))

where * denotes the interpretation based on 3xproof'(x,p) given

by: p*:=(i=i)a W L.
Y- P jFpi

Notice that proof' is provably Ag. To prove Theorem 3.3, it is
sufficient to show (cf. Smorynhski[85] or Guaspari-Solovay[79])
the following lemmas:

3.9. Lemma. If B is a subformula of A, then for all i <n:
FLi»(B*—il-B).

3.10. Lemma. If OB is a subformula of A, then for all i <n:
FLi=(OB* < il-0OB).

3.11. Lemma. FVx(Oxe O'X).

Proof of lemma 3.9. By induction on the complexity of B; the proof
works as in Guaspari-Solovay[?9]. The only problem is that we
have to be careful with the use of induction. But, even if we want
to allow only Ap-induction, there can be no problem, since both
H(x,y) and proof' are Ao. Anyway, the propositional cases and the
Boolean cases are trivial.
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O-case: if OB is a subformula of A, then B* can be proved only at
a stage of the form Kx+z, where 0 < z<K. This happens iff H(x,i)
and ilFOB; so: F(L;A ilFOB)— (OB)*.
Next, suppose LA ilF0B. Lemma 3.6 and corollary 3.7 and the
definition of H(x,0) ensure that, provably in T, H(x,y) defines the
graph of a weakly monotonic function from N to {0,...,n}. So,
L;iA il 0B implies that, for all x:

H(x,j)— jRi

- j¥0OB.

S0, B* is never proved by proof".
Steps <, <. Suppose L;A ilFOB<0OC; then there is a least x such
that: 3j <n[H(x,j) A jiFOB] (we have applied the least number
principle to the Ap-formula 3j <n[H(x,j) A jIFOB]). Note that, by
lemma 3.6, this j is unique and jR1i, and therefore, by >2-persis-
tency, ji-FOB<0OC.
If u<x, then: H(u,h)-hkOC (otherwise, h Rj, hirOC<0OB,
jiFOC<0OB). So, C* is not proved by proof' at any stage <Kx.
Since jFOB<0OC, we get either ji-70C or OBeEj,, OCeEjq
where r<s. It follows, that B* is proved at stage Kx+r, and either
C* is proved at stage Kx+s, s >r or T10ck(x+1)C*. In both cases,
(OB)*<(OC)*.
The case Lij A ilFOB<0OC is treated similarly.
If Li A i0OB<0OC, then either i¥OB and T (OB)* by the O-step,
or it is the case that iFOC<0OB, in which case (OC<OB)*,
whence 1(OB<0OC)* follows.
The case LiA i¥OB<0OC is treated similarly.

Proof of lemma 3.10. By conditions (1), ...,(5) of lemma 2.2 and by
lemma 3.9, we are in a position to repeat the proof of the analo-

gous lemma in Guaspari-Solovay[79].

Proof of lemma 3.11. Follows from lemma 3.9 and 3.10 as in
Guaspari-Solovay[79].

This completes the proof of Theorem 3.3.

3.12. Remark. Z1-completeness is used only in the proof of
Solovay's lemma, i.e; the the proof of lemma 2.2. It follows that
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if, for some Z1-sound theory T2IAp we can get sentences L;
i=0,...,n satisfying (1), ...,(5), we can embed finite R-models in
T. This does not necessarily imply that we have arithmetical
completeness for T, as R need not be arithmetically sound with
respect to the interpretations in T.
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